WO2005123305A2 - Method for producing metal products - Google Patents
Method for producing metal products Download PDFInfo
- Publication number
- WO2005123305A2 WO2005123305A2 PCT/AT2005/000214 AT2005000214W WO2005123305A2 WO 2005123305 A2 WO2005123305 A2 WO 2005123305A2 AT 2005000214 W AT2005000214 W AT 2005000214W WO 2005123305 A2 WO2005123305 A2 WO 2005123305A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- molten metal
- gas
- atomized
- gas nozzle
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D23/00—Casting processes not provided for in groups B22D1/00 - B22D21/00
- B22D23/003—Moulding by spraying metal on a surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/115—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/123—Spraying molten metal
Definitions
- the invention relates to a method for producing products from metal, in particular powders, foils, coatings and moldings, such as bolts, pipes or sheets, from metals, which are used in the form of semi-finished products.
- reactive metals such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, rhenium and their alloys, as well as of superalloys (alloys based on nickel or cobalt), are decisive for their purity, in particular through determines the absence of oxides and ceramic contaminants. Because of the high melting points of the metals and alloys mentioned and the mechanical properties thereof, forming processes and processes for machining are very time-consuming.
- a method for plasma coating components and for spray compacting foils made of nickel-titanium alloys is known from US Pat. No. 6,043,451.
- the metal is fed to a plasma torch as a powder or wire.
- the production of powder and wire is very complex and expensive and requires at least one production stage based on (large format) semi-finished products. With powdered metal, there is also an increased risk of oxygen uptake due to the large surface area.
- a disadvantage of the method known from US Pat. No. 6,043,451 A is the formation of a conical spray jet made of molten metal due to the radial symmetry of the plasma torch, as a result of which wider foils or coatings can only be produced by overlapping several spray cones or spraying several times with the same spray cone.
- the layers produced in this way have an undesired, inhomogeneous surface profile (cf. FIG. 2a).
- the production output is very low at only 3 kg / h (50 g / min) and is therefore not very suitable for the production of thicker films or coatings or semi-finished products such as bolts, pipes or sheets.
- the atomization of liquids by gas atomization is known.
- DE 197 58 111 A describes a method for manufacturing known from metal powders.
- the molten metal emerges in the form of a film from a nozzle with a slot-shaped outlet opening.
- the film is stabilized by a laminar gas flow in a Laval gas nozzle and then finely atomized.
- the productivity of the nozzle system can be changed as desired by lengthening the nozzle slot without adversely affecting the powder quality.
- the present invention has for its object to provide a method of the type mentioned, with the direct transfer of metal, which is available for example as a commercially available semi-finished product in powder, metal foils, surface coatings or other-sized products (semi-finished products) with high productivity inexpensively and is possible without the risk of contamination.
- metal in the form of a commercially available semi-finished product which for example has the shape of a cuboid
- This spray jet is used to produce the desired metal product.
- metal powders can be produced by the method according to the invention, it being particularly advantageous in embodiments that the method according to the invention also makes it possible to produce metal powders from reactive metals. In any case, it is ensured that contamination of the metal is excluded or at least largely prevented in the method according to the invention.
- the process according to the invention can also be used to produce other metal products, for example by coating surfaces or producing semi-finished products such as foils, sheets or bolts.
- the metal of the semi-finished product can be melted, atomized, sprayed onto a carrier and solidified on the carrier.
- the method according to the invention can also be used, for example, for coating workpieces.
- semi-finished products e.g. a bolt, of metal, which has a substantially rectangular cross-sectional shape, is inductively melted on the surface of its two long sides of its end face.
- the melting face is within the laminar gas flow of a linear nozzle.
- the two halves of the linear venturi nozzle preferably consist of a material which is not coupled to the magnetic field of the induction heating.
- tubes made of metal, preferably copper, are let into the venturi half-nozzle and serve as conductors for the inductive excitation current with simultaneous cooling by a cooling fluid, for example water.
