EP2691614B1 - Heating module for an exhaust purification system - Google Patents

Heating module for an exhaust purification system Download PDF

Info

Publication number
EP2691614B1
EP2691614B1 EP12713927.7A EP12713927A EP2691614B1 EP 2691614 B1 EP2691614 B1 EP 2691614B1 EP 12713927 A EP12713927 A EP 12713927A EP 2691614 B1 EP2691614 B1 EP 2691614B1
Authority
EP
European Patent Office
Prior art keywords
heating module
exhaust gas
section
main
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12713927.7A
Other languages
German (de)
French (fr)
Other versions
EP2691614A1 (en
Inventor
Bettina BAIER
Bernd Maurer
Klaus Schrewe
Frank Noack
Thomas Kästner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HJS Emission Technology GmbH and Co KG
Original Assignee
HJS Emission Technology GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HJS Emission Technology GmbH and Co KG filed Critical HJS Emission Technology GmbH and Co KG
Publication of EP2691614A1 publication Critical patent/EP2691614A1/en
Application granted granted Critical
Publication of EP2691614B1 publication Critical patent/EP2691614B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • F01N3/0256Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases the fuel being ignited by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel

Definitions

  • the invention relates to a heating module for an exhaust gas purification system connected to the output of an internal combustion engine, comprising a catalytic burner with an HC injector and with a downstream of the HC injector in the flow direction of the exhaust gas oxidation catalyst for supplying thermal energy to an exhaust gas purification unit of the emission control system, said Heating module has a main line, a secondary line containing the catalytic burner and a device for controlling the exhaust gas mass flowing through the secondary line, wherein the secondary line has on the input side and on the output side via a deflecting in the radial direction from the main strand, between which deflection chambers parallel to Main strand of the heating module is the Maustrangabites with the oxidation catalyst.
  • Such an aggregate may be, for example, an oxidation catalytic converter, a particulate filter and / or an SCR stage.
  • a particulate filter serves to catch soot particles ejected from the internal combustion engine.
  • On the upstream surface of the particulate filter accumulates in the exhaust soot accumulates. So that in the course of successive Rußakkumulation the exhaust back pressure does not rise too far and / or the filter threatens to clog, a sufficient regeneration process is triggered with sufficient soot loading of the particulate filter. In such a regeneration process, the soot accumulated on the filter is burned off (oxidized).
  • soot oxidation Upon completion of such soot oxidation, the particulate filter is regenerated. All that remains is a non-combustible ashes.
  • the soot For soot oxidation to take place, the soot must have a certain temperature. This is usually around 600 degrees Celsius. The temperature at which such soot oxidation begins may be lower, for example when the oxidation temperature has been lowered by an additive and / or by the provision of NO 2 . If the carbon black has a temperature which is below its oxidation temperature, it is necessary to supply thermal energy for triggering the regeneration process in order to be able to actively trigger a regeneration in this way. Active regeneration may be initiated via engine-internal measures by changing the combustion process to expel exhaust gas at a higher temperature. However, in many applications, especially in the non-road area, post-motor actions are preferred for inducing active regeneration. In many cases, it is not possible to influence engine measures as part of an exhaust gas purification.
  • an exhaust emission control system in which, for the purposes of actively causing the regeneration of a particulate filter, the exhaust gas line is divided into a main line and a secondary line. These two strand sections form a heating module.
  • a catalytic burner is turned on, heated by the flowing through the side branch partial exhaust stream and then combined with the flowing through the main strand exhaust stream, so that in this way the mixed exhaust gas mass flow has a much higher temperature.
  • the purpose of increasing the temperature of the exhaust gas stream is to heat the soot accumulated on the upstream side of the particulate filter to a sufficient temperature for triggering the regeneration process.
  • a catalytic burner is arranged in the secondary strand oxidation catalyst with upstream hydrocarbon injection.
  • an exhaust gas flap in the main line, by means of which the freely flow-through cross-sectional area in the main line can be adjusted.
  • an electrothermal heating element For the purpose of heating the oxidation catalyst switched on in the secondary strand to its light-off temperature-the temperature at which the desired exothermic HC conversion takes place at the catalytic surface-this is preceded by an electrothermal heating element. This is operated when this oxidation catalyst must be heated to its light-off temperature.
  • the catalytic burner connected in the secondary line can be oversprayed so as to supply hydrocarbons to a second oxidation catalyst immediately upstream of the particle filter in order to produce the same exothermic reaction on the catalytic surface of this second oxidation catalyst can react.
  • a two-stage heating of the exhaust gas can be made.
  • the exhaust gas flowing out of the second oxidation catalytic converter then has the necessary temperature in order to heat the soot accumulated on the upstream side of the particulate filter to such an extent that it oxidizes.
  • emission control units such as an oxidation catalyst or SCR stage
  • US 2011/061369 A1 discloses a burner for a diesel engine downstream exhaust gas purification system.
  • the exhaust gas flow in the region of the input is divided into a main line and a secondary line. Both strands are arranged concentrically to each other.
  • the object of the invention is to develop a heating module of the type mentioned in such a way that this not only compact design designed, but with which the oxidation catalyst can be heated more effectively.
  • the branch into the secondary line and, according to one embodiment, the mouth of the secondary line in the main line are typically each formed by an overflow pipe section.
  • Such an overflow pipe section has overflow openings, which are introduced into the pipe forming the overflow pipe section.
  • the conception of the formation of the input in the secondary line using such Overflow pipe sections allow the formation of a direction of the main flow direction of the exhaust gas also arranged at right angles branch as part of the secondary strand.
  • the output-side connection of the secondary line to the main line can be designed in the same way.
  • the main line and the secondary line open into a mixing chamber in the axial direction and thus in the main flow direction of the exhaust gas.
  • the longitudinal extent of the secondary strand with the catalytic burner can be limited essentially to the necessary length of the oxidation catalyst.
  • the length of the secondary line can be practically limited to the required length of the oxidation catalytic converter and of the heating element arranged upstream of it.
  • the above-described concept involves that the secondary branch branched off from the main branch at a right angle has a 90 degree deflection in order to guide the exhaust gas stream into a secondary strand section running parallel to the main strand.
  • the related diversion is typically in the region of the longitudinal axis of the secondary section with the oxidation catalyst, so that it is advisable to arrange the HC injector in the region of the deflection, in such a way that its spray cone frontally on the oxidation catalyst or, if this upstream of an electrothermal heating element is directed to this.
  • the HC injector in the region of the deflection, in such a way that its spray cone frontally on the oxidation catalyst or, if this upstream of an electrothermal heating element is directed to this.
  • no additional space in the longitudinal extension of the heating module is required for the necessary flow path for forming the spray cone of the HC injector.
  • the depth of the existing deflection which is required anyway, is used in this design.
  • the heating module has an upstream of the oxidation catalyst electrothermal heating element, since this can be used to vaporize the introduced via the HC injector in the secondary strand fuel before it acts on the catalytic surface of the oxidation catalyst. Consequently, in such an embodiment, only a minimum of flow path between the HC injector or its injector nozzle and the oxidation catalyst needs to be present. It serves the necessary Flow path not as a treatment line, but most of the purpose of Sprühkegel couch so that the entire or largely entire upstream surface of the heating element is in the range of the spray cone. In this case, the spray cone will typically be adjusted such that it preferably acts only on the upstream surface of the heating element and not or at most only subordinate in the flow direction upstream wall sections of the secondary strand section.
  • the conception of the input-side main branch branch through an overflow pipe section which, depending on the configuration of the heating module, encloses the secondary line or which is enclosed by the outgoing secondary line, permits the formation of numerous overflow openings, which are preferably distributed uniformly over the circumference of the overflow pipe section.
  • the configuration of the overflow openings and their arrangement will preferably be chosen such that, if possible, an equal distribution of the exhaust gas stream flowing into the secondary line is provided in the secondary line.
  • the aim is to uniformly flow the oxidation catalyst arranged in the secondary branch or, if present, the electrothermal heating element arranged upstream of it via the cross-sectional area of the secondary strand.
  • the overflow openings extend over only a part of the lateral surface of the overflow pipe section, for example only over 180 degrees.
  • the cross-sectional area of the overflow openings in their sum is slightly larger than the cross-sectional area of the main strand in the region of the overflow pipe section.
  • the exhaust backpressure occurring through the necessary internals in the secondary line can be kept low.
  • the sum of the cross-sectional areas of the overflow openings of the overflow pipe sections is 1.2 to 1.5 times greater than the cross-sectional area of the main strand in the overflow pipe section. It has been found that a related cross-sectional area ratio of about 1.3 proves to be particularly favorable in order not to adversely affect the flow behavior through the two strands - main line and secondary line - beyond measure.
  • the exhaust gas flow to be conducted through the secondary line is directed in the radial direction outwards from the main line into the secondary line.
  • the oxidation catalyst and, if appropriate, the heating element arranged upstream of this are then located in a pipe arranged parallel to the main strand as a secondary strand section.
  • the return of the exhaust gas flow conducted through the secondary line into the main flow can take place in an analogous manner as at the inlet of the secondary line via a overflow pipe section having a second overflow opening.
  • the fluid connection between the main strand and the secondary strand section with the oxidation catalyst, and preferably also with the electrothermal heating element connected upstream thereof, is realized by overflow deflection chambers in an embodiment in which the secondary strand section with the catalytic burner runs parallel to the main strand.
  • a correspondingly large diameter oxidation catalyst can be turned on. It is understood that, the larger the cross-sectional area of the oxidation catalyst, it can be designed shorter at the same volume in its longitudinal extent. As a result, not only the possibility is created to design the heating module in the longitudinal extension correspondingly shorter, but by such a measure, the back pressure and the conversion rate and thus the temperature load of the oxidation catalyst can be reduced.
  • the concept of forming the fluid connections between the secondary strand section with the oxidation catalyst and the preferably upstream electrothermal heating element with the main strand by means of the above deflection chambers allows a design thereof as Blechumformmaschine, typically two such, usually formed by deep drawing sheet metal parts are assembled into a deflection chamber.
  • This concept allows the use of identical parts in the input-side deflection chamber and in the output-side deflection chamber, at least with respect to a prefabrication stage.
  • the Umlenkcrocker by introduced after this prefabrication level openings for connecting such as sensors or, for example, an HC injector from each other.
  • the outer Umlenkcrocker can be the same.
  • Alone with the input side outside Umlenkcetteil are typically provided connecting means for connecting the HC injector.
  • this deflection chamber part has an injector opening with an outwardly flanged collar to which the HC injector is attached.
  • this Umlenkhuntteil can be made as a common part to the outer Umlenkhuntteil the other deflection, wherein the HC injector has been introduced by an additional processing step in this initially manufactured as a common part Umlenkhuntteil.
  • a heating module 1 of a first embodiment of the invention is turned on in an exhaust line, not shown, an exhaust gas purification system.
  • the emission control system is in turn connected to the output of a diesel engine as an internal combustion engine.
  • the exhaust gas line, in which the heating module 1 is turned on, is identified by the reference symbol A.
  • the heater 1 is in the flow direction of the exhaust gas, through the block arrows in FIG. 1 shown upstream of an exhaust gas purification unit, for example, a particulate filter in the flow direction of the exhaust gas.
  • the particle filter is preceded by an oxidation catalyst.
  • the heating module 1 has a main line 2 and a secondary line 3.
  • the main line 2 is part of the exhaust line A of the exhaust gas purification system.
  • the exhaust gas emitted by the diesel engine flows when it is not passed through the secondary line 3.
  • the exhaust gas flow is wholly or partially passed through the secondary strand 3.
  • an exhaust flap 5 which can be controlled by an actuator 4 is arranged in the main line 2.
  • the exhaust flap 5 is shown in its closing the main strand 2 position.
  • the entire exhaust gas flow through the main strand 2 or through the secondary strand 3 or a partial flow through the main strand 2 and the complementary partial flow through the secondary strand 3 are passed.
  • the main strand 2 of the heating module 1 has on the input side and output side with respect to the secondary strand 3 each have a Matterströmrohrabites 6, 6.1.
  • the overflow pipe section 6 of the illustrated embodiment is realized by a perforation, which is formed by a plurality of these pipe section cross-overflow openings 7.
  • the overflow 7 have a circular cross-sectional geometry and are circumferentially distributed in a uniform grid and designed with the same cross-sectional area. It is understood that both the arrangement of the overflow openings 7, their cross-sectional geometry and their size vary and may also be provided differently arranged over the Matterströmrohrabrough typically in the flow direction of the exhaust gas.
  • the sum of the cross-sectional area of the overflow openings 7 is about 1.3 times as large as the cross-sectional area of the main string 2, typically in the region of the overflow pipe section 6.
  • the overflow pipe section 6.1 with respect to the secondary strand 3 is designed identically. However, the conception of the output-side overflow pipe section 6.1 can also be designed differently than the input-side overflow pipe section 6.
  • the overflow pipe section 6 is bordered by an overflow deflection chamber 8.
  • the enclosure of the overflow pipe section 6 is circumferentially, since in the illustrated embodiment, the overflow 7 distribute circumferentially over the overflow pipe section 6.
  • all the overflow openings 7 of the overflow pipe section 6 are located within the overflow deflection chamber 8.
  • exhaust gas can flow out of the main branch 2 into the auxiliary line 3 over the entire circumference of the overflow pipe section 6.
  • the Matterströmumlenkhunt 8 is composed of two formed by deep drawing sheet metal parts - the Umlenkwaitteil 9, 9.1 - composed.
  • Umlenktalkmaschine 9, 9.1 each have a mounting flange 10, 10.1, with which the two Umlenktalkmaschine 9, 9.1 are gas-tightly connected to each other by a joining process.
  • the overflow pipe section 6.1 is bordered in the same way by a Kochströmumlenkwait 8.1.
  • a secondary strand section 11 which in the illustrated embodiment is designed as a tube with a circular cross-sectional geometry.
  • an oxidation catalyst 12 In the secondary line section 11 is an oxidation catalyst 12 and upstream of this in the flow direction an electrothermal heating element 13. The necessary connections for operating the heating element 13 are not shown in the figures for the sake of clarity.
  • the HC injector 14 is used for spraying fuel (here: diesel), so as to allow hydrocarbons to operate the catalytic burner formed together with the oxidation catalyst 12.
  • the HC injector 14 is connected in a manner not shown to the fuel supply, from which also the diesel engine is fed.
  • FIGS. 2 and 3 of the heating module 1 show that the Kochströmumlenkwaitn 8, 8.1, starting from the main strand 2 in the direction of the secondary strand section 11 in terms of flow cross-sectional area increase. On the input side, this increase in cross-sectional area results in a slowing down of the exhaust gas flow conducted through the secondary branch 3. This is desirable so that the spray cone formed by the HC injector 14 is largely uninfluenced by the inflowing exhaust gas flow when injecting fuel.
  • the fuel cone sprayed by the HC injector 14 is designed so that it wets the upstream end of the heating element 13 with fuel, wherein the spray cone does not have such an angle that in the flow direction before the heating element 13 located wall portions of the secondary strand section 11 are wetted with fuel.
  • the cross-sectional area of the secondary strand section 11 is, as shown in FIGS FIGS. 1 to 3 recognizable, again slightly smaller than the flow cross-sectional area within the Matterströmumlenkhunt 8 (the same applies to the Kochströmumlenkhunt 8.1) in the region of in the Figures 2
  • the consequence is that enters into the secondary strand section 11 into a certain acceleration of the introduced into the secondary branch 3 exhaust gas flow, whereby possible spray-off of the HC injector 14 is drawn into the secondary strand section 11 and the electrothermal Heating element 13 is supplied, therefore unwanted wall deposits can be avoided.
  • the cross-sectional area in the secondary strand section 11 is slightly more than twice the cross-sectional area of the main strand 2. This takes place against the background that for forming a heat module 1 that is as compact as possible, especially the cross-sectional area of the internals-heating element 13 and oxidation catalyst 12 - Can be used and especially the oxidation catalyst 12 must have only a relatively short extent in the flow direction of the exhaust gas. It has been shown that, especially in the longitudinal extent of an exhaust line, the installation space is often limited, while in the transverse direction, there are sometimes opportunities for accommodating certain units. This requirement is sufficient because of the above-described concept, the heating module 1 in particular.
  • the Matterströmumlenkhunt 8.1 carries a temperature sensor 15, with the exhaust gas temperature on the output side with respect to the oxidation catalyst 12 can be detected.
  • the heating module 1 Operates the heating module 1 for supplying thermal energy in the exhaust stream of the diesel engine, for example, to trigger a regeneration of a downstream in the emission control system with respect to the heating module 1 particulate filter and optionally control. If the exhaust gas emitted by the diesel engine has exceeded a certain temperature, before the actual operation of the heating module 1, a part of the exhaust gas flow or even the entire exhaust gas flow is passed through the secondary strand 3. This serves the purpose of preheating the oxidation catalyst 12, as far as possible by the temperature of the exhaust gas stream, and to bring this, if the temperature of the exhaust gas is sufficiently high, to its operating temperature. Can not be brought to its light-off temperature by this measure, the oxidation catalyst 12, in addition, the electrothermal heating element 13 is energized so that the oxidation catalyst is heated by the heated by the heating element 13 exhaust stream.
  • the heating module 1 is the first part of a two-stage catalytic burner arrangement, it will be preferable to design the oxidation catalyst 12 with a higher oxidation-catalytic loading than the oxidation catalyst arranged downstream of it in the main line. Consequently, in such an embodiment, the light-off temperature of this oxidation catalyst 12 is lower.
  • the exhaust valve 5 is set in the main line by means of the actuator 4. It is understood, when the exhaust valve 5 is in the main line in its closed position, the majority of the exhaust gas flow passed through the secondary line 3 becomes. Conversely: If the exhaust flap is in its fully open position, as in the side view of FIG. 2 Recognizable, the entire exhaust gas flow flows through the main strand 2 of the heating module 1.
  • the flowing through the secondary strand 3 exhaust gas flow through the operation of the switched therein catalytic burner, formed in the illustrated embodiment by the HC injector 14, the Heating element 13 and the oxidation catalyst 12, heated.
  • the electrical heating element 13 is energized, so that evaporates at this injected via the HC injector 14 fuel.
  • the spray cone S of the HC injector 14 is in FIG. 4 schematized drawn. The fuel vaporized on the heating element 13 acts on the catalytic surface of the oxidation catalyst 12 and triggers the desired exothermic reaction.
  • the exhaust gas stream heated in this way by the secondary branch 3 is returned to the main branch 2 via the overflow deflecting chamber 8.1, whereby a particularly effective mixing takes place as the hot exhaust gas flow passes through the overflow openings 7 into the significantly cooler exhaust gas substream flowing through the main branch 2 over a short distance.
  • FIG. 5 shows a further heating module 1.1 according to a non-inventive embodiment.
  • the heating module 1.1 is basically constructed as the heating module 1 of FIGS. 1 to 4 , Therefore, the comments on the heating module 1 also apply to the heating module 1.1, unless otherwise explained below.
  • the secondary line section 11.1 with the oxidation catalytic converter 12.1 and the heating element 13.1 upstream of this is arranged within the main line 2.1.
  • the illustrated embodiment of the heating module 1.1 are main strand 2.1 and side branch 3.1 in a concentric arrangement to each other.
  • the exhaust line A opens in the illustrated embodiment radially into the main line 2.1.
  • the main strand 2.1 is due to the concentric arrangement in the radial direction inside bounded by the minor strand 3.1.
  • an overflow pipe section 6.2 is connected upstream of the secondary line section 11.1.
  • the overflow pipe section 6.2 is formed as well as the overflow pipe sections 6, 6.1 of the embodiment of the FIGS.
  • the relevant explanations also apply to the overflow pipe section 6.2 of the heating module 1.1.
  • the overflow openings 7.1 are circumferentially introduced into the overflow pipe section 6.2 and have in the illustrated embodiment, a circular cross-sectional geometry.
  • the overflow pipe section 6.2 or its overflow openings 7.1 forms the inlet and thus the flow connection between the main strand 2.1 and the secondary strand 3.1.
  • the heating module 1 occurs in the heating module 1.1 of the exhaust stream to be passed through the secondary strand 3.1, in the radial direction on the inside and thus from the inner surface of the main strand 2.1 and in the secondary strand 3.1 a.
  • An HC injector 14.1 is arranged in an axial arrangement with respect to its injection nozzle to the secondary line 3.1, so as well as the HC injector 14 of the heating module 1.
  • the inlet opening for the influx of exhaust gas into the main strand may alternatively also tangentially or axially with respect to Main flow direction of the exhaust gas to be performed by the heating module 1.1. If an axial input opening, this may, if desired, be annular.
  • the main strand 2.1 thus surrounds the secondary strand 3.1 and thus forms an annular chamber.
  • a helix 16 is used as a guide element through which the flowing in the radial direction in the main line 2.1 exhaust gas undergoes a rotational movement component. Consequently, the exhaust stream flowing through the main branch 2.1 is set into a rotational movement by this embodiment.
  • a helically extending around the secondary strand 3.1 flow channel is formed at the same time. This channel is used in the illustrated embodiment, to arrange an exhaust valve 5.1 therein. This is, as well as in the embodiment of FIGS. 1 to 4 , driven by an actuator 4.1.
  • the exhaust flap 5.1 is pivotable about a radially extending to the longitudinal axis of the secondary strand 3.1 axis of rotation.
  • the exhaust valve 5.1 is shown in its open position. Due to the formation of the flow channel created by the helix 16, which ultimately constitutes the fluidically effective part of the main branch 2.1, the exhaust gas stream conducted through the main branch 2.1 is conducted around the lateral surface of the secondary strand 3.1.
  • This longer throughflow path has the advantage that, depending on the operating state, the temperature of the inflowing exhaust gas heats the oxidation catalyst 12.1 arranged in the auxiliary section 3.1, and therefore typically at least approximately has the temperature of the exhaust gas.
  • FIG. 6 shows a representation in an operation of the heating module 1.1, which in principle the representation of FIG. 4 corresponds to the heating module 1. Entered in these are in a schematic on or insight flow arrows.
  • the exhaust gas flow flowing through the overflow openings 7.1 of the overflow pipe section 6.2 into the secondary line 3.1 is indicated by the arrows with dashed border, since the relevant exhaust gas flow lies within the secondary line 3.1.
  • the exhaust valve 5.1 is located to increase the exhaust backpressure in the main strand 2.1 in their opposite to the representation in FIG. 5 rotated by 90 degrees position. In this position, the exhaust valve 5.1 does not completely close the flow channel, as follows FIGS. 7a, 7b explained, so that a small proportion of exhaust gas flow through the main strand 2.1 flows.
  • the rotation of this partial exhaust stream to the secondary strand 3.1 is shown schematically by arrows.
  • Both the main strand 2.1 and the secondary strand 3.1 open into a conically tapering mixing chamber 17. In this passes the guided through the main strand 2.1 partial exhaust gas stream as a rotating ring flow, which encloses the opening into the mixing chamber 17, flowing through the secondary line 3.1 exhaust stream.
  • the constriction formed by the tapering of the mixing chamber 17 and the swirl of the exhaust gas stream flowing through the main branch 2.1 into it require a particularly effective mixing of the two exhaust gas substreams over a very short distance.
  • the partial exhaust gas stream flowing out of the secondary branch 3.1 can likewise enter the mixing chamber 17 by providing a corresponding orifice as concentric annular flow to the partial exhaust gas stream leaving the main branch 2.1.
  • the partial exhaust gas stream leaving the secondary branch 3.1 can also flow into the mixing chamber 17 as a swirl flow, the swirl of the partial exhaust gas stream leaving the secondary branch 3.1 being opposite to the swirl of the secondary exhaust flow for the purposes of intensive mixing is directed through the main strand 2.1 flowing exhaust gas partial stream.
  • the exhaust gas streams through each other by appropriate guide elements to have directed radial flow components when flowing into the mixing chamber 17. Is schematized in FIG.
  • the heating module 1.1 underlying concept not only ensures a temperature-efficient design of the heating module but also a particularly space-saving design.
  • the mixing chamber 17 adjoining the outlets of the two strands 2.1, 3.1 is conically tapered in the main flow direction of the exhaust gas.
  • the mixing chamber can also be cylindrical, to which cylindrical portion, after a short flow path, that exhaust gas purification unit can already connect to which the temperature provided by the heating module 1.1 is to be supplied.

