EP2695183A1 - Method for permanently bonding wafers - Google Patents

Method for permanently bonding wafers

Info

Publication number
EP2695183A1
EP2695183A1 EP11714257.0A EP11714257A EP2695183A1 EP 2695183 A1 EP2695183 A1 EP 2695183A1 EP 11714257 A EP11714257 A EP 11714257A EP 2695183 A1 EP2695183 A1 EP 2695183A1
Authority
EP
European Patent Office
Prior art keywords
reservoir
layer
contact surface
reaction
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11714257.0A
Other languages
German (de)
French (fr)
Inventor
Thomas PLACH
Kurt Hingerl
Markus Wimplinger
Christoph FLÖTGEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EV Group E Thallner GmbH
Original Assignee
EV Group E Thallner GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EV Group E Thallner GmbH filed Critical EV Group E Thallner GmbH
Publication of EP2695183A1 publication Critical patent/EP2695183A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29188Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/8309Vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/83896Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10252Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10328Gallium antimonide [GaSb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10331Gallium phosphide [GaP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10332Indium antimonide [InSb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10333Indium arsenide [InAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10334Indium nitride [InN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10335Indium phosphide [InP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10336Aluminium gallium arsenide [AlGaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10346Indium gallium nitride [InGaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1082Other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1082Other
    • H01L2924/10821Copper indium gallium selenide, CIGS [Cu[In,Ga]Se2]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1082Other
    • H01L2924/10823Copper indium selenide, CIS [CuInSe2]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20106Temperature range 200 C=<T<250 C, 473.15 K =<T < 523.15K

Definitions

  • the present invention relates to a method for bonding a first contact surface of a first substrate to a second contact surface of a second substrate according to claim 1.
  • the goal of permanent or irreversible bonding of substrates is to create as strong and, in particular, irrevocable connection, ie a high bonding force, between the two contact surfaces of the substrates.
  • irrevocable connection ie a high bonding force
  • the bonding process must therefore be designed in such a way that active elements, such as transistors, which are already present on the structure wafers during the bonding process.
  • the compatibility criteria include above all the purity of certain chemical elements (especially in CMOS structures), mechanical strength, especially by thermal tensions.
  • the reduction of the bending force leads to a gentler handling of the structural wafers, and thus to a reduction in the probability of failure due to direct mechanical bending.
  • Object of the present invention is therefore to provide a method for the careful production of a permanent B onds with the highest possible bond strength at the same time as possible lowest possible temperature.
  • the basic idea of the present invention is to provide a reservoir for receiving a first starting material on at least one of the substrates, which, after the contacting or production of a temporary bond between the substrates, has a second starting material, that in the other
  • Substrate present reacts and thereby forms an irreversible or permanent B ond between the substrates.
  • Contact surface usually finds a cleaning of the substrate or substrates
  • the surface layer consists at least predominantly of a native material, in particular of oxide material, preferably of native silicon dioxide.
  • a layer of native material can be made particularly thin, so that the reactions provided according to the invention (first starting material or first group with the second starting material or the second group), in particular diffusion processes, because of the reduced distances between the
  • a growth layer in which the deformation according to the invention takes place or the first reactant (or the first group) reacts with the present in the reaction layer of the second substrate second reactant (or the second group).
  • the first starting material (or the first group) and the second starting material (or the second group) it is possible to thin the growth layer between the reaction layer of the second substrate and the reservoir before contacting the substrates, as a result, the distance between the reactants is reduced and at the same time the deformation / formation of the invention On a growth layer is favored.
  • the growth layer is at least partially, in particular predominantly, vorzugswei se completely removed by the thinning.
  • the growth layer grows in the reaction of the first reactant with the second reactant, even if it was completely removed.
  • Growth layer may be provided prior to contacting the contact surfaces, in particular by passivation of the reaction layer of the second substrate, preferably by application of N? , Forming gas or an inert atmosphere or under vacuum or by amorphizing.
  • N? Forming gas or an inert atmosphere or under vacuum or by amorphizing.
  • a treatment with plasma which contains forming gas, in particular predominantly of forming gas, has proved particularly suitable.
  • forming gas are gases to understand the
  • the remainder of the mixture consists of an inert gas such as nitrogen or argon.
  • the formation of the reservoir, in particular by plasma activation, according to the invention is chosen so that B lasen Struktur is avoided.
  • ions of gas molecules are used for the plasma activation, which are suitable at the same time for the reaction with the second educt, in particular corresponding to the first educt. This ensures that any by-products which could be formed in the reaction of the first starting material with the second starting material are avoided.
  • the size of the reservoir is set according to the invention so that pores of the substrate at the contact surface between the substrates can be completely closed by means of the growth of the growth layer.
  • the size must be small enough to absorb as little as possible excess first starting material which can not react with the reaction layer. As a result, B lase formation is largely avoided or excluded.
  • an in-situ processing is carried out in order to store a very pure starting material in the reservoir and to exclude non-reactive species as far as possible.
  • the bond strengths are below the permanent bond strengths, at least by a factor of 2 to 3,
  • the pre-B ondGoodn of pure, non-activated, hydrophilic Si il silicon with about 100mJ / m 2 and of pure, plasma-activated hydrophilized silicon with about 200- 300mJ / m mentioned.
  • the prebonds between the substrates wetted with molecules come mainly through the van der Waals
  • Suitable substrates according to the invention are those substrates whose
  • Material is able to react as educt with another feed reactant to a product with a higher molar volume, whereby the formation of a growth layer on the substrate is effected.
  • Particularly advantageous are the fol lowing combinations, wherein j ewei ls inks from the arrow the starting material and right of the arrow the product / the products is called, without naming the reactant supplied reactant educt or by-products in detail:
  • Fe-Fe 3 C Fe 7 C 3 , Fe 2 C.
  • III-V GaP, GaAs, InP, InSb, InAs, GaSb, GaN, AlN, InN, Al x GaI.
  • Nonlinear optics LiNb0 3 , LiTa0 3 , KDP (H 2 P0 4 ) - solar cells: CdS, CdSe, CdTe, CuInSe 2 , CuInGaSe 2 , CuInS 2 ,
  • the reservoir (or reservoirs) is provided on at least one of the wafers, directly at the respective contact surface, in which a certain amount of at least one of the wafers
  • fed educts for the volume expansion reaction is storable.
  • Educts can therefore be, for example, O 2 , O 3 , H 2 O, N 2 , NH 3 , H 2 O 2, etc. Due to the expansion, in particular due to oxide growth, due to the endeavor of the reaction partners to lower the system energy, any gaps, pores, voids between the contact surfaces are minimized and the bond force is correspondingly increased by approximating the distances between the substrates in these regions. In the best case, the existing gaps, pores and cavities are completely closed, so that the entire B onding Assembly increases and thus the B ondkraft according to the invention increases accordingly.
  • the contact surfaces usually show a roughness with a
  • R q square roughness
  • the reaction according to the invention is suitable for growing the growth layer by 0.1 to 0.3 nm in a conventional wafer surface of a circular wafer having a diameter of 200 to 300 mm with 1 monolayer (ML) of water.
  • the reservoir it is therefore provided in particular to store at least 2 ml, preferably at least 5 ml, more preferably at least 10 ml of fluid, in particular water, in the reservoir.
  • Particularly preferred is the formation of the reservoir by
  • Plasmabeaufschlagung as by the Plasmabeaufschlung also a smoothing of the contact surface and a hydrophilization as synergy effects are effected.
  • the smoothing of the surface by plasma activation is predominantly achieved by a viscous flow of the material of the surface layer.
  • the increase in the hydrophilicity is effected in particular by the proliferation of silicon-silicon compounds, preferably by cracking S i-O compounds present on the surface, such as S i-O-Si, in particular according to the following reaction:
  • Another side effect is that the pre-B ond strength, in particular by a factor of 2 to 3, is improved.
  • the formation of the reservoir in the cavity is not at the first contact surface of the first substrate (and optionally a second substrate)
  • Reservoirs in the surface layer on the second contact surface of the second substrate s) takes place, for example, by plasma activation of the first substrate coated with a native oxide, in particular silicon dioxide.
  • a native oxide in particular silicon dioxide.
  • the second surface of the second substrate is activated or created an additional reservoir, for which apply the features described for the first reservoir analog.
  • Plasma activation is performed in a vacuum chamber to adjust the conditions required for the plasma.
  • N 2 gas, 0 2 gas or argon gas N 2 gas, 0 2 gas or argon gas
  • Reservoir with a depth of up to 10 nm, preferably up to 5 microns, more preferably to 3 nm of the treated surface, in this case of the first contact surface is prepared. According to the invention, any one can
  • Particle species atoms and / or molecule e, are used, which are suitable. to create the reservoir.
  • those atoms and / or molecule e are used, which are suitable. to create the reservoir.
  • those atoms and / or molecule e are used, which are suitable. to create the reservoir.
  • those atoms and / or molecule e are used, which are suitable. to create the reservoir.
  • Used molecules that creates the reservoir with the required properties are above all the pore size, pore distribution and pore density.
  • the relevant properties are above all the pore size, pore distribution and pore density.
  • Gas mixtures such as air or forming gas consisting of 95% Ar and 5% H 2 are used.
  • the following ions are present in the reservoir during the plasma treatment: ⁇ +, N 2 +, 0+, 0 2 +, Ar +.
  • the first educt is absorbable.
  • the surface layer and, correspondingly, the reservoir can extend into the reaction layer.
  • Plasma species that can react with the reaction layer and at least partially, preferably predominantly consist of the first starting material.
  • the second starting material is Si / Si, a ⁇ -plasma species would be advantageous.
  • Oxygen ions are advantageously used, since they can react with Si to form silicon oxide and therefore do not react again
  • the preferred bonding to silicon prevents oxygen gas after bonding to a
  • the formation of the reservoir is based on the following considerations:
  • the pore size is less than 10 nm, preferably less than 5 nm, more preferably less than 1 nm, even more preferably less than 0.5 nm, most preferably less than 0.2 nm.
  • the pore density is preferably directly proportional to the density of the particles which generate the pores by impaction, most preferably even by the partial pressure of the impact species variable, and depending on the treatment time and the parameters, in particular of the plasma system used.
  • the pore distribution preferably has at least one region of greatest pore concentration below the surface, by variation of the parameters of several such regions, which become one, preferably
  • the near-surface region has a pore density during the blast, which is almost identical to the pore density near the surface. After the end of the plasma treatment, the pore density at the surface due to
  • the pore distribution in the thickness direction has a steep fl at with respect to the surface and a flatter, but steadily decreasing fl at with respect to the b ble (cf.
  • the reservoir can be achieved through targeted use and combination of
  • FIG. 7 shows a representation of
  • Concentration of injected nitrogen atoms by plasma as a function of the penetration depth into a silicon oxide layer.
  • Plasma activation allows a reservoir with one possible
  • the reservoir prefferably be filled with the formation of the reservoir by applying the reservoir as a coating to the first substrate, the coating already comprising the first educt.
  • the reservoir is in the form of a porous layer with a porosity in the nanometer range or as a channel-emitting layer with a channel thickness of less than 10 nm, more preferably less than 5 nm, even more preferably less than 2 nm, with the greatest advantage one than 1 nm. Al with the greatest preference klei ner than 0.5 nm conceivable.
  • Exposing the reservoir to a gaseous atmosphere in particular atomic gas, molecular gas, gas mixtures,
  • Hydrogen peroxide vapor-containing atmosphere and Suitable starting materials are the following compounds: ⁇ + , 0 2 , 0 3 , N 2 , NH 3 , H 2 0, H 2 0 2 and / or NH 4 OH.
  • hydrogen peroxide has the advantage of having a greater oxygen to hydrogen ratio. Furthermore, hydrogen peroxide has the advantage of having a greater oxygen to hydrogen ratio. Furthermore dissociated
  • the formation of the growth layer and strengthening of the irreversible bond by diffusion of the first starting material into the reaction layer are carried out.
  • Another advantageous heat-treating method is dielectric heating by microwaves. It is particularly advantageous if the irreversible bond has a B ondsource of greater than 1, 5 J / m 2 , in particular greater than 2 J / m 2 , preferably greater than 2.5 J / m 2 .
  • the bond strength can be increased in a particularly advantageous manner in that, in the reaction according to the invention, a product having a larger molar volume than the molar volume of the second starting material is formed in the reaction layer.
  • a product having a larger molar volume than the molar volume of the second starting material is formed in the reaction layer.
  • an increase in the second substrate is effected, whereby gaps between the contact surfaces can be separated by the fiction, contemporary chemical reaction mar.
  • the distance between tween the contact surfaces so the average distance is reduced and minimized dead space.
  • reaction layer of an ox idierbaren material in particular predominantly, preferably in wesentl vol ital, from S i, Ge, InP, G aP or GaN or one of the other in the above list alternatively mentioned material.
  • a growth layer in particular predominantly of native oxide material, preferably
  • Silica dioxide is provided.
  • the growth layer is subject to a by the reaction of the invention caused growth.
  • the growth takes place starting from the transition Si-S i0 2 by new formation of amorphous Si0 2 and thereby induced deformation, in particular bulging, the
  • Substrates is increased. Particularly advantageous is a temperature between 200 and 400 ° C, preferably in about 200 ° C and 1 50 ° C,
  • the growth layer can be divided into several recruiting oak.
  • the growth layer may at the same time be a reservoir formation layer of the second substrate, one more time, the reaction eliminating the reservoir.
  • the growth layer and / or the surface layer has an average thickness A between 0, 1 nm and 5 nm before the formation of the irreversible surface.
  • Growth layer and / or the surface layer through, in particular by diffusion of the first starting material through the growth layer and / or the surface layer h through the reaction layer. Furthermore, the activation of the surface can cause diffusion through the generation of
  • thinning can play a decisive role, since the reaction can be further accelerated and / or the temperature can be further reduced.
  • the thinning can be carried out in particular by etching, preferably in a moist atmosphere, more preferably in situ.
  • the thinning is carried out in particular by dry etching, preferably in situ. In situ here means the implementation in one and the same chamber in which at least one previous and / or a subsequent step is / are carried out. Wet etching takes place with chemicals in the vapor phase, while dry etching with chemicals takes place in the liquid state.
  • the growth layer consists of silica
  • it can be etched with hydrofluoric acid or dilute hydrofluoric acid.
  • the growth layer consists of pure Si, can be etched with KOH.
  • the formation of the reservoir is carried out in a vacuum.
  • contamination of the reservoir with undesirable materials or compounds can be avoided.
  • the filling of the reservoir takes place by one or more of the following steps:
  • the reservoir is preferably in a thickness between 0, 1nm and 25nm, more preferably between 0, 1nm and 15nm, with even greater magnitude between 0. 1 nm and 10 nm, most preferably between 0, 1 nm and 5 ⁇ m. Furthermore, according to an embodiment of the invention, it is advantageous if the distance B between the reservoir and the container is greater
  • the distance B may according to the invention influenced by the thinning or hergestel l t.
  • An apparatus for carrying out the method according to the invention is provided with a chamber for forming the reservoir and a chamber, in particular separately provided for filling the reservoir and a,
  • the filling of the reservoir can also take place directly via the atmosphere, ie either in a chamber which can be opened to the atmosphere or simply on a structure, which does not have a jacket but can handle the wafer semi-automatically and / or fully automatically.
  • FIG. 1 a shows a first step of the method according to the invention
  • Figure 1 b an al ternative first step of the invention
  • FIGa and 2b further steps of the process according to the invention for
  • FIG. 3 shows the steps according to FIG. 1, FIG. 2 a and FIG.
  • FIG. 4 shows an embodiment of the invention for forming a
  • Figure 5 is an enlarged view of the two
  • Figure 6 is a further enlarged representation of the expiring at the interface between the two contact surfaces
  • FIG. 7 shows a diagram of the generation according to the invention
  • FIG. 1 a which shows only a section of the at or immediate bar after the pre-B ond step between a first
  • the first substrate 1 and the second substrate 2 are held by the attractive force of the hydrogen bonds between the OH groups present on the surface and the H 2 O molecules and between the H 2 O molecules alone.
  • the hydrophilicity toward the first contact surface 3 is increased in a preceding step by a plasma treatment of the first contact surface 3.
  • the second contact surface 4 is additionally assigned to a plasma treatment
  • a reservoir 5 is present in the surface layer 6 consisting of native silicon dioxide, and in the alternative embodiment according to FIG. 1 b a second,
  • a growth layer 8 is provided on the second substrate 2, which may be at least partially the reservoir formation layer 6 'at the same time. Accordingly, I can add another growth layer between the
  • Reservoirbil training layer 6 'and the reaction layer 7' may be provided.
  • Plasma treatment is the reservoir 5 (and possibly the reservoir 5 ')
  • the reservoir may also contain reduced species of the ions present in the plasma process, in particular 0 2 , N 2 , H 2 , Ar.
  • the Kunststoffe en 3, 4 have after Kon clocking in the i n the figures l a or 1 b shown Stadi to still a rel fariv far distance.
  • the existing bond strength is relatively low and is approximately between 100 mJ / cm 2 and 300 mJ / cm 2 , in particular over 200 raJ / cm 2 .
  • the previous plasma activation plays a decisive role, in particular because of the increased hydrophilicity of the plasma-activated first contact surface 3 and a smoothing effect caused by the plasma activation.
  • Prebond The process shown in FIG. 1, called Prebond, can be any process shown in FIG. 1, called Prebond.
  • FIGS. 2a and 2b show a hydrophilic B ond, wherein the S iOS i bridge comes about with elimination of water through -OH terminated surfaces.
  • the processes in FIGS. 2a and 2b last about 300 hours at room temperature. B ei 50 ° C approx. 60 h.
  • the state in Fig. 2b occurs without manufacture ment of Reservoirs 5 (or the reservoirs 5, 5 ') at the temperatures mentioned not on.
  • H 2 0 molecules are formed which provide at least partially for further filling in the reservoir 5, as far as free space is available.
  • the remaining H 2 O molecules are removed.
  • about 3 to 5 individual layers of OH groups or H 2 O are present, and from the step according to FIG. 1 to step 2 , 1 to 3 monolayers of H 2 O are removed or taken up in the reservoir 5.
  • the temperature is preferred with a maximum of 500 ° C, more preferably ma imal 300 ° C, even more preferably with a maximum of 200 ° C, most preferably with a maximum of 100 ° C not increased above room temperature to provide an irreversible bond between the first and second contact surfaces.
  • relatively low temperatures are only possible because the reservoir 5 (and optionally the reservoir 5 ') comprises the first starting material for the reaction shown in FIGS. 5 and 6:
  • a growth layer 8 is provided, which may be identical to the surface layer 6 * .
  • a further growth layer 8' is also provided between the first contact surface 3 and a further reaction layer 7 'corresponding to the reaction layer 7, wherein the reactions in the
  • volume at the interface between the surface layer 6 'and the reaction layer 7 grows in the form a growth layer 8, wherein due to the goal s of minimizing the Gibbs free enthalpy enthalpy takes place an increased growth in areas where gaps 9 between the contact surfaces 3, 4 are present. Due to the increase in volume of
  • H 2 0 molecules diffuse as the first starting material from the reservoir 5 to the reaction layer 7 (and possibly from the reservoir 5 'to the reaction layer 7'). This diffusion can either be via a direct contact of the native oxide layers
  • silicon dioxide ie a chemical compound having a larger molar volume than pure silicon
  • the silica grows at the interface of the reaction layer 7 with the growth layer 8 (or the interface of the reaction layer 7 'with the growth layer 8') and thereby deforms the formed as a native oxide growth layer 8, in the direction of the gaps 9. Again H 2 O molecules are needed from the reservoir.
  • Welding contributes, in contrast to the partially non-welded products in the prior art, fundamentally to increase the bonding force.
  • the type of bond between the two welded together native silicon oxide surfaces is a mixed form of koval entern and ionic moiety.
  • Reaction layer 7 (and optionally 7 ') consists of silicon and each of a thin as possible native oxide layer as a growth layer 8 (and optionally 8').
  • a thin native oxide layer is for two reasons
  • the growth layer 8 is very thin, in particular by additional thinning, so that it is formed by the newly formed reaction product 10 on the reaction layer 7 to the surface layer 6, which is likewise formed as a native oxide layer
  • opposite substrate 1 can bulge out, mainly in areas of the nano-gaps 9. Furthermore, are as short as possible
  • the first substrate 1 also consists of a silicon layer and an existing, as thin as possible native oxide layer as the surface layer 6, in which at least partially or completely the reservoir 5 is formed.
  • the reservoir 5 (and possibly the reservoir 5 '), according to the invention, at least the amount of first starting material required to close the nano-gaps 9 is filled up, thereby providing an optimum