- a cooling fluid for example water.
- the tubes are connected to each other at the ends of the Venturi half nozzle via additional tubes.
- the gas streams sweep over the melting surface of the semi-finished part, for example in the form of a bolt. stuff and promote the melt in the form of two very thin films to the pin tip. Here both films combine and the resulting melt film is further stabilized, accelerated and finally atomized into fine droplets by the laminar gas flow.
- the liquid (melt) film does not have to emerge from the nozzle with a downward movement.
- the method according to the invention works independently of the position, ie not only vertically upwards, but also horizontally or vertically downwards, as well as in any other orientation.
- the guidance of the liquid film, in particular the film of molten metal, through the gas flow is stronger than the gravity acting on the melt.
- the independence of the position of the atomizing nozzle gives the designer of nozzle systems according to the invention design degrees of freedom that can be used in a reduction in the overall height of the system.
- the method according to the invention is carried out in a container, in one embodiment a practically continuous production of metal products is possible by connecting a new semi-finished product to the semi-finished product which has almost been used up by melting, e.g. is connected by at least one weld seam.
- the actual atomization process can be carried out continuously and inexpensively by repeated introduction and welding of further semi-finished products, in particular semi-finished products in the form of metal bars.
- FIG. 1 schematically shows an arrangement for carrying out the method according to the invention
- FIG. 2 shows another arrangement for carrying out the method according to the invention
- FIG. 3a shows a coating as can be obtained according to the prior art (US Pat. No. 6,043,451 A)
- FIG. 3b a coating as can be produced when using the method according to the invention.
- FIG. 1 is an example of an application of the method according to the invention for producing a metal foil.
- This arrangement consists of an elongated (linear) gas nozzle 1, in which water-cooled copper pipes 2 are arranged.
- the copper pipes 2 are used to generate an inductive magnetic field.
- the semi-finished product 3 to be processed made of metal with an essentially rectangular cross section is introduced into the elongated inlet opening of the gas nozzle 1 and melted contactlessly on its long sides under the action of the inductive magnetic field.
- a gas flow 4 which is directed towards the elongated mouth of the gas nozzle 1 by a device which is not shown in more detail and which is preferably symmetrical, that is to say is directed into the gas nozzle 1 from both sides of the semi-finished product 3, takes the molten metal with it and conveys it to form a thin film 5 through the mouth of the gas nozzle 1.
- the gas nozzle 1 used in the invention can be designed as a Laval nozzle or as a Venturi nozzle. After passing through the narrowest point of the gas nozzle 1 (elongated mouth thereof), the film 5 of molten metal is atomized into a linear, wedge-shaped, essentially tent-shaped spray jet 6. In the exemplary embodiment shown, the spray jet 6 is directed onto an endless and cooled metal strip 7 as a carrier.
- the droplets of molten metal are liquid or at least partially liquid at the time of impact with the metal strip 7 and solidify to form a metal foil 8 with a homogeneous surface (except for the two edges). After it has completely solidified, which can be assisted by forced cooling, and detached from the metal strip 7, the metal foil 8 can be wound up into a foil roll 9.
- the endless metal strip 7 or the semi-finished product - with the exception of the two edges - metal can be applied to the carrier 7 in a uniform thickness.
- 3a shows the spraying result with a conventional round nozzle (cf. US Pat. No. 6,043,451 A), in which several metal beads 1 to 4 are sprayed side by side.
- 3b shows a metal foil 8 which has been produced using the method according to the invention, in which a uniformly thick metal layer (foil 8) is produced in a single spraying process.
- the productivity of the method of the invention can be set as desired via the length of the spray jet and via the melting heating power of the induction heating.
- the metal which is preferably added as a raw material in the form of semi-finished products, is converted into the desired end product in one work step, therefore only comes into contact with the atomizing gas and, if the purity of the gas atmosphere is high enough, can be converted into the metal product without increasing impurities become.
