EP2689873B1 - Method for producing a powder of a metal alloy - Google Patents

Method for producing a powder of a metal alloy Download PDF

Info

Publication number
EP2689873B1
EP2689873B1 EP13170994.1A EP13170994A EP2689873B1 EP 2689873 B1 EP2689873 B1 EP 2689873B1 EP 13170994 A EP13170994 A EP 13170994A EP 2689873 B1 EP2689873 B1 EP 2689873B1
Authority
EP
European Patent Office
Prior art keywords
gas
melt
powder
metal
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13170994.1A
Other languages
German (de)
French (fr)
Other versions
EP2689873A1 (en
Inventor
Karl Rimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to SI201331222T priority Critical patent/SI2689873T1/en
Publication of EP2689873A1 publication Critical patent/EP2689873A1/en
Application granted granted Critical
Publication of EP2689873B1 publication Critical patent/EP2689873B1/en
Priority to HRP20181769TT priority patent/HRP20181769T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0888Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control

Definitions

  • a primer also called a primer
  • the color layer is not applied directly to the surface, but it is first the primer applied to the surface and then the ink layer on the primer.
  • the primer can be designed so that it adheres on the one hand on the surface particularly well and on the other hand ensures optimum connection to the color. That is, the primer acts as Bonding layer or bonding agent between the surface and the color.
  • the primer can also provide protection against corrosion, for example for body panels, household appliances or shipbuilding.
  • a corrosion protection primer is known which in an organic matrix, such as a paint or an adhesive, alloyed metallic pigments, for example alloyed zinc-magnesium or alloyed zinc-aluminum-magnesium pigments, optionally mixed with zinc pigments contains.
  • the US 2004/045404 A1 relates to a process for producing a powder of zinc or a zinc alloy for use in a battery. There is a sputtering of the melt by means of a primary gas and a secondary gas, the powder produced on the one hand coarse and on the other hand has fine grains.
  • JPH 10280012 A relates to a metal powder as a coating pigment for antirust applications and its preparation.
  • a spray method is disclosed.
  • the melt is poured from a furnace via a hole located at the bottom of the furnace, which can be closed with a plug, and atomized by means of gas from a nozzle arranged laterally below the hole.
  • the object of the present invention is to provide a process for producing such corrosion-protective pigments or a powder for use as pigments of a corrosion-protection primer.
  • the Grains of the powder - and thus the pigments - have the largest possible size distribution.
  • the pigments thus produced should allow improved corrosion resistance and improved weldability.
  • pigments of a corrosion protection primer can be produced particularly efficiently by producing droplets of a molten metal alloy.
  • the droplets are cooled and solidified to form a powder.
  • the grains of the powder can be used as pigments of a corrosion protection primer.
  • a defined size distribution of the droplets or, as a consequence, of the powder grains can be achieved by the generation of droplets.
  • a defined size distribution of the pigments in the anticorrosive primer is ensured, which in turn has a positive effect on the course of a reaction that takes place in corrosive attacks and in which a rearrangement of the pigment metals and, consequently, the formation of a corrosion-protective passive layer on the metal surface to be protected ,
  • the defined size distribution of the droplets can be achieved by gasifying the metal alloy melt using a primary gas and a secondary gas.
  • the metal droplets can be produced particularly simply and efficiently - and thus cost-effectively - by the gasification or atomization being carried out in such a way that the material flow follows the force of gravity, that is to say with a directional component which points vertically from top to bottom.
  • This directional component (perpendicular from top to bottom) of the material flow fails, the more efficient the metal droplet production. Therefore, it is at a preferred Embodiment of the method according to the invention provided that the material flow of gravity follows.
  • a heated (atomizing) crucible or heated tundish is used, at its lower end a nozzle system for atomizing and supply lines for the primary gas and the secondary gas are provided.
  • the nozzle system is preferably also heated. Accordingly, it is provided in a preferred embodiment of the method according to the invention that the melt is introduced immediately before sputtering in a heated tundish or continuously fed via a Vorschmelzleg réellesofen means of a pump and / or gutter system a heated tundish, the tundish at a lower end a nozzle system and supply lines for the primary gas and the secondary gas has.
  • a temperature in a range of 340 ° C to 700 ° C, preferably from 570 ° C to 630 ° C, more preferably of 600 ° C has been found.
  • the temperature of the melt may range from 370 ° C to 670 ° C, preferably from 400 ° C to 640 ° C, more preferably from 430 ° C to 610 ° C, especially from 460 ° C to 580 ° C, especially from 490 ° C to 550 ° C, lie. It is therefore provided in a preferred embodiment of the method according to the invention that the temperature of the melt is 340 ° C to 700 ° C, preferably 600 ° C.
  • both the primary gas and the secondary gas play an important role for the defined atomization. Best results can be achieved if both the primary gas and the secondary gas have a temperature in a range of 0 ° C to 450 ° C, preferably from 370 ° C to 430 ° C, more preferably from 400 ° C. As a result, too rapid solidification is prevented, wherein the temperatures of the primary gas and the secondary gas may also be different.
  • the heating of the primary gas and the secondary gases can be effected by the supply of gases to the heated tundish or to its nozzle system, i. by thermal contact with the heated tundish or its nozzle system. Different gas temperatures can result in accordance with different flow velocities of the gases or different gas flows due to the different duration of thermal contact. Therefore, it is envisaged that both the primary gas and the secondary gas are preheated to 370 ° C to 430 ° C.
  • the primary gas may have a high (first) gas flow as a guide gas
  • the secondary gas may be intended for the actual sputtering process and a have lower (second) gas flow compared to the primary gas. Accordingly, it is provided that the second gas flow is less than the first gas flow.
  • the first gas flow in a range of 300 kg / h to 900 kg / h, preferably from 650 kg / h to 750 kg / h, more preferably at 700 kg / h and the second gas flow in one Range from 50 kg / h to 150 kg / h, preferably from 70 kg / h to 120 kg / h, more preferably at 90 kg / h.
  • the first gas flow may range from 330 kg / h to 870 kg / h, preferably from 360 kg / h to 840 kg / h, preferably from 390 kg / h to 810 kg / h, more preferably from 420 kg / h to 780 kg / h, in particular from 450 kg / h to 750 kg / h, especially from 480 kg / h to 720 kg / h.
  • the second gas flow may range from 80 kg / h to 120 kg / h, preferably from 90 kg / h to 110 kg / h.
  • the first gas flow is 300 kg / h to 900 kg / h, preferably 700 kg / h and the second gas flow 50 kg / h to 150 kg / h, preferably 90 kg / h H.
  • a defined size distribution of the pigments in the anticorrosive primer is crucial for an optimal sequence of the protective reaction taking place during corrosive attacks.
  • a further process step for subdividing the powder grains into coarse material and fine material is provided.
  • the coarse material is then recycled by re-feeding it to the melt.
  • Powder grains of the coarse material have a diameter of at least 100 ⁇ m, preferably of at least 1000 ⁇ m.
  • a classifying device preferably a screening machine, particularly preferably an ultrasonic screening machine, is used.
  • the powder is separated by means of a classifier, preferably by means of an ultrasonic sieve in coarse and fine material to remove coarse material with a grain diameter of at least 1000 pm, the coarse material again Melt is supplied.
  • a (further) subdivision of the powder into fine material and coarse material can take place by means of a cyclone, wherein the fine material has a particle diameter of less than 1000 ⁇ m, preferably less than 100 ⁇ m. Therefore, it is provided in a preferred embodiment of the method according to the invention that the powder is separated by means of a cyclone in fines and coarse material, wherein all grains of the fines have a diameter of less than 1000 pm.
  • the powder grains may have different shapes.
  • the powder grains may also be needle-shaped, ie have an elongated shape along an axis.
  • a non-uniform shape is possible, i.
  • the powder grains can also be spotty.
  • the dominant shape can be adjusted by choosing the process parameters, such as the gas flows. Accordingly, it is provided in a preferred embodiment of the method according to the invention, that the shape of the powder grains is mostly spherical, needle-shaped or spratzig.
  • the term "grain diameter” or “diameter” refers to the diameter of an imaginary sphere enclosing each powder grain. That the "diameter” in such a case denotes the largest extent of a grain in one direction.
  • the choice of alloy composition is decisive for the corrosion protection effect.
  • the best results are achieved with a Zn-Mg, Zn-Al or Zn-Mg-Al alloy. Accordingly, in a preferred embodiment of the method according to the invention, it is provided that the first metal is Zn and the at least one further metal is Mg and / or Al.
  • the composition ideally moves in the range from 50% by weight to 99.9% by weight, preferably from 97% by weight to 98% by weight, preferably from 60% by weight to 89.9% by weight. -%, more preferably from 70 wt .-% to 79.9 wt .-% Zn content and from 0.1 wt .-% to 50 wt .-%, preferably 1.9 wt .-% to 2.2 Wt .-%, preferably from 10.1 wt .-% to 40 wt .-%, more preferably from 20.1 wt .-% to 30 wt .-% Mg content and / or Al content.
  • the alloy may have unavoidable impurities with other metals, especially Fe and / or Pb and / or Cd.
  • traces of Al may also occur as an impurity.
  • Total impurities account for less than 1% by weight, preferably less than 0.1% by weight, more preferably less than 0.05% by weight. Accordingly, it is provided in a preferred embodiment of the method according to the invention that the melt has a Zn content of 50 wt .-% to 99.9 wt .-% and an Mg content of 0.1 wt .-% to 50 wt. -% and / or an Al content of 0.1 wt.% To 50 wt .-% and optionally unavoidable impurities, in particular Fe and / or Pb and / or Cd.
  • Fig. 1 shown overall flow diagram of a method according to the invention is initially in a Melting furnace 17 Zn 18 melted and then alloyed Mg 19a and / or Al 19b as at least one other metal in a melt 20.
  • the product purity of the Zn 18 used is typically at least 99.995% by weight, and those of the Mg 19a or Al 19b used are typically at least 99.8% by weight.
  • the melt 20 which typically has a temperature in a range of 340 ° C to 700 ° C, typically a temperature of 600 ° C, is fed by means of a pump (not shown) to a preheated atomizer 2 via a stopper rod (not shown) is sealed at its bottom side 22 for the melt. Only when the melt 20 in the preheated Tundish 2 has reached a certain liquid level, for example 30 cm, the stopper rod is pulled out.
  • the melt 20 emerging from the tundish 2 by gravity will now become metal droplets (not shown), i. Droplets of the melt 20, atomized or atomized.
  • the atomization also has a directional proportion, which points in accordance with gravity from top to bottom, which causes a particularly efficient production of the metal droplets.
  • primary gas 6 is supplied by means of a feed line 4 and preheated secondary gas 7 by means of a supply line 5 to the nozzle system 3.
  • the primary gas 6 or the secondary gas 7 is heated to a temperature in a range of 0 ° C to 450 ° C, typically to a temperature of 400 ° C, wherein the temperatures of the primary gas 6 and the secondary gas 7 may differ from each other.
  • the main difference between the primary gas 6 and the secondary gas 7 is in different gas flows.
  • One first gas flow of the primary gas 6 is 300 kg / h to 900 kg / h, preferably 700 kg / h;
  • a second gas flow of the secondary gas 7 is 50 kg / h to 150 kg / h, preferably 90 kg / h.
  • inert gases preferably N 2 and / or Ar and / or He, are used for both the primary gas 6 and the secondary gas 7.
  • the metal droplets of the melt 20 solidify to form grains of a metal alloy powder 21.
  • a flow of material 1 that occurs during sputtering and solidification and has a directionality perpendicular from top to bottom, i. Following gravity is, by a cooled spray tower 8.
  • the solidified powder 21 exits.
  • the powder 21 is first divided by means of a cyclone 11 into fines and coarse material, wherein the coarse material has a grain diameter of at least 1000 pm.
  • the coarse material is discharged via a material discharge 12 of the cyclone 11 and fed back to the melt 20 (not shown).
  • the fine material is finally fed to a filter system 13, from which the primary gas 6 and secondary gas 7 used in the atomization can escape via a gas outlet 14.
  • a Filterstaubaustrag 15 of the filter unit 13 the powder 21 is discharged with a well-defined or narrow size distribution of the powder grains as a finished product.
  • Fig. 2 shows the result of a grain size measurement of a powder 21 of a Zn-Mg alloy.
  • the grain diameter D is plotted on a logarithmic scale in pm
  • the absolute frequency q3 of the grains detected in a diameter interval or a diameter class in arbitrary units thus the histogram shown results.
  • the x-axis covers a range from 0.04 pm to 500 pm, which is divided into 100 classes.
  • a curve for the cumulative frequency Q3 in% is plotted as a solid line, with the values for the cumulative frequency in% on the left y axis.
  • a diameter of less than or equal to 5.54 pm is reported for 10% of all detected grains.
  • the diameter of 50% of all grains is less than or equal to 10.43 pm; the diameter of 90% of all grains is less than or equal to 15,74 pm.