Abstract

The invention relates to a method for bonding a first contact surface (3) of a first substrate (1) to a second contact surface (4) of a second substrate (2), having the following steps, in particular in the following sequence: - forming a reservoir (5) in a surface layer (6) on the first contact surface (3), said surface layer (6) consisting at least predominantly of a native oxide material, - at least partly filling the reservoir (5) with a first reactant or a first group of reactants, - contacting the first contact surface (3) with the second contact surface (4) in order to form a pre-bonding connection, and - forming a permanent bond between the first and second contact surfaces (3, 4), said bond being at least partially reinforced by reacting the first reactant with a second reactant contained in a reaction layer (7) of the second substrate.

Description

Verfahren zum permanenten Bonden von Wafern  Process for permanently bonding wafers
B e s c h r e i b u n g Description
Die vorliegende Erfindung betrifft ein Verfahren zum Bonden einer ersten Kontaktfläche eines ersten Substrats mit einer zweiten Kontaktfläche eines zweiten Substrats gemäß Patentanspruch 1. The present invention relates to a method for bonding a first contact surface of a first substrate to a second contact surface of a second substrate according to claim 1.
Ziel beim permanenten oder irreversiblen Bonden von Substraten ist es, zwischen den beiden Kontaktflächen der Substrate eine möglichst starke und insbesondere unwiderrufliche Verbindung, also eine hohe Bondkraft, zu erzeugen. Hierfür existieren im Stand der Technik verschiedene Ansätze und Herstellungsverfahren. The goal of permanent or irreversible bonding of substrates is to create as strong and, in particular, irrevocable connection, ie a high bonding force, between the two contact surfaces of the substrates. For this purpose, various approaches and production methods exist in the prior art.
Die bekannten Herstellungsverfahren und bisher verfolgten Ansätze führen häufig zu nicht oder schlecht reproduzierbaren und insbesondere kaum auf veränderte Bedingungen übertragbaren Ergebnissen. Insbesondere benutzen derzeit eingesetzte Herstellungsverfahren häufig hohe Temperaturen, insbesondere >400°C, um wiederholbare Ergebnisse zu gewährleisten. The known preparation processes and hitherto pursued approaches often lead to no or poorly reproducible and in particular hardly transferable to changing conditions results. In particular, currently used manufacturing processes often use high temperatures, in particular> 400 ° C, to ensure repeatable results.
Technische Probleme wie hoher Energieverbrauch und eine mögliche Zerstörung von auf den Substraten vorhandenen Strukturen resultieren aus den bisher für eine hohe Bondkraft erforderlichen hohen Temperaturen von teilweise weit über 300°C. Weitere Anforderungen bestehen in: Technical problems such as high energy consumption and possible destruction of structures present on the substrates result from the high temperatures previously required for a high bond strength, in some cases well above 300 ° C. Further requirements exist in:
- der Front-end-of-1 ine- Kompatibilität.  - the front-end-of-1 ine compatibility.
Darunter versteht man die Kompatibilität des Prozesses während der Herstellung der elektrisch aktiven B auteile. Der Bondingprozess muss also so ausgelegt werden, dass aktive B auel emente wie Transistoren, die bereits auf den S trukturwafern vorhanden sind, während der  This refers to the compatibility of the process during the production of the electrically active parts. The bonding process must therefore be designed in such a way that active elements, such as transistors, which are already present on the structure wafers during the
Prozessierung weder beeinträchtigt noch geschädigt werden. Zu den Kompatibilitätskriterien zählen vor allem die Reinheit an gewissen chemischen Elementen (vor allem bei CMOS Strukturen) , mechanische Belastbarkeit, vor allem durch Thermo Spannungen.  Processing neither affected nor damaged. The compatibility criteria include above all the purity of certain chemical elements (especially in CMOS structures), mechanical strength, especially by thermal tensions.
- niedrige Kontamination.  - low contamination.
- keine Krafteinbringung.  - no introduction of force.
- möglichst niedrige Temperatur, insbesondere bei Materi alien mit  - As low as possible temperature, especially in Materi alien with
unterschiedlichen thermischen Ausdehnungskoeffizienten . different thermal expansion coefficient.
Die Reduktion der B ondkraft führt zu einer schonenderen B ehandlung der Strukturwafer, und damit zu einer Reduktion der Ausfalls Wahrscheinlichkeit durch direkte mechanische B elastung. The reduction of the bending force leads to a gentler handling of the structural wafers, and thus to a reduction in the probability of failure due to direct mechanical bending.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur schonenden Herstellung eines permanenten B onds mit einer möglichst hohen Bondkraft bei gleichzeitig mögl ichst niedriger Temperatur anzugeben. Object of the present invention is therefore to provide a method for the careful production of a permanent B onds with the highest possible bond strength at the same time as possible lowest possible temperature.
Diese Aufgabe wird mit den Merkmalen des Patentanspruchs 1 gelöst . This object is achieved with the features of claim 1.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen auch sämtliche Advantageous developments of the invention are specified in the subclaims. The scope of the invention also includes all
Kombinationen aus zumindest zwei von in der B eschreibung, den Ansprüchen und/oder den Figuren angegebenen Merkmalen. Bei angegebenen Combinations of at least two features specified in the description, the claims and / or the figures. At specified
Wertebereichen sollen auch innerhalb der genannten Grenzen liegende Werte als Grenzwerte offenbart gelten und in beliebiger Kombination beanspruchbar sein. Value ranges should also be within the limits specified values as limit values apply and be claimable in any combination.
Die Grundidee der vorl iegenden Erfindung ist es, zumindest an einem der Substrate ein Reservoir zur Aufnahme eines ersten Edukts zu schaffen, das nach der Kontaktierung beziehungsweise Herstellung eines vorläufigen B onds zwischen den Substraten mit einem zweiten Edukt, das in dem anderen The basic idea of the present invention is to provide a reservoir for receiving a first starting material on at least one of the substrates, which, after the contacting or production of a temporary bond between the substrates, has a second starting material, that in the other
Substrat vorliegt, reagiert und dadurch einen irreversiblen beziehungsweise permanenten B ond zwischen den Substraten ausbildet. Vor oder nach der Ausbildung des Reservoirs in einer Oberflächenschicht an der ersten Substrate present, reacts and thereby forms an irreversible or permanent B ond between the substrates. Before or after the formation of the reservoir in a surface layer on the first
Kontaktfläche findet meist eine Reinigung des oder der Substrate, Contact surface usually finds a cleaning of the substrate or substrates,
insbesondere durch einen Spülschritt, statt. Diese Reinigung soll zumeist sicherstell en, dass sich keine Partikel auf den Oberflächen befinden, die ungebondete Stellen zur Folge haben würden. Die Oberflächenschicht besteht erfindungsgemäß zumindest überwiegend aus einem nativen Material , insbesondere Ox idmaterial , vorzugsweise aus nat ivem S il iziumdiox id. Eine Sch icht aus nativem Material kann besonders dünn ausgebildet se in , so dass die erfindungsgemäß vorgesehenen Reaktionen (erstes Edukt oder erste Gruppe mit dem zweiten Edukt oder der zweiten Gruppe), insbesondere Diff us ions Vorgänge, wegen der verringerten Abstände zwischen den in particular by a rinsing step, instead. This cleaning should usually ensure that there are no particles on the surfaces that would result in unbonded areas. According to the invention, the surface layer consists at least predominantly of a native material, in particular of oxide material, preferably of native silicon dioxide. A layer of native material can be made particularly thin, so that the reactions provided according to the invention (first starting material or first group with the second starting material or the second group), in particular diffusion processes, because of the reduced distances between the
Reaktionspartnern besonders schnell ablaufen können. An der Reactants can run very fast. At the
gegenüberl iegenden zweiten Kontaktfläche kann erfindungsgemäß eine Aufwuchsschicht vorgesehen sein, in der die erfindungsgemäße Verformung stattfindet beziehungsweise das erste Edukt (oder die erste Gruppe) mit dem in der Reaktionsschicht des zweiten Substrats vorliegenden zweiten Edukt (oder der zweiten Gruppe) reagiert. Zur B eschleunigung der Reaktion zwischen dem ersten Edukt (oder der ersten Gruppe) und dem zweiten Edukt (oder der zweiten Gruppe) kann erfindungsgemäß vorgesehen sein, die zwischen der Reaktionsschicht des zweiten Substrats und dem Reservoir l iegende Aufwuchsschicht vor Kontaktierung der Substrate zu dünnen, da hierdurch der Abstand zwischen den Reaktionspartnern verringert wird und gleichzeitig die erfindungsgemäße Verformung/ Ausbildung der Auf wuchsschicht begünstigt wird. Die Aufwuchsschicht wird durch das Dünnen zumindest teilweise, insbesondere überwiegend, vorzugswei se vollständig entfernt. Die Aufwuchsschicht wächst bei der Reaktion des ersten Edukts mit dem zweiten Edukt wieder an, auch wenn diese vollständig entfernt wurde. opposite second contact surface can be provided according to the invention a growth layer in which the deformation according to the invention takes place or the first reactant (or the first group) reacts with the present in the reaction layer of the second substrate second reactant (or the second group). In order to accelerate the reaction between the first starting material (or the first group) and the second starting material (or the second group), according to the invention it is possible to thin the growth layer between the reaction layer of the second substrate and the reservoir before contacting the substrates, as a result, the distance between the reactants is reduced and at the same time the deformation / formation of the invention On a growth layer is favored. The growth layer is at least partially, in particular predominantly, vorzugswei se completely removed by the thinning. The growth layer grows in the reaction of the first reactant with the second reactant, even if it was completely removed.
Erfindungsgemäß können Mittel zur Hemmung des Anwachsens der According to the invention, means for inhibiting the growth of the
Aufwuchsschicht vor dem Kontaktieren der Kontaktflächen vorgesehen sein, insbesondere durch Passivierung der Reaktionsschicht des zweiten Substrats , vorzugsweise durch B eaufschlagung mit N? , Formiergas oder einer inerten Atmosphäre oder unter Vakuum oder durch Amorphisieren. Als besonders geeignet hat sich in diesem Zusammenhang eine B ehandlung mit Plasma, welches Formiergas enthält, insbesondere überwiegend aus Formiergas besteht, erwiesen. Als Formiergas sind hier Gase zu verstehen, die Growth layer may be provided prior to contacting the contact surfaces, in particular by passivation of the reaction layer of the second substrate, preferably by application of N? , Forming gas or an inert atmosphere or under vacuum or by amorphizing. In this context, a treatment with plasma, which contains forming gas, in particular predominantly of forming gas, has proved particularly suitable. As forming gas here are gases to understand the
mindestens 2%, besser 4%, idealerweise 10% oder 15% Wasserstoff at least 2%, better 4%, ideally 10% or 15% hydrogen
enthalten. Der restl iche Antei l der Mischung besteht aus einem inerten Gas wie beispiel swei se Stickstoff oder Argon . contain. The remainder of the mixture consists of an inert gas such as nitrogen or argon.
Alternativ oder zusätzl ich zu dieser Maßnahme ist es erfindungsgemäß von Vortei l, die Zeit zwischen dem Dünnen oder der Ausbildung des/der Alternatively or in addition to this measure, according to the invention it is advantageous that the time between thinning or the training of the /
Reservoirs und der Kontaktierung zu minimieren, insbesondere <2 Stunden, vorzugsweise <30 Minuten, noch bevorzugter < 15 Mi nuten, idealerweise <5 Minuten. To minimize reservoirs and the contact, in particular <2 hours, preferably <30 minutes, more preferably <15 minutes, ideally <5 minutes.
Durch die (ggf. gedünnte und dadurch zumindest beim B eginn der Ausbildung des permanenten Bonds beziehungsweise beim B eginn der Reaktion sehr dünne) Aufwuchsschicht wird die Diffusionsrate der Edukte durch die Due to the (possibly thinned and thus at least at the beginning of the formation of the permanent bond or at the start of the reaction very thin) growth layer, the diffusion rate of the educts through the
Aufwuchsschicht hindurch erhöht. Dies führt zu einer geringeren Growth layer increased through. This leads to a lower one
Transportzeit der Edukte bei gleicher Temperatur. Transport time of the reactants at the same temperature.
Durch das Reservoir und das im Reservoir enthaltene Edukt wird eine technische Mögl ichkeit geschaffen, unmittelbar an den Kontaktflächen nach der Herstellung des vorläufigen beziehungsweise reversiblen B onds gezielt eine den permanenten B ond verstärkende und die Bondgeschwindigkeit erhöhende Reaktion zu induzieren, insbesondere durch Verformung Through the reservoir and the educt contained in the reservoir a technical Mögl probability is created, directly to the contact surfaces after the production of the provisional or reversible B onds specifically to induce the permanent B ond and the bond speed-increasing reaction, in particular by deformation
mindestens einer der Kontaktflächen durch die Reaktion, vorzugsweise der dem Reservoir gegenüberliegenden Kontaktfläche. at least one of the contact surfaces by the reaction, preferably the contact surface opposite the reservoir.
Die Ausbildung des Reservoirs, insbesondere durch Plasmaaktivierung, ist erfindungsgemäß so gewählt, dass B lasenbildung vermieden wird. The formation of the reservoir, in particular by plasma activation, according to the invention is chosen so that B lasenbildung is avoided.
Vorzugsweise werden für die Plasmaaktivierung Ionen von Gasmol ekülen verwendet, die gleichzeitig zur Reaktion mit dem zweiten Edukt geeignet sind, insbesondere dem ersten Edukt entsprechen. Damit wird erreicht, dass etwaige Nebenprodukte, die bei der Reaktion des ersten Eduktes mit dem zweiten Edukt entstehen könnten, vermieden werden. Preferably, ions of gas molecules are used for the plasma activation, which are suitable at the same time for the reaction with the second educt, in particular corresponding to the first educt. This ensures that any by-products which could be formed in the reaction of the first starting material with the second starting material are avoided.
D ie Größe des Reservoirs wird erfindungsgemäß so eingestellt, dass Poren des an der Kontaktfl äche zwischen den S ubstraten mögl ichst vollständig mittels dem Anwachsen der Aufwuchssch icht geschlossen werden können. Das heißt, das Reservoir muss ausreichend groß sein, um genügend Menge des ersten Edukts aufnehmen zu können, um damit eine ausreichend dicke / voluminöse Aufwuchsschicht durch Reaktion des ersten Edukts mit dem, in der Reaktionsschicht vorl iegenden zweiten Edukt erzeugen zu können. Die Größe muss aber kl ein genug sein, um mögl ichst wenig überschüssiges erstes Edukt, welches nicht mit der Reaktionsschicht reagieren kann, aufzunehmen. Hierdurch wird B lasenbildung weitgehend vermieden beziehungsweise ausgeschlossen . The size of the reservoir is set according to the invention so that pores of the substrate at the contact surface between the substrates can be completely closed by means of the growth of the growth layer. This means that the reservoir must be sufficiently large in order to be able to take up sufficient amount of the first starting material in order to be able to produce a sufficiently thick / voluminous growth layer by reacting the first starting material with the second starting material present in the reaction layer. However, the size must be small enough to absorb as little as possible excess first starting material which can not react with the reaction layer. As a result, B lase formation is largely avoided or excluded.