- reactive metal or alloy is thermally compressed by spray compacting, the starting material in the form of semi-finished products being melted without contact, in particular inductively, and atomized to form a linear, wedge-shaped spray jet.
- the particles of the spray jet are, for example, solidified into metal powder, spray-compacted on a substrate to form a product or applied to a component as a surface coating.
- any metals in particular reactive metals such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, rhenium or an alloy based on these metals can be processed.
- the method according to the invention is suitable for processing a nickel-titanium alloy or a superalloy based on nickel or cobalt.
- the semi-finished product to be processed is a composite material consisting of high-melting phases and low-melting binder matrix.
- the high melting phase can be a carbide.
- the method according to the invention can be used, inter alia, to produce products in the form of films, sheets, tubes or bolts.
- One advantage of the method according to the invention is that the purity of the product differs only slightly from the purity of the starting material (semi-finished product).
- dispersoids are introduced in a targeted manner via a further nozzle.
- Such dispersides can be, for example: silicon carbide, tungsten carbide, corundum (A1 2 0 3 ) or zirconium oxide.
- the purpose of adding such dispersoids and other additives, which can also be volatile, is to influence the properties of the process product in the desired direction.
- a release agent can be applied to the substrate before the spray compacting.
- the method according to the invention can be carried out in particular in the production of metal powder as described below using an example.
- a rod made of titanium with a rectangular cross-section (initial dimensions: width 50 mm, thickness 40 mm, length 3000 mm) is melted crucible with an induction frequency of 350 kHz and with 5 kg / min atomized.
- a new rod after having passed the pre-lock chamber with inerting and pressure equalization, is brought to the end of the first rod facing away from the atomization, and the two rods become on their two The sides facing away from the melting unit are linearly welded together using a laser beam without filler material.
- FIG. provides. This device has a linear gas nozzle 10 with internal supply of the primary atomizing gas 13. An induction coil 12 is integrated in the linear gas nozzle 10. As indicated schematically in FIG. 2, primary atomizing gas 13 emerges from the linear gas nozzle 10, namely symmetrically in the exemplary embodiment shown, so that two streams of primary atomizing gas 13 are present.
- a secondary gas flow 14 is provided in the linear gas nozzle 10, which forms a melt film 21 on the metal that melts from the metal rod 15 with a rectangular cross section.
- the melting metal rod 15 is advanced towards the gas nozzle 10 by rotatingly driven guide rollers 18.
- the primary guest streams 13 are generated by the atomizing gas supplied primarily within the gas nozzle 10.
- the primary gas streams 13 generate a local negative pressure, through which gas is sucked in, which forms the secondary gas streams 14 serving as support gas.
- the entire arrangement is housed in a housing 19 which is filled with an inert gas, in particular argon, the gas in the housing 19 being at the same pressure as the container environment.
- an inert gas in particular argon
- the metal rod 15 can be a rod made of titanium, for example. Under the action of the primary atomizing gas streams 13, a spray jet of metal droplets 22 is formed from the melt film 21. These droplets of molten metal 22 can solidify into a powder or, as described with reference to FIGS. 1 and 2b, can be spray compacted.
- a further metal rod with a rectangular cross-section can be added to the melting metal rod 15 by connecting it to the metal rod 15 by means of two weld seams 17, which are particularly parallel to 2 are aligned, is connected.
- the tracked metal rod 16 is also guided by rotationally driven guide rollers 18.
- a container 25 is also provided, in which the molten metal (metal droplets or powder particles 22), which is divided into droplets, solidify to form a metal powder.
- the metal of the semi-finished products 15 is melted, atomized and atomized by an inductive magnetic field 12 Chamber 25 is solidified to a powder or sprayed onto a support and solidified on the support.
