EP2691333B1 - Verfahren und vorrichtung zur stromversorgung für zahnstangengenaufzüge - Google Patents

Verfahren und vorrichtung zur stromversorgung für zahnstangengenaufzüge Download PDF

Info

Publication number
EP2691333B1
EP2691333B1 EP11862820.5A EP11862820A EP2691333B1 EP 2691333 B1 EP2691333 B1 EP 2691333B1 EP 11862820 A EP11862820 A EP 11862820A EP 2691333 B1 EP2691333 B1 EP 2691333B1
Authority
EP
European Patent Office
Prior art keywords
energy
load carrier
mast
power
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11862820.5A
Other languages
English (en)
French (fr)
Other versions
EP2691333A1 (de
EP2691333A4 (de
Inventor
Lars Cederblad
Jonny Eliasson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alimak Hek AB
Original Assignee
Alimak Hek AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alimak Hek AB filed Critical Alimak Hek AB
Publication of EP2691333A1 publication Critical patent/EP2691333A1/de
Publication of EP2691333A4 publication Critical patent/EP2691333A4/de
Application granted granted Critical
Publication of EP2691333B1 publication Critical patent/EP2691333B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • B66B1/302Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor for energy saving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/0035Arrangement of driving gear, e.g. location or support
    • B66B11/0045Arrangement of driving gear, e.g. location or support in the hoistway
    • B66B11/005Arrangement of driving gear, e.g. location or support in the hoistway on the car
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/043Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
    • B66B11/0461Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation with rack and pinion gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/16Mobile or transportable lifts specially adapted to be shifted from one part of a building or other structure to another part or to another building or structure