Description

GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Pulvers einer Metalllegierung aus einem ersten Metall und mindestens einem weiteren Metall für den Einsatz als Pigmente eines Korrosionsschutz-Primers für Metalle, wobei das Verfahren folgende Schritte umfasst:

  • Schmelzen und Legieren des ersten Metalls mit dem mindestens einen weiteren Metall, wobei die Temperatur der Schmelze 340°C bis 700°C, vorzugsweise 600°C beträgt;
  • wobei die Schmelze während des Zerstäubens abkühlt und zu einem Pulver erstarrt, wobei ein Materialfluss während des Zerstäubens und Erstarrens erfolgt und wobei der Materialfluss während des Zerstäubens und Erstarrens in einem wassergekühlten Sprühturm verläuft.
The present invention relates to a method for producing a powder of a metal alloy from a first metal and at least one further metal for use as pigments of a corrosion protection primer for metals, the method comprising the following steps:
  • Melting and alloying the first metal with the at least one other metal, wherein the temperature of the melt is 340 ° C to 700 ° C, preferably 600 ° C;
  • wherein the melt cools during sputtering and solidifies to a powder, wherein a material flow occurs during sputtering and solidification, and wherein the material flow during sputtering and solidification in a water-cooled spray tower passes.

STAND DER TECHNIKSTATE OF THE ART

Um eine Farbschicht auf Flächen, insbesondere auf Metallflächen aufzubringen, wird üblicherweise eine Grundierung, auch Primer genannt, verwendet. D.h. die Farbschicht wird nicht direkt auf die Fläche aufgetragen, sondern es wird zunächst der Primer auf die Fläche aufgebracht und dann die Farbschicht auf den Primer.In order to apply a color layer to surfaces, in particular to metal surfaces, a primer, also called a primer, is usually used. That The color layer is not applied directly to the surface, but it is first the primer applied to the surface and then the ink layer on the primer.