- the molten metal is supplied in a gas nozzle 10, which is designed either as a Laval nozzle or as a Venturi nozzle, as a film 21, which is stabilized by gas streams 14, and then atomized by further gas streams 13.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
Verfahren zum Herstellen von Erzeugnissen aus MetallProcess for manufacturing metal products
Die Erfindung betrifft ein Verfahren zum Herstellen von Erzeugnissen aus Metall, insbesondere Pulvern, Folien, Beschichtungen und Formteilen, wie Bolzen, Rohre oder Bleche, aus Metallen, die in Form von Halbzeug eingesetzt werden.The invention relates to a method for producing products from metal, in particular powders, foils, coatings and moldings, such as bolts, pipes or sheets, from metals, which are used in the form of semi-finished products.
Die werkstofftechnischen Eigenschaften reaktiver Metalle, wie Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, Rhenium und ihrer Legierungen sowie von Superlegierungen (Legierungen auf Basis von Nickel oder Kobalt) , werden entscheidend durch ihre Reinheit, insbesondere durch die Abwesenheit von Oxiden und keramischen Verunreinigungen bestimmt. Wegen der hohen Schmelzpunkte der genannten Metalle und Legierungen und der mechanischen Eigenschaften derselben sind Umformverfahren und Verfahren zur spanabhebenden Formgebung sehr auf ändig .The material properties of reactive metals, such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, rhenium and their alloys, as well as of superalloys (alloys based on nickel or cobalt), are decisive for their purity, in particular through determines the absence of oxides and ceramic contaminants. Because of the high melting points of the metals and alloys mentioned and the mechanical properties thereof, forming processes and processes for machining are very time-consuming.
Aus der US 6,043,451 A ist ein Verfahren zum Plasmabeschichten von Bauteilen und zum Sprühkompaktieren von Folien aus Nickel-Titan-Legie- rungen bekannt. Das Metall wird bei dem aus der US 6,043,451 A bekannten Verfahren einem Plasmabrenner als Pulver oder Draht zugeführt. Das Herstellen von Pulver und Draht ist sehr aufwändig und teuer und erfordert mindestens eine Fertigungsstufe ausgehend von (großformatigem) Halbzeug. Bei pulverförmigem Metall besteht wegen der großen Oberfläche überdies erhöhte Gefahr der Aufnahme von Sauerstoff.A method for plasma coating components and for spray compacting foils made of nickel-titanium alloys is known from US Pat. No. 6,043,451. In the process known from US Pat. No. 6,043,451 A, the metal is fed to a plasma torch as a powder or wire. The production of powder and wire is very complex and expensive and requires at least one production stage based on (large format) semi-finished products. With powdered metal, there is also an increased risk of oxygen uptake due to the large surface area.
Nachteilig bei dem aus der US 6,043,451 A bekannten Verfahren ist die durch die Radialsymmetrie des Plasmabrenners bedingte Ausbildung eines kegelförmigen Sprühstrahles aus geschmolzenem Metall, wodurch breitere Folien oder Beschichtungen nur durch Überlappen mehrerer Sprühkegel bzw. mehrmaliges Besprühen mit demselben Sprühkegel erzeugt werden können. Die so erzeugten Schichten haben ein ungewünschtes, inhomogenes Oberflächenprofil (vgl. Fig. 2a) . Die Produktionsleistung ist mit nur 3 kg/h (50g/min) sehr klein und somit für das Erzeugen dickerer Folien oder Beschichtungen oder von Halbzeugen, wie Bolzen, Rohren oder Blechen, wenig geeignet.A disadvantage of the method known from US Pat. No. 6,043,451 A is the formation of a conical spray jet made of molten metal due to the radial symmetry of the plasma torch, as a result of which wider foils or coatings can only be produced by overlapping several spray cones or spraying several times with the same spray cone. The layers produced in this way have an undesired, inhomogeneous surface profile (cf. FIG. 2a). The production output is very low at only 3 kg / h (50 g / min) and is therefore not very suitable for the production of thicker films or coatings or semi-finished products such as bolts, pipes or sheets.