Description

Die Erfindung betrifft ein Heizmodul für eine an den Ausgang einer Brennkraftmaschine angeschlossene Abgasreinigungsanlage, umfassend einen katalytischen Brenner mit einem HC-Injektor und mit einem dem HC-Injektor in Strömungsrichtung des Abgases nachgeschalteten Oxidationskatalysator zum Zuführen von thermischer Energie an ein Abgasreinigungsaggregat der Abgasreinigungsanlage, wobei das Heizmodul über einen Hauptstrang, über einen den katalytischen Brenner enthaltenen Nebenstrang sowie über eine Einrichtung zum Steuern des den Nebenstrang durchströmenden Abgasmassenstroms verfügt, wobei der Nebenstrang eingangsseitig und ausgangsseitig jeweils über eine in radialer Richtung von dem Hauptstrang abgehende Umlenkkammer verfügt, zwischen welchen Umlenkkammern sich parallel zum Hauptstrang des Heizmoduls der Nebenstrangabschnitt mit dem Oxidationskatalysator befindet.The invention relates to a heating module for an exhaust gas purification system connected to the output of an internal combustion engine, comprising a catalytic burner with an HC injector and with a downstream of the HC injector in the flow direction of the exhaust gas oxidation catalyst for supplying thermal energy to an exhaust gas purification unit of the emission control system, said Heating module has a main line, a secondary line containing the catalytic burner and a device for controlling the exhaust gas mass flowing through the secondary line, wherein the secondary line has on the input side and on the output side via a deflecting in the radial direction from the main strand, between which deflection chambers parallel to Main strand of the heating module is the Nebenstrangabschnitt with the oxidation catalyst.

Brennkraftmaschinen, derzeitig insbesondere Dieselmotoren, verfügen über in den Abgasstrang eingeschaltete Aggregate, um schädliche oder unerwünschte Emissionen zu reduzieren. Bei einem derartigen Aggregat kann es sich beispielsweise um einen Oxidationskatalysator, einen Partikelfilter und/oder um eine SCR-Stufe handeln. Ein Partikelfilter dient zum Auffangen von von der Brennkraftmaschine ausgestoßenen Rußpartikeln. Auf der anströmseitigen Oberfläche des Partikelfilters akkumuliert der im Abgas mitgeführte Ruß. Damit im Zuge der sukzessiven Rußakkumulation der Abgasgegendruck nicht zu weit ansteigt und/oder der Filter zu verstopfen droht, wird bei hinreichender Rußbeladung des Partikelfilters ein Regenerationsprozess ausgelöst. Bei einem solchen Regenerationsprozess wird der auf dem Filter akkumulierte Ruß abgebrannt (oxidiert). Nach Abschluss einer solchen Rußoxidation ist der Partikelfilter regeneriert. Zurück bleibt allein ein nicht-verbrennbarer Ascherest. Damit eine Rußoxidation stattfindet, muss der Ruß eine gewisse Temperatur aufweisen. Diese liegt in aller Regel bei etwa 600 Grad Celsius. Die Temperatur, bei der eine solche Rußoxidation beginnt, kann niedriger liegen, beispielsweise wenn die Oxidationstemperatur durch ein Additiv und/oder durch Bereitstellung von NO2 herabgesetzt worden ist. Wenn der Ruß eine Temperatur aufweist, die unterhalb seiner Oxidationstemperatur liegt, ist es erforderlich, zum Auslösen des Regenerationsprozesses thermische Energie zuzuführen, um auf diese Weise aktiv eine Regeneration auslösen zu können. Eine aktive Regeneration kann über innermotorische Maßnahmen eingeleitet werden, indem der Verbrennungsprozess geändert wird, damit Abgas in einer höheren Temperatur ausgestoßen wird. Bei zahlreichen Anwendungen, vor allem im Non-Road-Bereich, werden jedoch nachmotorische Maßnahmen zum Herbeiführen einer aktiven Regeneration bevorzugt. In vielen Fällen ist es im Rahmen einer Abgasreinigung nicht möglich, auf motorische Maßnahmen Einfluss zu nehmen.Internal combustion engines, currently especially diesel engines, have units connected to the exhaust line to reduce harmful or undesirable emissions. Such an aggregate may be, for example, an oxidation catalytic converter, a particulate filter and / or an SCR stage. A particulate filter serves to catch soot particles ejected from the internal combustion engine. On the upstream surface of the particulate filter accumulates in the exhaust soot accumulates. So that in the course of successive Rußakkumulation the exhaust back pressure does not rise too far and / or the filter threatens to clog, a sufficient regeneration process is triggered with sufficient soot loading of the particulate filter. In such a regeneration process, the soot accumulated on the filter is burned off (oxidized). Upon completion of such soot oxidation, the particulate filter is regenerated. All that remains is a non-combustible ashes. For soot oxidation to take place, the soot must have a certain temperature. This is usually around 600 degrees Celsius. The temperature at which such soot oxidation begins may be lower, for example when the oxidation temperature has been lowered by an additive and / or by the provision of NO 2 . If the carbon black has a temperature which is below its oxidation temperature, it is necessary to supply thermal energy for triggering the regeneration process in order to be able to actively trigger a regeneration in this way. Active regeneration may be initiated via engine-internal measures by changing the combustion process to expel exhaust gas at a higher temperature. However, in many applications, especially in the non-road area, post-motor actions are preferred for inducing active regeneration. In many cases, it is not possible to influence engine measures as part of an exhaust gas purification.