Definitions

  • the present invention concerns a method for the power supply for rack and pinion lifts according to the introduction to claim 1.
  • the invention concerns also an arrangement for the power supply for rack and pinion lifts according to claim 7.
  • a rack and pinion lift comprises in general a load carrier such as a lift car that can be driven along a track by means of electric motors and cogged wheels, which track is normally in the form of a mast provided with a cogged rod.
  • the electric motors that are selected are normally of three-phase type with a rated voltage of 380-500 V and a frequency of 50 or 60 Hz.
  • the motors offer soft starting and stopping of the lift car at the selected landing by the use of frequency control.
  • a rack and pinion lift not only the electric motor for driving the lift but also a control and monitoring unit for the control of the lift are supported immediately by the lift car.
  • Rack and pinion lifts differ in a number of ways from conventional lifts such as cable-borne lifts and hydraulic lifts.
  • One difference is, for example, that the lift car supports its own drive unit as it does also an associated control and monitoring unit for the control of the electric motor.
  • the drive machinery is normally separated from the lift car in conventional lifts, for example arranged in a machine room and connected with the lift car in a manner that transfers motion through a cable or similar that runs from the machine room.
  • rack and pinion lifts normally lack a counterweight and thus they lack the possibility of balancing the deadweight of the lift car, and this makes the start and acceleration phase critical, and requiring particularly high amounts of energy.
  • the electrical power line must be extended and shortened as the lift car moves along the mast.
  • the length of the mast that is used in the currently used type of rack and pinion lift is formed from a number of sections that can be stacked and mounted on each other, in order to be able to vary the length of the mast.
  • the electrical power line is given a length that is adapted such that it can accompany the lift car along the complete height of the mast.
  • rack and pinion lifts are normally intended to be used for non-permanent use within the building industry, i.e. the lift is demounted when the building construction has been completed.
  • Lifts are, on the other hand, becoming evermore higher and it has proved to be the case that the weight of the electrical power line, for lift heights up to 500 m and higher, becomes so great that it influences the loading capacity of the lift.
  • the extension of the electrical power line as the lift car moves along the mast creates also difficulties with housing the complete cable length, in particular, when the power cable is to supply powerful motors with the current they require.
  • the length, stiffness and deadweight of the electrical power line constitute problems, whereby the relatively heavy-duty electrical power line that accompanies the lift car becomes difficult to control, heavy to carry and house.
  • Rack and pinion lifts normally lack this possibility and the potential energy must be continuously overcome by the power supply system, which, of course, places considerable demands on this system. Enormous amounts of energy are generated when a rack and pinion lift car moves downwards along the mast during braking (retardation). The potential energy that is in this way released by the lift car is normally converted to heat energy in separate resistances (braking resistances) or it is fed back into the mains power network by a process known as "regenerative braking". It should be realised that a rack and pinion lift produces a considerably greater amount of energy during its motion downwards than conventional lifts provided with counterweights produce, due to the absence of a counterweight. Previous attempts to equip rack and pinion lifts with counterweights have been less than successful, mainly as a result of complicated designs and the extra work that the counterweight arrangement introduces during the tasks of mounting and demounting the lift.
  • the power supply system and the associated electrical plant must be dimensioned to cope with the highest output power that is required during short periods, while the appearance of the standard load places considerably lower requirements for the capacity of the power plant, overload protection, the conductor system and other equipment in the consumer circuit will not be used fully with respect to the capacity of the equipment. As a part of this, the investment costs for the power supply system will be significantly higher and more extensive than necessary and they will be inefficient from the point of view of costs.
  • rack and pinion lifts are often used during the construction of buildings at locations that lack electrical power and the infrastructure of power stations, whereby alternative sources of energy are used as main power generator such as, for example, diesel-powered units, it should be understood that it would be desirable from a number of aspects to be able to reduce not only the size but also the cost of the external power-generating equipment and generator system that are required.
  • US 2007/084672 A1 describes a power supply system for a rack and pinion rack.
  • US2010/0187045A1 discloses an electric power supplying system for a self-drive type elevator.