Dies ermöglicht zum einen eine bessere Haftung der Farbe, da der Primer so ausgelegt werden kann, dass er einerseits auf der Fläche besonders gut haftet und andererseits eine optimale Verbindung zur Farbe gewährleistet. D.h. der Primer wirkt als Verbindungsschicht bzw. Haftvermittler zwischen der Fläche und der Farbe.
Zum anderen kann der Primer im Falle von Metallflächen zusätzlich auch Schutz vor Korrosion bieten, beispielsweise bei Karosserieblechen, Haushaltsgeräten oder im Schiffbau. Aus der EP 2016138 B1 ist hierzu ein Korrosionsschutzprimer bekannt, der in einer organischen Matrix, wie z.B. einem Lack oder einem Kleber, legierte metallische Pigmente, z.B. legierte Zink-Magnesium- bzw. legierte Zink-Aluminium-Magnesium-Pigmente, gegebenenfalls mit Zinkpigmenten gemischt, enthält. Bei Verwendung solcher Pigmente, die nicht in anorganisch mineralischer oder ionarer Form vorliegen, findet eine Reaktion bei korrosiven Angriffen statt, bei der eine Umlagerung der Pigmentmetalle und damit einhergehend die Bildung einer korrosionsschützenden Passivschicht auf der zu schützenden Metalloberfläche erfolgt.
This allows for a better adhesion of the color, since the primer can be designed so that it adheres on the one hand on the surface particularly well and on the other hand ensures optimum connection to the color. That is, the primer acts as Bonding layer or bonding agent between the surface and the color.
On the other hand, in the case of metal surfaces, the primer can also provide protection against corrosion, for example for body panels, household appliances or shipbuilding. From the EP 2016138 B1 For this purpose, a corrosion protection primer is known which in an organic matrix, such as a paint or an adhesive, alloyed metallic pigments, for example alloyed zinc-magnesium or alloyed zinc-aluminum-magnesium pigments, optionally mixed with zinc pigments contains. When using such pigments, which are not in inorganic mineral or ionic form, a reaction takes place in corrosive attacks, in which a rearrangement of the pigment metals and concomitantly the formation of a corrosion-protective passive layer on the metal surface to be protected takes place.

Die US 2004/045404 A1 betrifft ein Verfahren zur Herstellung eines Pulvers aus Zink oder einer Zink-Legierung für den Einsatz in einer Batterie. Es erfolgt eine Zerstäubung der Schmelze mittels eines Primärgases und eines Sekundärgases, wobei das hergestellte Pulver einerseits grobe und andererseits feine Körner aufweist.The US 2004/045404 A1 relates to a process for producing a powder of zinc or a zinc alloy for use in a battery. There is a sputtering of the melt by means of a primary gas and a secondary gas, the powder produced on the one hand coarse and on the other hand has fine grains.

Die JPH 10280012 A bezieht sich auf ein Metallpulver als Streichpigment für Rostschutzanwendungen und dessen Herstellung. Zur Herstellung wird ein Sprayverfahren geoffenbart. Dabei wird die Schmelze aus einem Ofen über ein am Boden des Ofens befindliches Loch, das mit einem Pfropfen verschließbar ist, gegossen und mittels Gas aus einer seitlich unter dem Loch angeordneten Düse zerstäubt.JPH 10280012 A relates to a metal powder as a coating pigment for antirust applications and its preparation. For the preparation, a spray method is disclosed. In this case, the melt is poured from a furnace via a hole located at the bottom of the furnace, which can be closed with a plug, and atomized by means of gas from a nozzle arranged laterally below the hole.

AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung solcher korrosionsschützender Pigmente bzw. eines Pulvers für den Einsatz als Pigmente eines Korrosionsschutz-Primers zur Verfügung zu stellen. Insbesondere sollen die Körner des Pulvers - und damit die Pigmente - eine möglichst definierte Größenverteilung aufweisen. Die so hergestellten Pigmente sollen eine verbesserte Korrosionsbeständigkeit sowie eine verbesserte Schweißbarkeit erlauben.The object of the present invention is to provide a process for producing such corrosion-protective pigments or a powder for use as pigments of a corrosion-protection primer. In particular, the Grains of the powder - and thus the pigments - have the largest possible size distribution. The pigments thus produced should allow improved corrosion resistance and improved weldability.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Erfindungsgemäß lassen sich Pigmente eines Korrosionsschutz-Primers besonders effizient herstellen, indem Tröpfchen einer geschmolzenen Metalllegierung erzeugt werden. Die Tröpfchen werden abgekühlt und erstarren, sodass ein Pulver gebildet wird. Die Körner des Pulvers können als Pigmente eines Korrosionsschutz-Primers eingesetzt werden.According to the invention, pigments of a corrosion protection primer can be produced particularly efficiently by producing droplets of a molten metal alloy. The droplets are cooled and solidified to form a powder. The grains of the powder can be used as pigments of a corrosion protection primer.

Durch die Erzeugung von Tröpfchen lässt sich insbesondere eine definierte Größenverteilung der Tröpfchen bzw. in der Folge der Pulverkörner erreichen. Somit ist eine definierte Größenverteilung der Pigmente im Korrosionsschutz-Primer gewährleistet, was sich wiederum positiv auf den Ablauf einer Reaktion auswirkt, die bei korrosiven Angriffen stattfindet und bei welcher eine Umlagerung der Pigmentmetalle und damit einhergehend die Bildung einer korrosionsschützenden Passivschicht auf der zu schützenden Metalloberfläche erfolgt.In particular, a defined size distribution of the droplets or, as a consequence, of the powder grains can be achieved by the generation of droplets. Thus, a defined size distribution of the pigments in the anticorrosive primer is ensured, which in turn has a positive effect on the course of a reaction that takes place in corrosive attacks and in which a rearrangement of the pigment metals and, consequently, the formation of a corrosion-protective passive layer on the metal surface to be protected ,

Die definierte Größenverteilung der Tröpfchen lässt sich durch Vergasen bzw. Zerstäuben der Metalllegierungsschmelze unter Verwendung eines Primärgases und eines Sekundärgases erzielen.The defined size distribution of the droplets can be achieved by gasifying the metal alloy melt using a primary gas and a secondary gas.

Daher ist es bei einem Verfahren zur Herstellung eines Pulvers einer Metalllegierung aus einem ersten Metall und mindestens einem weiteren Metall für den Einsatz als Pigmente eines Korrosionsschutz-Primers für Metalle, erfindungsgemäß vorgesehen, dass das Verfahren folgenden Schritt umfasst:

  • Zerstäuben der Schmelze und Formgebung der Pulverkörner mittels eines Primärgases, welches einen ersten Gasfluss aufweist, und eines Sekundärgases, welches einen zweiten Gasfluss aufweist, wobei der zweite Gasfluss geringer als der erste Gasfluss ist und wobei sowohl das Primärgas als auch das Sekundärgas auf 370°C bis 430°C vorgewärmt sind.
Therefore, in a method for producing a powder of a metal alloy from a first metal and at least one further metal for use as pigments of a corrosion protection primer for metals, it is provided according to the invention that the method comprises the following step:
  • Atomizing the melt and shaping the powder grains by means of a primary gas having a first gas flow and a secondary gas having a second gas flow, the second gas flow being less than the first gas flow and wherein both the primary gas and the secondary gas are at 370 ° C preheated to 430 ° C.

Besonders einfach und effizient - und damit kostengünstig - lassen sich die Metalltröpfchen erzeugen, indem das Vergasen bzw. Zerstäuben so erfolgt, dass der Materialfluss der Schwerkraft folgt, also mit einem Richtungsanteil, der senkrecht von oben nach unten weist. Je größer dieser Richtungsanteil (senkrecht von oben nach unten) des Materialflusses ausfällt, desto effizienter ist die Metalltröpfchenerzeugung. Daher ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass der Materialfluss der Schwerkraft folgt.The metal droplets can be produced particularly simply and efficiently - and thus cost-effectively - by the gasification or atomization being carried out in such a way that the material flow follows the force of gravity, that is to say with a directional component which points vertically from top to bottom. The larger this directional component (perpendicular from top to bottom) of the material flow fails, the more efficient the metal droplet production. Therefore, it is at a preferred Embodiment of the method according to the invention provided that the material flow of gravity follows.