M it Vorteil wird eine in-situ-Prozessierung durchgeführt, um ein möglichst artenreines Edukt im Reservoir einzulagern und nicht reagierende Spezies möglichst ausgeschlossen werden. Advantageously, an in-situ processing is carried out in order to store a very pure starting material in the reservoir and to exclude non-reactive species as far as possible.
Für den Pre- B onding-Schritt zur Erzeugung eines vorläufigen oder For the pre-B onding step to generate a preliminary or
reversiblen B onds zwischen den Substraten sind verschiedene Möglichkeiten vorgesehen mit dem Ziel , eine schwache Interaktion zwischen den Kontaktflächen der S ubstrate zu erzeugen. Die Prebondstärken l iegen dabei unter den Permanentbondstärken, zumindest um den Faktor 2 bis 3 , reversible bonds between the substrates are different possibilities intended to produce a weak interaction between the contact surfaces of the substrates. The bond strengths are below the permanent bond strengths, at least by a factor of 2 to 3,
insbesondere um den Faktor 5 , vorzugsweise um den Faktor 15 , noch bevorzugter um den Faktor 25. Als Richtgrößen werden die Pre-B ondstärken von reinem, nicht aktiviertem, hydrophil isierten S il izium mit ca. 100mJ/m2 und von reinem, plasmaaktivierten hydrophiliserten Silizium mit ca. 200- 300mJ/m erwähnt. Die Prebonds zwischen den mit Molekülen benetzten Substraten kommen hauptsächlich durch die van-der-Waals in particular by a factor of 5, preferably by a factor of 15, more preferably by a factor of 25. As a guide, the pre-B ondstärken of pure, non-activated, hydrophilic Si il silicon with about 100mJ / m 2 and of pure, plasma-activated hydrophilized silicon with about 200- 300mJ / m mentioned. The prebonds between the substrates wetted with molecules come mainly through the van der Waals
Wechsel wirkungen zwischen den Molekülen der unterschiedlichen Interactions between the molecules of different
Waferseiten zustande. Dementsprechend sind vor allem Moleküle mit permanenten Dipolmomenten dafür geeignet, Prebonds zwischen W afern zu ermögl ichen. Als Verbindungsmittel werden folgende chemische Wafer pages. Accordingly, especially molecules with permanent dipole moments are suitable for enabling prebonds between whales. As connecting means the following chemical
Verbindungen beispielhaft, aber nicht einschränkend, genannt Compounds by way of example but not by way of limitation
- Wasser. - Water.
- Ti ole.  - Ti ole.
- AP3000,  - AP3000,
- S ilane und/oder  - Silanes and / or
- S ilanole  - Silanols
Als erfindungsgemäße Substrate sind solche Substrate geeignet, deren Suitable substrates according to the invention are those substrates whose
Material in der Lage ist, al s Edukt mit einem weiteren zugeführten Edukt zu einem Produkt mit einem höheren molaren Volumen zu reagieren, wodurch die B ildung einer Aufwuchsschicht auf dem Substrat bewirkt wird. Besonders vorteilhaft sind die nachfol genden Kombinationen, wobei j ewei ls l inks vom Pfeil das Edukt und rechts vom Pfeil das Produkt / die Produkte genannt ist, ohne das mit dem Edukt reagierende zugeführte Edukt oder Nebenprodukte im Einzelnen zu benennen : Material is able to react as educt with another feed reactant to a product with a higher molar volume, whereby the formation of a growth layer on the substrate is effected. Particularly advantageous are the fol lowing combinations, wherein j ewei ls inks from the arrow the starting material and right of the arrow the product / the products is called, without naming the reactant supplied reactant educt or by-products in detail:
- S i - S i02, Si3N4, S iNxOy -Si-S i0 2 , Si 3 N 4 , S iN x O y
- Ge - GeC- 2 , Ge3N4 - -Sn- Sn02 Ge - GeC - 2, Ge 3 N 4 -Sn-Sn0 2
- B203, BN - B 2 0 3 , BN
- Se- Se02 - Se- Se0 2
- Te^ Te02, Te03 - Te ^ Te0 2 , Te0 3
- Mg- MgO, Mg3N2 Mg MgO, Mg 3 N 2
- Al^ AI2O3, AIN  Al 2 Al 2 O 3, AlN
- Ti-> Ti02, TiN - Ti -> Ti0 2 , TiN
- V-» V205 - V- »V 2 0 5
- Mn- MnO, Mn02, Mn203, Mn207, Mn304 - Mn-MnO, Mn0 2 , Mn 2 0 3 , Mn 2 0 7 , Mn 3 0 4
- Fe - FeO, Fe203, Fe304 Fe - FeO, Fe 2 0 3 , Fe 3 0 4
- Ni- NiO, N12O3  Ni NiO, N12O3
- Cu- CuO Cu20, Cu3N Cu CuO Cu 2 O, Cu 3 N
- Zn^ ZnO  - Zn ^ ZnO
- Cr- CrN. Cr23C6, Cr3C, Cr7C , Cr3C2 - Cr- CrN. Cr 23 C 6 , Cr 3 C, Cr 7 C, Cr 3 C 2
- Mo-) M03C2  - Mo-) M03C2
- Ti-> TiC  - Ti -> TiC
- Nb-> Nb4C3 - Nb-> Nb 4 C 3
- Ta-> Ta4C3 - Ta-> Ta 4 C 3
- Zr^ ZrC  - Zr ^ ZrC
- Hf-> HfC  - Hf-> HfC
- V-» V4C3, VC  - V- »V4C3, VC
- W- W2C, WC - W- W 2 C, WC
- Fe- Fe3C, Fe7C3, Fe2C. Fe-Fe 3 C, Fe 7 C 3 , Fe 2 C.
Als Substrate sind außerdem folgende Mischformen von Halbleitern denkbar: As substrates, the following hybrid forms of semiconductors are also conceivable:
- III-V: GaP, GaAs, InP, InSb, InAs, GaSb, GaN, AIN, InN, AlxGai. III-V: GaP, GaAs, InP, InSb, InAs, GaSb, GaN, AlN, InN, Al x GaI.
xAs, InxGai_xN xAs, In x Gai_ x N
- IV-IV: SiC, SiGe,  IV-IV: SiC, SiGe,
- III-VI: In AIP.  - III-VI: In AIP.
- nichtlineare Optik: LiNb03, LiTa03, KDP ( H2P04) - Solarzellen: CdS , CdSe, CdTe, CuInSe2, CuInGaSe2, CuInS2, - nonlinear optics: LiNb0 3 , LiTa0 3 , KDP (H 2 P0 4 ) - solar cells: CdS, CdSe, CdTe, CuInSe 2 , CuInGaSe 2 , CuInS 2 ,
CuInGaS2 CuInGaS 2
- Leitende Oxide: In2-xSnx03.y - Conductive oxides: In2- x Snx0 3 . y
Erfindungsgemäß wird das Reservoir (oder die Reservoirs) an mindestens einem der Wafer, und zwar unmittelbar an der j eweiligen Kontaktfläche, vorgesehen, in welchem eine gewisse Menge mindestens eines der According to the invention, the reservoir (or reservoirs) is provided on at least one of the wafers, directly at the respective contact surface, in which a certain amount of at least one of the wafers
zugeführten Edukte für die Volumenexpansionsreaktion speicherbar ist. fed educts for the volume expansion reaction is storable.
Edukte können also beispielsweise 02, 03, H20, N2, NH3, H202 etc. sein. Durch die Expansion, insbesondere bedingt durch Oxidwachstum, werden auf Grund der B estrebung der Reaktionspartner, die S ystemenergie abzusenken, etwaige Lücken, Poren, Hohlräume zwischen den Kontaktflächen minimiert und die Bondkraft entsprechend durch Annäherung der Abstände zwischen den Substraten in diesen Bereichen erhöht. Im bestmöglichen Fall werden die vorhandenen Lücken, Poren und Hohlräume komplett geschlossen, sodass die gesamte B ondingfläche zunimmt und damit die B ondkraft erfindungsgemäß entsprechend steigt. Educts can therefore be, for example, O 2 , O 3 , H 2 O, N 2 , NH 3 , H 2 O 2, etc. Due to the expansion, in particular due to oxide growth, due to the endeavor of the reaction partners to lower the system energy, any gaps, pores, voids between the contact surfaces are minimized and the bond force is correspondingly increased by approximating the distances between the substrates in these regions. In the best case, the existing gaps, pores and cavities are completely closed, so that the entire B ondingfläche increases and thus the B ondkraft according to the invention increases accordingly.
Die Kontaktflächen zeigen üblicherweise eine Rauhigkeit mit einer The contact surfaces usually show a roughness with a
quadratischen Rauheit (Rq) von 0,2 nm auf. Dies entspricht S cheitel-Scheitel- Werten der Oberflächen im B ereich von 1 nm. Diese empirischen Werte wurden mit der Atomic Force Microscopy (AFM) ermittelt . square roughness (R q ) of 0.2 nm. This corresponds to peak-to-peak values of the surfaces in the region of 1 nm. These empirical values were determined using Atomic Force Microscopy (AFM).
Die erfindungsgemäße Reaktion ist geeignet, bei einer üblichen Waferf l ache eines kreisförmigen Wafers mit einem Durchmesser von 200 bis 300 mm mit 1 Monolage (ML) Wasser die Aufwuchsschicht um 0, 1 bis 0,3 nm wachsen zu lassen. The reaction according to the invention is suitable for growing the growth layer by 0.1 to 0.3 nm in a conventional wafer surface of a circular wafer having a diameter of 200 to 300 mm with 1 monolayer (ML) of water.
Erfindungsgemäß ist daher insbesondere vorgesehen, mindestens 2 ML, vorzugsweise mindestens 5 ML, noch bevorzugter mindestens 10 ML Flu id, insbesondere Wasser, im Reservoir zu speichern. Besonders bevorzugt ist die Ausbildung des Reservoirs durch According to the invention, it is therefore provided in particular to store at least 2 ml, preferably at least 5 ml, more preferably at least 10 ml of fluid, in particular water, in the reservoir. Particularly preferred is the formation of the reservoir by
Plasmabeaufschlagung, da durch die Plasmabeaufschl agung außerdem eine Glättung der Kontaktfläche sowie eine Hydrophilisierung als Synergieeffekte bewirkt werden. Die Glättung der Oberfl äche durch Pl asmaakti vierung erfolgt vorwiegend durch einen viskosen Fl uss des Materials der Oberflächenschicht. Die Erhöhung der Hydrophilizität erfolgt insbesondere durch die Vermehrung der S il iziumhydroxyl Verbindungen , vorzugsweise durch Cracken von an der Oberfläche vorhandenen S i-O Verbindungen wie S i-O-S i, insbesondere gemäß nachfolgender Reaktion: Plasmabeaufschlagung, as by the Plasmabeaufschlung also a smoothing of the contact surface and a hydrophilization as synergy effects are effected. The smoothing of the surface by plasma activation is predominantly achieved by a viscous flow of the material of the surface layer. The increase in the hydrophilicity is effected in particular by the proliferation of silicon-silicon compounds, preferably by cracking S i-O compounds present on the surface, such as S i-O-Si, in particular according to the following reaction:
S i-O-S i + H20 2S iOH S iOS i + H 2 0 2S iOH
Ein weiterer Nebeneffekt, insbesondere als Fol ge der vorgenannten Effekte, besteht darin, dass die Pre-B ond-Stärke, insbesondere um einen Faktor 2 bis 3 , verbessert wird. Another side effect, in particular as a consequence of the aforementioned effects, is that the pre-B ond strength, in particular by a factor of 2 to 3, is improved.
Die A usbil dung des Reservoi rs in der O b e r f 1 ä c hensch icht an der ersten Kontaktfläche des ersten Substrats ( und gegebenenfalls eines zweiten The formation of the reservoir in the cavity is not at the first contact surface of the first substrate (and optionally a second substrate)
Reservoirs in der Oberflächenschicht an der zweiten Kontaktfläche des zweiten Substrat s) erfolgt beispielsweise durch Plasmaaktivierung des mit einem nativen Oxid, insbesondere S il iziumdioxid, beschichteten ersten Substrats. Mit Vorteil wird auch die zweite Oberfläche des zweiten Substrats aktiviert beziehungsweise ein zusätzliches Reservoir geschaffen, für das die zum ersten Reservoir beschriebenen Merkmale analog gelten. Die Reservoirs in the surface layer on the second contact surface of the second substrate s) takes place, for example, by plasma activation of the first substrate coated with a native oxide, in particular silicon dioxide. Advantageously, the second surface of the second substrate is activated or created an additional reservoir, for which apply the features described for the first reservoir analog. The
Plasmaaktivierung wird in einer Vakuumkammer durchgeführt, um die für das Plasma erforderl ichen B edingungen einstellen zu können. Erfindungsgemäß wird für die Plasmaentladung N2-Gas, 02-Gas oder Argongas mit Plasma activation is performed in a vacuum chamber to adjust the conditions required for the plasma. According to the invention for the plasma discharge N 2 gas, 0 2 gas or argon gas with
lonenenergien im B ereich von 0 bis 2000 eV verwendet, wodurch ein ion energies in the range from 0 to 2000 eV used, whereby a
Reservoir mit einer Tiefe von bis zu 10 nm, vorzugsweise bis zu 5 um, mit größerem Vorzug bi s zu 3 nm der behandelten Oberfläche, in diesem Fal l der ersten Kontaktfläche, hergestellt wird. Erfindungsgemäß können j ede Reservoir with a depth of up to 10 nm, preferably up to 5 microns, more preferably to 3 nm of the treated surface, in this case of the first contact surface is prepared. According to the invention, any one can
Partikelart, Atome und/oder Molekül e, verwendet werden, die geeignet sind. das Reservoir zu erzeugen. Mit Vorzug werden jene Atome und/oder Particle species, atoms and / or molecule e, are used, which are suitable. to create the reservoir. With preference, those atoms and / or
Moleküle verwendet, welche das Reservoir mit den benötigten Eigenschaften erzeugt. Die relevanten Eigenschaften sind vor allem die Porengröße, Porenverteilung und Porendichte. Alternativ können erfindungsgemäß Used molecules that creates the reservoir with the required properties. The relevant properties are above all the pore size, pore distribution and pore density. Alternatively, according to the invention
Gasmischungen, wie beispielsweise Luft oder Formiergas bestehend aus 95% Ar und 5% H2 verwendet werden. Abhängig von dem verwendeten Gas sind in dem Reservoir während der Plasmabehandlung unter anderem folgende Ionen anwesend: Ν+, N2+, 0+, 02+, Ar+. Im nicht belegten Freiraum des/der Reservoirs ist das erste Edukt aufnehmbar. Die Oberflächenschicht und entsprechend das Reservoir kann sich bis in die Reaktionsschicht hinein erstrecken. Gas mixtures, such as air or forming gas consisting of 95% Ar and 5% H 2 are used. Depending on the gas used, among others the following ions are present in the reservoir during the plasma treatment: Ν +, N 2 +, 0+, 0 2 +, Ar +. In the unoccupied free space of the reservoir (s), the first educt is absorbable. The surface layer and, correspondingly, the reservoir can extend into the reaction layer.
Mit Vorteil handelt es sich dabei um unterschiedliche Arten von Advantageously, these are different types of
Plasmaspezies, die mit der Reaktionsschicht reagieren können und zumindest teilweise, vorzugsweise überwiegend aus dem ersten Edukt bestehen. Soweit das zweite Edukt Si/Si ist, wäre eine Οχ-Plasmaspezies vorteilhaft. Plasma species that can react with the reaction layer and at least partially, preferably predominantly consist of the first starting material. As far as the second starting material is Si / Si, a Οχ-plasma species would be advantageous.
Mit Vorteil werden vor allem Sauerstoffionen verwendet, da diese mit Si zu Siliziumoxid reagieren können und sich daher nicht wieder zu Oxygen ions are advantageously used, since they can react with Si to form silicon oxide and therefore do not react again
Sauerstoff molekülen verbinden. Durch die bevorzugte Bindung an Silizium wird verhindert, dass Sauerstoffgas nach dem Bondvorgang zu einer Connecting oxygen molecules. The preferred bonding to silicon prevents oxygen gas after bonding to a
Blasenbildung führt. Analoge Überlegungen gelten für andere Substrat - Gas Kombinationen. Im Allgemeinen wird also immer jene Ionenspezies bevorzugt, die sich leichter im System binden kann und eine sehr geringe bis gar keine Tendenz besitzt, in den gasförmigen Zustand überzugehen. Blistering leads. Analogous considerations apply to other substrate - gas combinations. In general, therefore, it is always preferred which ionic species is more easily bound in the system and has little or no tendency to go into the gaseous state.
Die Ausbildung des Reservoirs erfolgt auf Grund folgender Überlegungen: Die Porengröße ist kleiner als 10 nm, mit Vorzug kleiner als 5 nm, mit größerem Vorzug kleiner als 1 nm, mit noch größerem Vorzug kleiner als 0.5 nm, mit größtem Vorzug kleiner als 0.2 nm. Die Porendichte ist mit Vorzug direkt proportional zur Dichte der Partikel, welche die Poren durch Einschlagwirkung erzeugen, mit größtem Vorzug sogar durch den Partialdruck der Einschlagspezies variierbar, sowie abhängig von der Behandlungszeit und den Parametern, insbesondere des verwendeten Plasmasystems . The formation of the reservoir is based on the following considerations: The pore size is less than 10 nm, preferably less than 5 nm, more preferably less than 1 nm, even more preferably less than 0.5 nm, most preferably less than 0.2 nm. The pore density is preferably directly proportional to the density of the particles which generate the pores by impaction, most preferably even by the partial pressure of the impact species variable, and depending on the treatment time and the parameters, in particular of the plasma system used.