  • Figure 1 shows how a general mains power network 101 that is part of a main power generator 100 feeds a three-phase alternating current to a transformer 102 in order for it to be transformed down to a suitable level of voltage.
  • An AC bus 105 and a three-phase electrical power line 106 supplies a three-phase electric motor 109 supported by a lift car 107 with electrical energy.
  • the lift car 107 is a rack and pinion car and it can be driven along a mast 110 through the interaction between a cogged wheel 111 driven by the electric motor 109 and a cogged rod 112 arranged on the mast.
  • the selected speed during raising and lowering of the lift car 107 is controlled through appropriate frequency conversion of the electric motor 109.
  • FIG 2 shows an example in which the main power generator 100 is part of a diesel-powered unit 113 intended to be used as a source of power.
  • the diesel-powered unit 113 is mechanically coupled to an AC power generator 114.
  • the power generator 114 supplies AC alternating current that supplies the electric motor 109 of the lift car 107 through an AC bus 105 and a three-phase electrical power line 106 (see Figure 1 ).
  • the system from this point onwards is the same as that described in Figure 1 .
  • an inverted or inverse flow of AC alternating current is generated in the electric motor.
  • the flow of inverse AC alternating current can be caused through generative braking to be dissipated as heat in a braking resistance, or it can be led back to the mains power network 101 (not shown in the drawings).
  • a first aim of the present invention is to achieve, based on the prior art technology, a method for the power supply of rack and pinion lifts that makes it possible to reduce the need for external power and in this way to reduce the cost of the power supply system of the lift as a whole.
  • a second aim is to achieve a method for the power supply that solves the problems with the three-phase electrical power line that extends from the unit at ground level to the lift car.
  • a third aim of the invention is to achieve an arrangement for the execution of the said method.
  • the lift comprises a load carrier in the form of a lift car 107 that can be driven by means of a drive unit, comprising an electric motor 109 and a transmission that has a rotatable shaft that interacts with a cogged wheel 111, along a track in the form of a mast equipped with a cogged rod 112 (see Figure 1a ).
  • the said electric motor 109 is of three-phase type, having, for example, a rated voltage of 380-500 V and a frequency of 50 or 60 Hz.
  • the present arrangement for power supply is shown in Figures 3-5 incorporated as a part of the two prior art designs that are shown in Figures 1 and 2 , to which reference is also made.
  • An energy storage system is part of the present power supply arrangement generally denoted by reference number 10 and supported by the lift car 107, which energy storage system is designed to receive energy, store energy, and to supply the stored energy to the electric motor 109 of the lift car 107 through a first bus, a DC bus 11.
  • the DC bus 11 has a positive side 13 and a negative side 14.
  • a principal power network 100 that produces power supplies three-phase AC alternating voltage.
  • the said principal power network 100 may be constituted by a mains power network, or by a generator system that comprises a diesel-powered unit with its associated power generator of the types shown in Figures 1 and 2 .
  • the energy storage system 10 that is supported by the lift car 107 is designed to store energy of the type that is produced during regenerative operation of the electric motor 109 of the lift car, i.e. the energy that is released when the lift car 107 is retarded during its movement downwards along the mast 110. Furthermore, the energy storage system 10 is designed for the storage of energy that has been collected directly from the principal power network 100, either when the lift car 107 is located at a ground level or when it is located at a predetermined location along the pathway of the lift car 107 along the mast 110.
  • a second bus, an AC bus 20 extends from a ground level and it includes a three-phase electrical power line from the principal power network 100 and onwards vertically upwards along the mast 110.
  • AC bus AC bus
  • DC bus DC bus
  • bus bus
  • the reference number 24 generally denotes a power transfer means that allows electrical energy to be transferred between the principal power network 100 and the energy storage system 10 that is supported by the lift car 107. It will be made clear below that the power transfer means 24 may be designed in a number of different ways.
  • the power transfer means 24 is divided in the following into a number (n) charging stations 24:1-24:n located at suitable distances from each other along the mast 110.
  • a charging arrangement 25 is present in each charging station that is in electrical connection with the principal power network 100 through a branch cable 26 and the said AC bus 20.
  • the charging arrangement 25 comprises a power deliverer 30 supported by the mast 110 and designed to interact with a power receiver 31 arranged at the lift car 107 in order to allow electrical energy to, by means of contacts 32 that are part of the charging arrangement 25, be transferred as is shown by the arrows 17 from the principal power network 100 to the energy storage system 10 when the lift car 107 is located in such a position along its track along the mast that the contacts 32 are in current-transferring contact with each other.