Um eine für das Zerstäuben günstige Temperatur der Schmelze garantieren zu können, wird ein beheizter (Verdüsungs-)Tiegel bzw. beheizter Tundish verwendet, an dessen unterem Ende ein Düsensystem für das Zerstäuben sowie Zuführungsleitungen für das Primärgas und das Sekundärgas vorgesehen sind. Hierbei ist das Düsensystem vorzugsweise ebenfalls beheizt. Entsprechend ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass die Schmelze unmittelbar vor dem Zerstäuben in einen beheizten Tundish eingebracht oder über einen Vorschmelzlegierungsofen mittels eines Pumpen- und/oder Rinnensystems kontinuierlich einem beheizten Tundish zugeführt wird, wobei der Tundish an einem unteren Ende ein Düsensystem sowie Zuführungsleitungen für das Primärgas und das Sekundärgas aufweist.In order to guarantee a favorable for the atomizing temperature of the melt, a heated (atomizing) crucible or heated tundish is used, at its lower end a nozzle system for atomizing and supply lines for the primary gas and the secondary gas are provided. In this case, the nozzle system is preferably also heated. Accordingly, it is provided in a preferred embodiment of the method according to the invention that the melt is introduced immediately before sputtering in a heated tundish or continuously fed via a Vorschmelzlegierungsofen means of a pump and / or gutter system a heated tundish, the tundish at a lower end a nozzle system and supply lines for the primary gas and the secondary gas has.

Um ein Erstarren der Metalltröpfchen zu Körnern des Pulvers zu begünstigen, ist vorgesehen, dass der Materialfluss während des Zerstäubens und Erstarrens in einem wassergekühlten Sprühturm verläuft.In order to promote solidification of the metal droplets into grains of the powder, it is provided that the flow of material during atomization and solidification in a water-cooled spray tower runs.

Als für das Zerstäuben der Schmelze günstig hat sich eine Temperatur in einem Bereich von 340°C bis 700°C, vorzugsweise von 570°C bis 630°C, besonders bevorzugt von 600°C erwiesen. In weiteren bevorzugten Ausführungsformen kann die Temperatur der Schmelze in einem Bereich von 370°C bis 670°C, vorzugsweise von 400°C bis 640°C, besonders bevorzugt von 430°C bis 610°C, insbesondere von 460°C bis 580°C, vor allem von 490°C bis 550°C, liegen. Daher ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass die Temperatur der Schmelze 340°C bis 700°C, vorzugsweise 600°C beträgt.As favorable for atomizing the melt, a temperature in a range of 340 ° C to 700 ° C, preferably from 570 ° C to 630 ° C, more preferably of 600 ° C has been found. In further preferred embodiments, the temperature of the melt may range from 370 ° C to 670 ° C, preferably from 400 ° C to 640 ° C, more preferably from 430 ° C to 610 ° C, especially from 460 ° C to 580 ° C, especially from 490 ° C to 550 ° C, lie. It is therefore provided in a preferred embodiment of the method according to the invention that the temperature of the melt is 340 ° C to 700 ° C, preferably 600 ° C.

Neben der Temperatur der Schmelze spielen für das definierte Zerstäuben die Temperaturen des Primärgases und des Sekundärgases eine wichtige Rolle. Beste Ergebnisse lassen sich erzielen, wenn sowohl das Primärgas als auch das Sekundärgas eine Temperatur in einem Bereich von 0°C bis 450°C, vorzugsweise von 370°C bis 430°C, besonders bevorzugt von 400°C aufweisen. Hierdurch wird ein zu schnelles Erstarren verhindert, wobei die Temperaturen des Primärgases und des Sekundärgases auch unterschiedlich ausfallen können. Die Aufheizung des Primärgases und des Sekundärgase kann dabei durch die Zuführung der Gase zum beheizten Tundish bzw. zu dessen Düsensystem erfolgen, d.h. durch Wärmekontakt mit dem beheizten Tundish bzw. dessen Düsensystem. Unterschiedliche Gastemperaturen können sich entsprechend durch unterschiedliche Strömungsgeschwindigkeiten der Gase bzw. unterschiedliche Gasflüsse aufgrund des unterschiedlich lange andauernden Wärmekontakts ergeben. Daher ist vorgesehen, dass sowohl das Primärgas als auch das Sekundärgas auf 370°C bis 430°C vorgewärmt sind.In addition to the temperature of the melt, the temperatures of the primary gas and the secondary gas play an important role for the defined atomization. Best results can be achieved if both the primary gas and the secondary gas have a temperature in a range of 0 ° C to 450 ° C, preferably from 370 ° C to 430 ° C, more preferably from 400 ° C. As a result, too rapid solidification is prevented, wherein the temperatures of the primary gas and the secondary gas may also be different. The heating of the primary gas and the secondary gases can be effected by the supply of gases to the heated tundish or to its nozzle system, i. by thermal contact with the heated tundish or its nozzle system. Different gas temperatures can result in accordance with different flow velocities of the gases or different gas flows due to the different duration of thermal contact. Therefore, it is envisaged that both the primary gas and the secondary gas are preheated to 370 ° C to 430 ° C.

Eine weitere Möglichkeit, den Zerstäubungsprozess zu beeinflussen, besteht in der Wahl der Gasflüsse des Primärgases und des Sekundärgases. Insbesondere durch unterschiedlich starke Gasflüsse lässt sich beispielsweise die Form der Tröpfchen und damit der Körner des Pulvers einstellen. Das Primärgas kann dabei als Führungsgas einen hohen (ersten) Gasfluss aufweisen, das Sekundärgas kann für den eigentlichen Zerstäubungsprozess bestimmt sein und einen
gegenüber dem Primärgas geringeren (zweiten) Gasfluss aufweisen. Entsprechend ist vorgesehen, dass der zweite Gasfluss geringer als der erste Gasfluss ist.
Another way to influence the sputtering process, is the choice of the gas flows of the primary gas and the secondary gas. In particular, by different strong gas flows, for example, the shape of the droplets and thus the grains of the powder can be adjusted. The primary gas may have a high (first) gas flow as a guide gas, the secondary gas may be intended for the actual sputtering process and a
have lower (second) gas flow compared to the primary gas. Accordingly, it is provided that the second gas flow is less than the first gas flow.

Besonders gute Ergebnisse werden erzielt, wenn der erste Gasfluss in einem Bereich von 300 kg/h bis 900 kg/h, vorzugsweise von 650 kg/h bis 750 kg/h, besonders bevorzugt bei 700 kg/h liegt und der zweite Gasfluss in einem Bereich von 50 kg/h bis 150 kg/h, vorzugsweise von 70 kg/h bis 120 kg/h, besonders bevorzugt bei 90 kg/h. In weiteren bevorzugten Ausführungsformen kann der erste Gasfluss in einem Bereich von 330 kg/h bis 870 kg/h, vorzugsweise von 360 kg/h bis 840 kg/h, bevorzugt von 390 kg/h bis 810 kg/h, besonders bevorzugt von 420 kg/h bis 780 kg/h, insbesondere von 450 kg/h bis 750 kg/h, vor allem von 480 kg/h bis 720 kg/h, liegen. Darüber hinaus kann in weiteren bevorzugten Ausführungsformen der zweite Gasfluss in einem Bereich von 80 kg/h bis 120 kg/h, vorzugsweise von 90 kg/h bis 110 kg/h, liegen. Entsprechend ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass der erste Gasfluss 300 kg/h bis 900 kg/h, vorzugsweise 700 kg/h beträgt und der zweite Gasfluss 50 kg/h bis 150 kg/h, vorzugsweise 90 kg/h.Particularly good results are achieved when the first gas flow in a range of 300 kg / h to 900 kg / h, preferably from 650 kg / h to 750 kg / h, more preferably at 700 kg / h and the second gas flow in one Range from 50 kg / h to 150 kg / h, preferably from 70 kg / h to 120 kg / h, more preferably at 90 kg / h. In further preferred embodiments, the first gas flow may range from 330 kg / h to 870 kg / h, preferably from 360 kg / h to 840 kg / h, preferably from 390 kg / h to 810 kg / h, more preferably from 420 kg / h to 780 kg / h, in particular from 450 kg / h to 750 kg / h, especially from 480 kg / h to 720 kg / h. Moreover, in other preferred embodiments, the second gas flow may range from 80 kg / h to 120 kg / h, preferably from 90 kg / h to 110 kg / h. Accordingly, it is provided in a preferred embodiment of the method according to the invention that the first gas flow is 300 kg / h to 900 kg / h, preferably 700 kg / h and the second gas flow 50 kg / h to 150 kg / h, preferably 90 kg / h H.