Die Porenverteilung besitzt mit Vorzug mindestens einen B ereich größter Porenkonzentration unter der Oberfläche, durch V ariation der Parameter mehrerer solcher B ereiche, welche sich zu einem, vorzugsweise The pore distribution preferably has at least one region of greatest pore concentration below the surface, by variation of the parameters of several such regions, which become one, preferably
plateauförmigen B ereich, überlagern (siehe Fig. 7) . Die Porendichte plateau-shaped area, overlay (see Fig. 7). The pore density
konvergiert mit zunehmender Tiefe gegen null. Der oberflächennahe Bereich besitzt während des B eschüsses eine Porendichte, welche mit der Porendichte nahe der Oberfläche beinahe ident ist. Nach dem Ende der Plasmabehandlung kann die Porendichte an der Oberfläche auf Grund von converges to zero with increasing depth. The near-surface region has a pore density during the blast, which is almost identical to the pore density near the surface. After the end of the plasma treatment, the pore density at the surface due to
Spannungsrelaxationsmechanismen verringert werden . Die Porenverteilung in D ickenrichtung besitzt bezügl ich der Oberfl äche eine steile Fl anke und bezügl ich des B ulks eine eher flachere, abe r stetig abnehmende Fl anke ( iehe Stress relaxation mechanisms are reduced. The pore distribution in the thickness direction has a steep fl at with respect to the surface and a flatter, but steadily decreasing fl at with respect to the b ble (cf.
Fig. 7). Fig. 7).
Für die Porengröße, die Porenverteil ung und Porendichte gelten für alle nicht mit Plasma hergestell ten Verfahren ähnl iche Überlegungen. For pore size, pore distribution and pore density, similar considerations apply to all non-plasma processes.
Das Reservoir kann durch gezielte Verwendung und Kombination von The reservoir can be achieved through targeted use and combination of
Prozessparametern designed werden. Fig. 7 zeigt eine Darstellung der Process parameters are designed. Fig. 7 shows a representation of
Konzentration eingeschossener Stickstoffatome durch Pl asma als Funktion der Eindringtiefe in eine S il iziumoxidschicht . Durch Variation der Concentration of injected nitrogen atoms by plasma as a function of the penetration depth into a silicon oxide layer. By variation of the
physikal ischen Parameter konnten zwei Profile erzeugt werden. Das erste Profil 1 1 wurde durch stärker beschleunigte Atome tiefer im S il iziumoxid erzeugt, wohingegen das Profil 12, nach Abänderung der Prozessparameter in einer geringeren Dichte erzeugt wurde. D ie Überlagerung beider Profile ergibt eine Summenkurve 1 3 , welche charakteristisch für das Reservoir steht. Der Zusammenhang zwi schen der Konzentration der eingeschossenen Atom und/oder Molekülspezies ist evident. Höhere Konzentrationen bezeichnen Gebiete mit höherer Defektstruktur, also mehr Raum um das anschließende Edukt aufzunehmen . Eine kontinuierliche, insbesondere gezielt gesteuerte kontinui erliche Änderung der Prozessparameter während der In the case of physical parameters, two profiles could be generated. The first profile 11 was generated by more accelerated atoms deeper in the silicon oxide, whereas the profile 12 was produced at a lower density after modification of the process parameters. The superposition of both profiles gives a cumulative curve 1 3, which is characteristic for the reservoir. The relationship between the concentration of the injected atom and / or molecular species is evident. Higher concentrations indicate regions with a higher defect structure, ie more space to accommodate the subsequent educt. A continuous, especially purposefully controlled, continuous change of the process parameters during the
Plasmaaktivierung ermöglicht es, ein Reservoir mit einer möglichst Plasma activation allows a reservoir with one possible
gleichmäßigen Verteilung der eingebrachten Ionen über die Tiefe zu erreichen . uniform distribution of introduced ions across the depth.
B esonders vorteilhaft kann gemäß einer Ausführungsform der Erfindung die Auffüllung des Reservoirs gl eichzeitig mit der Ausbildung des Reservoirs erfolgen, indem das Reservoir als B eschichtung auf dem ersten Substrat aufgebracht wird, wobei die B eschichtung das erste Edukt bereits umfasst. It is particularly advantageous according to an embodiment of the invention for the reservoir to be filled with the formation of the reservoir by applying the reservoir as a coating to the first substrate, the coating already comprising the first educt.
Das Reservoir ist als poröse S chicht mit einer Porosität im Nanometerbereich oder als Kanäle aufwei sende Schicht mit einer Kanaldicke kleiner 1 0 nm, mit größerem Vorzug k l einer al s 5 nm, mit noch größerem Vorzug kleiner als 2 nm, mit größtem Vor ug kl einer als 1 nm. mit al lergrößtem Vorzug klei ner als 0.5 nm denkbar. The reservoir is in the form of a porous layer with a porosity in the nanometer range or as a channel-emitting layer with a channel thickness of less than 10 nm, more preferably less than 5 nm, even more preferably less than 2 nm, with the greatest advantage one than 1 nm. Al with the greatest preference klei ner than 0.5 nm conceivable.
Für den Schritt des Auffüllens des Reservoirs mit dem ersten Edukt oder einer ersten Gruppe von Edukten sind erfindungsgemäß fol gende For the step of filling the reservoir with the first starting material or a first group of educts are fol lowing the invention
Ausführungsformen, auch in Kombination, denkbar: Embodiments, also in combination, conceivable:
- Aussetzen des Reservoirs gegenüber der Umgebungsatmosphäre, Exposing the reservoir to the ambient atmosphere,
- Spülung mit, insbesondere deionisiertem, Wasser,  Rinsing with, in particular deionized, water,
- Spülen mit einem das Edukt enthaltenden oder aus diesem bestehenden  - Rinsing with the educt containing or consisting of this
Fluid, insbesondere H20, H202 , NH4OH, Ox + Fluid, in particular H 2 0, H 2 0 2 , NH 4 OH, O x +
- Aussetzen des Reservoirs gegenüber einer bel iebigen Gasatmosphäre, insbesondere atomares Gas, molekulares Gas, Gasmischungen ,  Exposing the reservoir to a gaseous atmosphere, in particular atomic gas, molecular gas, gas mixtures,
- Aussetzen des Reservoirs gegenüber einer Wasserdampf oder  - exposing the reservoir to a water vapor or
Wasserstoffperoxiddampf enthaltenden Atmosphäre und Als Edukte kommen die folgenden Verbindungen in Frage: Οχ+, 02, 03, N2, NH3, H20, H202 und/oder NH4OH. Hydrogen peroxide vapor-containing atmosphere and Suitable starting materials are the following compounds: Οχ + , 0 2 , 0 3 , N 2 , NH 3 , H 2 0, H 2 0 2 and / or NH 4 OH.
Die Verwendung des oben angeführten Wasserstoffperoxiddampfes wird neben der Verwendung von Wasser als bevorzugte V ariante angesehen. The use of the above-mentioned hydrogen peroxide vapor is considered to be the preferred variant besides the use of water.
Wassert stoffperoxid hat des Weiteren den Vorteil, ein größeres S auerstoff zu Wasserstoff Verhältni s zu besitzen. Des Weiteren dissoziiert Furthermore, hydrogen peroxide has the advantage of having a greater oxygen to hydrogen ratio. Furthermore dissociated
Wasserstoffperoxid über bestimmten Temperaturen und/oder der V erwendung von Hochfrequenzfel dern im MHz B ereich zu Wasserstoff und Sauerstoff. Hydrogen peroxide over certain temperatures and / or the use of high frequency fields in the MHz range to hydrogen and oxygen.
Vor allem bei Verwendung von Material ien mit unterschiedl ichen Especially when using materials with different materials
thermischen Ausdehnungskoeffizienten ist die Anwendung von Verfahren zur D issoziierung der vorgenannten S pezies vorteilhaft , die keine nennenswerte oder allenfal ls eine lokale/spezifische Temperaturerhöhung bewirken. coefficient of thermal expansion is the application of methods for D issoziierung the aforementioned S pezies advantageous that cause no appreciable or at all ls a local / specific increase in temperature.
Insbesondere ist eine Mikrowel lenbestrahlung vorgesehen , welche die In particular, a Mikrowel lenbestrahlung is provided which the
D issoziierung zumindest begünst igt , vorzug wei se bew irkt . D o association favored at least favorably, preferably white.
Gemäß einer vorteilhaften A u s f ü h r u n g s f o r m der Erfindung ist vorgesehen, dass die Ausbildung der Aufwuchsschicht und V erstärkung des irrevers iblen Bonds durch Diffusion des ersten Edukts in die Reaktionsschicht erfol gt. According to an advantageous embodiment of the invention, the formation of the growth layer and strengthening of the irreversible bond by diffusion of the first starting material into the reaction layer are carried out.
Gemäß einer weiteren, vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass die Ausbildung des irreversiblen B onds bei einer According to a further advantageous embodiment of the invention, it is provided that the formation of the irreversible B onds in a
Temperatur von typischerweise weniger als 300 °C, mit Vorteil von weniger als 200 °C, mit größerem Vorzug weniger als 150 °C, mit noch größerem Vorzug weniger al s 100 °C, mit größtem Vorzug bei Raumtemperatur insbesondere während maximal 12 Tage, bevorzugter maximal 1 Tag, noch bevorzugter max imal 1 Stunde, am bevorzugtesten maximal 1 5 Minuten, erfol gt. Eine weitere, vorteilhafte Wärmebeh andlungsmethode ist die dielektrische Erwärmung durch Mikrowellen. Dabei ist es besonders vorteilhaft, wenn der irreversible Bond eine B ondstärke von größer 1 ,5 J/m2, insbesondere größer 2 J/m2, vorzugsweise größer 2,5 J/m2 aufweist. Temperature of typically less than 300 ° C, more preferably less than 200 ° C, more preferably less than 150 ° C, even more preferably less than 100 ° C, most preferably at room temperature, especially for a maximum of 12 days, more preferably not more than 1 day, more preferably not more than 1 hour, most preferably not more than 15 minutes. Another advantageous heat-treating method is dielectric heating by microwaves. It is particularly advantageous if the irreversible bond has a B ondstärke of greater than 1, 5 J / m 2 , in particular greater than 2 J / m 2 , preferably greater than 2.5 J / m 2 .
Die Bondstärke kann in besonders vorteilhafter Wei se dadurch erhöht werden, dass bei der Reaktion erfindungs gemäß ein Produkt mit einem größeren molaren Volumen als das molare Volumen des zweiten Edukts in der Reaktionsschicht gebildet wird. Hierdurch wird ein Anwachsen am zweiten Substrat bewirkt, wodurch Lücken zwischen den Kontaktflächen durch die erfindungs gemäße chemische Reaktion gesch lossen werden können. Als Folge hieraus wird der Abstand zwi schen den Kontaktflächen, also der mittlere Abstand, reduziert und Toträume minimiert. The bond strength can be increased in a particularly advantageous manner in that, in the reaction according to the invention, a product having a larger molar volume than the molar volume of the second starting material is formed in the reaction layer. As a result, an increase in the second substrate is effected, whereby gaps between the contact surfaces can be separated by the fiction, contemporary chemical reaction gesch. As a result, the distance between tween the contact surfaces, so the average distance is reduced and minimized dead space.
Soweit die Ausbildung des Reservoirs durch Plasmaaktivierung, insbesondere mit einer Aktivierungsfrequenz wischen 10 und 600 kHz und/oder einer Le istungsdichte zwischen 0,075 und 0,2 Watt/cm2 und/ od er unter As far as the formation of the reservoir by plasma activation, in particular with an activation frequency wipe 10 and 600 kHz and / or a Le density density between 0.075 and 0.2 watts / cm 2 and / or he below
Druckbeaufschlagung mit einem Druck zwi schen 0, 1 u nd 0,6 mbar, erfolgt , werden zusätzl iche Effekte wie die G lättung der Kontaktfläche als auch eine deutlich erhöhte Hydrophil ität der Kontaktfläche bewirkt. Pressurisation with a pressure between 0, 1 and 0.6 mbar, additional effects such as the G lättung the contact surface and a significantly increased hydrophilicity of the contact surface is effected.
Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass die Reaktionsschicht aus einem ox idierbaren Material , insbesondere überwiegend, vorzugsweise i m wesentl ichen vol lständig, aus S i, Ge, InP, G aP oder GaN oder einem der anderen in der obigen Liste alternativ erwähnten Material ien, besteht. Durch Oxidation wird eine besonders stabile und die vorhandenen Lücken besonders effektiv schließende Reaktion ermögl icht . According to a further advantageous embodiment of the invention, it is provided that the reaction layer of an ox idierbaren material, in particular predominantly, preferably in wesentl vol ital, from S i, Ge, InP, G aP or GaN or one of the other in the above list alternatively mentioned material. By oxidation, a particularly stable and the existing gaps particularly effective closing reaction allows icht.
Dabei ist es erfindungsgemäß besonders vorteilhaft, wenn zwischen der zweiten Kontaktfläche und der Reaktionsschicht eine Aufwuchsschicht, insbesondere überwiegend aus nativem Oxidmaterial, vorzugsweise In this case, it is particularly advantageous according to the invention if between the second contact surface and the reaction layer, a growth layer, in particular predominantly of native oxide material, preferably
S iliziurndioxid, vorgesehen ist. Die Aufwuchsschicht unterliegt einem durch die erfindungsgemäße Reaktion bewirkten Wachstum. Das Wachstum erfolgt ausgehend vom Übergang Si-S i02 durch Neubildung von amorphem Si02 und dadurch hervorgerufener Verformung, insbesondere Ausbeulung, der Silica dioxide is provided. The growth layer is subject to a by the reaction of the invention caused growth. The growth takes place starting from the transition Si-S i0 2 by new formation of amorphous Si0 2 and thereby induced deformation, in particular bulging, the
Aufwuchsschicht, insbesondere an der Grenzfläche zur Reaktionsschicht, und zwar insbesondere in B ereichen von Lücken zwischen der ersten und der zweiten Kontaktfläche. Hierdurch wird eine Reduzierung des Abstands beziehungsweise Verringerung des Totraums zwischen den beiden Growth layer, in particular at the interface with the reaction layer, in particular in areas of gaps between the first and the second contact surface. This results in a reduction of the distance or reduction of the dead space between the two
Kontaktflächen bewirkt, wodurch die Bondstärke zwischen den beiden Contact surfaces causes, thereby increasing the bond strength between the two
Substraten erhöht wird. Besonders vorteilhaft ist dabei eine Temperatur zwischen 200 und 400 °C, bevorzugt in etwa 200 °C und 1 50 °C, Substrates is increased. Particularly advantageous is a temperature between 200 and 400 ° C, preferably in about 200 ° C and 1 50 ° C,
bevorzugterweise eine Temperatur zwischen 150 °C und 100 °C, am preferably a temperature between 150 ° C and 100 ° C, on
bevorzugtesten eine Temperatur zwischen 100°C und Raumtemperatur. Die Aufwuchsschicht kann dabei in mehrere Aufwuchs ber eiche unterteilt sein. Die Aufwuchs Schi cht kann gleichzeitig eine Reservoirb ildungs Schicht des zweiten Substrats sein, i n der ei n weiteres , die Reaktion besch l eun igend es Reservoir ausgebi l det wird. most preferably a temperature between 100 ° C and room temperature. The growth layer can be divided into several recruiting oak. The growth layer may at the same time be a reservoir formation layer of the second substrate, one more time, the reaction eliminating the reservoir.
Hierbei ist es besonders vorteilhaft, wenn die Aufwuchssch icht und/oder die Oberflächenschicht vor der Ausbildung des irreversiblen B onds eine mittlere Dicke A zwischen 0, 1 nm und 5 nm aufweist . J e dünner die Aufwuchsschicht und/oder die Oberflächenschicht, desto schneller und einfacher erfolgt die Reaktion zwischen dem ersten und dem zweiten Edukt durch die In this case, it is particularly advantageous if the growth layer and / or the surface layer has an average thickness A between 0, 1 nm and 5 nm before the formation of the irreversible surface. The thinner the growth layer and / or the surface layer, the faster and easier the reaction between the first and the second educt takes place through the