Aus DE 20 2009 005 251 U1 ist eine Abgasreinigungsanlage bekannt, bei der für die Zwecke des aktiven Herbeiführens der Regeneration eines Partikelfilters der Abgasstrang in einen Hauptstrang und einen Nebenstrang geteilt ist. Diese beiden Strangabschnitte bilden ein Heizmodul. In den Nebenstrang ist ein katalytischer Brenner eingeschaltet, durch den der durch den Nebenstrang strömende Abgasteilstrom erwärmt und anschließend mit dem durch den Hauptstrang strömenden Abgasteilstrom vereinigt wird, so dass auf diese Weise der gemischte Abgasmassenstrom eine deutlich höhere Temperatur aufweist. Die Erhöhung der Temperatur des Abgasstromes dient dem Zweck, den auf der Anströmseite des Partikelfilters akkumulierten Ruß auf eine hinreichende Temperatur zum Auslösen des Regenerationsprozesses zu erwärmen. Als katalytischer Brenner dient ein in dem Nebenstrang angeordneter Oxidationskatalysator mit vorgeschalteter Kohlenwasserstoffinjektion. Zum Steuern des den Nebenstrang durchströmenden Abgasmassenstroms befindet sich im Hauptstrang eine Abgasklappe, durch die die frei durchströmbare Querschnittsfläche im Hauptstrang eingestellt werden kann. Für die Zwecke des Erwärmens des in den Nebenstrang eingeschalteten Oxidationskatalysators auf seine light-off-Temperatur - diejenige Temperatur, ab der an der katalytischen Oberfläche die gewünschte exotherme HC-Konvertierung erfolgt - ist diesem ein elektrothermisches Heizelement vorgeschaltet. Dieses wird betrieben, wenn dieser Oxidationskatalysator auf seine light-off-Temperatur erwärmt werden muss. Beschrieben ist in diesem Dokument auch, dass der in den Nebenstrang eingeschaltete katalytische Brenner überspritzt werden kann, um auf diese Weise Kohlenwasserstoffe einem zweiten, dem Partikelfilter in Strömungsrichtung unmittelbar vorgeschalteten Oxidationskatalysator, zuzuführen, damit diese mit derselben exothermen Reaktion an der katalytischen Oberfläche dieses zweiten Oxidationskatalysators reagieren können. Somit kann bei dieser vorbekannten Abgasreinigungsanlage ein zweistufiges Erwärmen des Abgases vorgenommen werden. Das aus dem zweiten Oxidationskatalysator ausströmende Abgas weist sodann die notwendige Temperatur auf, um den auf der Anströmseite des Partikelfilters akkumulierten Ruß soweit zu erwärmen, dass dieser oxidiert.Out DE 20 2009 005 251 U1 For example, an exhaust emission control system is known in which, for the purposes of actively causing the regeneration of a particulate filter, the exhaust gas line is divided into a main line and a secondary line. These two strand sections form a heating module. In the secondary line, a catalytic burner is turned on, heated by the flowing through the side branch partial exhaust stream and then combined with the flowing through the main strand exhaust stream, so that in this way the mixed exhaust gas mass flow has a much higher temperature. The purpose of increasing the temperature of the exhaust gas stream is to heat the soot accumulated on the upstream side of the particulate filter to a sufficient temperature for triggering the regeneration process. As a catalytic burner is arranged in the secondary strand oxidation catalyst with upstream hydrocarbon injection. For controlling the exhaust gas mass flow flowing through the secondary line, there is an exhaust gas flap in the main line, by means of which the freely flow-through cross-sectional area in the main line can be adjusted. For the purpose of heating the oxidation catalyst switched on in the secondary strand to its light-off temperature-the temperature at which the desired exothermic HC conversion takes place at the catalytic surface-this is preceded by an electrothermal heating element. This is operated when this oxidation catalyst must be heated to its light-off temperature. It is also described in this document that the catalytic burner connected in the secondary line can be oversprayed so as to supply hydrocarbons to a second oxidation catalyst immediately upstream of the particle filter in order to produce the same exothermic reaction on the catalytic surface of this second oxidation catalyst can react. Thus, in this prior art emission control system, a two-stage heating of the exhaust gas can be made. The exhaust gas flowing out of the second oxidation catalytic converter then has the necessary temperature in order to heat the soot accumulated on the upstream side of the particulate filter to such an extent that it oxidizes.

In gleicher Weise kann es gewünscht sein, die Temperatur anderer Abgasreinigungsaggregate, beispielsweise eines Oxidationskatalysators oder einer SCR-Stufe zu erhöhen, um diese rascher auf ihre Betriebstemperatur zu bringen.Similarly, it may be desirable to increase the temperature of other emission control units, such as an oxidation catalyst or SCR stage, to bring them to their operating temperature more quickly.

US 2011/061369 A1 offenbart einen Brenner für ein einem Dieselmotor nachgeschaltetes Abgasreinigungssystem. Bei diesem Abgasreinigungssystem wird der Abgasstrom im Bereich des Einganges in einen Hauptstrang und einen Nebenstrang geteilt. Beide Stränge sind konzentrisch zueinander angeordnet. US 2011/061369 A1 discloses a burner for a diesel engine downstream exhaust gas purification system. In this exhaust gas purification system, the exhaust gas flow in the region of the input is divided into a main line and a secondary line. Both strands are arranged concentrically to each other.

Aufgabe der Erfindung ist es, ein Heizmodul der eingangs genannten Art dergestalt weiterzubilden, dass dieses nicht nur kompakt bauend ausgelegt, sondern mit dem der Oxidationskatalysator effektiver erwärmt werden kann.The object of the invention is to develop a heating module of the type mentioned in such a way that this not only compact design designed, but with which the oxidation catalyst can be heated more effectively.

Gelöst wird diese Aufgabe erfindungsgemäß durch ein Heizmodul mit den Merkmalen des Anspruchs 1.This object is achieved according to the invention by a heating module having the features of claim 1.

Bei diesem Heizmodul ist der Abzweig in den Nebenstrang und gemäß einem Ausführungsbeispiel auch die Mündung des Nebenstranges in den Hauptstrang typischer Weise jeweils durch einen Überströmrohrabschnitt gebildet. Ein solcher Überströmrohrabschnitt verfügt über Überströmöffnungen, die in das dem Überströmrohrabschnitt bildende Rohr eingebracht sind. Mithin tritt über den eingangsseitig bezüglich des Nebenstrangesangeordneten Überströmrohrabschnitt, der sich im Bereich des Einganges des Heizmodus befindet, in radialer Richtung der durch den Nebenstrang zu leitende Abgasstrom in radialer Richtung aus dem Hauptstrang aus und in den Nebenstrang ein, wenn der Abgasstrom ganz oder teilweise durch den Nebenstrang geleitet werden soll. Die Konzeption der Ausbildung des Einganges in den Nebenstrang unter Verwendung derartiger Überströmrohrabschnitte erlaubt die Ausbildung eines zur Hauptströmungsrichtung des Abgases auch rechtwinklig angeordneten Abzweiges als Teil des Nebenstranges. Der ausgangsseitige Anschluss des Nebenstranges an den Hauptstrang kann in gleicher Weise ausgebildet sein. Gemäß einem weiteren Ausführungsbeispiel ist vorgesehen, dass der Hauptstrang und der Nebenstrang in axialer Richtung und somit in Hauptströmungsrichtung des Abgases in eine Mischkammer münden. Bei diesen Konzeptionen kann sich die Längserstreckung des Nebenstranges mit dem katalytischen Brenner im Wesentlichen auf die notwendige Länge des Oxidationskatalysators beschränken. Ist dem katalytischen Brenner zudem ein dem Oxidationskatalysator in Strömungsrichtung vorgeschaltetes elektrothermisches Heizelement zugeordnet, kann die Länge des Nebenstranges praktisch auf die benötigte Länge des Oxidationskatalysators und des diesem vorgeschalteten Heizelementes beschränkt sein. Die vorbeschriebene Konzeption beinhaltet, dass der in einem rechten Winkel aus dem Hauptstrang abgezweigte Nebenstrang eine 90 Grad-Umlenkung aufweist, um den Abgasstrom in einen parallel zum Hauptstrang verlaufenden Nebenstrangabschnitt zu leiten. Die diesbezügliche Umlenkung befindet sich typischerweise im Bereich der Längsachse des Nebenstrangabschnittes mit dem Oxidationskatalysator, sodass es sich anbietet, im Bereich der Umlenkung den HC-Injektor anzuordnen, und zwar dergestalt, dass dessen Sprühkegel frontal auf den Oxidationskatalysator oder, falls diesem ein elektrothermisches Heizelement vorgeschaltet ist, auf dieses gerichtet ist. Damit wird für die notwendige Strömungsstrecke zum Ausbilden des Sprühkegels des HC-Injektors kein zusätzlicher Bauraum in Längserstreckung des Heizmoduls benötigt. Zur Ausbildung des Sprühkegels wird bei dieser Konzeption die Tiefe der diesbezüglich vorhandenen Umlenkung, die ohnehin erforderlich ist, genutzt.In this heating module, the branch into the secondary line and, according to one embodiment, the mouth of the secondary line in the main line are typically each formed by an overflow pipe section. Such an overflow pipe section has overflow openings, which are introduced into the pipe forming the overflow pipe section. Thus occurs over the input side arranged with respect to the Nebenstranges Überströmrohrabschnitt, which is located in the region of the input of the heating mode, in the radial direction of the exhaust duct to be guided through the secondary strand in the radial direction from the main strand and in the secondary strand when the exhaust gas flow through or part to be routed to the secondary strand. The conception of the formation of the input in the secondary line using such Overflow pipe sections allow the formation of a direction of the main flow direction of the exhaust gas also arranged at right angles branch as part of the secondary strand. The output-side connection of the secondary line to the main line can be designed in the same way. According to a further embodiment, it is provided that the main line and the secondary line open into a mixing chamber in the axial direction and thus in the main flow direction of the exhaust gas. In these designs, the longitudinal extent of the secondary strand with the catalytic burner can be limited essentially to the necessary length of the oxidation catalyst. If the catalytic burner is also assigned an electrothermal heating element upstream of the oxidation catalytic converter in the flow direction, the length of the secondary line can be practically limited to the required length of the oxidation catalytic converter and of the heating element arranged upstream of it. The above-described concept involves that the secondary branch branched off from the main branch at a right angle has a 90 degree deflection in order to guide the exhaust gas stream into a secondary strand section running parallel to the main strand. The related diversion is typically in the region of the longitudinal axis of the secondary section with the oxidation catalyst, so that it is advisable to arrange the HC injector in the region of the deflection, in such a way that its spray cone frontally on the oxidation catalyst or, if this upstream of an electrothermal heating element is directed to this. Thus, no additional space in the longitudinal extension of the heating module is required for the necessary flow path for forming the spray cone of the HC injector. In order to form the spray cone, the depth of the existing deflection, which is required anyway, is used in this design.

Besonders vorteilhaft ist eine Ausgestaltung, bei der das Heizmodul ein dem Oxidationskatalysator vorgeschaltetes elektrothermisches Heizelement aufweist, da dieses genutzt werden kann, um den über den HC-Injektor in den Nebenstrang eingebrachten Kraftstoff zu verdampfen, bevor dieser die katalytische Oberfläche des Oxidationskatalysators beaufschlagt. Folglich braucht bei einer solchen Ausgestaltung nur ein Minimum an Strömungsstrecke zwischen dem HC-Injektor bzw. seiner Injektordüse und dem Oxidationskatalysator vorhanden zu sein. Dabei dient die notwendige Strömungsstrecke nicht als Aufbereitungsstrecke, sondern ganz überwiegend dem Zweck einer Sprühkegelausbildung, damit sich die gesamte oder weitestgehend gesamte anströmseitige Oberfläche des Heizelementes im Bereich des Sprühkegels befindet. Dabei wird man den Sprühkegel typischerweise derart einstellen, dass dieser vorzugsweise nur die anströmseitige Oberfläche des Heizelementes beaufschlagt und nicht oder allenfalls nur untergeordnet in Strömungsrichtung vorgelagerte Wandabschnitte des Nebenstrangabschnittes.Particularly advantageous is an embodiment in which the heating module has an upstream of the oxidation catalyst electrothermal heating element, since this can be used to vaporize the introduced via the HC injector in the secondary strand fuel before it acts on the catalytic surface of the oxidation catalyst. Consequently, in such an embodiment, only a minimum of flow path between the HC injector or its injector nozzle and the oxidation catalyst needs to be present. It serves the necessary Flow path not as a treatment line, but most of the purpose of Sprühkegelausbildung so that the entire or largely entire upstream surface of the heating element is in the range of the spray cone. In this case, the spray cone will typically be adjusted such that it preferably acts only on the upstream surface of the heating element and not or at most only subordinate in the flow direction upstream wall sections of the secondary strand section.