Grundsätzlich ist bei der Zerstäubung (bzw. Verdüsung oder Vergasung) auf eine mögliche Oxidation - vor allem an der Oberfläche - von Legierungselementen der Schmelze zu achten. Meist ist eine solche Oxidation nicht erwünscht, weshalb es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass als Primärgas und/oder als Sekundärgas ein inertes Gas, vorzugsweise umfassend N2 und/oder Ar und/oder He, verwendet wird, um Oxidation zu unterbinden. Wenn jedoch eine Oxidation nicht von Bedeutung ist, kann selbstverständlich auch mit Luft eingesetzt werden.In principle, during atomization (or atomization or gasification) a possible oxidation - especially on the surface - of alloying elements of the melt must be taken into account. Most such oxidation is not desirable, which is why it is provided in a preferred embodiment of the method according to the invention that as the primary gas and / or secondary gas, an inert gas, preferably comprising N 2 and / or Ar and / or He, is used for oxidation prevention. However, if oxidation is not important, it is of course also possible to use with air.

Wie bereits festgehalten, ist eine definierte Größenverteilung der Pigmente im Korrosionsschutz-Primer für einen optimalen Ablauf der bei korrosiven Angriffen ablaufenden Schutz-Reaktion entscheidend. Um die Größenverteilung der Pulverkörner noch besser zu definieren bzw. einzuschränken, ist daher ein weiterer Verfahrensschritt zur Unterteilung der Pulverkörner in Grobgut und Feingut vorgesehen. Das Grobgut wird anschließend wiederverwertet, indem es erneut der Schmelze zugeführt wird. Dabei weisen Pulverkörner des Grobguts Durchmesser von zumindest 100 pm, vorzugsweise von zumindest 1000 pm auf. Für die Unterteilung wird eine Klassiereinreichtung, vorzugsweise eine Siebmaschine, besonders bevorzugt eine Ultraschall-Siebmaschine verwendet. Entsprechend ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass das Pulver mittels einer Klassiereinrichtung, vorzugsweise mittels einer Ultraschall-Siebmaschine, in Grobgut und Feingut getrennt wird, um Grobgut mit einem Korndurchmesser von zumindest 1000 pm zu entfernen, wobei das Grobgut wieder der Schmelze zugeführt wird.As already stated, a defined size distribution of the pigments in the anticorrosive primer is crucial for an optimal sequence of the protective reaction taking place during corrosive attacks. In order to define or limit the size distribution of the powder grains even better, therefore, a further process step for subdividing the powder grains into coarse material and fine material is provided. The coarse material is then recycled by re-feeding it to the melt. Powder grains of the coarse material have a diameter of at least 100 μm, preferably of at least 1000 μm. For the subdivision, a classifying device, preferably a screening machine, particularly preferably an ultrasonic screening machine, is used. Accordingly, it is provided in a preferred embodiment of the method according to the invention that the powder is separated by means of a classifier, preferably by means of an ultrasonic sieve in coarse and fine material to remove coarse material with a grain diameter of at least 1000 pm, the coarse material again Melt is supplied.

Alternativ oder zusätzlich zur Siebung kann eine (weitere) Unterteilung des Pulvers in Feingut und Grobgut mittels eines Zyklons erfolgen, wobei das Feingut Korndurchmesser von weniger als 1000 pm, vorzugsweise von weniger als 100 pm aufweist. Daher ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass das Pulver mittels eines Zyklons in Feingut und Grobgut getrennt wird, wobei sämtliche Körner des Feinguts Durchmesser von weniger als 1000 pm aufweisen.As an alternative or in addition to screening, a (further) subdivision of the powder into fine material and coarse material can take place by means of a cyclone, wherein the fine material has a particle diameter of less than 1000 μm, preferably less than 100 μm. Therefore, it is provided in a preferred embodiment of the method according to the invention that the powder is separated by means of a cyclone in fines and coarse material, wherein all grains of the fines have a diameter of less than 1000 pm.

Es lässt sich somit eine besonders definierte bzw. scharfe Größenverteilung der Pulverkörner erzielen. Entsprechend ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass 90% der Körner des Feinguts Durchmesser zwischen 10 pm und 1000 pm, vorzugsweise zwischen 15 pm und 20 pm aufweisen und dass 50% der Körner des Feinguts Durchmesser zwischen 3 pm und 800 pm, vorzugsweise zwischen 8 pm und 12 pm aufweisen.It is thus possible to achieve a particularly defined or sharp size distribution of the powder grains. Accordingly, it is provided in a preferred embodiment of the method according to the invention that 90% of the grains of the fine material diameter between 10 pm and 1000 pm, preferably between 15 pm and 20 pm and that 50% of the grains of the fine material have diameters between 3 pm and 800 pm, preferably between 8 pm and 12 pm.

Wie bereits erwähnt, können die Pulverkörner unterschiedliche Form aufweisen. Neben der sphärischen Form, können die Pulverkörner auch nadelförmig sein, also entlang einer Achse eine langgestreckte Form aufweisen. Schließlich ist auch eine ungleichförmige Form möglich, d.h. die Pulverkörner können auch spratzig sein. Die dominierende Form kann durch Wahl der Prozessparameter, wie beispielsweise der Gasflüsse, eingestellt werden. Entsprechend ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass die Form der Pulverkörner mehrheitlich sphärisch, nadelig oder spratzig ist. Hierzu ist noch anzumerken, dass der Begriff "Korndurchmesser" bzw. "Durchmesser" sich im Falle von nicht-sphärischen Kornformen (z.B. nadelförmig oder spratzig) auf den Durchmesser einer gedachten das jeweilige Pulverkorn umschließenden Kugel bezieht. D.h. der "Durchmesser" bezeichnet in einem solchen Fall die größte Erstreckung eines Korns in einer Richtung.As already mentioned, the powder grains may have different shapes. In addition to the spherical shape, the powder grains may also be needle-shaped, ie have an elongated shape along an axis. Finally, a non-uniform shape is possible, i. The powder grains can also be spotty. The dominant shape can be adjusted by choosing the process parameters, such as the gas flows. Accordingly, it is provided in a preferred embodiment of the method according to the invention, that the shape of the powder grains is mostly spherical, needle-shaped or spratzig. It should also be noted that in the case of non-spherical grain shapes (e.g., acicular or sparse), the term "grain diameter" or "diameter" refers to the diameter of an imaginary sphere enclosing each powder grain. That the "diameter" in such a case denotes the largest extent of a grain in one direction.

Die Wahl der Legierungszusammensetzung ist für die Korrosionsschutzwirkung mitentscheidend. Die besten Ergebnisse werden mit einer Zn-Mg-, Zn-Al- oder Zn-Mg-Al-Legierung erzielt. Entsprechend ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass es sich bei dem ersten Metall um Zn und bei dem mindestens einen weiteren Metall um Mg und/oder um Al handelt.The choice of alloy composition is decisive for the corrosion protection effect. The best results are achieved with a Zn-Mg, Zn-Al or Zn-Mg-Al alloy. Accordingly, in a preferred embodiment of the method according to the invention, it is provided that the first metal is Zn and the at least one further metal is Mg and / or Al.