  • the charging arrangement 25 comprises a direct current converter 35 supported by the lift car 107 to convert the AC alternating current of the principal power network to a DC direct current, which can be transferred to the energy store 10 as a charging current.
  • the interacting contacts 32 are supported by the mast 110 and by the lift car 107, respectively.
  • Figure 3b shows the power deliverer 30 and power receiver 31 of the power transfer means 24 in an alternative design, shown in a cross-section through the mast.
  • the charging stations 24:1-24:n described above and the AC bus has been replaced in the design shown by a rail bar 50 with electrically conducting current rails that extend along the mast 110.
  • Current supply takes place in this way by means of a current withdrawal trolley 51 with its associated current withdrawers that accompanies the lift car 107 and runs on insulating guides along the rail bar 50.
  • the current withdrawal trolley 51 runs along and is supported by bearings through wheels 52 along a guide rail 53 in the form of a T-beam attached along the mast.
  • This design has the advantage that the power receiver 31 of the lift car 107 can be placed in electrical connection with the principal power network 100 through the contacts 32 at any freely chosen place along the track, i.e. charging can take place anywhere along the mast independently of the level at which the lift car is located. It is appropriate that connection and disconnection take place by means of a switch 55 of three-phase contact type, arranged at the location and in the manner that is suggested by the dash-dot line in Figure 4 .
  • the lift car 107 moves upwards along the mast 110 under the influence of the power supply and the AC alternating current electric motor 109 supported by the lift car 107, the electric motor is driven principally by energy that is stored in the energy storage system 10.
  • the lift car increases its potential energy during the motion of the lift car 107 upwards along the mast through energy that is obtained from the energy storage system 10.
  • the energy stored in the energy storage system 10 is insufficient to drive the lift car 107 up to a predetermined level of the mast 110, further or supplementary energy can be retrieved from the principal power network 100.
  • energy is retrieved from the principal power network 100 by the lift car 107 being temporarily stopped in association with any one of the charging stations 24:1-24:n arranged along the mast 110, whereby the energy store 10 is filled, with the contacts 32 being in a mutual current-transfer position.
  • charging can take place at an arbitrary position along the mast 110 through the use of the technology described above that includes the supply of power by means of the current withdrawal trolley 51 and its associated current withdrawers 55a-55d.
  • the time that is required to fill the energy storage system 10 i.e. the stop time or the charging time, may vary, depending of the energy storage technology chosen. This will, however, be described in more detail below.
  • the stored energy of the lift car 107 constitutes a significant addition during the acceleration phase of the lift car, which means that the requirement for external power supplied from the mains power network can be reduced in comparison with prior art technology, and thus also the capacity requirement placed on the external power supply system of the lift.
  • the power to and from the relevant units that are connected to the DC bus 11 are controlled and monitored by means of a control system 40, for example a programmable logic controller (PLC), or computer supported by the lift car 107.
  • a control system 40 for example a programmable logic controller (PLC), or computer supported by the lift car 107.
  • PLC programmable logic controller
  • the energy storage system 10 may be designed in a number of different ways whereby the time required for charging of the store is not the least of the factors that are influenced to a great degree by the selected energy storage technology, With reference to also Figures 3a and 5a , a number of energy storage systems of differing designs will be described in more detail below.
  • FIG. 3 shows in a first embodiment of an arrangement according to the invention whereby an energy storage system 10 that includes an energy store 60 with a supercondensor 27 is used for the power supply to a rack and pinion lift car 107.
  • the lift car 107 is braked regeneratively during its motion downwards along the mast 110 whereby the potential energy retrieved during the braking is led to the supercondensor 27 that is a component of the energy store 60 for storage.
  • a DC/AC converter 12 is connected through the DC bus 11 to the AC electric motor 109 of the lift car for conversion of the DC direct current that is delivered by the supercondensor 27 into an AC alternating current adapted for driving the electric motor 109.
  • FIG. 3 shows schematically in a block diagram how the supercondensor 27 that is a component of the energy store functions.