Das Zerstäuben von Flüssigkeiten durch Gasverdüsung ist bekannt. Beispielsweise ist aus der DE 197 58 111 A ein Verfahren zum Herstellen von Metallpulvern bekannt. Bei diesen bekannten Verfahren tritt die Metallschmelze in Form eines Films aus einer Düse mit schlitzförmiger Austrittsöffnung aus. Der Film wird von einer laminaren Gasströmung in einer Laval-Gasdüse stabilisiert und anschließend fein zerstäubt. Die Produktivität des Düsensystems kann durch Verlängern des Düsenschlitzes ohne nachteilige Auswirkungen auf die Pulverqualität beliebig verändert werden. Beim Schmelzen in Behältern besteht jedoch grundsätzlich die Gefahr der Verunreinigung des erhaltenen Metallpulvers durch Werkstoffe der Behälter.The atomization of liquids by gas atomization is known. For example, DE 197 58 111 A describes a method for manufacturing known from metal powders. In these known processes, the molten metal emerges in the form of a film from a nozzle with a slot-shaped outlet opening. The film is stabilized by a laminar gas flow in a Laval gas nozzle and then finely atomized. The productivity of the nozzle system can be changed as desired by lengthening the nozzle slot without adversely affecting the powder quality. When melting in containers, however, there is basically a risk of contamination of the metal powder obtained by the materials of the containers.
Aus der DE 41 02 101 A ist ein Verfahren bekannt, bei dem Metalle in Form einer vertikal angeordneten Stange mit radial-symmetrischem Querschnitt unter inerter Atmosphäre durch Induktion am unteren Ende abgeschmolzen werden. Die Schmelze tropft unter dem Einfluss der Schwerkraft und des elektromagnetischen Drucks (resultierend aus der Induktionsspule) ab. Die Tropfen werden dann durch einen aus einer Ring- spaltdüse austretenden Gasstrom zu einem relativ groben Pulver mit einer mittleren Korngröße von etwa 50μm mit breiter Korngrößenverteilung zerstäubt. Die Metallstange wird während des Abschmelzens um ihre Längsachse gedreht und entsprechend dem Verzehr in die Induktionsspule nachgeführt. Dazu ist ein aufwändiger Antrieb erforderlich. Der Gasverbrauch je Kilogramm Metallpulver ist hoch. Feine Pulver mit einer Korngröße unter 30μm können nur mit geringer Ausbeute hergestellt werden. Die Gesamtproduktivität des aus der DE 41 02 101 A bekannten Verfahrens ist mit etwa 20kg/Stunde gering und kann nicht ohne Qualitätseinbußen des Pulvers erhöht werden.From DE 41 02 101 A a method is known in which metals in the form of a vertically arranged rod with a radially symmetrical cross section are melted under an inert atmosphere by induction at the lower end. The melt drips under the influence of gravity and the electromagnetic pressure (resulting from the induction coil). The drops are then atomized by a gas stream emerging from an annular gap nozzle into a relatively coarse powder with an average particle size of approximately 50 μm with a wide particle size distribution. The metal rod is rotated around its longitudinal axis during melting and is fed into the induction coil in accordance with consumption. This requires a complex drive. The gas consumption per kilogram of metal powder is high. Fine powders with a grain size below 30 μm can only be produced with a low yield. The overall productivity of the process known from DE 41 02 101 A is low at around 20 kg / hour and cannot be increased without a loss in quality of the powder.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Gattung bereit zu stellen, mit dem ein direktes Überführen von Metall, das beispielsweise als kommerziell erhältliches Halbzeug vorliegt, in Pulver, Metallfolien, Oberflächenbeschichtungen oder andersformatige Erzeugnisse (Halbzeuge) mit hoher Produktivität kostengünstig und ohne die Gefahr des Einbringens von Verunreinigungen möglich ist.The present invention has for its object to provide a method of the type mentioned, with the direct transfer of metal, which is available for example as a commercially available semi-finished product in powder, metal foils, surface coatings or other-sized products (semi-finished products) with high productivity inexpensively and is possible without the risk of contamination.