Aufwuchsschicht und/oder die Oberfl ächenschicht hindurch, insbesondere durch Diffusion des ersten Edukts durch die Aufwuchs schicht und/oder die Oberflächenschicht h indurch zur Reaktionsschicht. Des Weiteren kann die Aktivierung der Oberfläche die Diffusion durch die Generierung von Growth layer and / or the surface layer through, in particular by diffusion of the first starting material through the growth layer and / or the surface layer h through the reaction layer. Furthermore, the activation of the surface can cause diffusion through the generation of
Punktdefekten begünstigen. Durch die (gegebenenfalls gedünnte und dadurch zumindest beim B eginn der Ausbi ldung des permanenten B onds Favor point defects. By (possibly thinned and thus at least at the beginning of the development of the permanent B onds
beziehungsweise beim B eginn der Reaktion sehr dünne) Aufwuchsschicht wird die Diffusionsrate der Edukte durch die Aufwuchs schicht hindurch erhöht . Dies führt zu einer geringeren Transportzeit der Edukte bei gleicher Temperatur. Hier kann das Dünnen eine entscheidende Rolle spielen, da die Reaktion hierdurch weiter beschleunigt und/oder die Temperatur weiter reduziert werden können. Das Dünnen kann insbesondere durch Ätzen, vorzugsweise in feuchter Atmosphäre, noch bevorzugter in-situ, erfolgen. Alternativ erfolgt das Dünnen insbesondere durch Trockenätzen, vorzugsweise in-situ. In-situ bedeutet hier die Durchführung in ein und derselben Kammer, in der mindestens ein vorheriger und/oder ein nachfolgender Schritt durchgeführt wird/werden. Nassätzen findet mit Chemikalien in der Dampfphase statt, währen Trockenätzen mit Chemikal ien im flüssigen Zustand stattfindet. or at the beginning of the reaction very thin) growth layer, the diffusion rate of the starting materials through the growth layer is increased. This leads to a lower transport time of the educts at the same temperature. In this case, thinning can play a decisive role, since the reaction can be further accelerated and / or the temperature can be further reduced. The thinning can be carried out in particular by etching, preferably in a moist atmosphere, more preferably in situ. Alternatively, the thinning is carried out in particular by dry etching, preferably in situ. In situ here means the implementation in one and the same chamber in which at least one previous and / or a subsequent step is / are carried out. Wet etching takes place with chemicals in the vapor phase, while dry etching with chemicals takes place in the liquid state.
Soweit die Aufwuchsschicht aus S i l iziumdioxid besteht, kann mit Flusssäure oder verdünnter Flusssäure geätzt werden. Soweit die Aufwuchsschicht aus reinem S i besteht, kann mit KOH geätzt werden. Insofar as the growth layer consists of silica, it can be etched with hydrofluoric acid or dilute hydrofluoric acid. As far as the growth layer consists of pure Si, can be etched with KOH.
In vorteilhafter Weise ist gemäß ei ner Ausführungsform der Erfindung vorgesehen, dass die Ausb il dung des Reservoirs im Vakuum durchgeführt wird . Somit können Verunreinigungen des Reservoi rs m it nicht erwünschten Material ien oder Verbindungen vermieden werden. Advantageously, according to an embodiment of the invention, the formation of the reservoir is carried out in a vacuum. Thus, contamination of the reservoir with undesirable materials or compounds can be avoided.
In einer weiteren Ausführungsform der Erfindung ist mit Vorteil vorgesehen, dass das Auffüllen des Reservoirs durch einen oder mehrere der nachfolgend aufgeführten Schritte erfolgt: In a further embodiment of the invention, it is advantageously provided that the filling of the reservoir takes place by one or more of the following steps:
- Aussetzen der ersten Kontaktfläche gegenüber der Atmosphäre, zur - exposure of the first contact surface to the atmosphere, to
Auffüllung des Reservoirs mit Luftfeuchtigkeit und / oder in der Luft enthal tenem S auerstoff.  Replenish the reservoir with humidity and / or airborne pollutant.
- B eaufschlagung der ersten Kontaktfläche mit einem, insbesondere  - Applying the first contact surface with a, in particular
überwiegend, vorzugsweise nahezu vollständig, aus, insbesondere  predominantly, preferably almost completely, from, in particular
deionisiertem, H20 und/oder H202 bestehenden, Fluid, deionized, H 2 0 and / or H 2 0 2 existing, fluid,
- B eaufschlagung der ersten Kontaktfläche mit N2-Gas und/oder 02-Gas und/oder Ar-Gas und/oder Formiergas , insbesondere bestehend aus 95 % Ar und 5 % H2, insbesondere mit einer Ionenenergie im B ereich von 0 bis 2000 eV . - Impact of the first contact surface with N 2 gas and / or 0 2 gas and / or Ar gas and / or forming gas, in particular consisting of 95% Ar and 5% H 2 , in particular with an ion energy in the range of 0 to 2000 eV.
- B edampfung zur Auffüllung des Reservoirs mit einem beliebigen bereits genannten Edukt.  - B edampfung to fill the reservoir with any already mentioned educt.
Gemäß einer weiteren, vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass die Ausbildung und das Auffüllen eines Reservoirs zusätzlich an der zweiten Kontaktfläche, insbesondere in der According to a further advantageous embodiment of the invention it is provided that the formation and filling of a reservoir in addition to the second contact surface, in particular in the
Auf wuchsschicht, erfolgt und die Ausbildung des permanenten B onds zusätzlich verstärkt wird durch Reaktion des ersten Edukts mit einem in einer Reaktionsschicht des ersten Substrats ( 1 ) enthaltenen zweiten Edukt. On growth layer, takes place and the formation of the permanent B onds is additionally enhanced by reaction of the first starting material with a second reactant contained in a reaction layer of the first substrate (1).
B esonders effektiv für den Verfahrensablauf ist es , wenn das Reservoir mit Vorzug in einer D icke R zwischen 0, 1 nm und 25 nm, mit größerem Vorzug zwi schen 0, 1 nm und 15 nm, mit noch größerem V orzug zwischen 0. 1 nm und 10 nm. mit größtem Vorzug zwischen 0, 1 nm und 5 um ausgeb i ldet wird . Weiterh in ist es gemäß einer Ausfiihrungsform der Erfindung vortei l h a ft , wenn der m ittl ere Abstand B zwi schen dem Reservoir und der It is particularly effective for the process if the reservoir is preferably in a thickness between 0, 1nm and 25nm, more preferably between 0, 1nm and 15nm, with even greater magnitude between 0. 1 nm and 10 nm, most preferably between 0, 1 nm and 5 μm. Furthermore, according to an embodiment of the invention, it is advantageous if the distance B between the reservoir and the container is greater
Reaktionsschicht unmittelbar vor der Ausbildung des irreversiblen Bonds zwischen 0, 1 nm und 1 5 nm, insbesondere zwi schen 0,5 nm und 5 nm, vorzugsweise zwischen 0,5 nm und 3 nm beträgt. Der Abstand B kann erfindungsgemäß durch das Dünnen beeinflusst beziehungsweise hergestel l t. Reaction layer immediately before the formation of the irreversible bond between 0, 1 nm and 1 5 nm, in particular between 0.5 nm and 5 nm, preferably between 0.5 nm and 3 nm. The distance B may according to the invention influenced by the thinning or hergestel l t.
Eine Vorrichtung zur Ausführung des Verfahrens ist erfindungsgemäß mit einer Kammer zur Ausbildung des Reservoirs und einer, insbesondere separat dazu vorgesehenen Kammer zur Füllung des Reservoirs und einer, An apparatus for carrying out the method according to the invention is provided with a chamber for forming the reservoir and a chamber, in particular separately provided for filling the reservoir and a,
insbesondere separat vorgesehenen Kammer zur Ausbildung des Pre-B onds ausgebildet, die direkt über ein V akuumsystem miteinander verbunden sind. in particular separately provided chamber for forming the pre-B onds formed, which are connected directly via a V akuumsystem together.
In einer weiteren Ausführungsform kann das Auffüllen des Reservoirs auch direkt über d ie Atmosphäre erfolgen, also entweder in einer Kammer, die zur Atmosphäre hin geöffnet werden kann oder einfach auf einem Aufbau , welcher keine Ummantel ung besitzt aber den Wafer semi- und/oder voll automatisch handhaben kann. In a further embodiment, the filling of the reservoir can also take place directly via the atmosphere, ie either in a chamber which can be opened to the atmosphere or simply on a structure, which does not have a jacket but can handle the wafer semi-automatically and / or fully automatically.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden B eschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Diese zeigen in: Further advantages, features and details of the invention will become apparent from the following B description of preferred embodiments and from the drawings. These show in:
Figur 1 a einen ersten Schritt des erfindungsgemäßen V erfahrens FIG. 1 a shows a first step of the method according to the invention
unmittelbar nach der Kontaktierung des ersten Substrats mit dem zweiten Substrat,  immediately after contacting the first substrate with the second substrate,
Figur 1 b einen al ternativen ersten Schritt des erfindungsgemäßen Figure 1 b an al ternative first step of the invention
Verfahrens unmittelbar nach der Kontaktierung des ersten Substrats mit dem zweiten Substrat.  Method immediately after contacting the first substrate with the second substrate.
Figur 2a und 2b weitere S chritte des erfindungsgemäßen Verfahrens zur Figure 2a and 2b further steps of the process according to the invention for
Ausb i ldung einer höheren Bondstärke,  Development of a higher bond strength,
Figur 3 einen sich n die Schritte gemäß Figur 1 , Figur 2 a und Figur FIG. 3 shows the steps according to FIG. 1, FIG. 2 a and FIG
2b anschl ießender weiterer Schritt des erfindungsgemäßen Verfahrens mit in Kontakt stehenden Kontaktflächen der Substrate,  2b subsequent further step of the method according to the invention with contact surfaces of the substrates in contact,
Figur 4 einen e r f i n d u n g s g e m äßen S chritt zur Ausbildung eines FIG. 4 shows an embodiment of the invention for forming a
irreversibl en/permanenten Bonds zwischen den Substraten,  irreversible / permanent bonds between the substrates,
Figur 5 eine vergrößerte Darstellung der an den beiden Figure 5 is an enlarged view of the two
Kontaktflächen während der Schritte gemäß Figur 3 und Figur 4 ablaufenden chemischen/physikalischen Vorgängen,  Contact surfaces during the steps according to Figure 3 and Figure 4 running chemical / physical processes,
Figur 6 eine weiter vergrößerte Darstell ung der an der Grenzfläche zwischen den beiden Kontaktflächen ablaufenden Figure 6 is a further enlarged representation of the expiring at the interface between the two contact surfaces
chemischen/phys ikal i schen V orgänge während der Schritte gemäß Figur 3 und Figur 4 und Figur 7 ein Diagramm zur erfind ungs gemäßen Erzeugung des chemical / physical movements during the steps according to FIG. 3 and FIG. 4 and FIG FIG. 7 shows a diagram of the generation according to the invention
Reservoirs .  Reservoirs.
In den Figuren sind gleiche oder gleichwirkende Merkmale mit den gleichen B ezugszei chen gekennzeichnet. In the figures, identical or equivalent features are marked with the same reference numerals.
In der in Figur 1 a dargestellten S ituation, die nur einen Ausschnitt der beim oder unmittel bar nach dem Pre-B ond-S chritt zwischen einer ersten In the situation shown in FIG. 1 a, which shows only a section of the at or immediate bar after the pre-B ond step between a first
Kontaktfläche 3 eines ersten Substrats 1 und einer zweiten Kontaktfläche 4 eines zweiten Substrats 2 ablaufenden chemischen Reaktionen dargestellt. An die Kontaktflächen 3 , 4 schl ießen sich j eweils Oberflächenschichten 6, 6 ' an, die aus ox idierbarem, nativem S il iziumdioxid gebildet sind und die sehr dünn sind. Die Oberflächen sind mit polaren O H-Gruppen terminiert und Contact surface 3 of a first substrate 1 and a second contact surface 4 of a second substrate 2 chemical reactions occurring. In each case, surface layers 6, 6 ', which are formed from oxidizable, native silicon dioxide and which are very thin, are joined to the contact surfaces 3, 4. The surfaces are terminated with polar O H groups and
entsprechend hydroph il . Das erste Substrat 1 und das zweite Substrat 2 werden durch die Anziehungskraft der W a s s e r s t o f f b rücken zwischen den an der Oberfläche vorhandenen O H -G ruppen und den H20 -Molekülen sowie zwischen den H20-Molekülen allein gehalten. D ie Hydrophilizität zum indest der ersten Kontaktfläche 3 ist in einem vorangegangenen Schritt durch eine Plasmabehandlung der ersten Kontaktfl äche 3 erhöht. correspondingly hydrophilic. The first substrate 1 and the second substrate 2 are held by the attractive force of the hydrogen bonds between the OH groups present on the surface and the H 2 O molecules and between the H 2 O molecules alone. The hydrophilicity toward the first contact surface 3 is increased in a preceding step by a plasma treatment of the first contact surface 3.
B esonders vortei lhaft i st es, gemäß der alternativen Ausführungsform zusätzlich die zweite Kontaktfläche 4 einer Plasmabehandlung zu It is particularly advantageous if, in accordance with the alternative embodiment, the second contact surface 4 is additionally assigned to a plasma treatment
unterziehen, insbesondere gleichzeitig mit der Plasmabehandlung der ersten Kontaktfläche 3. undergo, in particular simultaneously with the plasma treatment of the first contact surface. 3
Durch die Plasmabehandlung ist erfindungsgemäß ein Reservoir 5 in der aus nativem S il iziumdioxid bestehenden Oberfl ächenschicht 6 sowie bei der alternativen Ausführungsform gemäß Figur 1 b ein zweites, As a result of the plasma treatment, according to the invention a reservoir 5 is present in the surface layer 6 consisting of native silicon dioxide, and in the alternative embodiment according to FIG. 1 b a second,
gegenüberl iegendes Reservoir 5 ' in der Oberflächenschicht 6 ' ausgebildet worden. Durch die P 1 a s m a b e h a n d 1 u n g mit 02-Ionen mit Ionenenergien im B ereich zwischen 0 und 2000 eV wird eine mittlere D icke R des Reservoirs 5 von etwa 10 nm erreicht, wobei die Ionen Kanäle beziehungsweise Poren in der Oberflächenschicht 6 (und ggf. der Oberfl ächenschicht 6 ' ) ausbilden. opposite reservoir 5 'in the surface layer 6' has been formed. By the P 1 asmabehand 1 ung with 0 2 ions with ion energies in the range between 0 and 2000 eV an average thickness R of the reservoir 5 reaches about 10 nm, wherein the ions channels or pores in the surface layer 6 (and possibly the surface layer 6 ') form.
Zwischen der Reservoirbildungsschicht 6 und der Reaktionsschicht 7 ist eine Aufwuch sschicht 8 an dem zweiten Substrat 2 vorgesehen, die gleichzeitig zumindest teilweise die Reservoirbildungsschicht 6 ' sein kann . Entsprechend kann zusätzl ich eine weitere Aufwuchsschicht zwischen der Between the reservoir formation layer 6 and the reaction layer 7, a growth layer 8 is provided on the second substrate 2, which may be at least partially the reservoir formation layer 6 'at the same time. Accordingly, I can add another growth layer between the
Reservoirbil dungs schicht 6 ' und der Reaktionsschicht 7 ' vorgesehen sein. Reservoirbil training layer 6 'and the reaction layer 7' may be provided.
Ebenfall s vor dem in Figur 1 gezeigten S chritt und nach der Also s before the step shown in FIG. 1 and after
Plasmabehandlung wird das Reservoir 5 (und ggf. das Reservoir 5 ' ) Plasma treatment is the reservoir 5 (and possibly the reservoir 5 ')
zumindest überwiegend mit H20 al s erstes Edukt aufgefüllt. Im Reservoir können sich auch reduzierte Spezies der im Plasmaprozess vorhandenen Ionen befinden, insbesondere 02, N2, H2, Ar. at least predominantly filled with H 2 0 al s first starting material. The reservoir may also contain reduced species of the ions present in the plasma process, in particular 0 2 , N 2 , H 2 , Ar.