Die Zusammensetzung bewegt sich dabei idealerweise im Bereich von 50 Gew.-% bis 99,9 Gew.-%, vorzugsweise von 97 Gew.-% bis 98 Gew.-%, bevorzugt von 60 Gew.-% bis 89,9 Gew.-%, besonders bevorzugt von 70 Gew.-% bis 79,9 Gew.-% Zn-Anteil und von 0,1 Gew.-% bis 50 Gew.-%, vorzugsweise 1,9 Gew.-% bis 2,2 Gew.-%, bevorzugt von 10,1 Gew.-% bis 40 Gew.-%, besonders bevorzugt von 20,1 Gew.-% bis 30 Gew.-% Mg-Anteil und/oder Al-Anteil. Außerdem kann die Legierung unvermeidbare Verunreinigungen mit anderen Metallen aufweisen, insbesondere Fe und/oder Pb und/oder Cd. Im Falle einer Zn-Mg-Legierung können außerdem Spuren von Al als Verunreinigung auftreten. Verunreinigungen machen insgesamt einen Anteil von weniger als 1 Gew.-%, vorzugsweise weniger als 0,1 Gew.-%, besonders bevorzugt weniger als 0,05 Gew.-% aus. Entsprechend ist es bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass die Schmelze einen Zn-Anteil von 50 Gew.-% bis 99,9 Gew.-% und einen Mg-Anteil von 0,1 Gew.-% bis 50 Gew.-% und/oder einen Al-Anteil von 0,1 Gew.% bis 50 Gew.-% aufweist sowie gegebenenfalls unvermeidbare Verunreinigungen, insbesondere Fe und/oder Pb und/oder Cd.The composition ideally moves in the range from 50% by weight to 99.9% by weight, preferably from 97% by weight to 98% by weight, preferably from 60% by weight to 89.9% by weight. -%, more preferably from 70 wt .-% to 79.9 wt .-% Zn content and from 0.1 wt .-% to 50 wt .-%, preferably 1.9 wt .-% to 2.2 Wt .-%, preferably from 10.1 wt .-% to 40 wt .-%, more preferably from 20.1 wt .-% to 30 wt .-% Mg content and / or Al content. In addition, the alloy may have unavoidable impurities with other metals, especially Fe and / or Pb and / or Cd. In the case of a Zn-Mg alloy, traces of Al may also occur as an impurity. Total impurities account for less than 1% by weight, preferably less than 0.1% by weight, more preferably less than 0.05% by weight. Accordingly, it is provided in a preferred embodiment of the method according to the invention that the melt has a Zn content of 50 wt .-% to 99.9 wt .-% and an Mg content of 0.1 wt .-% to 50 wt. -% and / or an Al content of 0.1 wt.% To 50 wt .-% and optionally unavoidable impurities, in particular Fe and / or Pb and / or Cd.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Die Erfindung wird nun anhand eines Ausführungsbeispiels näher erläutert. Die Zeichnungen sind beispielhaft und sollen den Erfindungsgedanken zwar darlegen, ihn aber keinesfalls einengen oder gar abschließend wiedergeben.The invention will now be explained in more detail with reference to an embodiment. The drawings are exemplary and are intended to illustrate the inventive idea, but in no way restrict it or even reproduce it.

Dabei zeigt:

Fig. 1
ein Gesamtfließschema eines erfindungsgemäßen Verfahrens
Fig. 2
eine gemessene Größenverteilung eines Pulvers, welches mittels eines erfindungsgemäßen Verfahrens hergestellt worden ist
Showing:
Fig. 1
a total flow diagram of a method according to the invention
Fig. 2
a measured size distribution of a powder which has been produced by means of a method according to the invention

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

Gemäß dem in Fig. 1 gezeigten Gesamtfließschema eines erfindungsgemäßen Verfahrens wird zunächst in einem Schmelzofen 17 Zn 18 aufgeschmolzen und anschließend Mg 19a und/oder Al 19b als mindestens ein weiteres Metall in einer Schmelze 20 zulegiert. Die Produktreinheit des verwendeten Zn 18 beträgt dabei typischerweise mindestens 99,995 Gew.-%, jene des verwendeten Mg 19a bzw. Al 19b typischerweise mindestens 99,8 Gew.-%.According to the in Fig. 1 shown overall flow diagram of a method according to the invention is initially in a Melting furnace 17 Zn 18 melted and then alloyed Mg 19a and / or Al 19b as at least one other metal in a melt 20. The product purity of the Zn 18 used is typically at least 99.995% by weight, and those of the Mg 19a or Al 19b used are typically at least 99.8% by weight.

Die Schmelze 20, die üblicherweise eine Temperatur in einem Bereich von 340°C bis 700°C, typischerweise eine Temperatur von 600°C aufweist, wird mittels einer Pumpe (nicht dargestellt) einem vorgeheizten Verdüsungstiegel bzw. Tundish 2 zugeführt, der mittels einer Stopfenstange (nicht dargestellt) an seiner Bodenseite 22 für die Schmelze dicht verschlossen ist. Erst wenn die Schmelze 20 im vorgeheizten Tundish 2 einen gewissen Flüssigkeitsstand, beispielsweise 30 cm, erreicht hat, wird die Stopfenstange herausgezogen.The melt 20, which typically has a temperature in a range of 340 ° C to 700 ° C, typically a temperature of 600 ° C, is fed by means of a pump (not shown) to a preheated atomizer 2 via a stopper rod (not shown) is sealed at its bottom side 22 for the melt. Only when the melt 20 in the preheated Tundish 2 has reached a certain liquid level, for example 30 cm, the stopper rod is pulled out.

Mittels eines beheizten Düsensystems 3, das ebenfalls an der Bodenseite 22 des beheizten Tundish 2 angeordnet ist, wird nun die aufgrund der Schwerkraft aus dem Tundish 2 austretende Schmelze 20 zu Metalltröpfchen (nicht dargestellt), d.h. Tröpfchen der Schmelze 20, verdüst bzw. zerstäubt. Auch die Verdüsung bzw. Zerstäubung hat einen Richtungsanteil, der gemäß der Schwerkraft von oben nach unten weist, was eine besonders effiziente Erzeugung der Metalltröpfchen bewirkt.By means of a heated nozzle system 3, which is also located on the bottom side 22 of the heated tundish 2, the melt 20 emerging from the tundish 2 by gravity will now become metal droplets (not shown), i. Droplets of the melt 20, atomized or atomized. The atomization also has a directional proportion, which points in accordance with gravity from top to bottom, which causes a particularly efficient production of the metal droplets.

Beim Verdüsen bzw. Zerstäuben wird vorgeheiztes Primärgas 6 mittels einer Zuführungsleitung 4 sowie vorgeheiztes Sekundärgas 7 mittels einer Zuführungsleitung 5 dem Düsensystem 3 zugeführt. Das Primärgas 6 bzw. das Sekundärgas 7 ist dabei auf eine Temperatur in einem Bereich von 0°C bis 450°C, typischerweise auf eine Temperatur von 400°C aufgeheizt, wobei die Temperaturen des Primärgases 6 und des Sekundärgases 7 voneinander abweichen können.During atomization or preheating primary gas 6 is supplied by means of a feed line 4 and preheated secondary gas 7 by means of a supply line 5 to the nozzle system 3. The primary gas 6 or the secondary gas 7 is heated to a temperature in a range of 0 ° C to 450 ° C, typically to a temperature of 400 ° C, wherein the temperatures of the primary gas 6 and the secondary gas 7 may differ from each other.

Der Hauptunterschied zwischen dem Primärgas 6 und dem Sekundärgas 7 liegt in unterschiedlichen Gasflüssen. Ein erster Gasfluss des Primärgases 6 beträgt 300 kg/h bis 900 kg/h, vorzugsweise 700 kg/h; ein zweiter Gasfluss des Sekundärgases 7 beträgt 50 kg/h bis 150 kg/h, vorzugsweise 90 kg/h.The main difference between the primary gas 6 and the secondary gas 7 is in different gas flows. One first gas flow of the primary gas 6 is 300 kg / h to 900 kg / h, preferably 700 kg / h; a second gas flow of the secondary gas 7 is 50 kg / h to 150 kg / h, preferably 90 kg / h.

Um Oxidation, insbesondere an der Oberfläche der Legierungsmetalle zu vermeiden, kommen sowohl für das Primärgas 6 als auch für das Sekundärgas 7 inerte Gase, vorzugsweise N2 und/oder Ar und/oder He zum Einsatz.In order to avoid oxidation, in particular on the surface of the alloying metals, inert gases, preferably N 2 and / or Ar and / or He, are used for both the primary gas 6 and the secondary gas 7.