  • a diode 27a and a charging switch 27b are arranged in a first branch whereby the branch is connected in parallel across the positive side 13 and the negative side 14 of the DC bus 11.
  • a second branch is present with a switch 27c that, when closed, causes the supercondensor 27 to be discharged.
  • the diode 27a allows current to pass only in a direction that leads to charging of the supercondensor 27, whereby discharge cannot take place through the said first branch, which contains the diode 27a.
  • the voltage of the supercondensor 27 increases such that it eventually exceeds the voltage across a condensor 27d that is part of the DC bus 11. Since the voltage across the supercondensor 27 is higher than the voltage across the condensor 27d of the DC bus 11, the supercondensor can be connected for the delivery of stored energy in the form of current to the electric motor 109 of the lift car 107 through the converter 12, which takes place in practice through the second branch being closed by means of the switch 27c.
  • FIG 4 shows a second embodiment of an arrangement according to the invention whereby an energy storage system 10 that includes an energy store 60 with a flywheel 23 is used for the power supply to a rack and pinion lift car 107.
  • the lift car 107 is braked regeneratively during its motion downwards along the mast 110 whereby the potential energy retrieved during the braking is led to the flywheel 23 for storage.
  • a DC/AC converter 12 is connected to the AC drive motor 109 of the lift car 107 through a DC bus 11 with a positive side 13 and a negative side 14.
  • the energy storage system 10 comprises a DC/AC converter 21, a three-phase AC induction motor 22 and the said flywheel 23.
  • the induction motor 22 may be constituted by, for example, a traction motor, i.e.
  • FIG. 5 shows a third embodiment of an arrangement according to the invention whereby an energy storage system 10 that includes an energy store 60 with a battery pack 70 is used for the power supply to a rack and pinion lift car 107.
  • the lift car 107 is braked regeneratively during its motion downwards along the mast 110 whereby the potential energy retrieved during the braking is led to the battery pack for storage.
  • a DC/AC converter is connected to the AC drive motor 109 of the lift car 107 through a DC bus 11 with a positive side 13 and a negative side 14.
  • FIG. 5a shows schematically in a block diagram how the energy store 60 with the battery pack 70 functions.
  • the energy storage system 10 comprises in this case a battery pack that is controlled by means of a switch 71, for the storage of energy and the supply of the said energy in the form of a DC direct current.
  • Block A corresponds to the electricity consumed during acceleration of the lift car 107 to a predetermined speed in a direction of motion upwards along the mast 5.
  • Block B corresponds to the power consumption when the lift car 107 increases its potential energy through moving at a constant speed upwards along the mast.
  • Block C corresponds to the energy consumption during retardation and stop of the lift car 107.
  • Block D represents the inverse power or the return of potential energy for storage during acceleration downwards of the lift car 107.
  • Block E represents inverse energy consumption during motion at constant speed downwards and block F represents the inverse energy during retardation and stop of the lift car 1, 2 during downwards motion.
  • Figure 7 shows graphically the power consumption that can be achieved according to the principles of the present invention whereby the power consumption is illustrated as constant with time in the hatched block and is obtained through stored potential energy from regenerative motor operation being recycled as power that is superimposed on the power that is consumed in Figure 6 .
  • the graph is intended to give an example of how residual power that is recycled and stored in the energy storage system 10 that has been obtained during braking of the lift car 107 during its motion downwards and that is stored as transferred potential energy in, for example, the energy storage system 10, can be returned at times during the transport cycle of the lift when the power that is required is at its greatest, for example, at the instant of starting when the lift car 107 is accelerated.
  • the collected energy in the power supply system can be regarded as constant, as is stated by the general laws of thermodynamics, whereby the only energy that is consumed in a lift is the energy that is lost due to the appearance of mechanical and electrical losses.
  • the present invention has the major advantage that the levels of potential energy of the lift car 107 can be balanced during the acceleration phase and motion upwards along the mast 110 by the potential energy that is recycled through regenerative operation and braking of the lift car during its motion downwards along the mast and stored in an energy storage system that is supported by the lift car being returned to the electric motor 109 of the lift car to be used as driving power.
  • the said recirculation i.e. the recycling of potential energy and the supply of recycled potential energy that has been stored in the energy store 60 to the electric motor 109 thus takes place in immediately in association with the lift car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Elevator Control (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Claims (8)