Die Kontaktfläch en 3 , 4 weisen nach Kon taktierung in dem i n den Figuren l a oder 1 b gezeigten Stadi um noch einen rel ativ weiten Abstand auf. The Kontaktfläch en 3, 4 have after Kon clocking in the i n the figures l a or 1 b shown Stadi to still a rel fariv far distance.
insbesondere bedingt durch das zw ischen den Kontaktflächen 3 , 4 vorhandene Wasser. Entsprechend ist die vorhandene Bondstärke relativ gering und liegt etwa zwischen 100 mJ/cm2 und 300 mJ/cm2, insbesondere über 200 raJ/cm2. Hierbei spielt die vorherige Plasmaaktivierung, insbesondere wegen der erhöhten Hydrophilizität der pl asmaaktivierten ersten Kontaktfläche 3 sowie einem durch die Plasmaaktivierung verursachten Glättungseffekt, eine entscheidende Rolle. in particular due to the zw ischen the contact surfaces 3, 4 existing water. Accordingly, the existing bond strength is relatively low and is approximately between 100 mJ / cm 2 and 300 mJ / cm 2 , in particular over 200 raJ / cm 2 . Here, the previous plasma activation plays a decisive role, in particular because of the increased hydrophilicity of the plasma-activated first contact surface 3 and a smoothing effect caused by the plasma activation.
Der in Fig. 1 dargestellte, als Prebond bezeichnete, V organg kann The process shown in FIG. 1, called Prebond, can be
vorzugsweise bei Umgebungstemperatur oder maximal 50 °C ablaufen . Die Fig. 2a und 2b zeigen einen hydrophilen B ond, wobei die S i-O-S i Brücke unter Abspaltung von Wasser durch -OH terminierte Oberflächen zustande kommt. Die Vorgänge in Fig. 2a und 2b dauern bei Raumtemperatur ca. 300 h. B ei 50 °C ca. 60 h. Der Zustand in Fig. 2b tritt ohne Herstel lung des Reservoirs 5 (bzw. der Reservoirs 5, 5') bei den genannten Temperaturen nicht auf. preferably at ambient temperature or at most 50 ° C. Figures 2a and 2b show a hydrophilic B ond, wherein the S iOS i bridge comes about with elimination of water through -OH terminated surfaces. The processes in FIGS. 2a and 2b last about 300 hours at room temperature. B ei 50 ° C approx. 60 h. The state in Fig. 2b occurs without manufacture ment of Reservoirs 5 (or the reservoirs 5, 5 ') at the temperatures mentioned not on.
Zwischen den Kontaktflächen 3, 4 werden H20-Moleküle gebildet, die zumindest teilweise für eine weitere Auffüllung im Reservoir 5 sorgen, soweit noch Frei räum vorhanden ist. Die übrigen H20-Moleküle werden entfernt. In der Stufe gemäß Figur 1 sind etwa 3 bis 5 Einzelschichten von OH-Gruppen beziehungsweise H20 vorhanden und vom Schritt gemäß Figur 1 zum Schritt gem ß Figur 2a werden 1 bis 3 Monolagen von H20 entfernt beziehungsweise im Reservoir 5 aufgenommen. Between the contact surfaces 3, 4 H 2 0 molecules are formed which provide at least partially for further filling in the reservoir 5, as far as free space is available. The remaining H 2 O molecules are removed. In the stage according to FIG. 1, about 3 to 5 individual layers of OH groups or H 2 O are present, and from the step according to FIG. 1 to step 2 , 1 to 3 monolayers of H 2 O are removed or taken up in the reservoir 5.
In dem in Figur 2a gezeigten Schritt sind die Wasserstoffbrückenbindungen nunmehr unmittelbar zwischen Siloxan-Gruppen gebildet, wodurch eine stärkere Bondkraft entsteht. Hierdurch werden die Kontaktflächen 3, 4 stärker aneinander gezogen und der Abstand zwischen den Kontaktflächen 3, 4 wird reduziert. Es liegen dementsprechend nur noch 1 bis 2 Einzel schichten von OH-Gruppen zwischen den Kontaktflächen 1, 2 vor. In the step shown in Figure 2a, the hydrogen bonds are now formed directly between siloxane groups, creating a stronger bonding force. As a result, the contact surfaces 3, 4 are pulled closer together and the distance between the contact surfaces 3, 4 is reduced. Accordingly, there are only 1 to 2 individual layers of OH groups between the contact surfaces 1, 2 before.
In dem in Figur 2b gezeigten Schritt werden nunmehr wiederum unter In the step shown in Figure 2b are now again below
Abscheidung von H20-Molekülen gemäß nachfolgend eingeblendeter Deposition of H 2 O molecules as shown below
Reaktion kovalente Verbindungen in Form von Silanol-Gruppen zwischen den Kontaktflächen 3, 4 gebildet, die zu einer deutlich stärkeren Bondkraft führen und weniger Platz benötigen, so dass der Abstand zwischen den Kontaktflächen 3, 4 weiter verringert wird, bis schließlich der in Figur 3 gezeigte minimale Abstand auf Grund des direkten Aufeinandertreffens der Kontaktflächen 3, 4 erreicht wird: Reaction covalent compounds in the form of silanol groups formed between the contact surfaces 3, 4, which lead to a much stronger bonding force and require less space, so that the distance between the contact surfaces 3, 4 is further reduced until finally the one shown in Figure 3 minimum distance is achieved due to the direct meeting of the contact surfaces 3, 4:
Si-OH + HO-Si r^ Si-0-Si+H20 Si-OH + HO-Si r ^ Si-O-Si + H 2 O
Bis zur Stufe 3 ist es, insbesondere wegen der Schaffung des Reservoirs 5 (und ggf. des zusätzlichen Reservoirs 5'), nicht notwendig, die Temperatur übermäßig zu erhöhen, eher sogar bei Raumtemperatur ablaufen zu lassen. Auf diese Weise ist ein besonders schonender Abl auf der V erfahrensschritte gemäß Figur 1 bis Figur 3 möglich . Up to level 3, in particular because of the creation of the reservoir 5 (and possibly the additional reservoir 5 '), it is not necessary to increase the temperature excessively, rather to drain even at room temperature. In this way, a particularly gentle Abl on the procedural steps according to Figure 1 to 3 possible.
In dem in Figur 4 gezeigten Verfahrensschritt wird die Temperatur mit Vorzug auf maximal 500 °C, mit größerem Vorzug auf ma imal 300 °C mit noch größerem Vorzug auf maximal 200 °C, mit größtem Vorzug auf maximal 100 °C, mit allergrößtem V orzug nicht über Raumtemperatur erhöht, um einen irreversiblen beziehungsweise permanenten Bond zwischen der ersten und der zweiten Kontaktfläche zu schaffen. Diese, im Gegensatz zum Stand der Technik, rel ativ niedrigen Temperaturen sind nur möglich, weil das Reservoir 5 (und ggf. zusätzl ich das Reservoir 5 ' ) das erste Edukt für die in Figur 5 und 6 gezeigte Reaktion umfasst : In the process step shown in Figure 4, the temperature is preferred with a maximum of 500 ° C, more preferably ma imal 300 ° C, even more preferably with a maximum of 200 ° C, most preferably with a maximum of 100 ° C not increased above room temperature to provide an irreversible bond between the first and second contact surfaces. These, in contrast to the prior art, relatively low temperatures are only possible because the reservoir 5 (and optionally the reservoir 5 ') comprises the first starting material for the reaction shown in FIGS. 5 and 6:
Si + 2H20 - S i02 + 2H2 Si + 2H 2 0 -SiO 2 + 2H 2
Zwischen der zweiten Kont akt fl äche 4 und der Reakti onsschicht 7 ist eine Aufwuchsschicht 8 vorgesehen, die mit der Oberflächenschicht 6 * identisch sein kann. Soweit ein Reservoir 5 ' gemäß der zweiten A u s f ü h r u n g s o r m geb i ldet worden ist, ist auch zwischen der ersten Kontaktfläche 3 und einer zur Reaktionsschicht 7 korrespondierenden weiteren Reaktionsschicht 7 ' eine weitere Aufwuchsschicht 8 ' vorgesehen, wobei die Reaktionen im Between the second contact surface 4 and the reaction layer 7, a growth layer 8 is provided, which may be identical to the surface layer 6 * . As far as a reservoir 5 'according to the second embodiment has been disclosed, a further growth layer 8' is also provided between the first contact surface 3 and a further reaction layer 7 'corresponding to the reaction layer 7, wherein the reactions in the
wesentlichen reziprok verlaufen. Durch Vergrößerung des molaren Volumens und Diffusion der H20-Molekül e wächst insbesondere an der Grenzfl äche zwischen der Oberflächenschicht 6 ' und der Reaktionsschicht 7 (und ggf. zusätzlich an der Grenzfläche zwischen der Oberflächenschicht 6 und der Reaktionsschicht 7 ' ) Volumen in Form einer Aufwuchsschicht 8 an, wobei wegen des Ziel s einer Minimierung der freien G ibb ' ehen Enthalpie ein verstärktes Anwachsen in B ereichen erfol gt, wo Lücken 9 zwischen den Kontaktflächen 3 , 4 vorhanden sind. Durch die Volumenerhöhung der essentially reciprocal. By increasing the molar volume and diffusion of the H 2 O molecule e, volume at the interface between the surface layer 6 'and the reaction layer 7 (and optionally additionally at the interface between the surface layer 6 and the reaction layer 7') grows in the form a growth layer 8, wherein due to the goal s of minimizing the Gibbs free enthalpy enthalpy takes place an increased growth in areas where gaps 9 between the contact surfaces 3, 4 are present. Due to the increase in volume of
Aufwuchssch icht 8 werden die Lücken 9 geschlossen. Hierzu genauer: Bei den obengenanten, leicht erhöhten Temperaturen diffundieren H20- Moleküle als erstes Edukt von dem Reservoir 5 zur Reaktionsschicht 7 (und ggf. von dem Reservoir 5' zu der Reaktionsschicht 7'). Diese Diffusion kann entweder über einen Direktkontakt der als native Oxidschichten Aufwuchssch icht 8, the gaps 9 are closed. More specifically: At the above-mentioned, slightly elevated temperatures, H 2 0 molecules diffuse as the first starting material from the reservoir 5 to the reaction layer 7 (and possibly from the reservoir 5 'to the reaction layer 7'). This diffusion can either be via a direct contact of the native oxide layers
ausgebildeten Oberflächenschicht 6 und Aufwuchsschicht 8 (bzw. über eine/aus einer zwischen den Oxidschichten vorliegende Lücke 9) erfolgen. Dort wird Siliziumdioxid, also eine chemische Verbindung mit einem größeren molaren Volumen als reines Silizium, als Reaktionsprodukt 10 der obigen Reaktion aus der Reaktionsschicht 7 gebildet. Das Siliziumdioxid wächst an der Grenzfläche der Reaktionsschicht 7 mit der Aufwuchsschicht 8 (bzw. der Grenzfläche der Reaktionsschicht 7' mit der Aufwuchsschicht 8') an und verformt dadurch die als natives Oxid ausgebildete Auf wuchs chicht 8, in Richtung der Lücken 9. Auch hierbei werden H20-Moleküle aus dem Reservoir benötigt. formed surface layer 6 and growth layer 8 (or via a / from a present between the oxide layers gap 9) take place. There, silicon dioxide, ie a chemical compound having a larger molar volume than pure silicon, is formed as reaction product 10 of the above reaction from the reaction layer 7. The silica grows at the interface of the reaction layer 7 with the growth layer 8 (or the interface of the reaction layer 7 'with the growth layer 8') and thereby deforms the formed as a native oxide growth layer 8, in the direction of the gaps 9. Again H 2 O molecules are needed from the reservoir.
Durch die Existenz der Lücken, die im anometerbereich liegen, besteht die Möglichkeit des Ausbeulens der nativen Oxidschicht (Aufwuchsschicht 8 und ggf. Aufwticfasschicht 8'), wodurch Spannungen an den Kontaktflächen 3, 4 reduziert werden können. Hierdurch wird der Abstand zwischen den Due to the existence of the gaps, which lie in the anometer range, there is the possibility of buckling of the native oxide layer (growth layer 8 and optionally Aufwticfasschicht 8 '), whereby stresses on the contact surfaces 3, 4 can be reduced. This will change the distance between the
Kontaktflächen 3, 4 reduziert, wodurch sich die wirksame Kontaktfläche und damit die Bondstärke weiter erhöhen. Die so zustande gekommene, sich über den gesamten Wafer ausbildende, alle Poren verschließende, Contact surfaces 3, 4 reduced, thereby further increasing the effective contact surface and thus the bond strength. The thus formed, over the entire wafer-forming, all pores occluding,
Schweißverbindung trägt, im Gegensatz zu den partiell nicht verschweißten Produkten im Stand der Technik, fundamental zur Erhöhung der Bondkraft bei. Der Bindungstyp zwischen beiden miteinander verschweißten nativen Silizium oxidoberflächen ist eine Mischform aus koval entern und ionischem Anteil. Welding contributes, in contrast to the partially non-welded products in the prior art, fundamentally to increase the bonding force. The type of bond between the two welded together native silicon oxide surfaces is a mixed form of koval entern and ionic moiety.
Besonders schnell beziehungsweise bei möglichst niedrigen Temperaturen erfolgt die oben genannte Reaktion des ersten Edukts (H20) mit dem zweiten Edukt (Si) in der Reaktionsschicht 7, soweit ein mittlerer Abstand B zwischen der ersten Kontaktfläche 3 und der Reaktionsschicht 7 möglichst gering ist. Particularly fast or at the lowest possible temperatures, the above-mentioned reaction of the first starting material (H 2 0) with the second starting material (Si) in the reaction layer 7, as far as a mean distance B between the first contact surface 3 and the reaction layer 7 is as low as possible.
Entscheidend ist daher die Auswahl des ersten Substrats 1 sowie die Decisive therefore is the selection of the first substrate 1 and the
Aus wähl/ Vorbehandlung des zweiten Substrats 2, die aus der From selection / pre-treatment of the second substrate 2, which from the
Reaktionsschicht 7 (und ggf.7') aus Silizium und jeweils einer möglichst dünnen nativen Oxidschicht als Aufwuchsschicht 8 (und ggf.8') besteht. Eine möglichst dünne native Oxidschicht ist aus zwei Gründen Reaction layer 7 (and optionally 7 ') consists of silicon and each of a thin as possible native oxide layer as a growth layer 8 (and optionally 8'). A thin native oxide layer is for two reasons
erfindungsgemäß vorgesehen. Die Aufwuchsschicht 8 ist sehr dünn, insbesondere durch zusätzliches Dünnen, damit sie sich durch das neu gebildete Reaktionsprodukt 10 an der Reaktionsschicht 7 zur ebenfalls als native Oxidschicht ausgebildeten Oberfl chenschicht 6 des provided according to the invention. The growth layer 8 is very thin, in particular by additional thinning, so that it is formed by the newly formed reaction product 10 on the reaction layer 7 to the surface layer 6, which is likewise formed as a native oxide layer
gegenüberliegenden Substrats 1 hin ausbeulen kann, und zwar vorwiegend in Bereichen der Nano-Lücken 9. Des Weiteren sind möglichst kurze opposite substrate 1 can bulge out, mainly in areas of the nano-gaps 9. Furthermore, are as short as possible
Diffusionswege erwünscht, um den erwünschten Effekt möglichst rasch und bei möglichst niedriger Temper tur zu erzielen. Das erste Substrat 1 besteht ebenfall aus einer Siliziumschicht und einer darauf vorhandenen, möglichst dünnen nativen Oxidschicht als Oberflächenschicht 6, in der zumindest teilweise oder vollständig das Reservoir 5 ausgebildet wird. Diffusion paths desirable to achieve the desired effect as quickly as possible and at the lowest possible tempering temperature. The first substrate 1 also consists of a silicon layer and an existing, as thin as possible native oxide layer as the surface layer 6, in which at least partially or completely the reservoir 5 is formed.
In dem Reservoir 5 (und ggf. dem Reservoir 5') wird erfindungsgemäß mindestens die entsprechend der zum Schließen der Nano-Lücken 9 erforderliche Menge an erstem Edukt aufgefüllt, damit ein optimales In the reservoir 5 (and possibly the reservoir 5 '), according to the invention, at least the amount of first starting material required to close the nano-gaps 9 is filled up, thereby providing an optimum
Aufwachsen der Aufwuchsschicht 8 (und ggf.8') zum Schließen der Nano- Lücken 9 in möglichst kurzer Zeit und/oder bei möglichst geringer Growing up the growth layer 8 (and possibly 8 ') to close the nano-gaps 9 in the shortest possible time and / or at the lowest possible
Temperatur erfolgen kann. Verfahren zum permanenten Bonden von Wafern Temperature can be done. Process for permanently bonding wafers
B e z u g s z e i ch e nl i s t e C o n s e c tio n s
1 erstes Substrat 1 first substrate
2 zweites Substrat  2 second substrate
3 erste Kontaktfläche  3 first contact surface
4 zweite Kontaktfläche  4 second contact surface
5, 5' Reservoir  5, 5 'reservoir
6, 6' Oberflächenschicht  6, 6 'surface layer
7, 7' Reaktionsschicht  7, 7 'reaction layer
8, 8' Aufwuchsschicht  8, 8 'growth layer
9 Nano- Lücken  9 nano gaps
10 Reaktionsprodukt  10 reaction product
11 Erstes Profil  11 First profile
12 Zweites Profil  12 Second profile
13 Summenkurve  13 cumulative curve
A mittlere Dicke  A mean thickness
B mittlerer Abstand  B middle distance
R mittlere Dicke  R average thickness