Die Konzeption des eingangsseitigen Hauptstrangabzweiges durch einen Überströmrohrabschnitt, der je nach Ausgestaltung des Heizmodules den Nebenstrang einfasst oder der von dem abgehenden Nebenstrang eingefasst ist, erlaubt die Ausbildung zahlreicher Überströmöffnungen, die vorzugsweise gleichmäßig über den Umfang des Überströmrohrabschnittes verteilt sind. Die Ausgestaltung der Überströmöffnungen und deren Anordnung wird man vorzugsweise derart wählen, dass im Nebenstrang möglichst eine Gleichverteilung des in den Nebenstrang einströmenden Abgasstromes gegeben ist. Ziel ist es, den im Nebenstrang angeordneten Oxidationskatalysator bzw., falls vorhanden, das diesem vorgeschaltete elektrothermische Heizelement über die Querschnittsfläche des Nebenstranges gleichmäßig anzuströmen. Grundsätzlich ist auch eine Konzeption möglich, bei der die Überströmöffnungen sich nur über einen Teil der Mantelfläche des Überströmrohrabschnittes, beispielsweise nur über 180 Grad erstrecken. Unabhängig von der vorbeschriebenen Ausbildung des Überströmrohrabschnittes wird es als zweckmäßig angesehen, wenn die Querschnittsfläche der Überströmöffnungen in ihrer Summe etwas größer ist, als die Querschnittsfläche des Hauptstranges im Bereich des Überströmrohrabschnittes. Hierdurch kann der durch die notwendigen Einbauten im Nebenstrang auftretende Abgasgegendruck niedrig gehalten werden. Gemäß einem Ausführungsbeispiel ist vorgesehen, dass die Summe der Querschnittsflächen der Überströmöffnungen der Überströmrohrabschnitte 1,2 bis 1,5 mal größer ist als die Querschnittsfläche des Hauptstranges im Überströmrohrabschnitt. Es hat sich gezeigt, dass sich ein diesbezügliches Querschnittsflächenverhältnis von etwa 1,3 als besonders günstig erweist, um das Strömungsverhalten durch die beiden Stränge - Hauptstrang und Nebenstrang - nicht über Maßen nachteilig zu beeinflussen.The conception of the input-side main branch branch through an overflow pipe section which, depending on the configuration of the heating module, encloses the secondary line or which is enclosed by the outgoing secondary line, permits the formation of numerous overflow openings, which are preferably distributed uniformly over the circumference of the overflow pipe section. The configuration of the overflow openings and their arrangement will preferably be chosen such that, if possible, an equal distribution of the exhaust gas stream flowing into the secondary line is provided in the secondary line. The aim is to uniformly flow the oxidation catalyst arranged in the secondary branch or, if present, the electrothermal heating element arranged upstream of it via the cross-sectional area of the secondary strand. In principle, a conception is possible in which the overflow openings extend over only a part of the lateral surface of the overflow pipe section, for example only over 180 degrees. Regardless of the above-described design of the overflow pipe section, it is considered appropriate if the cross-sectional area of the overflow openings in their sum is slightly larger than the cross-sectional area of the main strand in the region of the overflow pipe section. As a result, the exhaust backpressure occurring through the necessary internals in the secondary line can be kept low. According to one exemplary embodiment, it is provided that the sum of the cross-sectional areas of the overflow openings of the overflow pipe sections is 1.2 to 1.5 times greater than the cross-sectional area of the main strand in the overflow pipe section. It has been found that a related cross-sectional area ratio of about 1.3 proves to be particularly favorable in order not to adversely affect the flow behavior through the two strands - main line and secondary line - beyond measure.

Die Konzeption des Anschließens des Nebenstranges über Überströmrohrabschnitte wie vorbeschrieben, an den Hauptstrang erlaubt eine Ausbildung der Überströmrohrabschnitte und damit der Abzweigungen durch entsprechende Dimensionierung der Überströmöffnungen, und zwar hinsichtlich ihrer Anzahl und ihres Durchmessers, dass der durch den Hauptstrang geleitete Abgasstrom beim Durchströmen des Hauptstranges des Heizmodules an den Abzweigungen nur einen minimalen und damit vernachlässigbaren Abgasgegendruckaufbau erfährt.The concept of connecting the secondary line over overflow pipe sections as described above, to the main strand allows formation of the overflow pipe sections and thus the branches by appropriate dimensioning of the overflow, in terms of their number and diameter, that the guided through the main strand exhaust stream when flowing through the main strand of the Heizmodules at the branches only a minimal and thus negligible exhaust gas back pressure learns.

Der Überströmrohrabschnitt begrenzt den Hauptstrang je nach Ausgestaltung des Heizmodules außenseitig oder innenseitig. Bei der ersten Ausgestaltung wird der durch den Nebenstrang zu leitende Abgasstrom in radialer Richtung nach außen von dem Hauptstrang in den Nebenstrang geleitet. Der Oxidationskatalysator und gegebenenfalls das diesem vorgeschaltete Heizelement befinden sich sodann in einem parallel zum Hauptstrang angeordneten Rohr als Nebenstrangabschnitt.
Die Rückführung des durch den Nebenstrang geleiteten Abgasstroms in den Hauptstrom kann in analoger Weise wie am Eingang des Nebenstranges über einen zweiten Überströmöffnungen aufweisenden Überströmrohrabschnitt erfolgen. Die vorstehenden Ausführungen zu dem eingangsseitigen Überströmrohrabschnitt gelten gleichermaßen bei einer solchen Ausgestaltung ebenfalls für den bezüglich des Nebenstranges ausgangsseitig angeordneten Überströmrohrabschnitt. Das Einleiten des aus dem Nebenstrang ausströmenden Abgasstromes in den Hauptstrang bzw. in den diesen durchströmenden Abgasstrom gewährleistet eine besonders effektive Vermischung der beiden an dieser Stelle zusammengeführten Abgasteilströme auf sehr kurzer Strecke. Dies bedeutet, dass bereits nach sehr kurzer Strömungsstrecke des Abgases hinter dem ausgangsseitigen Überströmrohrabschnitt der Abgasmischstrom eine sehr einheitliche Temperaturverteilung in Bezug auf seine Querschnittsfläche aufweist.
The Überströmrohrabschnitt limits the main strand depending on the design of the heating module on the outside or inside. In the first embodiment, the exhaust gas flow to be conducted through the secondary line is directed in the radial direction outwards from the main line into the secondary line. The oxidation catalyst and, if appropriate, the heating element arranged upstream of this are then located in a pipe arranged parallel to the main strand as a secondary strand section.
The return of the exhaust gas flow conducted through the secondary line into the main flow can take place in an analogous manner as at the inlet of the secondary line via a overflow pipe section having a second overflow opening. The above comments on the input-side overflow pipe section equally apply in such a configuration also for the overflow pipe section arranged on the output side with regard to the secondary strand. The introduction of the exhaust stream flowing out of the secondary branch into the main branch or into the exhaust gas stream flowing through it ensures a particularly effective mixing of the two partial exhaust streams merged at this point over a very short distance. This means that even after a very short flow path of the exhaust gas behind the outlet-side overflow pipe section, the exhaust gas mixed stream has a very uniform temperature distribution with respect to its cross-sectional area.

Die Fluidverbindung zwischen dem Hauptstrang und dem Nebenstrangabschnitt mit dem Oxidationskatalysator und vorzugsweise auch mit dem diesem vorgeschalteten elektrothermischen Heizelement wird bei einer Ausgestaltung, bei der der Nebenstrangabschnitt mit dem katalytischen Brenner parallel zum Hauptstrang verläuft, durch Überströmumlenkkammern realisiert. Diese fassen den Hauptstrang mit jeweils einem Überströmrohrabschnitt ein. Mit Abstand vom Hauptstrang ist an die Überströmumlenkkammern der Nebenstrangabschnitt mit seinen Einbauten angeschlossen. Die Überströmumlenkkammern sind Teil des Nebenstranges. Eine solche Ausgestaltung ermöglicht die Konzeption eines Nebenstrangabschnittes mit seinen Einbauten, dessen Durchmesser deutlich größer ist als der Durchmesser des Hauptstranges. Demzufolge kann in einen solchen Nebenstrangabschnitt ein im Durchmesser entsprechend großer Oxidationskatalysator eingeschaltet werden. Dabei versteht es sich, dass, je größer die Querschnittsfläche des Oxidationskatalysators ist, dieser bei gleichem Volumen in seiner Längserstreckung kürzer ausgelegt sein kann. Hierdurch ist nicht nur die Möglichkeit geschaffen, das Heizmodul in Längserstreckung entsprechend kürzer bauend auszulegen, vielmehr werden durch eine solche Maßnahme auch der Gegendruck und die Umsatzrate und damit die Temperaturbelastung des Oxidationskatalysators reduziert.The fluid connection between the main strand and the secondary strand section with the oxidation catalyst, and preferably also with the electrothermal heating element connected upstream thereof, is realized by overflow deflection chambers in an embodiment in which the secondary strand section with the catalytic burner runs parallel to the main strand. These summarize the main strand, each with a Überströmrohrabschnitt. At a distance from the main line is to the Überströmumlenkkammern the Nebenstrangabschnitt connected with its internals. The Überströmumlenkkammern are part of the Nebenstranges. Such a configuration allows the design of a secondary section with its internals, whose diameter is significantly larger than the diameter of the main strand. Accordingly, in such a secondary strand section a correspondingly large diameter oxidation catalyst can be turned on. It is understood that, the larger the cross-sectional area of the oxidation catalyst, it can be designed shorter at the same volume in its longitudinal extent. As a result, not only the possibility is created to design the heating module in the longitudinal extension correspondingly shorter, but by such a measure, the back pressure and the conversion rate and thus the temperature load of the oxidation catalyst can be reduced.

Prinzipiell ergeben sich dieselben Vorteile, mit Ausnahme der zu den Überströmrohrabschnitten erwähnten, bei einem Heizmodul, bei dem der Nebenstrang eingangsseitig und ausgangsseitig jeweils über eine in radialer Richtung von dem Hauptstrang abgehende Umlenkkammer verfügt, zwischen welchen Umlenkkammern sich parallel zum Hauptstrang des Heizmoduls der Nebenstrangabschnitt mit dem Oxidationskatalysator befindet. Daher stellt eine solche Ausgestaltung eine weitere Lösung der der Erfindung zugrunde liegenden Aufgabe dar.In principle, the same advantages, with the exception of those mentioned to the overflow pipe sections, in a heating module, in which the secondary line on the input side and output side each has a radially outgoing from the main strand deflection, between which deflection parallel to the main strand of the heating module of the secondary strand section the oxidation catalyst is located. Therefore, such an embodiment represents a further solution of the problem underlying the invention.

Die Konzeption des Ausbildens der Fluidverbindungen zwischen dem Nebenstrangabschnitt mit dem Oxidationskatalysator und dem vorzugsweise vorgeschalteten elektrothermischen Heizelement mit dem Hauptstrang mittels der vorbeschriebenen Umlenkkammern ermöglicht eine Ausgestaltung derselben als Blechumformteile, wobei typischerweise zwei derartiger, üblicherweise durch Tiefziehen umgeformter Blechteile zu einer Umlenkkammer zusammengesetzt sind. Dieses Konzept erlaubt eine Verwendung von Gleichteilen bei der eingangsseitigen Umlenkkammer und bei der ausgangsseitigen Umlenkkammer, zumindest in Bezug auf eine Vorfertigungsstufe. Tatsächlich können sich die Umlenkkammerteile durch nach dieser Vorfertigungsstufe eingebrachte Öffnungen zum Anschließen etwa von Sensoren oder beispielsweise eines HC-Injektors voneinander unterscheiden. Grundsätzlich können auch die außenliegenden Umlenkkammerteile gleich sein. Allein bei dem eingangsseitigen außenliegenden Umlenkkammerteil sind typischerweise Anschlussmittel zum Anschließen des HC-Injektors vorgesehen. Gemäß einem Ausführungsbeispiel verfügt dieses Umlenkkammerteil über eine Injektoröffnung mit einem nach außen gebördelten Kragen, an dem der HC-Injektor befestigt ist. Auch dieses Umlenkkammerteil kann als Gleichteil zu dem außenliegenden Umlenkkammerteil der anderen Umlenkkammer gefertigt sein, wobei die HC-Injektoröffnung durch einen zusätzlichen Bearbeitungsschritt in dieses zunächst als Gleichteil hergestellte Umlenkkammerteil eingebracht worden ist.The concept of forming the fluid connections between the secondary strand section with the oxidation catalyst and the preferably upstream electrothermal heating element with the main strand by means of the above deflection chambers allows a design thereof as Blechumformteile, typically two such, usually formed by deep drawing sheet metal parts are assembled into a deflection chamber. This concept allows the use of identical parts in the input-side deflection chamber and in the output-side deflection chamber, at least with respect to a prefabrication stage. In fact, the Umlenkkammerteile by introduced after this prefabrication level openings for connecting such as sensors or, for example, an HC injector from each other. In principle, the outer Umlenkkammerteile can be the same. Alone with the input side outside Umlenkkammerteil are typically provided connecting means for connecting the HC injector. According to one embodiment, this deflection chamber part has an injector opening with an outwardly flanged collar to which the HC injector is attached. Also, this Umlenkkammerteil can be made as a common part to the outer Umlenkkammerteil the other deflection, wherein the HC injector has been introduced by an additional processing step in this initially manufactured as a common part Umlenkkammerteil.

Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beigefügten Figuren. Es zeigen:

Fig. 1:
Eine schematisierte An- bzw. Einsicht in ein Heizmodul gemäß einem ersten Ausführungsbeispiel zum Zuführen von thermischer Energie in den Abgasstrang einer an den Ausgang einer Brennkraftmaschine angeschlossenen Abgasreinigungsanlage,
Fig. 2:
Eine erste Stirnseitenansicht (Seitenansicht von links) auf das Heizmodul der Figur 1,
Fig. 3:
Eine weitere Stirnseitenansicht (Seitenansicht von rechts) auf die der Seitenansicht der Figur 2 gegenüberliegende Seite des Heizmoduls der Figur 1,
Fig. 4:
Eine Darstellung entsprechend derjenigen der Figur 1 mit darin eingezeichneten Strömungspfeilen bei einem Betrieb des Heizmoduls,
Fig. 5:
Eine perspektivische An- bzw. Einsicht in ein Heizmodul gemäß einem nicht erfindungsgemäßen Ausführungsbeispiel zum Zuführen von thermischer Energie in den Abgasstrang einer an den Ausgang einer Brennkraftmaschine angeschlossenen Abgasreinigungsanlage,
Fig. 6:
Eine schematisierte An- bzw. Einsicht in das Heizmodul der Figur 5 mit darin eingezeichneten Strömungspfeilen bei einem Betrieb des Heizmodules und
Fig. 7a, 7b:
Eine Querschnittsdarstellung des Heizmoduls der Figuren 5 und 6 (Figur 7a) sowie einen Ausschnitt eines Längsschnittes des genannten Heizmodules (Figur 7b) im Bereich der Anordnung einer Abgasklappe.
Further advantages and advantageous embodiments of the invention will become apparent from the following description of an embodiment with reference to the accompanying figures. Show it:
Fig. 1:
A schematic view or insight into a heating module according to a first embodiment for supplying thermal energy in the exhaust line of an exhaust gas purification system connected to the output of an internal combustion engine,
Fig. 2:
A first end view (side view from the left) on the heating module of FIG. 1 .
3:
Another front view (side view from the right) on the side view of the FIG. 2 opposite side of the heating module of FIG. 1 .
4:
A representation corresponding to that of FIG. 1 with flow arrows drawn in during operation of the heating module,
Fig. 5:
A perspective view or insight into a heating module according to a non-inventive embodiment for supplying thermal energy in the exhaust line of an exhaust gas purification system connected to the output of an internal combustion engine,
Fig. 6:
A schematic view or insight into the heating module of FIG. 5 with therein flow arrows during operation of the heating module and
Fig. 7a, 7b:
A cross-sectional view of the heating module of Figures 5 and 6 ( Figure 7a ) and a section of a longitudinal section of said heating module ( FIG. 7b ) in the region of the arrangement of an exhaust flap.