Während des Zerstäubens erstarren die Metalltröpfchen der Schmelze 20 und bilden damit Körner eines Metalllegierungspulvers 21. Um das Erstarren zu begünstigen, verläuft ein Materialfluss 1, der während des Zerstäubens und Erstarrens erfolgt und einen Richtungsanteil senkrecht von oben nach unten aufweist, d.h. der Schwerkraft folgend ist, durch einen gekühlten Sprühturm 8. Die Kühlung des Sprühturms 8 erfolgt mittels Wasser, weshalb der Sprühturm 8 einen Doppelmantel 9 und einen Wasseranschluss 10 für die Wasserkühlung aufweist.During sputtering, the metal droplets of the melt 20 solidify to form grains of a metal alloy powder 21. To promote solidification, there is a flow of material 1 that occurs during sputtering and solidification and has a directionality perpendicular from top to bottom, i. Following gravity is, by a cooled spray tower 8. The cooling of the spray tower 8 by means of water, which is why the spray tower 8 has a double jacket 9 and a water connection 10 for the water cooling.

Am unteren Ende 16 des Sprühturms 8 tritt das erstarrte Pulver 21 aus. Um die besonders gut definierte Größenverteilung der Körner des Pulvers 21 zu erreichen, wird das Pulver 21 zunächst mittels eines Zyklons 11 in Feingut und Grobgut unterteilt, wobei das Grobgut Korndurchmesser von mindestens 1000 pm aufweist. Das Grobgut wird über einen Materialaustrag 12 des Zyklons 11 ausgetragen und wieder der Schmelze 20 zugeführt (nicht dargestellt).At the lower end 16 of the spray tower 8, the solidified powder 21 exits. In order to achieve the particularly well-defined size distribution of the grains of the powder 21, the powder 21 is first divided by means of a cyclone 11 into fines and coarse material, wherein the coarse material has a grain diameter of at least 1000 pm. The coarse material is discharged via a material discharge 12 of the cyclone 11 and fed back to the melt 20 (not shown).

Das Feingut wird schließlich einer Filteranlage 13 zugeführt, aus welcher über einen Gasaustritt 14 das bei der Zerstäubung eingesetzte Primärgas 6 und Sekundärgas 7 entweichen können. Über einen Filterstaubaustrag 15 der Filteranlage 13 wird das Pulver 21 mit einer genau definierten bzw. engen Größenverteilung der Pulverkörner als Fertigprodukt ausgetragen.The fine material is finally fed to a filter system 13, from which the primary gas 6 and secondary gas 7 used in the atomization can escape via a gas outlet 14. About a Filterstaubaustrag 15 of the filter unit 13, the powder 21 is discharged with a well-defined or narrow size distribution of the powder grains as a finished product.

Fig. 2 zeigt das Ergebnis einer Korngrößenmessung eines Pulvers 21 einer Zn-Mg-Legierung. Auf der x-Achse ist der Korndurchmesser D auf einer logarithmischen Skala in pm aufgetragen, auf der rechten y-Achse die absolute Häufigkeit q3 der in einem Durchmesser-Intervall bzw. einer Durchmesser-Klasse detektierten Körner in willkürlichen Einheiten, womit sich das dargestellte Histogramm ergibt. Dabei deckt in Fig. 2 die x-Achse einen Bereich von 0,04 pm bis 500 pm ab, der in 100 Klassen unterteilt ist. Fig. 2 shows the result of a grain size measurement of a powder 21 of a Zn-Mg alloy. On the x-axis the grain diameter D is plotted on a logarithmic scale in pm, on the right y-axis the absolute frequency q3 of the grains detected in a diameter interval or a diameter class in arbitrary units, thus the histogram shown results. It covers in Fig. 2 the x-axis covers a range from 0.04 pm to 500 pm, which is divided into 100 classes.

Zusätzlich ist eine Kurve für die kumulierte Häufigkeit Q3 in % als durchgezogene Linie eingezeichnet, wobei die Werte für die kumulierte Häufigkeit in % auf der linken y-Achse abzulesen sind. Hierbei wird für 10% aller detektierten Körner ein Durchmesser kleiner gleich 5,54 pm ausgewiesen. Der Durchmesser von 50% aller Körner ist kleiner gleich 10,43 pm; der Durchmesser von 90% aller Körner ist kleiner gleich 15,74 pm.In addition, a curve for the cumulative frequency Q3 in% is plotted as a solid line, with the values for the cumulative frequency in% on the left y axis. In this case, a diameter of less than or equal to 5.54 pm is reported for 10% of all detected grains. The diameter of 50% of all grains is less than or equal to 10.43 pm; the diameter of 90% of all grains is less than or equal to 15,74 pm.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Materialflussmaterial flow
22
Beheizter TundishHeated tundish
33
Düsensystemnozzle system
44
Zuführungsleitung für PrimärgasSupply line for primary gas
55
Zuführungsleitung für SekundärgasSupply line for secondary gas
66
Primärgasprimary gas
77
Sekundärgassecondary gas
88th
Sprühturmspray tower
99
Doppelmantel für WasserkühlungDouble jacket for water cooling
1010
Wasseranschlussmains water supply
1111
Zykloncyclone
1212
Materialaustragmaterial discharge
1313
Filteranlagefilter system
1414
Gasaustrittgas outlet
1515
FilterstaubaustragFilter dust discharge
1616
Unteres Ende des SprühturmsLower end of the spray tower
1717
Schmelzofenfurnace
1818
ZnZn
19a19a
Mgmg
19b19b
Alal
2020
Schmelzemelt
2121
Pulverpowder
2222
Bodenseite des beheizten TundishBottom side of the heated tundish
DD
KorndurchmesserGrain diameter
q3q3
absolute Häufigkeitabsolute frequency
Q3Q3
kumulierte Häufigkeitcumulative frequency

Claims (10)

  1. A method of producing a powder of a metal alloy from a first metal (18) and at least one further metal (19a, 19b) for use as pigments of a corrosion protection primer for metals, wherein the method comprises the steps of:
    - melting and alloying the first metal (18) with the at least one further metal (19a, 19b), wherein the temperature of the melt (20) is 340°C to 700°C, preferably 600°C;
    - wherein the melt (20) cools during sputtering and solidifies to a powder (21), wherein a material flow (1) occurs during sputtering and solidification and wherein the material flow (1) extends during sputtering and solidification in a water-cooled spray tower (8), characterized in that the method comprises the following step:
    - sputtering the melt (20) by means of a primary gas (6) having a first gas flow and a secondary gas (7) having a second gas flow, wherein the second gas flow is less than the first gas flow and wherein both the primary gas (6) and the secondary gas (7) are preheated to 370°C to 430°C.
  2. Method according to claim 1, characterized in that the material flow (1) follows the force of gravity.
  3. Method according to one of claims 1 to 2, characterized in that the melt (20) is introduced immediately before sputtering into a heated tundish (2) or is fed continuously via a pre-melt alloying furnace by means of a pump and/or gutter system to a heated tundish (2), wherein the tundish comprises a nozzle system (3) and supply lines (4, 5) for the primary gas (6) and the secondary gas (7) at a lower end, so that the heating of the primary gas and the secondary gas occurs by supplying the gases to the heated tundish (2) or to its nozzle system, namely by thermal contact with the heated tundish (2) or its nozzle system.
  4. Method according to one of the claims 1 to 3, characterized in that the first gas flow is 300 kg/h to 900 kg/h, preferably 700 kg/h, and the second gas flow is 50 kg/h to 150 kg/h, preferably 90 kg/h.
  5. Method according to one of the claims 1 to 4, characterized in that an inert gas, preferably comprising N2 and/or Ar and/or He, is used as the primary gas (6) and/or as the secondary gas (7) to prevent oxidation.
  6. Method according to one of the claims 1 to 5, characterized in that the powder (21) is separated by means of a classifier, preferably by means of an ultrasonic screening machine, into coarse material and fine material (12) in order to remove coarse material having a grain diameter of at least 1000 µm, wherein the coarse material is fed back to the melt (20).
  7. Method according to one of the claims 1 to 6, characterized in that the powder (21) is separated by means of a cyclone (11) into fine material (12) and coarse material, wherein all grains of the fine material (12) have diameters of less than 1000 µm, and wherein preferably 90% of the grains of the fine material (12) have diameters between 10 µm and 1000 µm, and preferably 50% of the grains of the fine material (12) have diameters between 3 µm and 800 µm.
  8. Method according to one of the claims 1 to 7, characterized in that the shape of the powder grains is predominantly spherical, needle-shaped or spattered.
  9. Method according to one of the claims 1 to 8, characterized in that the first metal (18) is Zn and the at least one further metal (19a, 19b) is Mg (19a) and/or Al (19b).
  10. Method according to one of the claims 1 to 9, characterized in that the melt (20) has a Zn content of 50 wt.-% to 99.9 wt.-% and an Mg content of 0.1 wt.-% to 50 wt.-% and/or an Al content of 0.1 wt.% to 50 wt.-%, and optionally unavoidable impurities, in particular Fe and/or Pb and/or Cd.
EP13170994.1A 2012-07-25 2013-06-07 Method for producing a powder of a metal alloy Active EP2689873B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201331222T SI2689873T1 (en) 2012-07-25 2013-06-07 Method for producing a powder of a metal alloy
HRP20181769TT HRP20181769T1 (en) 2012-07-25 2018-10-25 Method for producing a powder of a metal alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATGM304/2012U AT13319U1 (en) 2012-07-25 2012-07-25 Process for producing a powder of a metal alloy