Claims

Verfahren zum permanenten Bonden von Wafern Process for permanently bonding wafers
P a t e n t a n s p r ü c h e P a n t a n s p r e c h e
1. Verfahren zum Bonden einer ersten Kontaktfläche (3) eines ersten 1. A method for bonding a first contact surface (3) of a first
Substrats (1) mit einer zweiten Kontaktfläche (4) eines zweiten  Substrate (1) with a second contact surface (4) of a second
Substrats (2) mit folgenden Schritten, insbesondere folgendem Ablauf:  Substrate (2) with the following steps, in particular the following sequence:
- Ausbildung eines Reservoirs (5) in einer Oberflächenschicht (6) an der ersten Kontaktfläche (3), wobei die Oberflächenschicht (6) zumindest überwiegend aus einem nativen Oxidmaterial besteht. - Forming a reservoir (5) in a surface layer (6) on the first contact surface (3), wherein the surface layer (6) consists at least predominantly of a native oxide material.
- zumindest teil weises Auffüllen des Reservoirs (5) mit einem ersten Edukt oder einer ersten Gruppe von Edukten, at least partially filling the reservoir (5) with a first starting material or a first group of educts,
- Kontaktieren der ersten Kontaktfläche (3) mit der zweiten - contacting the first contact surface (3) with the second
Kontaktfläche (4) zur Ausbildung einer Pre- Bond- Verbindung,  Contact surface (4) for forming a pre-bond connection,
- Ausbildung eines permanenten Bonds zwischen der ersten und zweiten Kontaktfläche (3, 4), zumindest teilweise verstärkt durch Reaktion des ersten Edukts mit einem in einer Reaktionsschicht (7) des zweiten Substrats (2) enthaltenen zweiten Edukt. - Forming a permanent bond between the first and second contact surface (3, 4), at least partially enhanced by reaction of the first reactant with a in a reaction layer (7) of the second substrate (2) contained second reactant.
2. Verfahren nach Anspruch 1 , bei dem Ausbildung und/oder Verstärkung des permanenten B onds durch Diffusion des ersten Edukts in die 2. The method of claim 1, wherein the formation and / or amplification of the permanent B onds by diffusion of the first starting material in the
Reaktionsschicht (7 ) erfol gt.  Reaction layer (7) suc tion.
3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die 3. The method according to any one of the preceding claims, wherein the
Ausb ildung des permanenten B onds bei einer Temperatur zwi schen Raumtemperatur und 200 °C, insbesondere während maximal 12 Tagen, vorzugsweise ma imal 1 Tag, noch bevorzugter maximal 1 Stunde, am besten maximal 1 5 Minuten erfolgt.  Formation of permanent B onds at a temperature between tween room temperature and 200 ° C, especially for a maximum of 12 days, preferably ma imal 1 day, more preferably at most 1 hour, most preferably a maximum of 1 5 minutes.
4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der irreversible Bond eine Bondstärke von größer 1 ,5 J/m2, insbesondere größer 2 J/m2, vorzugsweise größer 2,5 J/m2 aufweist . 4. The method according to any one of the preceding claims, wherein the irreversible bond has a bond strength of greater than 1, 5 J / m 2 , in particular greater than 2 J / m 2 , preferably greater than 2.5 J / m 2 .
5. Verfahren nach einem der vorhergehenden An prüche, bei dem bei der Reakt ion ein Reaktionsprodukt ( 10) mit ei nem größeren molaren Volumen als das m lare Volumen des zweiten Edukts in der 5. The method according to any one of the preceding claims, wherein in the Rea tion, a reaction product (10) with egg nem larger molar volume than the m lar volume of the second reactant in the
Reaktionsschicht (7) gebildet wird.  Reaction layer (7) is formed.
6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Ausbildung des Reservoirs (5) durch Plasmaaktivierung erfolgt. 6. The method according to any one of the preceding claims, wherein the formation of the reservoir (5) takes place by plasma activation.
7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Oberflächenschicht (6) i m Wesentl ichen vollständig aus einem amorphen Material , insbesondere einem durch thermische Oxidation erzeugten S il iziumdioxid, und d ie Reaktionsschicht (7) aus einem oxidierbaren Material, insbesondere überwiegend, vorzugsweise im Wesentlichen vol l ständig, aus Si, Ge, InP, GaP oder GaN, bestehen. Verfahren nach einem der vorhergehenden Ansprüche, bei dem 7. The method as claimed in one of the preceding claims, in which the surface layer (6) is substantially completely made of an amorphous material, in particular silicon dioxide produced by thermal oxidation, and the reaction layer (7) is made of an oxidizable material, in particular predominantly predominantly preferably substantially constantly, consisting of Si, Ge, InP, GaP or GaN. Method according to one of the preceding claims, in which
zwischen der zweiten Kontaktfläche (4) und der Reaktionsschicht (7) eine, insbesondere zumindest überwiegend aus einem nativen between the second contact surface (4) and the reaction layer (7) one, in particular at least predominantly of a native
Oxidmaterial bestehende, Aufwuchsschicht (8), vorzugsweise Oxide material existing, growth layer (8), preferably
überwiegend aus nativem S iliziumdioxid, vorgesehen ist. predominantly of native silicon dioxide.
Verfahren nach Anspruch 8 , bei dem die Aufwuchsschicht (8) und/oder die Oberflächenschicht (6) vor der Ausbildung eines permanenten B onds eine mittlere Dicke A zwischen 1 Angström und 1 0 nm Method according to Claim 8, in which the growth layer (8) and / or the surface layer (6) have an average thickness A between 1 angstrom and 10 nm before the formation of a permanent surface
aufweisen. exhibit.
Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Ausbildung eines Reservoirs im Vakuum durchgeführt wird. Method according to one of the preceding claims, in which the formation of a reservoir is carried out in a vacuum.
Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Method according to one of the preceding claims, in which the
Auffüllen des Reservoirs durch einen oder mehrere der nach ol gend au geführten S chritte erfol gt : Filling of the reservoir by one or more of the following steps:
- Aussetzen der ersten Kontaktfläche (3 ) gegenüber der Atmosphäre, insbesondere mit einem hohen Sauerstoff- und/oder Wassergehalt. - Exposing the first contact surface (3) to the atmosphere, in particular with a high oxygen and / or water content.
- B eaufschlagung der ersten Kontakt fläche (3 ) mit einem, insbesondere überwiegend, vorzugswei se nahezu vollständig, aus, insbesondere deionisiertem, H20 und/oder H202 bestehenden, Fluid, Acting on the first contact surface (3) with one, in particular predominantly, preferably almost completely, of, in particular deionized, H 2 O and / or H 2 O 2 existing fluid,
- B eaufschlagung der ersten Kontaktfläche (3 ) mit N2-Gas und/oder 02- Gas und/oder Ar-Gas und/oder Formiergas, insbesondere bestehend aus 95 % Ar und 5 % H2, insbesondere mit einer Ionenenergie im Bereich von 0 bis 200 eV . Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Ausbildung und das Auffüllen eines Reservoirs zusätzlich an der zweiten Kontaktfläche (4), insbesondere in der Aufwuchsschicht (8), erfolgt und die Ausbildung des permanenten B onds zusätzlich verstärkt wird durch Reaktion des ersten Edukts mit einem in einer - Impact of the first contact surface (3) with N 2 gas and / or 0 2 - gas and / or Ar gas and / or forming gas, in particular consisting of 95% Ar and 5% H 2 , in particular with an ion energy in the range from 0 to 200 eV. Method according to one of the preceding claims, wherein the formation and filling of a reservoir in addition to the second contact surface (4), in particular in the growth layer (8), takes place and the formation of the permanent B onds is additionally enhanced by reaction of the first reactant with one in one
Reaktionsschicht (7 ' ) des ersten Substrats ( 1 ) enthaltenen zweiten Edukt.  Reaction layer (7 ') of the first substrate (1) contained second reactant.
13. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der mittlere Abstand (B ) zwischen dem Reservoir (5) und der 13. The method according to any one of the preceding claims, wherein the average distance (B) between the reservoir (5) and the
Reaktionsschicht (7 ) unmittelbar vor der Ausbildung des permanenten B onds zwischen 0, 1 nm und 1 5 nm, insbesondere zwischen 0,5 nm und 5 nm, vorzugsweise zwischen 0,5 nm und 3 nm beträgt.  Reaction layer (7) immediately before the formation of the permanent B onds between 0, 1 nm and 1 5 nm, in particular between 0.5 nm and 5 nm, preferably between 0.5 nm and 3 nm.
1 4 Verfahren nach einem der vorhergehenden Ansprüchen, bei dem der irreversible B ond eine B ondstärke besitzt, welche das 2 fache, mit Vorzug das 4fache, mit größerem V orzug das l Ofache, mit größtem Vorzug das 25fache der Prebondstärke ausmachen. A method according to any one of the preceding claims, wherein the irreversible tape has a thickness of B which is 2 times, preferably 4 times, greater than 10 times, most preferably 25 times that of Prebond.
EP11714257.0A 2011-04-08 2011-04-08 Method for permanently bonding wafers Withdrawn EP2695183A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/055470 WO2012136267A1 (en) 2011-04-08 2011-04-08 Method for permanently bonding wafers