Ein Heizmodul 1 eines ersten Ausführungsbeispieles der Erfindung ist in einen nicht näher dargestellten Abgasstrang einer Abgasreinigungsanlage eingeschaltet. Die Abgasreinigungsanlage ist wiederum an den Ausgang eines Dieselmotors als Brennkraftmaschine angeschlossen. Der Abgasstrang, in den das Heizmodul 1 eingeschaltet ist, ist mit dem Bezugszeichen A kenntlich gemacht. Die Heizeinrichtung 1 ist in Strömungsrichtung des Abgases, durch die Blockpfeile in Figur 1 dargestellt, einem Abgasreinigungsaggregat, beispielsweise einem Partikelfilter in Strömungsrichtung des Abgases vorgeschaltet. Vorzugsweise ist dem Partikelfilter ein Oxidationskatalysator vorgeschaltet.A heating module 1 of a first embodiment of the invention is turned on in an exhaust line, not shown, an exhaust gas purification system. The emission control system is in turn connected to the output of a diesel engine as an internal combustion engine. The exhaust gas line, in which the heating module 1 is turned on, is identified by the reference symbol A. The heater 1 is in the flow direction of the exhaust gas, through the block arrows in FIG. 1 shown upstream of an exhaust gas purification unit, for example, a particulate filter in the flow direction of the exhaust gas. Preferably, the particle filter is preceded by an oxidation catalyst.

Das Heizmodul 1 gemäß einem ersten Ausführungsbeispiel der Erfindung verfügt über einen Hauptstrang 2 und einen Nebenstrang 3. Der Hauptstrang 2 ist Teil des Abgasstranges A der Abgasreinigungsanlage. Durch den Hauptstrang 2 des Heizmoduls 1 strömt das von dem Dieselmotor ausgestoßene Abgas, wenn dieses nicht durch den Nebenstrang 3 geleitet wird. Ist das Heizmodul 1 zum Zuführen von thermischer Energie in den Abgasstrang in Betrieb, wird der Abgasstrom ganz oder teilweise durch den Nebenstrang 3 geleitet. Zum Steuern der Abgasströmung durch den Hauptstrang 2 und/oder den Nebenstrang 3 ist in den Hauptstrang 2 eine durch einen Aktuator 4 ansteuerbare Abgasklappe 5 angeordnet. In Figur 1 ist die Abgasklappe 5 in ihrer den Hauptstrang 2 schließenden Stellung gezeigt. In Abhängigkeit von der Stellung der Abgasklappe 5 innerhalb des Hauptstranges 2 kann der gesamte Abgasstrom durch den Hauptstrang 2 oder durch den Nebenstrang 3 oder auch ein Teilstrom durch den Hauptstrang 2 und der komplementäre Teilstrom durch den Nebenstrang 3 geleitet werden.The heating module 1 according to a first embodiment of the invention has a main line 2 and a secondary line 3. The main line 2 is part of the exhaust line A of the exhaust gas purification system. Through the main branch 2 of the heating module 1, the exhaust gas emitted by the diesel engine flows when it is not passed through the secondary line 3. If the heating module 1 for supplying thermal energy into the exhaust gas line in operation, the exhaust gas flow is wholly or partially passed through the secondary strand 3. For controlling the exhaust gas flow through the main line 2 and / or the secondary line 3, an exhaust flap 5 which can be controlled by an actuator 4 is arranged in the main line 2. In FIG. 1 the exhaust flap 5 is shown in its closing the main strand 2 position. Depending on the position of the exhaust flap 5 within the main line 2, the entire exhaust gas flow through the main strand 2 or through the secondary strand 3 or a partial flow through the main strand 2 and the complementary partial flow through the secondary strand 3 are passed.

Der Hauptstrang 2 des Heizmoduls 1 verfügt eingangsseitig und ausgangsseitig bezüglich des Nebenstranges 3 jeweils über einen Überströmrohrabschnitt 6, 6.1. Der Überströmrohrabschnitt 6 des dargestellten Ausführungsbeispiels ist durch eine Perforation realisiert, die durch eine Vielzahl von diesen Rohrabschnitt durchgreifende Überströmöffnungen 7 gebildet ist. Bei dem dargestellten Ausführungsbeispiel weisen die Überströmöffnungen 7 eine kreisförmige Querschnittsgeometrie auf und sind umfänglich verteilt in einem einheitlichen Raster und mit gleicher Querschnittsfläche ausgelegt. Es versteht sich, dass sowohl die Anordnung der Überströmöffnungen 7, deren Querschnittsgeometrie als auch deren Größe variieren und auch über den Überströmrohrabschnitt typischerweise in Strömungsrichtung des Abgases unterschiedlich angeordnet vorgesehen sein können. Bei dem dargestellten Ausführungsbeispiel ist die Summe der Querschnittsfläche der Überströmöffnungen 7 etwa 1,3-mal so groß wie die Querschnittsfläche des Hauptstranges 2, typischerweise im Bereich des Überströmrohrabschnittes 6. Der in Bezug auf den Nebenstrang 3 ausgangsseitige Überströmrohrabschnitt 6.1 ist identisch konzipiert. Die Konzeption des ausgangsseitigen Überströmrohrabschnittes 6.1 kann jedoch auch anders konzipiert sein als der eingangsseitige Überströmrohrabschnitt 6.The main strand 2 of the heating module 1 has on the input side and output side with respect to the secondary strand 3 each have a Überströmrohrabschnitt 6, 6.1. The overflow pipe section 6 of the illustrated embodiment is realized by a perforation, which is formed by a plurality of these pipe section cross-overflow openings 7. In the illustrated embodiment, the overflow 7 have a circular cross-sectional geometry and are circumferentially distributed in a uniform grid and designed with the same cross-sectional area. It is understood that both the arrangement of the overflow openings 7, their cross-sectional geometry and their size vary and may also be provided differently arranged over the Überströmrohrabschnitt typically in the flow direction of the exhaust gas. In the illustrated embodiment, the sum of the cross-sectional area of the overflow openings 7 is about 1.3 times as large as the cross-sectional area of the main string 2, typically in the region of the overflow pipe section 6. The overflow pipe section 6.1 with respect to the secondary strand 3 is designed identically. However, the conception of the output-side overflow pipe section 6.1 can also be designed differently than the input-side overflow pipe section 6.

Der Überströmrohrabschnitt 6 ist durch eine Überströmumlenkkammer 8 eingefasst. Die Einfassung des Überströmrohrabschnittes 6 erfolgt umfänglich, da sich bei dem dargestellten Ausführungsbeispiel die Überströmöffnungen 7 umfänglich über den Überströmrohrabschnitt 6 verteilen. Damit befinden sich sämtliche Überströmöffnungen 7 des Überströmrohrabschnittes 6 innerhalb der Überströmumlenkkammer 8. Durch diese Maßnahme kann über den gesamten Umfang des Überströmrohrabschnittes 6 Abgas aus dem Hauptstrang 2 in den Nebenstrang 3 strömen. Die Überströmumlenkkammer 8 ist aus zwei durch Tiefziehen umgeformten Blechteilen - den Umlenkkammerteilen 9, 9.1 - zusammengesetzt. An den zueinander weisenden Seiten der Umlenkkammerteile 9, 9.1 verfügen diese jeweils über einen Montageflansch 10, 10.1, mit dem die beiden Umlenkkammerteile 9, 9.1 durch ein Fügeverfahren gasdicht miteinander verbunden sind. Der Überströmrohrabschnitt 6.1 ist in gleicher Weise von einer Überströmumlenkkammer 8.1 eingefasst.The overflow pipe section 6 is bordered by an overflow deflection chamber 8. The enclosure of the overflow pipe section 6 is circumferentially, since in the illustrated embodiment, the overflow 7 distribute circumferentially over the overflow pipe section 6. As a result, all the overflow openings 7 of the overflow pipe section 6 are located within the overflow deflection chamber 8. Through this measure, exhaust gas can flow out of the main branch 2 into the auxiliary line 3 over the entire circumference of the overflow pipe section 6. The Überströmumlenkkammer 8 is composed of two formed by deep drawing sheet metal parts - the Umlenkkammerteil 9, 9.1 - composed. At the mutually facing sides of Umlenkkammerteile 9, 9.1 each have a mounting flange 10, 10.1, with which the two Umlenkkammerteile 9, 9.1 are gas-tightly connected to each other by a joining process. The overflow pipe section 6.1 is bordered in the same way by a Überströmumlenkkammer 8.1.

Parallel und mit Abstand zu dem Hauptstrang 2 erstreckt sich zwischen den beiden zueinander weisenden Umlenkkammerteilen 9, 9.1 der Überströmumlenkkammern 8, 8.1 ein Nebenstrangabschnitt 11, der bei dem dargestellten Ausführungsbeispiel als Rohr mit einer kreisförmigen Querschnittsgeometrie ausgeführt ist. In dem Nebenstrangabschnitt 11 befindet sich ein Oxidationskatalysator 12 und diesem in Strömungsrichtung vorgeschaltet ein elektrothermisches Heizelement 13. Die notwendigen Anschlüsse zum Betreiben des Heizelementes 13 sind der Übersicht halber in den Figuren nicht dargestellt. An das außenliegende Umlenkkammerteil 9 der Überströmumlenkkammer 8 ist ein HC-Injektor 14 angeschlossen. Der HC-Injektor 14 dient zum Einsprühen von Kraftstoff (hier: Diesel), um auf diese Weise Kohlenwasserstoffe zum Betrieb des zusammen mit dem Oxidationskatalysator 12 gebildeten katalytischen Brenners zu ermöglichen. Der HC-Injektor 14 ist in nicht näher dargestellter Art und Weise an die Kraftstoffversorgung angeschlossen, aus der ebenfalls der Dieselmotor gespeist wird.Parallel and at a distance from the main strand 2 extends between the two mutually facing deflection chamber parts 9, 9.1 of the overflow deflection chambers 8, 8.1, a secondary strand section 11, which in the illustrated embodiment is designed as a tube with a circular cross-sectional geometry. In the secondary line section 11 is an oxidation catalyst 12 and upstream of this in the flow direction an electrothermal heating element 13. The necessary connections for operating the heating element 13 are not shown in the figures for the sake of clarity. To the outer Umlenkkammerteil 9 Überströmumlenkkammer 8 HC injector 14 is connected. The HC injector 14 is used for spraying fuel (here: diesel), so as to allow hydrocarbons to operate the catalytic burner formed together with the oxidation catalyst 12. The HC injector 14 is connected in a manner not shown to the fuel supply, from which also the diesel engine is fed.

Die vorbeschriebene Schalenbauweise der Überströmumlenkkammern 8, 8.1 ermöglicht, dass diese aus Gleichteilen hergestellt werden können. Zum Anschließen des HC-Injektors 14 ist bei dem dargestellten Ausführungsbeispiel in das Umlenkkammerteil 9 eine Injektoröffnung und in das Umlenkkammerteil 9.1 der anderen Überströmumlenkkammer 8 eine Öffnung zur Aufnahme eines Temperatursensoranschlusses eingebracht. Diese befindet sich fluchtend mit der Längsachse des Nebenstrangabschnittes 11.The above-described shell construction of Überströmumlenkkammern 8, 8.1 allows that they can be made of identical parts. For connecting the HC injector 14, an injector opening is introduced into the deflecting chamber part 9 and an opening for accommodating a temperature sensor connection in the deflecting chamber part 9.1 of the other overflow deflecting chamber 8 in the embodiment shown. This is located in alignment with the longitudinal axis of the secondary strand section eleventh

Die Seitenansichten der Figuren 2 und 3 des Heizmoduls 1 zeigen, dass sich die Überströmumlenkkammern 8, 8.1 ausgehend vom Hauptstrang 2 in Richtung zum Nebenstrangabschnitt 11 hinsichtlich der Strömungsquerschnittsfläche vergrößern. Diese Querschnittsflächenvergrößerung hat eingangsseitig eine Verlangsamung des durch den Nebenstrang 3 geleiteten Abgasstromes zur Folge. Dieses ist gewünscht, damit der von dem HC-Injektor 14 ausgebildete Sprühkegel beim Einspritzen von Kraftstoff von dem zuströmenden Abgasstrom weitestgehend unbeeinflusst ist. Der von dem HC-Injektor 14 eingesprühte Kraftstoffkegel ist ausgelegt, damit dieser die anströmseitige Stirnseite des Heizelementes 13 mit Kraftstoff benetzt, wobei der Sprühkegel nicht einen solchen Winkel aufweist, dass in Strömungsrichtung vor dem Heizelement 13 befindliche Wandabschnitte des Nebenstrangabschnittes 11 mit Kraftstoff benetzt werden. Die Querschnittsfläche des Nebenstrangabschnittes 11 ist, wie aus den Figuren 1 bis 3 erkennbar, wiederum etwas geringer als die Strömungsquerschnittsfläche innerhalb der Überströmumlenkkammer 8 (gleiches gilt für die Überströmumlenkkammer 8.1) im Bereich des in den Figuren 2 bzw. 3 gezeigten horizontalen Scheitels des Nebenstrangabschnittes 11. Die Folge ist, dass in den Nebenstrangabschnitt 11 hinein eine gewisse Beschleunigung des in den Nebenstrang 3 eingeleiteten Abgasstromes eintritt, wodurch mögliches Spray-off des HC-Injektors 14 in den Nebenstrangabschnitt 11 eingezogen und dem elektrothermischen Heizelement 13 zugeführt wird, mithin unerwünschte Wandablagerungen vermieden werden können.The side views of FIGS. 2 and 3 of the heating module 1 show that the Überströmumlenkkammern 8, 8.1, starting from the main strand 2 in the direction of the secondary strand section 11 in terms of flow cross-sectional area increase. On the input side, this increase in cross-sectional area results in a slowing down of the exhaust gas flow conducted through the secondary branch 3. This is desirable so that the spray cone formed by the HC injector 14 is largely uninfluenced by the inflowing exhaust gas flow when injecting fuel. The fuel cone sprayed by the HC injector 14 is designed so that it wets the upstream end of the heating element 13 with fuel, wherein the spray cone does not have such an angle that in the flow direction before the heating element 13 located wall portions of the secondary strand section 11 are wetted with fuel. The cross-sectional area of the secondary strand section 11 is, as shown in FIGS FIGS. 1 to 3 recognizable, again slightly smaller than the flow cross-sectional area within the Überströmumlenkkammer 8 (the same applies to the Überströmumlenkkammer 8.1) in the region of in the Figures 2 The consequence is that enters into the secondary strand section 11 into a certain acceleration of the introduced into the secondary branch 3 exhaust gas flow, whereby possible spray-off of the HC injector 14 is drawn into the secondary strand section 11 and the electrothermal Heating element 13 is supplied, therefore unwanted wall deposits can be avoided.