  1. Verfahren, um ein Stromversorgungssystem für einen Aufzug des Typs, bei dem eine Antriebsmaschine (109) von einem Lastträger (107) getragen wird und den Lastträger in einer ersten und einer zweiten Richtung entlang einer Bahn in einem im Wesentlichen vertikalen Mast (110) mittels des Zusammenwirkens zwischen einem Zahnrad (111) und einer Zahnstange (112) antreiben kann, zu verwirklichen, umfassend die folgenden Schritte:
    a) dass ein Lastträger (107) angeordnet wird,
    b) dass der Lastträger (107) angeordnet wird, um einen elektrisch betriebenen Elektromotor (109) zu tragen, der ein Bestandteil der Antriebsmaschine ist, wobei der Elektromotor so ausgewählt ist, dass er während des regenerativen Betriebs einen Energiefluss erzeugt,
    c) dass der Elektromotor (109) so angeordnet wird, dass er den Lastträger (107) in der ersten Richtung entlang der Bahn antreiben kann und den Lastträger während des regenerativen Betriebs antreiben kann, um während des Bremsens und der Bewegung in der zweiten Richtung entlang der Bahn einen Energiefluss zu erzeugen, gekennzeichnet durch die folgenden Schritte;
    d) dass der Lastträger (107) angeordnet ist, um ein Energiespeichersystem (10) zu tragen, das einen Energiespeicher (60) einschließt, der zum Speichern, Aufnehmen und Freisetzen elektrischer Energie ausgelegt ist,
    e) dass der Lastträger (107) mit einem ersten Stromübertragungsbus (11) bereitgestellt ist, der es dem Energiefluss, der vom Elektromotor (109) während des Brems- und Regenerationsbetriebs abgegeben wird, ermöglicht, vom Elektromotor auf den Energiespeicher (60) übertragen zu werden, der Teil des Energiespeichersystems (10) ist und, falls erforderlich, umgekehrt vom Energiespeicher auf den Antriebsmotor übertragen zu werden, und
    f) dass der Lastträger (107) seine potentielle Energie während der Beschleunigung oder Bewegung in der ersten Richtung entlang des Mastes (110) durch den Einfluss von elektrischer Energie, die aus dem Energiespeicher (60) erhalten wurde, erhöht,
    g) dass der Lastträger (107) mit einem Steuerungs- und Überwachungssystem (40) ausgestattet ist, das vom Lastträger getragen wird und den Stromfluss zwischen der Antriebsmaschine (109) des Lastträgers und dem Energiespeicher (60) überwacht und steuert,
    h) dass ein Hauptstromnetz (100) auf einer Bodenhöhe angeordnet ist,
    i) dass ein zweiter Stromübertragungsbus (20) angeordnet ist, der sich von dem Hauptstromnetz (100) auf Bodenhöhe und weiter aufwärts entlang des Mastes (110) erstreckt,
    j) dass der zweite Bus (20) in Bezug auf den Lastträger (107), der entlang des Mastes (110) angetrieben werden kann, stationär angeordnet ist,
    k) dass Stromübertragungsmittel (24), die einen Stromlieferant (30) und einen Stromabnehmer (31) einschließen, die mit ihm zusammenwirken, angeordnet sind,
    l) dass der Stromlieferant (30) vom Mast (110) getragen angeordnet ist, und dass der Stromabnehmer (31) vom Lastträger (107) getragen angeordnet ist, und dass elektrische Energie vom Hauptstromnetz (100) zum Energiespeicher (60) übertragen werden kann, wobei der Stromlieferant und der Stromabnehmer in ihrer zusammenwirkenden Position entlang der Bahn des Lastträgers (107) entlang des Mastes (110) platziert werden,
    m) dass der Lastträger (107) über den Energiespeicher (60) mit elektrischer Energie aus dem Hauptstromnetz (100) versorgt wird, der, falls erforderlich, mit elektrischer Energie aus dem Hauptstromnetz (100) geladen wird, die über die Stromübertragungsmittel (24) übertragen wird, und
    n) der erste Bus als Gleichstrom-Bus für die Leitung von Gleichstrom und der zweite Bus als Wechselstrom-Bus für die Leitung von dreiphasigem Wechselstrom angeordnet ist.
  2. Verfahren nach Anspruch 1, wobei das Steuerungs- und Überwachungssystem (40) ausgewählt ist aus einem der Folgenden: einer speicherprogrammierbaren Steuerung (SPS) und einem Computer.