Publications (1)

Publication Number Publication Date
EP2695183A1 true EP2695183A1 (en) 2014-02-12

Family

ID=44625808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11714257.0A Withdrawn EP2695183A1 (en) 2011-04-08 2011-04-08 Method for permanently bonding wafers

Country Status (8)

Country Link
US (2) US10825793B2 (en)
EP (1) EP2695183A1 (en)
JP (1) JP2014516470A (en)
KR (1) KR101794390B1 (en)
CN (1) CN103477420B (en)
SG (1) SG192180A1 (en)
TW (1) TWI543237B (en)
WO (1) WO2012136267A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252042B2 (en) 2011-01-25 2016-02-02 Ev Group E. Thallner Gmbh Method for permanent bonding of wafers
JP6379184B2 (en) 2013-09-25 2018-08-22 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Apparatus and method for bonding substrates
DE102014112430A1 (en) 2014-08-29 2016-03-03 Ev Group E. Thallner Gmbh Method for producing a conductive multi-substrate stack
FR3029352B1 (en) * 2014-11-27 2017-01-06 Soitec Silicon On Insulator METHOD FOR ASSEMBLING TWO SUBSTRATES
US10373830B2 (en) * 2016-03-08 2019-08-06 Ostendo Technologies, Inc. Apparatus and methods to remove unbonded areas within bonded substrates using localized electromagnetic wave annealing
JP2016178340A (en) * 2016-06-15 2016-10-06 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Permanent junction method for wafer
KR102624841B1 (en) 2017-03-02 2024-01-15 에베 그룹 에. 탈너 게엠베하 Method and device for bonding chips
CN109346495A (en) * 2018-11-21 2019-02-15 德淮半导体有限公司 Wafer bonding method
CN109712880A (en) * 2018-12-03 2019-05-03 武汉新芯集成电路制造有限公司 A kind of method for improving and enhancing system of wafer bonding power

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114099A1 (en) * 2007-03-19 2008-09-25 S.O.I.Tec Silicon On Insulator Technologies Patterned thin soi
US20100193897A1 (en) * 2009-02-04 2010-08-05 Micron Technology, Inc. Semiconductor material manufacture

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942964A1 (en) 1989-12-23 1991-06-27 Leybold Ag DEVICE FOR PRODUCING A PLASMA
US5451547A (en) 1991-08-26 1995-09-19 Nippondenso Co., Ltd. Method of manufacturing semiconductor substrate
JP3134391B2 (en) 1991-09-19 2001-02-13 株式会社デンソー Silicon substrate bonding method
JP3191371B2 (en) 1991-12-11 2001-07-23 ソニー株式会社 Semiconductor wafer bonding method
US5427638A (en) 1992-06-04 1995-06-27 Alliedsignal Inc. Low temperature reaction bonding
JP3192000B2 (en) 1992-08-25 2001-07-23 キヤノン株式会社 Semiconductor substrate and manufacturing method thereof
EP1018153A1 (en) 1997-08-29 2000-07-12 Sharon N. Farrens In situ plasma wafer bonding method
KR100311234B1 (en) 1999-01-18 2001-11-02 학교법인 인하학원 Enhanced inductively coupled plasma reactor
US20020048900A1 (en) 1999-11-23 2002-04-25 Nova Crystals, Inc. Method for joining wafers at a low temperature and low stress
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
JP2004515053A (en) 2000-06-26 2004-05-20 アプライド マテリアルズ インコーポレイテッド Wafer cleaning method and apparatus
US6563133B1 (en) 2000-08-09 2003-05-13 Ziptronix, Inc. Method of epitaxial-like wafer bonding at low temperature and bonded structure
US6780759B2 (en) 2001-05-09 2004-08-24 Silicon Genesis Corporation Method for multi-frequency bonding
US6814833B2 (en) 2001-10-26 2004-11-09 Corning Incorporated Direct bonding of articles containing silicon
US20030089950A1 (en) 2001-11-15 2003-05-15 Kuech Thomas F. Bonding of silicon and silicon-germanium to insulating substrates
US6696661B2 (en) 2001-11-19 2004-02-24 Geomat Insights, Llc Plasma enhanced circuit packaging method and device
FR2851846A1 (en) 2003-02-28 2004-09-03 Canon Kk CONNECTION SYSTEM AND METHOD FOR MANUFACTURING SEMICONDUCTOR SUBSTRATE
US7109092B2 (en) 2003-05-19 2006-09-19 Ziptronix, Inc. Method of room temperature covalent bonding
JP3980539B2 (en) 2003-08-29 2007-09-26 唯知 須賀 Substrate bonding method, irradiation method, and substrate bonding apparatus
JP4118774B2 (en) 2003-09-18 2008-07-16 株式会社東芝 Thin film laminate and manufacturing method thereof
US7740737B2 (en) 2004-06-21 2010-06-22 Tokyo Electron Limited Plasma processing apparatus and method
EP1621565A1 (en) 2004-07-28 2006-02-01 Cytec Surface Specialties Austria GmbH Epoxy resins with improved elasticity
US7261793B2 (en) 2004-08-13 2007-08-28 Hewlett-Packard Development Company, L.P. System and method for low temperature plasma-enhanced bonding
US7148122B2 (en) 2004-08-24 2006-12-12 Intel Corporation Bonding of substrates
JP2006080314A (en) 2004-09-09 2006-03-23 Canon Inc Manufacturing method of coupled substrate
US7772088B2 (en) 2005-02-28 2010-08-10 Silicon Genesis Corporation Method for manufacturing devices on a multi-layered substrate utilizing a stiffening backing substrate
JP2006258958A (en) 2005-03-15 2006-09-28 Shibaura Mechatronics Corp Method and device for bonding substrate
FR2884966B1 (en) 2005-04-22 2007-08-17 Soitec Silicon On Insulator METHOD OF BONDING TWO SLICES REALIZED IN MATERIALS SELECTED AMONG SEMICONDUCTOR MATERIALS
JP5166690B2 (en) 2005-06-02 2013-03-21 三菱重工業株式会社 Solid polymer electrolyte fuel cell
FR2888663B1 (en) 2005-07-13 2008-04-18 Soitec Silicon On Insulator METHOD OF REDUCING THE ROUGHNESS OF A THICK LAYER OF INSULATION
US7638842B2 (en) * 2005-09-07 2009-12-29 Amberwave Systems Corporation Lattice-mismatched semiconductor structures on insulators
US7601271B2 (en) 2005-11-28 2009-10-13 S.O.I.Tec Silicon On Insulator Technologies Process and equipment for bonding by molecular adhesion
KR100748723B1 (en) 2006-07-10 2007-08-13 삼성전자주식회사 Bonding method of substrates
US7745309B2 (en) 2006-08-09 2010-06-29 Applied Materials, Inc. Methods for surface activation by plasma immersion ion implantation process utilized in silicon-on-insulator structure
FR2911430B1 (en) 2007-01-15 2009-04-17 Soitec Silicon On Insulator "METHOD OF MANUFACTURING A HYBRID SUBSTRATE"
JP5183969B2 (en) 2007-05-29 2013-04-17 信越半導体株式会社 Method for forming silicon oxide film on SOI wafer
JP5499428B2 (en) 2007-09-07 2014-05-21 株式会社Sumco Manufacturing method of bonded wafer
US8101501B2 (en) 2007-10-10 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
FR2923079B1 (en) 2007-10-26 2017-10-27 S O I Tec Silicon On Insulator Tech SUBSTRATES SOI WITH INSULATED FINE LAYER ENTERREE
US20090139963A1 (en) 2007-11-30 2009-06-04 Theodoros Panagopoulos Multiple frequency pulsing of multiple coil source to control plasma ion density radial distribution
CN101261932A (en) * 2008-04-18 2008-09-10 华中科技大学 A bonding method for low-temperature round slice
JP5548395B2 (en) 2008-06-25 2014-07-16 株式会社半導体エネルギー研究所 Method for manufacturing SOI substrate
JP5552276B2 (en) 2008-08-01 2014-07-16 株式会社半導体エネルギー研究所 Method for manufacturing SOI substrate
FR2938702B1 (en) 2008-11-19 2011-03-04 Soitec Silicon On Insulator SURFACE PREPARATION OF SAPHIR SUBSTRATE FOR THE PRODUCTION OF HETEROSTRUCTURES
DE102008044200B4 (en) 2008-11-28 2012-08-23 Thin Materials Ag Bonding method
EP2211369A1 (en) 2009-01-23 2010-07-28 Applied Materials, Inc. Arrangement for working substrates by means of plasma
GB0919830D0 (en) 2009-11-12 2009-12-30 Isis Innovation Preparation of silicon for fast generation of hydrogen through reaction with water
CN101789354B (en) 2010-02-11 2012-07-04 中微半导体设备(上海)有限公司 Plasma treatment device with diffused dissociation
JP5789798B2 (en) 2010-05-28 2015-10-07 ボンドテック株式会社 Joining method and joining system
US9252042B2 (en) 2011-01-25 2016-02-02 Ev Group E. Thallner Gmbh Method for permanent bonding of wafers
US8975158B2 (en) 2011-04-08 2015-03-10 Ev Group E. Thallner Gmbh Method for permanently bonding wafers
WO2012136266A1 (en) 2011-04-08 2012-10-11 Ev Group E. Thallner Gmbh Method for permanently bonding wafers
FR2980916B1 (en) * 2011-10-03 2014-03-28 Soitec Silicon On Insulator PROCESS FOR PRODUCING A SILICON TYPE STRUCTURE ON INSULATION
US8748885B2 (en) 2012-02-10 2014-06-10 Taiwan Semiconductor Manufacturing Company, Ltd. Soft material wafer bonding and method of bonding
JP6099744B2 (en) 2012-07-24 2017-03-22 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method and apparatus for continuously bonding wafers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114099A1 (en) * 2007-03-19 2008-09-25 S.O.I.Tec Silicon On Insulator Technologies Patterned thin soi
US20100193897A1 (en) * 2009-02-04 2010-08-05 Micron Technology, Inc. Semiconductor material manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012136267A1 *

Also Published As

Publication number Publication date
US20170229423A1 (en) 2017-08-10
TWI543237B (en) 2016-07-21
US10825793B2 (en) 2020-11-03
CN103477420A (en) 2013-12-25
US20140017877A1 (en) 2014-01-16
WO2012136267A1 (en) 2012-10-11
CN103477420B (en) 2016-11-16
SG192180A1 (en) 2013-08-30
TW201250785A (en) 2012-12-16
JP2014516470A (en) 2014-07-10
KR20130141646A (en) 2013-12-26
KR101794390B1 (en) 2017-12-01

Similar Documents

Publication Publication Date Title
EP2695183A1 (en) Method for permanently bonding wafers
EP3447789B1 (en) Method for the permanent bonding of wafers
EP2695182B1 (en) Method for permanently bonding wafers
EP2878006A1 (en) Method and device for permanently bonding wafers
DE102008051494B4 (en) Method for producing the SOI substrates with a fine buried insulating layer
DE69738608T2 (en) Process for producing a semiconductor thin film
EP1604390B9 (en) Method for the production of stress-relaxed layer structure on a non-lattice adapted substrate and utilization of said layer system in electronic and/or optoelectronic components
EP2695181B1 (en) Method for permanently bonding wafers
DE112009002065B4 (en) A nitride film structure and method of making the same
DE102004030612B3 (en) Semiconductor substrate and method for its production
WO2006092114A1 (en) Method for production of a thin-layer structure
WO2014048502A1 (en) Method for coating and bonding substrates
EP2847786B1 (en) Method for bonding substrates
DE10064002A1 (en) Multi-layer thin-film structure, ferroelectric thin-film element and method for producing the same
EP4139128B1 (en) Method and device for transferring a transfer layer
JP2020065090A (en) Wafer permanent bonding method
DE102013224623B4 (en) Process for producing a micromechanical component
JP6679666B2 (en) Wafer permanent bonding method
EP1070768B1 (en) Method for making silicon nanocluster monolayers in silicon oxide
DE112020000367T5 (en) A method of making a receiver substrate of a semiconductor-on-insulator structure for high frequency applications and a method of making such a structure
DE102004022618B4 (en) Method for producing a memory cell with nano-dot-shaped memory areas in a substrate
DE102004003363A1 (en) Process to manufacture a nano-storage component for storage of an electronic charge by ion injection and crystallisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140528

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20161114