Gelöst wird diese Aufgabe mit einem Verfahren, welches die Merkmale vom Anspruch 1 aufweist.This object is achieved with a method which has the features of claim 1.
Vorteilhafte und bevorzugte Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstand der Unteransprüche. Bei dem erfindungsgemäßen Verfahren wird Metall in Form eines handelsüblich erhältlichen Halbzeuges, das beispielswiese die Form eines Quaders hat, berührungslos aufgeschmolzen und zu einem linearen, insbesondere keilförmigen, Sprühstrahl verdüst. Dieser Sprühstrahl wird benützt, um das gewünschte Erzeugnis aus Metall zu erzeugen. Mit dem erfindungsgemäßen Verfahren können verschiedene Erzeugnisse aus Metall hergestellt werden. Beispielsweise können nach dem erfindungsgemäßen Verfahren Metallpulver hergestellt werden, wobei es in Ausführungsformen besonders vorteilhaft ist, dass durch das erfindungsgemäße Verfahren auch das Herstellen von Metallpulvern aus reaktiven Metallen möglich ist. In jedem Fall ist gewährleistet, dass bei dem erfindungsgemäßen Verfahren Verunreinigungen des Metalls ausgeschlossen oder doch weitestgehend verhindert sind. Mit dem erfindungsgemäßen Verfahren können auch andere Erzeugnisse aus Metall hergestellt werden, indem beispielsweise Ober- flächen beschichtet oder Halbzeuge, wie Folien, Bleche oder Bolzen, hergestellt werden.Advantageous and preferred embodiments of the method according to the invention are the subject of the dependent claims. In the method according to the invention, metal in the form of a commercially available semi-finished product, which for example has the shape of a cuboid, is melted without contact and atomized to form a linear, in particular wedge-shaped, spray jet. This spray jet is used to produce the desired metal product. Various products can be produced from metal using the method according to the invention. For example, metal powders can be produced by the method according to the invention, it being particularly advantageous in embodiments that the method according to the invention also makes it possible to produce metal powders from reactive metals. In any case, it is ensured that contamination of the metal is excluded or at least largely prevented in the method according to the invention. The process according to the invention can also be used to produce other metal products, for example by coating surfaces or producing semi-finished products such as foils, sheets or bolts.
Beispielsweise kann bei dem erfindungsgemäßen Verfahren das Metall des Halbzeuges geschmolzen, zerstäubt, auf einen Träger gesprüht und auf dem Träger verfestigt werden. Das erfindungsgemäße Verfahren kann beispielsweise auch zum Beschichten von Werkstücken angewendet werden.For example, in the method according to the invention, the metal of the semi-finished product can be melted, atomized, sprayed onto a carrier and solidified on the carrier. The method according to the invention can also be used, for example, for coating workpieces.
In einer zum Herstellen von Metallpulvern bestimmten Ausführungsform des erfindungsgemäßen Verfahrens kann Halbzeug, z.B. ein Bolzen, des Me- talls, das eine im wesentlichen rechteckige Querschnittsform aufweist, induktiv an der Oberfläche seiner beiden Längsseiten seiner Stirnseite geschmolzen werden. Die abschmelzende Stirnseite befindet sich innerhalb der laminaren Gasströmung einer linearen Düse. Die beiden Hälften der linearen Venturi-Düse bestehen bevorzugt aus einem nicht an das Magnet- feld der Induktionsheizung ankoppelnden Werkstoff.In an embodiment of the method according to the invention intended for the production of metal powders, semi-finished products, e.g. a bolt, of metal, which has a substantially rectangular cross-sectional shape, is inductively melted on the surface of its two long sides of its end face. The melting face is within the laminar gas flow of a linear nozzle. The two halves of the linear venturi nozzle preferably consist of a material which is not coupled to the magnetic field of the induction heating.