In der Seitenansicht des Heizmoduls 1 der Figuren 2 und 3 befindet sich die Abgasklappe 5 in ihrer gegenüber der Darstellungen der Figur 1 um 90 Grad verschwenkten Stellung. In dieser Stellung durchströmt, das das Heizmodul 1 beaufschlagende Abgas vollständig den Hauptstrang 2. Begründet liegt dies darin, dass dem das Heizmodul 1 beaufschlagenden Abgasstrom durch den Nebenstrang 3 ein geringfügig größerer Abgasgegendruck entgegengestellt wird als dieses durch den Hauptstrang 2 und die dem Heizmodul 1 nachgeschalteten Bestandteile der Abgasreinigungsanlage 1 der Fall ist.In the side view of the heating module 1 of FIGS. 2 and 3 is the exhaust valve 5 in its opposite the representations of FIG. 1 rotated by 90 degrees position. This is due to the fact that the exhaust gas flow acting on the heating module 1 is counteracted by the secondary line 3 by a slightly larger exhaust counterpressure than this by the main branch 2 and the heating module 1 downstream Components of the emission control system 1 is the case.

Die Querschnittsfläche im Nebenstrangabschnitt 11 ist bei dem dargestellten Ausführungsbeispiel etwas mehr als doppelt so groß als die Querschnittsfläche des Hauptstranges 2. Dieses erfolgt vor dem Hintergrund, dass zum Ausbilden eines möglichst kompakt bauenden Heizmoduls 1 vor allem die Querschnittsfläche der Einbauten - Heizelement 13 und Oxidationskatalysator 12 - genutzt werden können und vor allem der Oxidationskatalysator 12 nur eine relativ kurze Erstreckung in Strömungsrichtung des Abgases aufweisen muss. Es hat sich gezeigt, dass vor allem in Längserstreckung eines Abgasstranges oftmals der Einbauraum beschränkt ist, während in Querrichtung dazu mitunter Möglichkeiten zum Unterbringen bestimmter Aggregate gegeben sind. Diesem Erfordernis genügt aufgrund der vorbeschriebenen Konzeption das Heizmodul 1 in besonderem Maße.In the illustrated embodiment, the cross-sectional area in the secondary strand section 11 is slightly more than twice the cross-sectional area of the main strand 2. This takes place against the background that for forming a heat module 1 that is as compact as possible, especially the cross-sectional area of the internals-heating element 13 and oxidation catalyst 12 - Can be used and especially the oxidation catalyst 12 must have only a relatively short extent in the flow direction of the exhaust gas. It has been shown that, especially in the longitudinal extent of an exhaust line, the installation space is often limited, while in the transverse direction, there are sometimes opportunities for accommodating certain units. This requirement is sufficient because of the above-described concept, the heating module 1 in particular.

Die Überströmumlenkkammer 8.1 trägt einen Temperatursensor 15, mit dem die Abgastemperatur ausgangsseitig bezüglich des Oxidationskatalysators 12 erfasst werden kann.The Überströmumlenkkammer 8.1 carries a temperature sensor 15, with the exhaust gas temperature on the output side with respect to the oxidation catalyst 12 can be detected.

Aus der Darstellung der Figuren 1 bis 3 wird ebenfalls deutlich, dass der Aktuator 4 nicht, wie in den Figuren dargestellt, an der Unterseite der Darstellung der Figuren des Heizmoduls 1 angeordnet sein muss, vielmehr kann der Aktuator 4 sowohl in die eine als auch in die andere Richtung gedreht um die Längsachse des Hauptstranges 2 angeordnet werden, je nachdem, an welcher Stelle bei einer bestimmten Applikation der benötigte Bauraum vorhanden ist.From the representation of FIGS. 1 to 3 It is also clear that the Actuator 4 not, as shown in the figures, must be arranged on the underside of the representation of the figures of the heating module 1, but the actuator 4 can be arranged rotated both in the one and in the other direction about the longitudinal axis of the main strand 2, depending after, at which point in a particular application the required space is available.

Nachstehend ist der Betrieb des Heizmoduls 1 kurz beschrieben. Betrieben wird das Heizmodul 1 zum Zuführen von thermischer Energie in den Abgasstrom des Dieselmotors, beispielsweise um eine Regeneration eines in die Abgasreinigungsanlage stromab bezüglich des Heizmoduls 1 eingeschalteten Partikelfilters auszulösen und gegebenenfalls zu steuern. Wenn das von dem Dieselmotor ausgestoßene Abgas eine bestimmte Temperatur überschritten hat, wird vor dem eigentlichen Betrieb des Heizmoduls 1 ein Teil des Abgasstromes oder auch der gesamte Abgasstrom durch den Nebenstrang 3 geleitet. Dieses dient dem Zweck, den Oxidationskatalysator 12, soweit wie durch die Temperatur des Abgasstromes möglich, vorzuerwärmen und diesen, sollte die Temperatur des Abgases hinreichend hoch sein, auf seine Betriebstemperatur zu bringen. Kann durch diese Maßnahme der Oxidationskatalysator 12 nicht auf seine light-off-Temperatur gebracht werden, wird zusätzlich das elektrothermische Heizelement 13 bestromt, damit der Oxidationskatalysator über den durch das Heizelement 13 erwärmten Abgasstrom erwärmt wird.Hereinafter, the operation of the heating module 1 will be briefly described. Operates the heating module 1 for supplying thermal energy in the exhaust stream of the diesel engine, for example, to trigger a regeneration of a downstream in the emission control system with respect to the heating module 1 particulate filter and optionally control. If the exhaust gas emitted by the diesel engine has exceeded a certain temperature, before the actual operation of the heating module 1, a part of the exhaust gas flow or even the entire exhaust gas flow is passed through the secondary strand 3. This serves the purpose of preheating the oxidation catalyst 12, as far as possible by the temperature of the exhaust gas stream, and to bring this, if the temperature of the exhaust gas is sufficiently high, to its operating temperature. Can not be brought to its light-off temperature by this measure, the oxidation catalyst 12, in addition, the electrothermal heating element 13 is energized so that the oxidation catalyst is heated by the heated by the heating element 13 exhaust stream.

Ist das Heizmodul 1 der erste Teil einer zweistufigen katalytischen Brenneranordnung, wird man vorzugsweise den Oxidationskatalysator 12 mit einer höheren oxidationskatalytischen Beladung konzipieren als den diesem im Hauptstrang nachgeschalteten Oxidationskatalysator. Folglich ist bei einer solchen Ausgestaltung auch die light-off-Temperatur dieses Oxidationskatalysators 12 geringer.If the heating module 1 is the first part of a two-stage catalytic burner arrangement, it will be preferable to design the oxidation catalyst 12 with a higher oxidation-catalytic loading than the oxidation catalyst arranged downstream of it in the main line. Consequently, in such an embodiment, the light-off temperature of this oxidation catalyst 12 is lower.

Für den eigentlichen Betrieb des Heizmoduls 1 wird in Abhängigkeit von dem zu leistenden Temperaturhub entweder der gesamte, das Heizmodul 1 beaufschlagende Abgasstrom oder nur Teil desselben durch den Nebenstrang 3 geleitet. Entsprechend wird mittels des Aktuators 4 die Abgasklappe 5 im Hauptstrang eingestellt. Dabei versteht es sich, wenn die Abgasklappe 5 im Hauptstrang in ihrer Geschlossenstellung steht, der überwiegende Teil des Abgasstromes durch den Nebenstrang 3 geleitet wird. Umgekehrt: Befindet sich die Abgasklappe in ihrer vollständig geöffneten Stellung, wie in der Seitenansicht der Figur 2 erkennbar, strömt der gesamte Abgasstrom durch den Hauptstrang 2 des Heizmoduls 1. Bei einem Betrieb des Heizmoduls 1 wird der durch den Nebenstrang 3 strömende Abgasstrom durch den Betrieb des darin eingeschalteten katalytischen Brenners, gebildet bei dem dargestellten Ausführungsbeispiel durch den HC-Injektor 14, das Heizelement 13 und den Oxidationskatalysator 12, erwärmt. Zu diesem Zweck wird das elektrische Heizelement 13 bestromt, damit an diesem der über den HC-Injektor 14 eingespritzte Kraftstoff verdampft. Der Sprühkegel S des HC-Injektors 14 ist in Figur 4 schematisiert eingezeichnet. Der an dem Heizelement 13 verdampfte Kraftstoff beaufschlagt die katalytische Oberfläche des Oxidationskatalysators 12 und löst die gewünschte exotherme Reaktion aus. Der auf diese Weise durch den Nebenstrang 3 erwärmte Abgasstrom wird über die Überströmumlenkkammer 8.1 in den Hauptstrang 2 zurückgeführt, wobei beim Durchtreten dieses heißen Abgasstromes durch die Überströmöffnungen 7 in den durch den Hauptstrang 2 strömenden deutlich kühleren Abgasteilstrom auf kurzer Strecke eine besonders effektive Vermischung stattfindet.For the actual operation of the heating module 1, either the entire, the heating module 1 acting on the exhaust stream or only part thereof is passed through the secondary strand 3, depending on the temperature to be performed. Accordingly, the exhaust valve 5 is set in the main line by means of the actuator 4. It is understood, when the exhaust valve 5 is in the main line in its closed position, the majority of the exhaust gas flow passed through the secondary line 3 becomes. Conversely: If the exhaust flap is in its fully open position, as in the side view of FIG. 2 Recognizable, the entire exhaust gas flow flows through the main strand 2 of the heating module 1. In an operation of the heating module 1, the flowing through the secondary strand 3 exhaust gas flow through the operation of the switched therein catalytic burner, formed in the illustrated embodiment by the HC injector 14, the Heating element 13 and the oxidation catalyst 12, heated. For this purpose, the electrical heating element 13 is energized, so that evaporates at this injected via the HC injector 14 fuel. The spray cone S of the HC injector 14 is in FIG. 4 schematized drawn. The fuel vaporized on the heating element 13 acts on the catalytic surface of the oxidation catalyst 12 and triggers the desired exothermic reaction. The exhaust gas stream heated in this way by the secondary branch 3 is returned to the main branch 2 via the overflow deflecting chamber 8.1, whereby a particularly effective mixing takes place as the hot exhaust gas flow passes through the overflow openings 7 into the significantly cooler exhaust gas substream flowing through the main branch 2 over a short distance.

Es versteht sich, dass durch den HC-Injektor 14 erst dann Kraftstoff in den Nebenstrang 3 eingespritzt wird, wenn sich der Oxidationskatalysator 12 oberhalb seiner light-off-Temperatur befindet.It is understood that fuel is injected into the secondary line 3 by the HC injector 14 only when the oxidation catalytic converter 12 is above its light-off temperature.

Figur 5 zeigt ein weiteres Heizmodul 1.1 gemäß einem nicht erfindungsgemäßen Ausführungsbeispiel. Das Heizmodul 1.1 ist prinzipiell aufgebaut wie das Heizmodul 1 der Figuren 1 bis 4. Daher gelten die Ausführungen zu dem Heizmodul 1 ebenfalls für das Heizmodul 1.1, soweit dieses nachstehend nicht anders erläutert ist. FIG. 5 shows a further heating module 1.1 according to a non-inventive embodiment. The heating module 1.1 is basically constructed as the heating module 1 of FIGS. 1 to 4 , Therefore, the comments on the heating module 1 also apply to the heating module 1.1, unless otherwise explained below.

Bei dem Heizmodul 1.1 ist der Nebenstrangabschnitt 11.1 mit dem Oxidationskatalysator 12.1 und dem diesem vorgeschalteten Heizelement 13.1 innerhalb des Hauptstranges 2.1 angeordnet. Bei dieser Konzeption und dem dargestellten Ausführungsbeispiel des Heizmoduls 1.1 befinden sich Hauptstrang 2.1 und Nebenstrang 3.1 in einer konzentrischen Anordnung zueinander. Der Abgasstrang A mündet bei dem dargestellten Ausführungsbeispiel radial in den Hauptstrang 2.1. Der Hauptstrang 2.1 ist aufgrund der konzentrischen Anordnung in radialer Richtung innenseitig durch den Nebenstrang 3.1 begrenzt. Im Bereich des Eingangs des Heizmodules 1.1 ist dem Nebenstrangabschnitt 11.1 ein Überströmrohrabschnitt 6.2 vorgeschaltet. Der Überströmrohrabschnitt 6.2 ist ebenso ausgebildet wie die Überströmrohrabschnitte 6, 6.1 des Ausführungsbeispiels der Figuren 1 bis 4. Daher gelten die diesbezüglichen Ausführungen auch für den Überströmrohrabschnitt 6.2 des Heizmodules 1.1. Die Überströmöffnungen 7.1 sind umfänglich in den Überströmrohrabschnitt 6.2 eingebracht und weisen bei dem dargestellten Ausführungsbeispiel eine kreisförmige Querschnittsgeometrie auf. Somit bildet der Überströmrohrabschnitt 6.2 bzw. seine Überströmöffnungen 7.1 den Eingang und damit die Strömungsverbindung zwischen dem Hauptstrang 2.1 und den Nebenstrang 3.1. Im Unterschied zu dem Heizmodul 1 tritt bei dem Heizmodul 1.1 der Abgasstrom, der durch Nebenstrang 3.1 geleitet werden soll, in radialer Richtung innenseitig und somit aus der inneren Mantelfläche des Hauptstranges 2.1 aus und in den Nebenstrang 3.1 ein. Ein HC-Injektor 14.1 befindet sich in axialer Anordnung bezüglich seiner Einspritzdüse zum Nebenstrang 3.1 angeordnet, also ebenso wie der HC-Injektor 14 des Heizmodules 1. Die Eingangsöffnung für den Zustrom des Abgases in den Hauptstrang kann alternativ auch tangential oder axial in Bezug auf die Hauptströmungsrichtung des Abgases durch das Heizmodul 1.1 ausgeführt sein. Bei einer axial angeordneten Eingangsöffnung kann diese, wenn gewünscht, ringförmig ausgebildet sein.In the case of the heating module 1.1, the secondary line section 11.1 with the oxidation catalytic converter 12.1 and the heating element 13.1 upstream of this is arranged within the main line 2.1. In this conception and the illustrated embodiment of the heating module 1.1 are main strand 2.1 and side branch 3.1 in a concentric arrangement to each other. The exhaust line A opens in the illustrated embodiment radially into the main line 2.1. The main strand 2.1 is due to the concentric arrangement in the radial direction inside bounded by the minor strand 3.1. In the area of the entrance of the heating module 1.1, an overflow pipe section 6.2 is connected upstream of the secondary line section 11.1. The overflow pipe section 6.2 is formed as well as the overflow pipe sections 6, 6.1 of the embodiment of the FIGS. 1 to 4 , Therefore, the relevant explanations also apply to the overflow pipe section 6.2 of the heating module 1.1. The overflow openings 7.1 are circumferentially introduced into the overflow pipe section 6.2 and have in the illustrated embodiment, a circular cross-sectional geometry. Thus, the overflow pipe section 6.2 or its overflow openings 7.1 forms the inlet and thus the flow connection between the main strand 2.1 and the secondary strand 3.1. In contrast to the heating module 1 occurs in the heating module 1.1 of the exhaust stream to be passed through the secondary strand 3.1, in the radial direction on the inside and thus from the inner surface of the main strand 2.1 and in the secondary strand 3.1 a. An HC injector 14.1 is arranged in an axial arrangement with respect to its injection nozzle to the secondary line 3.1, so as well as the HC injector 14 of the heating module 1. The inlet opening for the influx of exhaust gas into the main strand may alternatively also tangentially or axially with respect to Main flow direction of the exhaust gas to be performed by the heating module 1.1. If an axial input opening, this may, if desired, be annular.