Publications (2)

Publication Number Publication Date
EP2689873A1 EP2689873A1 (en) 2014-01-29
EP2689873B1 true EP2689873B1 (en) 2018-08-08

Family

ID=49303645

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13170994.1A Active EP2689873B1 (en) 2012-07-25 2013-06-07 Method for producing a powder of a metal alloy

Country Status (8)

Country Link
EP (1) EP2689873B1 (en)
AT (1) AT13319U1 (en)
DK (1) DK2689873T3 (en)
ES (1) ES2693553T3 (en)
HR (1) HRP20181769T1 (en)
LT (1) LT2689873T (en)
SI (1) SI2689873T1 (en)
TR (1) TR201815838T4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530709A (en) * 2018-12-06 2019-03-29 江苏申隆锌业有限公司 A kind of preparation method of zinc powder
AT522377B1 (en) 2019-04-15 2022-07-15 Rimmer Karl Production of a metal powder of an aluminum alloy for use as a material in additive manufacturing
CN113600820A (en) * 2021-08-04 2021-11-05 宁波双鹿新能源科技有限公司 Production system for preparing zinc material by atomization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071067A (en) * 1987-12-09 1991-12-10 H. G. Tech Ab Method and equipment for atomizing liquids, preferably melts

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759740A (en) * 1969-12-03 1971-05-17 Stora Kopparbergs Bergslags Ab METHOD AND DEVICE FOR MANUFACTURING POWDER BY ATOMIZATION OF A MELTING MATERIAL
US4272463A (en) * 1974-12-18 1981-06-09 The International Nickel Co., Inc. Process for producing metal powder
US4999051A (en) * 1989-09-27 1991-03-12 Crucible Materials Corporation System and method for atomizing a titanium-based material
JP3753162B2 (en) * 1997-04-07 2006-03-08 吉川工業株式会社 Method for producing metal powder for paint pigment
EP1356882A1 (en) * 2002-04-04 2003-10-29 Capital Technology GmbH Device for producing metal powder
US6746509B2 (en) * 2002-09-11 2004-06-08 Mitsui Mining & Smelting Company, Ltd. Process for producing zinc or zinc alloy powder for battery
DE102007021602A1 (en) 2007-05-08 2008-11-20 Voestalpine Stahl Gmbh Corrosion protection system for metals and pigment for this purpose
US7744808B2 (en) * 2007-12-10 2010-06-29 Ajax Tocco Magnethermic Corporation System and method for producing shot from molten material
CN102011028B (en) * 2010-11-04 2014-11-26 宁波双鹿能源科技有限公司 Zinc powder used as electrode and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071067A (en) * 1987-12-09 1991-12-10 H. G. Tech Ab Method and equipment for atomizing liquids, preferably melts

Also Published As

Publication number Publication date
HRP20181769T1 (en) 2018-12-28
TR201815838T4 (en) 2018-11-21
EP2689873A1 (en) 2014-01-29
AT13319U1 (en) 2013-10-15
LT2689873T (en) 2018-11-26
SI2689873T1 (en) 2018-11-30
ES2693553T3 (en) 2018-12-12
DK2689873T3 (en) 2018-11-26

Similar Documents

Publication Publication Date Title
EP2066822B1 (en) Cermet powder
AT522377B1 (en) Production of a metal powder of an aluminum alloy for use as a material in additive manufacturing
DE3505660A1 (en) DEVICE AND METHOD FOR SPRAYING UNSTABLE MELTING FLOWS
DE1521124C2 (en) Process for the production of a metal powder which consists predominantly of molybdenum and is suitable for spray coating
EP2689873B1 (en) Method for producing a powder of a metal alloy
EP0987339A1 (en) Metallizing wire for making surface coatings
DE102008064190A1 (en) Method for the production of powder from iron based alloy with carbon portion, comprises producing a melt of the alloy in a melt container, flowing the melt through a flow opening, and atomizing the flowing melt
EP3314033B1 (en) Iron-based alloy for the manufacture of thermally sprayed wear resistant coatings
DE10205897A1 (en) Process for the production of particulate material
DE3505662A1 (en) METHOD FOR THE PRODUCTION OF FINE POWDER FROM MOLTEN METAL AND A DEVICE FOR SPRAYING
DE102009010600A1 (en) Production of roundish metal particles
WO2019076677A1 (en) Method for producing a sliding bearing and a sliding bearing produced by the method
WO2005123305A2 (en) Method for producing metal products
DE3590031T (en) Material for flame spraying and its manufacturing process
DE2412079B2 (en) METHOD AND APPARATUS FOR PRODUCING COMPOSITION METAL POWDER
WO1991013183A1 (en) Semi-finished product made of copper or a copper alloy with carbon additive
DE19800433C2 (en) Continuous casting process for casting an aluminum plain bearing alloy
EP0608468B1 (en) Method to produce a metallic powder for making wear-resistant coatings
EP1239983B1 (en) Method for producing a powder
DE19520885C2 (en) Process for the thermal spraying of layers of metal alloys or metals and its use
EP2872272B1 (en) Semi-permanent release coating system having a long service life for molds in copper anode casting
DE1483483A1 (en) Powder for welding or coating metal pieces
EP1930071A1 (en) Method for producing particles from flowable material and atomisation equipment therefor
DE3428022A1 (en) Method for the production of composite powder by atomising a metal melt
DE2715914C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140702

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20140702

Extension state: ME

Payment date: 20140702

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160826

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180308

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1026419

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013010758

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20181769

Country of ref document: HR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20181119

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2693553

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181212

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180808

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20181769

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013010758

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190509

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20181769

Country of ref document: HR

Effective date: 20190607

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20190607

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190607

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20200619

Year of fee payment: 8

Ref country code: TR

Payment date: 20200528

Year of fee payment: 8

Ref country code: FI

Payment date: 20200622

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200626

Year of fee payment: 8

Ref country code: GB

Payment date: 20200626

Year of fee payment: 8

Ref country code: SE

Payment date: 20200616

Year of fee payment: 8

Ref country code: IT

Payment date: 20200526

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200701

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130607

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210607

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210607

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230530

Year of fee payment: 11

Ref country code: DE

Payment date: 20230629

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230523

Year of fee payment: 11

Ref country code: AT

Payment date: 20230628

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 11