In einer Ausführungsform der Erfindung sind in die Venturi-Halbdüse Rohre aus Metall, vorzugsweise Kupfer, eingelassen, welche als Leiter für den induktiven Erregerstrom bei gleichzeitiger Kühlung durch ein Kühlfluid, beispielsweise Wasser, dienen. Die Rohre sind beispielsweise jeweils an den Enden der Venturi-Halbdüse über weitere Rohre miteinander verbunden.In one embodiment of the invention, tubes made of metal, preferably copper, are let into the venturi half-nozzle and serve as conductors for the inductive excitation current with simultaneous cooling by a cooling fluid, for example water. For example, the tubes are connected to each other at the ends of the Venturi half nozzle via additional tubes.
Bei dieser Ausführungsform streichen die Gasströme über die schmelzende Oberfläche des beispielsweise in form eines Bolzens zugeführten Halb- zeugs und fördern die Schmelze in Form zwei sehr dünner Filme zur Bolzenspitze. Hier vereinigen sich beide Filme und der entstehende Schmelzefilm wird von der laminaren Gasströmung weiter stabilisiert, beschleunigt und schließlich zu feinen Tröpfchen zerstäubt.In this embodiment, the gas streams sweep over the melting surface of the semi-finished part, for example in the form of a bolt. stuff and promote the melt in the form of two very thin films to the pin tip. Here both films combine and the resulting melt film is further stabilized, accelerated and finally atomized into fine droplets by the laminar gas flow.
Bei der Erfindung muss der Flüssigkeits- (schmelze-) film nicht mit einer nach unten gerichteten Bewegung aus der Düse austreten. Das erfindungsgemäße Verfahren arbeitet unabhängig von der Lage, also nicht nur vertikal nach oben, sondern auch horizontal oder vertikal nach unten, sowie in jeder anderen Ausrichtung.In the invention, the liquid (melt) film does not have to emerge from the nozzle with a downward movement. The method according to the invention works independently of the position, ie not only vertically upwards, but also horizontally or vertically downwards, as well as in any other orientation.
Die Führung des Flüssigkeitsfilmes, insbesondere des Films aus Metallschmelze, durch die Gasströmung ist stärker als die auf die Schmelze wirkende Schwerkraft. Die Unabhängigkeit der Lage der Zerstäubungsdüse gibt dem Konstrukteur von Düsungsanlagen gemäß der Erfindung gestalterische Freiheitsgrade, die in einer Verringerung der Bauhöhe der Anlage genutzt werden können.The guidance of the liquid film, in particular the film of molten metal, through the gas flow is stronger than the gravity acting on the melt. The independence of the position of the atomizing nozzle gives the designer of nozzle systems according to the invention design degrees of freedom that can be used in a reduction in the overall height of the system.
In einer Ausführungsform wird das erfindungsgemäße Verfahren in einem Behälter ausgeführt, wobei in einer Ausführungsform ein praktisch kontinuierliches Erzeugen von Metallprodukten möglich ist, indem an das durch Abschmelzen nahezu aufgebrauchte Halbzeug ein neues Halbzeug angeschlossen, z.B. durch wenigstens eine Schweissnaht, verbunden wird. Durch wiederholtes Einschleusen und Anschweissen weiterer Halbzeuge, insbesondere Halbzeug in Form von Metallstangen, kann der eigentliche Verdüsungsprozess kontinuierlich und kostengünstig ausgeführt werden.In one embodiment, the method according to the invention is carried out in a container, in one embodiment a practically continuous production of metal products is possible by connecting a new semi-finished product to the semi-finished product which has almost been used up by melting, e.g. is connected by at least one weld seam. The actual atomization process can be carried out continuously and inexpensively by repeated introduction and welding of further semi-finished products, in particular semi-finished products in the form of metal bars.