Auch bei dem Heizmodul 1.1 sind der Übersicht halber die elektrischen Anschlüsse für das Heizelement 13.1 nicht dargestellt.Even with the heating module 1.1, the electrical connections for the heating element 13.1 are not shown for the sake of clarity.

Der Hauptstrang 2.1 umgibt somit den Nebenstrang 3.1 und bildet somit eine Ringkammer. In diese Ringkammer ist eine Wendel 16 als Leitelement eingesetzt, durch welches der in radialer Richtung in den Hauptstrang 2.1 einströmende Abgasstrom eine rotatorische Bewegungskomponente erfährt. Mithin wird durch diese Ausgestaltung der durch den Hauptstrang 2.1 strömende Abgasstrom in eine Rotationsbewegung versetzt. Durch die Wendel 16, die sich über die gesamte Höhe der Ringkammer erstreckt, ist gleichzeitig ein sich wendelförmig um den Nebenstrang 3.1 erstreckender Strömungskanal ausgebildet. Dieser Kanal wird bei dem dargestellten Ausführungsbeispiel genutzt, um darin eine Abgasklappe 5.1 anzuordnen. Diese ist, wie auch bei dem Ausführungsbeispiel der Figuren 1 bis 4, durch einen Aktuator 4.1 angesteuert. Die Abgasklappe 5.1 ist um eine radial zur Längsachse des Nebenstranges 3.1 verlaufende Drehachse verschwenkbar. In Figur 5 ist die Abgasklappe 5.1 in ihrer Offenstellung gezeigt. Durch die Ausbildung des durch die Wendel 16 geschaffenen Strömungskanals, der letztendlich den strömungstechnisch wirksamen Teil des Hauptstranges 2.1 darstellt, wird der durch den Hauptstrang 2.1 geleitete Abgasstrom um die Mantelfläche des Nebenstranges 3.1 geleitet. Dieser längere Durchströmungsweg hat zum Vorteil, dass je nach Betriebszustand durch die Temperatur des einströmenden Abgases der im Nebenstrang 3.1 angeordnete Oxidationskatalysator 12.1 erwärmt wird, mithin typischerweise zumindest angenähert die Temperatur des Abgases aufweist. Daher ist es bei diesem Ausführungsbeispiel grundsätzlich nicht erforderlich zum Vorerwärmen des Oxidationskatalysators 12.1 vor einem Betrieb des katalytischen Brenners den Abgasstrom oder einen Teil desselben durch den Nebenstrang 3.1 zu leiten. Ist der katalytische Brenner in Betrieb, wird die durch den Nebenstrangabschnitt 11.1 abgegebene Wärme nicht an die Umgebung, sondern an den durch den Hauptstrang 2.1 strömenden Abgasteilstrom übertragen. Es versteht sich, dass zum Zwecke der Erwärmung des Oxidationskatalysators 12.1 einerseits oder des durch den Hauptstrang 2.1 strömenden Abgasteilstromes andererseits die längere Strömungsstrecke des Hauptstranges infolge der durch die Wendel 16 ausgebildeten Strömungskammer eine besonders effektive Wärmeübertragung gewährleistet.The main strand 2.1 thus surrounds the secondary strand 3.1 and thus forms an annular chamber. In this annular chamber, a helix 16 is used as a guide element through which the flowing in the radial direction in the main line 2.1 exhaust gas undergoes a rotational movement component. Consequently, the exhaust stream flowing through the main branch 2.1 is set into a rotational movement by this embodiment. Through the helix 16, which extends over the entire height of the annular chamber, a helically extending around the secondary strand 3.1 flow channel is formed at the same time. This channel is used in the illustrated embodiment, to arrange an exhaust valve 5.1 therein. This is, as well as in the embodiment of FIGS. 1 to 4 , driven by an actuator 4.1. The exhaust flap 5.1 is pivotable about a radially extending to the longitudinal axis of the secondary strand 3.1 axis of rotation. In FIG. 5 the exhaust valve 5.1 is shown in its open position. Due to the formation of the flow channel created by the helix 16, which ultimately constitutes the fluidically effective part of the main branch 2.1, the exhaust gas stream conducted through the main branch 2.1 is conducted around the lateral surface of the secondary strand 3.1. This longer throughflow path has the advantage that, depending on the operating state, the temperature of the inflowing exhaust gas heats the oxidation catalyst 12.1 arranged in the auxiliary section 3.1, and therefore typically at least approximately has the temperature of the exhaust gas. Therefore, it is in principle not necessary in this embodiment for preheating the oxidation catalyst 12.1 prior to operation of the catalytic burner to direct the exhaust gas stream or a part thereof through the secondary strand 3.1. If the catalytic burner is in operation, the heat emitted by the secondary branch section 11.1 is not transferred to the environment but to the partial exhaust gas stream flowing through the main branch 2.1. It is understood that for the purpose of heating the oxidation catalyst 12.1 on the one hand or flowing through the main strand 2.1 partial exhaust gas flow on the other hand, the longer flow path of the main strand as a result of the spiral 16 formed by the flow chamber ensures a particularly effective heat transfer.

Figur 6 zeigt eine Darstellung bei einem Betrieb des Heizmodules 1.1, die prinzipiell der Darstellung der Figur 4 zu dem Heizmodul 1 entspricht. Eingetragen sind in diese in einer schematisierten An- bzw. Einsicht Strömungspfeile. Der durch die Überströmöffnungen 7.1 des Überströmrohrabschnittes 6.2 in den Nebenstrang 3.1 einströmende Abgasstrom ist durch die Pfeile mit gestrichelter Umrandung kenntlich gemacht, da der diesbezügliche Abgasstrom innerhalb des Nebenstranges 3.1 liegt. Die Abgasklappe 5.1 befindet sich zum Erhöhen des Abgasgegendruckes im Hauptstrang 2.1 in ihrer gegenüber der Darstellung in Figur 5 um 90 Grad gedrehten Stellung. In dieser Stellung verschließt die Abgasklappe 5.1 den Strömungskanal nicht vollständig, wie nachstehend zu Figuren 7a, 7b erläutert, sodass ein geringer Abgasteilstrom durch den Hauptstrang 2.1 strömt. Die Rotation dieses Abgasteilstromes um den Nebenstrang 3.1 ist schematisiert durch Pfeile dargestellt. FIG. 6 shows a representation in an operation of the heating module 1.1, which in principle the representation of FIG. 4 corresponds to the heating module 1. Entered in these are in a schematic on or insight flow arrows. The exhaust gas flow flowing through the overflow openings 7.1 of the overflow pipe section 6.2 into the secondary line 3.1 is indicated by the arrows with dashed border, since the relevant exhaust gas flow lies within the secondary line 3.1. The exhaust valve 5.1 is located to increase the exhaust backpressure in the main strand 2.1 in their opposite to the representation in FIG. 5 rotated by 90 degrees position. In this position, the exhaust valve 5.1 does not completely close the flow channel, as follows FIGS. 7a, 7b explained, so that a small proportion of exhaust gas flow through the main strand 2.1 flows. The rotation of this partial exhaust stream to the secondary strand 3.1 is shown schematically by arrows.

Aus der Querschnittsdarstellung der Figur 7a durch das Heizmodul 1.1 in Längserstreckung desselben kurz vor der Abgasklappe 5.1 wird die Geometrie der Abgasklappe 5.1 in ihrer Offenstellung (siehe auch Figur 5) deutlich. Die rotatorische Strömung des Abgasstromes durch den Hauptstrang 2.1 ist durch Blockpfeile angedeutet. Gut erkennbar ist auch die konzentrische Anordnung des Nebenstrangabschnittes 11.1 mit dem in der Schnittebene angeordneten Oxidationskatalysator 12.1 zu dem Hauptstrang 2.1. Die Abgasklappe 5.1 weist in radialer Richtung nach außen einen gekrümmten Abschluss 18 auf, der an die Krümmung des den Hauptstrang 2.1 einfassenden Gehäuses angepasst ist. Befindet sich die Abgasklappe 5.1 dagegen in ihrer Geschlossenstellung, wie dieses in Figur 7b gezeigt ist, wird deutlich, dass aufgrund des Abschlusses 18 in dieser Stellung der Hauptstrang 2.1 durch die Abgasklappe 4.1, wie vorbeschrieben, nicht vollständig verschlossen werden kann, sodass in dieser Stellung an der Abgasklappe 5.1 ein gewisser Abgasteilstrom durch den Hauptstrang 2.1 vorbeiströmt.From the cross-sectional view of Figure 7a by the heating module 1.1 in the same longitudinal extent just before the exhaust valve 5.1, the geometry of the exhaust valve 5.1 in its open position (see also FIG. 5 ) clear. The rotational flow of the exhaust stream through the main strand 2.1 is indicated by block arrows. Also clearly visible is the concentric arrangement of the secondary strand section 11.1 with the arranged in the sectional plane of the oxidation catalyst 12.1 to the main strand 2.1. The exhaust flap 5.1 has in the radial direction to the outside a curved end 18, which is adapted to the curvature of the main strand 2.1 enclosing housing. If, on the other hand, the exhaust flap 5.1 is in its closed position, as shown in FIG. 7b, it becomes clear that due to the closure 18 in this position, the main branch 2.1 can not be completely closed by the exhaust flap 4.1, as described above, so that in this position at the exhaust flap 5.1 a certain partial exhaust gas stream flows past the main strand 2.1.

Am Ausgang des Nebenstranges 3.1 befindet sich ein in den Figuren nicht dargestelltes Lochblech. Sowohl der Hauptstrang 2.1 als auch der Nebenstrang 3.1 münden in eine sich konisch verjüngende Mischkammer 17. In diese tritt der durch den Hauptstrang 2.1 geleitete Abgasteilstrom als rotierende Ringströmung ein, der den in die Mischkammer 17 mündenden, durch den Nebenstrang 3.1 strömenden Abgasstrom einfasst. Die durch die Verjüngung der Mischkammer 17 gebildete Einschnürung und der Drall des durch den Hauptstrang 2.1 in diese mündende Abgasteilstrom bedingen eine besonders effektive Vermischung der beiden Abgasteilströme auf sehr kurzer Strecke. Bei der Zusammenführung der beiden Abgasteilströme kann der der aus dem Nebenstrang 3.1 strömende Abgasteilstrom ebenfalls durch Vorsehen einer entsprechenden Blende als konzentrische Ringströmung zu dem aus dem Hauptstrang 2.1 austretenden Abgasteilstrom in die Mischkammer 17 eintreten. Sind bei einer solchen Ausgestaltung zusätzlich eines oder mehrere Leitelemente vorgesehen, kann auch der aus dem Nebenstrang 3.1 austretende Abgasteilstrom als Drallströmung in die Mischkammer 17 münden, wobei für die Zwecke einer intensiven Vermischung der Drall des aus dem Nebenstrang 3.1 austretenden Abgasteilstrom entgegengesetzt zu dem Drall des durch den Hauptstrang 2.1 strömenden Abgasteilstroms gerichtet ist. Ebenfalls ist es möglich, dass die Abgasteilströme durch entsprechende Leitelemente aufeinander zu gerichtete radiale Strömungskomponenten beim Einströmen in die Mischkammer 17 aufweisen.
Schematisiert ist in Figur 6 ebenfalls der Sprühkegel S des HC-Injektors 14.1 dargestellt. Durch das radiale Einströmen des Abgases aus dem Hauptstrang 2.1 durch die Überströmöffnungen 7.1 in den Nebenstrang 3.1 sind wirksam Spray-off-Ablagerungen des HC-Injektors 14.1 an der Innenseite des Überströmrohrabschnittes 6.2 und dem daran angrenzenden Nebenstrangabschnitt 11.1 vermieden.
At the output of the secondary string 3.1 is a perforated plate, not shown in the figures. Both the main strand 2.1 and the secondary strand 3.1 open into a conically tapering mixing chamber 17. In this passes the guided through the main strand 2.1 partial exhaust gas stream as a rotating ring flow, which encloses the opening into the mixing chamber 17, flowing through the secondary line 3.1 exhaust stream. The constriction formed by the tapering of the mixing chamber 17 and the swirl of the exhaust gas stream flowing through the main branch 2.1 into it require a particularly effective mixing of the two exhaust gas substreams over a very short distance. When merging the two partial exhaust gas streams, the partial exhaust gas stream flowing out of the secondary branch 3.1 can likewise enter the mixing chamber 17 by providing a corresponding orifice as concentric annular flow to the partial exhaust gas stream leaving the main branch 2.1. If one or more guide elements are additionally provided in such an embodiment, the partial exhaust gas stream leaving the secondary branch 3.1 can also flow into the mixing chamber 17 as a swirl flow, the swirl of the partial exhaust gas stream leaving the secondary branch 3.1 being opposite to the swirl of the secondary exhaust flow for the purposes of intensive mixing is directed through the main strand 2.1 flowing exhaust gas partial stream. It is also possible that the exhaust gas streams through each other by appropriate guide elements to have directed radial flow components when flowing into the mixing chamber 17.
Is schematized in FIG. 6 also the spray cone S of the HC injector 14.1 shown. Due to the radial inflow of the exhaust gas out of the main branch 2.1 through the overflow openings 7.1 into the secondary branch 3.1, spray-off deposits of the HC injector 14.1 on the inside of the overflow pipe section 6.2 and the adjacent secondary section 11.1 are effectively avoided.