  3. Verfahren nach einem der Ansprüche 1-2, wobei das Stromübertragungsmittel (24) so ausgewählt ist, dass es ein beliebiges der Folgenden einschließt: eine Anzahl (n) von Ladestationen (24:1-24:n), die in Abständen voneinander entlang des Mastes (110) angeordnet sind, wobei jede Ladestation einen Stromlieferanten (30) einschließt, der dazu bestimmt ist, mit einem Stromabnehmer (31) zusammenzuwirken, der von dem Lastträger (107) getragen wird, eine Schienenstange (50) mit elektrisch leitenden Stromschienen, die sich entlang des Mastes (110) erstrecken und wobei die Stromzufuhr mittels eines Stromentnahmewagens (51) und seiner zugehörigen Stromentnahmeeinheiten (55a, 55b, 55c, 55d) erfolgt, die entlang der vom Mast geführten und die Aufzugskabine (107) begleitenden Schienenstange verläuft, und dass Verbindung und Trennung mittels eines Schalters (55) erfolgt.
  4. Verfahren nach einem der Ansprüche 1-3, wobei der Energiespeicher (60) mit Energie von dem Hauptstromnetz (100) geladen wird, wenn sich der Lastträger (107) auf Bodenhöhe befindet.
  5. Verfahren nach einem der Ansprüche 1-4, wobei der zweite Bus (20) in Bezug auf den direkt am Mast (110) oder an einem in der Nähe befindlichen Gebäude getragenen Lastträger (107) stationär angeordnet ist.
  6. Verfahren nach einem der Ansprüche 1-5, wobei der Energiespeicher (60), der ein Teil des Energiespeichersystems (10) ist, ausgewählt ist aus einem beliebigen der Folgenden: einem Superkondensator (27), einem Batteriepack (70), einem Schwungrad (23) und einer Kombination davon.
  7. Anordnung zur Stromversorgung für einen Aufzug des Typs, bei dem eine Antriebsmaschine (109) von einem Lastträger (107) getragen wird und den Lastträger in einer ersten und einer zweiten Richtung entlang einer Bahn in einem im Wesentlichen vertikalen Mast (110) durch das Zusammenwirken zwischen einem Zahnrad (111) und einer Zahnstange (112) antreiben kann, wobei jeder Lastträger (107) des Aufzugs Folgendes umfasst:
    a) einen elektrisch betriebenen Elektromotor (109), der Teil der Antriebsmaschine ist und so angeordnet ist, um den Lastträger (107) entlang der Bahn nach oben anzutreiben und einen Energiefluss durch regenerativen Betrieb während des Umkehrbetriebs und Bremsen des Lastträgers während der Bewegung in der zweiten Richtung nach unten entlang der Bahn erzeugt,
    gekennzeichnet dadurch, dass die Anordnung Folgendes umfasst;
    b) ein Energiespeichersystem (10) mit einem Energiespeicher (60) zum Speichern, Aufnehmen und Liefern von elektrischer Energie an den Elektromotor (109),
    c) einen ersten Stromübertragungsbus (11), der es dem Energiefluss, der während des Bremsens vom Elektromotor (109) abgegeben wird, erlaubt, vom Elektromotor auf den Energiespeicher (60) übertragen zu werden, der Teil des Energiespeichersystems (10) ist und, falls erforderlich, umgekehrt vom Energiespeicher auf den Antriebsmotor übertragen zu werden, und
    d) ein Steuerungs- und Überwachungssystem (40) zur Überwachung und Steuerung des Stromflusses zwischen der Antriebsmaschine (109) des Lastträgers und dem Energiespeicher (60), wobei die Anordnung ferner Folgendes umfasst,
    e) ein Hauptstromnetz (100), das auf einer Bodenhöhe angeordnet ist,
    f) einen zweiten Stromübertragungsbus (20), der sich vom Hauptstromnetz (100) und weiter aufwärts entlang des Mastes (110) erstreckt und in Bezug auf den Lastträger (107), der entlang des Mastes (110) antreibbar ist, stationär ist,
    g) ein Stromübertragungsmittel (24), das einen am Mast (110) angeordneten Stromlieferanten (30) einschließt, der dazu ausgelegt ist, mit einem am Lastträger angeordneten Stromabnehmer (31) zusammenzuwirken, und bei dem elektrische Energie vom Hauptstromnetz (100) in den Energiespeicher (60) des Energiespeichersystems (10) übertragen wird, wenn der Stromlieferant und der Stromabnehmer in ihren zusammenwirkenden Positionen lokalisiert sind, wobei
    h) der erste Bus als ein Gleichstrom-Bus für die Leitung von Gleichstrom angeordnet ist und der zweite Bus als Wechselstrom-Bus für die Leitung von dreiphasigem Wechselstrom angeordnet ist.
  8. Verwendung eines Superkondensators (27), eines Batteriepacks (70), eines Schwungrades (23) oder einer Kombination davon zum Speichern von Energie bei einem Aufzug mit einem Lastträger (107) des Typs, der in einem der vorhergehenden Ansprüche spezifiziert ist.
EP11862820.5A 2011-03-29 2011-03-29 Verfahren und vorrichtung zur stromversorgung für zahnstangengenaufzüge Active EP2691333B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE2011/050359 WO2012134363A1 (en) 2011-03-29 2011-03-29 Method and device for the power supply for rack and pinion lifts