Das dem Heizmodul 1.1 zugrundeliegende Konzept gewährleistet nicht nur eine temperatureffiziente Ausgestaltung des Heizmodules sondern auch eine besonders raumsparende Auslegung.
Bei dem in den Figuren 5 und 6 gezeigten Ausführungsbeispiel ist die die Ausgänge der beiden Stränge 2.1, 3.1 anschließende Mischkammer 17 konisch in Hauptströmungsrichtung des Abgases verjüngt. Eine solche Verjüngung ist grundsätzlich nicht erforderlich. Vielmehr kann die Mischkammer auch zylindrisch ausgebildet sein, an welchen zylindrischen Abschnitt sich nach kurzer Strömungsstrecke bereits dasjenige Abgasreinigungsaggregat anschließen kann, dem die durch das Heizmodul 1.1 bereitgestellte Temperatur zugeführt werden soll.
The heating module 1.1 underlying concept not only ensures a temperature-efficient design of the heating module but also a particularly space-saving design.
In the in the Figures 5 and 6 In the embodiment shown, the mixing chamber 17 adjoining the outlets of the two strands 2.1, 3.1 is conically tapered in the main flow direction of the exhaust gas. Such a rejuvenation is basically not required. Rather, the mixing chamber can also be cylindrical, to which cylindrical portion, after a short flow path, that exhaust gas purification unit can already connect to which the temperature provided by the heating module 1.1 is to be supplied.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1, 1.11, 1.1
Heizmodulheating module
2,2.12,2.1
Hauptstrangmain line
3,3.13,3.1
Nebenstrangsecondary line
4,4.14,4.1
Aktuatoractuator
5,5.15,5.1
Abgasklappeexhaust flap
6,6.1,6.26,6.1,6.2
ÜberströmrohrabschnittÜberströmrohrabschnitt
7,7.17,7.1
Überströmöffnungoverflow
8,8.18,8.1
ÜberströmumlenkkammerÜberströmumlenkkammer
9,9.19,9.1
UmlenkkammerteilUmlenkkammerteil
10, 10.110, 10.1
Montageflanschmounting flange
11, 11.111, 11.1
NebenstrangabschnittSecondary line section
12, 12.112, 12.1
Oxidationskatalysatoroxidation catalyst
13, 13.113, 13.1
Heizelementheating element
14, 14.114, 14.1
HC-InjektorHC injector
1515
Temperatursensortemperature sensor
1616
Wendelspiral
1717
Mischkammermixing chamber
1818
Abschlussgraduation
AA
Abgasstrangexhaust gas line
SS
Sprühkegelspray cones

Claims (8)

  1. Heating module for an exhaust gas purification system connected to the outlet of an internal combustion engine, comprising a catalytic burner with an HC injector (14) and with an oxidation catalytic converter (12) positioned downstream of the HC injector (14) in the flow direction of the exhaust gas, for supplying thermal energy to an exhaust gas purification unit of the exhaust gas purification system, wherein the heating module (1) has a main section (2), a secondary section (3) which comprises the catalytic burner (12, 14), and a device (4, 5) for controlling the exhaust gas mass flow flowing through the secondary section, wherein the secondary section (3) has, on the input side and output side in each case, a diverting chamber (8, 8.1) departing from the main section (2) in the radial direction, between which diverting chambers (8, 8.1) is situated, parallel to the main section (2) of the heating module (1), the secondary section portion (11) with the oxidation catalytic converter (12), characterised in that the transverse cross-section of the input-side diverting chamber (8) expands in the direction of flow of the exhaust gas, the cross-section surface of the output side diverting chamber (8.1) tapers in the direction of flow of the exhaust gas, and the secondary section portion (11) with the oxidation catalytic converter (12) is arranged between the sections of the diverting chambers (8, 8.1) which are larger in relation to their cross-section surfaces.
  2. Heating module according to claim 1, characterised in that the cross-section surface of the secondary section portion (11) with the oxidation catalytic (12) converted extending between the diverting chambers (8, 8.1) is more than twice as large as the cross-section surface in the main section (2).
  3. Heating module according to claim 1 or 2, characterised in that the diverting chambers (8, 8.1) are composed in each case of two sheet-metal shaped sections joined to one another.
  4. Heating module according to claim 3, characterised in that the diverting chambers (8, 8.1) comprise parts which, at least in a pre-production stage, are identical in relation to these parts forming the diverting chambers, such as identical part to the diverting chamber parts (9.1) facing one another in the heating module (1).
  5. Heating module according to claim 3 or 4, characterised in that the external diverting chamber part (9) of the inlet-side diverting chamber (8) comprises an HC injector opening with a collar which is flanged to the outside, in order to connect the HC injector (14).
  6. Heating module according to any one of claims 1 to 5, characterised in that the HC injector (14) is arranged with its atomizer nozzle in the alignment of the longitudinal axis of the secondary section portion (11) containing the oxidation catalytic converter (12).
  7. Heating module according to any one of claims 1 to 6, characterised in that an electro-thermal heating element (13) is inserted in the secondary section (3) downstream of the HC injector (14) in the flow direction of the exhaust gas, and upstream of the oxidation catalytic converter (12).
  8. Heating module according to any one of claims 1 to 7, characterised in that the device (4, 5) for controlling the exhaust gas mass flow flowing through the secondary section (3) is arranged in the main section (2) of the heating module (1).
EP12713927.7A 2011-03-28 2012-03-26 Heating module for an exhaust purification system Active EP2691614B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201120000703 DE202011000703U1 (en) 2011-03-28 2011-03-28 Heating module for an emission control system
PCT/EP2012/055313 WO2012130796A1 (en) 2011-03-28 2012-03-26 Heating module for an exhaust-gas purification system

Publications (2)

Publication Number Publication Date
EP2691614A1 EP2691614A1 (en) 2014-02-05
EP2691614B1 true EP2691614B1 (en) 2017-10-04

Family

ID=45953103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12713927.7A Active EP2691614B1 (en) 2011-03-28 2012-03-26 Heating module for an exhaust purification system

Country Status (11)

Country Link
US (1) US9115622B2 (en)
EP (1) EP2691614B1 (en)
JP (1) JP6117176B2 (en)
KR (1) KR20140020982A (en)
CN (1) CN103477041B (en)
BR (1) BR112013025096A2 (en)
CA (1) CA2830026A1 (en)
DE (1) DE202011000703U1 (en)
ES (1) ES2654963T3 (en)
RU (1) RU2594393C2 (en)
WO (1) WO2012130796A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022127238A1 (en) 2022-10-18 2024-04-18 Emitec Technologies GmbH Heating module for an exhaust system of an internal combustion engine and associated method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150082777A1 (en) * 2012-04-27 2015-03-26 Hino Motors, Ltd. Exhaust purification device burner
DE102015002224A1 (en) * 2015-02-12 2016-08-18 Daimler Ag Exhaust after-treatment device for an internal combustion engine, in particular a motor vehicle
DE102016209282B4 (en) 2016-05-30 2023-01-12 Vitesco Technologies GmbH Electrical connection, in particular for an electrically heatable honeycomb body
JP7047677B2 (en) * 2018-08-31 2022-04-05 トヨタ自動車株式会社 Vehicle and vehicle control method
DE202019100256U1 (en) 2019-01-17 2019-02-25 Hjs Emission Technology Gmbh & Co. Kg Means for supplying a chemical reagent in the exhaust line of an internal combustion engine
EP3947928B1 (en) * 2019-03-27 2023-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Exhaust gas aftertreatment apparatus, internal combustion engines equipped therewith and method of exhaust gas aftertreatment
DE102020200105A1 (en) * 2020-01-08 2021-07-08 Robert Bosch Gesellschaft mit beschränkter Haftung Exhaust line section with burner and motor vehicle with such an exhaust line section
DE202020104976U1 (en) 2020-08-28 2020-10-06 Hjs Emission Technology Gmbh & Co. Kg Electric heating unit for switching on in the exhaust system of an internal combustion engine as well as exhaust gas cleaning unit equipped with it
CN112963225B (en) * 2021-03-25 2023-02-17 一汽解放汽车有限公司 Tail gas heating device and tail gas treatment system
CN113606020B (en) * 2021-07-16 2022-03-22 江苏伟博动力技术有限公司 Gas-liquid mixer for waste gas purification
KR102338741B1 (en) * 2021-08-09 2021-12-14 주식회사 삼우에코 Nox exhaust reduction device with whirl guider
KR102338738B1 (en) * 2021-08-09 2021-12-14 주식회사 삼우에코 Nox exhaust reduction apparatus mixer structure
CN114471089A (en) * 2022-01-10 2022-05-13 江苏华财管道有限公司 Plastic conduit processing waste gas intelligent treatment equipment

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209531A (en) * 1962-05-18 1965-10-05 Morris Adaptable afterburner
GB1307684A (en) * 1969-09-16 1973-02-21 August P Apparatus for the combustion of exhaust gases from internal com bustion of exhaust gases from internal combustion engines
FR2299513A1 (en) * 1975-02-03 1976-08-27 Exxon France PROCESS AND REACTOR FOR THE POST-COMBUSTION OF EXHAUST GASES FROM AN EXPLOSION ENGINE
JPS5413815A (en) * 1977-07-02 1979-02-01 Nippon Soken Inc Caralytic converter for exhaust gas
US4449362A (en) * 1981-12-02 1984-05-22 Robertshaw Controls Company Exhaust system for an internal combustion engine, burn-off unit and methods therefor
US4485621A (en) * 1983-01-07 1984-12-04 Cummins Engine Company, Inc. System and method for reducing particulate emissions from internal combustion engines
JPH0625534B2 (en) * 1985-09-13 1994-04-06 マツダ株式会社 Engine exhaust purification device
US4969328A (en) * 1986-10-21 1990-11-13 Kammel Refaat A Diesel engine exhaust oxidizer
JP3201237B2 (en) * 1995-11-15 2001-08-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2003343367A (en) * 2002-05-23 2003-12-03 Hitachi Ltd Fuel-heating type fuel injection system and internal combustion engine equipped therewith
JP4045935B2 (en) * 2002-11-25 2008-02-13 三菱ふそうトラック・バス株式会社 Exhaust gas purification device for internal combustion engine
JP4291646B2 (en) * 2003-08-19 2009-07-08 アイシン高丘株式会社 Engine exhaust gas purification device
EP1837490A1 (en) * 2004-12-14 2007-09-26 Depro Corporation Exhaust gas purification device and control device for diesel engine
FR2882091B1 (en) * 2005-02-15 2007-04-20 Renault Sas ARRANGEMENT OF AN ELBOW FITTING ELEMENT COMPRISING A FIXING PLATE AND A SHELL IN A COMBUSTION ENGINE EXHAUST CIRCUIT
JP2006274838A (en) * 2005-03-28 2006-10-12 Toyota Motor Corp Exhaust gas purifying system of internal combustion engine
JP2006329019A (en) * 2005-05-25 2006-12-07 Hino Motors Ltd Exhaust pipe of diesel engine
JP2007278162A (en) * 2006-04-06 2007-10-25 Hino Motors Ltd Exhaust emission control device for diesel engine
JP4779959B2 (en) * 2006-12-20 2011-09-28 株式会社デンソー Exhaust purification device
KR100857511B1 (en) * 2007-05-29 2008-09-08 일진홀딩스 주식회사 Nox reducing device using bypass tube
JP4785803B2 (en) * 2007-08-02 2011-10-05 日野自動車株式会社 Exhaust purification device
DE102008038719A1 (en) * 2008-08-12 2010-02-18 Man Nutzfahrzeuge Aktiengesellschaft Method and device for regenerating a particle filter arranged in the exhaust gas line of an internal combustion engine
DE202009005251U1 (en) 2008-12-19 2009-12-03 Hjs Fahrzeugtechnik Gmbh & Co Kg emission control system
US8869518B2 (en) * 2009-09-15 2014-10-28 Tenneco Automotive Operating Company Inc. Burner for a diesel aftertreatment system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022127238A1 (en) 2022-10-18 2024-04-18 Emitec Technologies GmbH Heating module for an exhaust system of an internal combustion engine and associated method

Also Published As

Publication number Publication date
JP2014510871A (en) 2014-05-01
RU2594393C2 (en) 2016-08-20
US20140013729A1 (en) 2014-01-16
DE202011000703U1 (en) 2012-07-03
BR112013025096A2 (en) 2017-02-14
RU2013142309A (en) 2015-05-10
JP6117176B2 (en) 2017-04-19
ES2654963T3 (en) 2018-02-15
KR20140020982A (en) 2014-02-19
CA2830026A1 (en) 2012-10-04
CN103477041B (en) 2018-01-05
CN103477041A (en) 2013-12-25
EP2691614A1 (en) 2014-02-05
US9115622B2 (en) 2015-08-25
WO2012130796A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
EP2691614B1 (en) Heating module for an exhaust purification system
EP3216992B1 (en) Mixer
EP3478947B1 (en) Mixer device for an exhaust-gas aftertreatment system of a motor vehicle, exhaust-gas aftertreatment system, and motor vehicle
DE102009036511B4 (en) Exhaust system
EP2691618B1 (en) Compact exhaust-gas treatment unit with mixing region, and method for mixing an exhaust gas
EP2700442B1 (en) Exhaust system with mixing and/or vaporisation device
EP3406873B1 (en) Exhaust gas processing system for a combustion engine
EP2198135B1 (en) Device for post-treatment of exhaust gases of a lean-burning internal combustion engine
DE102014110592B4 (en) aftertreatment component
DE102013205297A1 (en) Exhaust after-treatment system for an internal combustion engine
WO2010034651A1 (en) Exhaust gas purification system for diesel engines
EP3470640B1 (en) Exhaust treatment module
EP2687697A2 (en) Mixing device for the aftertreatment of exhaust gases
WO2012120000A1 (en) Exhaust system of an internal combustion engine
DE102008029110A1 (en) Mixing and evaporating device for exhaust-gas system of internal combustion engine, particularly motor vehicle, has ring body which has internal shovel, where shovel is fastened with retaining elements in exhaust gas guiding pipe
EP3601757B1 (en) Exhaust system
EP2148055A1 (en) Exhaust gas system
DE102016004333A1 (en) Exhaust after-treatment device with catalyst and mixing device
DE102017101749A1 (en) Mixer element for mixing a fluid in an exhaust gas of an internal combustion engine and exhaust line for an internal combustion engine
WO2016062395A1 (en) Exhaust gas post-treatment device for an internal combustion engine, in particular of a motor vehicle
DE102020200105A1 (en) Exhaust line section with burner and motor vehicle with such an exhaust line section
DE10205573A1 (en) Atomizer nozzle for a burner
DE102020129001A1 (en) Exhaust system with exhaust gas turbocharger, ejector and exhaust gas catalytic converter
EP2325450B1 (en) Device for treating exhaust gases of a combustion engine
EP3059409B1 (en) Exhaust gas treatment device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160914

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01N 3/025 20060101AFI20170509BHEP

Ipc: F01N 3/08 20060101ALI20170509BHEP

Ipc: F01N 3/20 20060101ALI20170509BHEP

INTG Intention to grant announced

Effective date: 20170609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 934266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011384

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2654963

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180326

Year of fee payment: 7

Ref country code: CZ

Payment date: 20180313

Year of fee payment: 7

Ref country code: NL

Payment date: 20180322

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180326

Year of fee payment: 7

Ref country code: IT

Payment date: 20180322

Year of fee payment: 7

Ref country code: FR

Payment date: 20180326

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012011384

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180423

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

26N No opposition filed

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 934266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180326

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180326

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190327

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120326

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012011384

Country of ref document: DE

Representative=s name: HAVERKAMP PATENTANWAELTE PARTG MBB, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240205

Year of fee payment: 13