Publications (3)

Publication Number Publication Date
EP2691333A1 EP2691333A1 (de) 2014-02-05
EP2691333A4 EP2691333A4 (de) 2014-11-19
EP2691333B1 true EP2691333B1 (de) 2018-12-12

Family

ID=46931730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11862820.5A Active EP2691333B1 (de) 2011-03-29 2011-03-29 Verfahren und vorrichtung zur stromversorgung für zahnstangengenaufzüge

Country Status (4)

Country Link
EP (1) EP2691333B1 (de)
CN (1) CN103492303B (de)
ES (1) ES2724748T3 (de)
WO (1) WO2012134363A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2510810B (en) * 2012-12-14 2017-03-22 Stannah Stairlifts Ltd Improvements in or relating to stairlifts
CN106573758B (zh) * 2014-08-18 2019-11-15 奥的斯电梯公司 用于驱动汽车和辅助系统的嵌入式储能器
AU2016231585B2 (en) * 2015-09-25 2018-08-09 Otis Elevator Company Elevator component separation assurance system and method of operation
EP3223420B1 (de) * 2016-03-22 2020-05-06 Siemens Aktiengesellschaft Stromrichteranordnung zum sicheren bremsen eines antriebssystems
EP3407459A1 (de) * 2017-05-25 2018-11-28 Siemens Aktiengesellschaft Stromversorgungssysteme und verfahren
GB201719483D0 (en) * 2017-11-23 2018-01-10 Deciwatt Ltd Portable apparatus for generating electricity
CN108657913B (zh) * 2018-07-19 2023-08-15 长春工业大学 一种小型货物载运装置
GB201817623D0 (en) * 2018-10-29 2018-12-12 Stiltz Ltd An elevator safety system
US20240079974A1 (en) * 2022-09-02 2024-03-07 Otis Elevator Company Multiple drive system for regenerative energy management in an elevator installation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192059A (ja) * 1997-09-19 1999-04-06 Ohbayashi Corp 建設用リフト
JP4347982B2 (ja) * 2000-02-28 2009-10-21 三菱電機株式会社 エレベーターの制御装置
JP2003238051A (ja) * 2002-02-15 2003-08-27 Sansei Kenki Kk 工事用エレベーター
JP4842125B2 (ja) * 2005-04-01 2011-12-21 三菱電機株式会社 エレベータ用給電システム
DE102005049408A1 (de) * 2005-10-13 2007-04-26 Wittenstein Ag Selbstfahrender Aufzug
US8220590B2 (en) * 2007-01-11 2012-07-17 Otis Elevator Company Thermoelectric thermal management system for the energy storage system in a regenerative elevator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2691333A1 (de) 2014-02-05
WO2012134363A1 (en) 2012-10-04
CN103492303B (zh) 2016-05-18
CN103492303A (zh) 2014-01-01
ES2724748T3 (es) 2019-09-13
EP2691333A4 (de) 2014-11-19

Similar Documents

Publication Publication Date Title
EP2691333B1 (de) Verfahren und vorrichtung zur stromversorgung für zahnstangengenaufzüge
FI120092B (fi) Hissijärjestelmä ja menetelmä kokonaistehon pienentämiseksi hissijärjestelmässä
CN104428234B (zh) 发电电梯
CN101670959A (zh) 电梯系统
EP3318527A1 (de) Autonomes elektrisches aufzugssystem
EP2539266B1 (de) Stromversorgungssystem für zahnstangen und antriebsverfahren dafür
CN206814284U (zh) 高架移动式起重机
CN106241571B (zh) 电梯轿厢无线供电和通信装置及其供电方法
EP4244168B1 (de) Nachhaltiges pneumatisches aufzugssystem und verfahren
CN102351119A (zh) 交流永磁同步变频电梯公用直流回路技术
EP3746389B1 (de) Elektrischer linearmotor
CN111327126A (zh) 多竖井充电
CN113800361A (zh) 基于电动底盘的电梯驱动系统
CN111099483B (zh) 升降机、电能存储释放控制器和电能存储释放方法
CN201494986U (zh) 智能平衡节能电梯系统
CN203451005U (zh) 数控磁拉力式直立电梯
CN103407868B (zh) 数控磁拉力式直立电梯
WO2010138113A1 (en) Modular arrangement of a double wrap traction elevator machine with dynamic braking
SE1050183A1 (sv) Förfarande och anordning för lraftförsörjning av kuggstångsburna hissar.
CN220078246U (zh) 电梯的控制系统和电梯
CN111682697B (zh) 一种电梯发电装置
EP3922589A1 (de) Installationsanordnung und bauzeitaufzug
CN201550078U (zh) 施工升降机分体变频调速系统
CN213684411U (zh) 一种电梯能源回收存储装置
CN116470651A (zh) 一种基于电磁感应原理的重力储能系统

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20141020

RIC1 Information provided on ipc code assigned before grant

Ipc: B66B 9/02 20060101AFI20141014BHEP

Ipc: B66B 1/30 20060101ALI20141014BHEP

Ipc: B66B 9/16 20060101ALI20141014BHEP

Ipc: B66B 11/00 20060101ALI20141014BHEP

Ipc: B66B 11/04 20060101ALI20141014BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180823

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ELIASSON, JONNY

Inventor name: CEDERBLAD, LARS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1075719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011054855

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1075719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2724748

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190913

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011054855

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190516

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190329

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190329

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240319

Year of fee payment: 14

Ref country code: DE

Payment date: 20240319

Year of fee payment: 14

Ref country code: CZ

Payment date: 20240301

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240412

Year of fee payment: 14