Weitere Einzelheiten und Merkmale des erfindungsgemäßen Verfahrens ergeben sich aus der nachstehenden Beschreibung unter Bezugnahme auf die Zeichnungen. Es zeigt Fig. 1 schematisch eine Anordnung zum Ausführen des erfindungsgemäßen Verfahrens, Fig. 2 eine andere Anordnung zum Ausführen des erfindungsgemäßen Verfahrens, Fig. 3a eine Beschichtung, wie sie nach dem Stand der Technik (US 6,043,451 A) erhältlich ist und Fig. 3b eine Beschichtung, wie sie beim Anwenden des erfindungsgemäßen Verfahrens herstellbar ist.Further details and features of the method according to the invention result from the following description with reference to the drawings. 1 schematically shows an arrangement for carrying out the method according to the invention, FIG. 2 shows another arrangement for carrying out the method according to the invention, FIG. 3a shows a coating as can be obtained according to the prior art (US Pat. No. 6,043,451 A) and FIG. 3b a coating as can be produced when using the method according to the invention.
Die in Fig. 1 gezeigte Anordnung ist eine beispielsweise Anwendung des erfindungsgemäßen Verfahrens zum Herstellen einer Folie aus Metall. Diese Anordnung besteht aus einer länglichen (linearen) Gasdüse 1, in der wassergekühlte Kupferrohre 2 angeordnet sind. Die Kupferrohre 2 dienen dazu, ein induktives Magnetfeld zu erzeugen. Das zu verarbeitende Halbzeug 3 aus Metall mit im wesentlichen rechteckigem Querschnitt wird in die langgestreckte Eingangsöffnung der Gasdüse 1 eingeführt und unter Wirkung des induktiven Magnetfeldes berührungslos an seinen Längsseiten geschmolzen.The arrangement shown in FIG. 1 is an example of an application of the method according to the invention for producing a metal foil. This arrangement consists of an elongated (linear) gas nozzle 1, in which water-cooled copper pipes 2 are arranged. The copper pipes 2 are used to generate an inductive magnetic field. The semi-finished product 3 to be processed made of metal with an essentially rectangular cross section is introduced into the elongated inlet opening of the gas nozzle 1 and melted contactlessly on its long sides under the action of the inductive magnetic field.
Eine durch eine nicht näher gezeigte Einrichtung auf die langgestreckte Mündung der Gasdüse 1 gerichtete Gasströmung 4, die bevorzugt symmetrisch ist, also von beiden Seiten des Halbzeuges 3 in die Gasdüse 1 gerichtet wird, nimmt das geschmolzene Metall mit und fördert es unter Ausbildung eines dünnen Filmes 5 durch die Mündung der Gasdüse 1. Die bei der Erfindung verwendete Gasdüse 1 kann als Laval-Düse oder als Venturi-Düse ausgebildet sein. Nach dem Durchtritt durch die engste Stelle der Gasdüse 1 (langgestreckte Mündung derselben) wird der Film 5 aus Metallschmelze zu einem linearen keilförmigen, im wesentlichen zeltförmigen Sprühstrahl 6 zerstäubt. Der Sprühstrahl 6 ist im gezeigten Ausführungsbeispiel auf ein endloses und gekühltes Metallband 7 als Träger gerichtet.A gas flow 4 which is directed towards the elongated mouth of the gas nozzle 1 by a device which is not shown in more detail and which is preferably symmetrical, that is to say is directed into the gas nozzle 1 from both sides of the semi-finished product 3, takes the molten metal with it and conveys it to form a thin film 5 through the mouth of the gas nozzle 1. The gas nozzle 1 used in the invention can be designed as a Laval nozzle or as a Venturi nozzle. After passing through the narrowest point of the gas nozzle 1 (elongated mouth thereof), the film 5 of molten metal is atomized into a linear, wedge-shaped, essentially tent-shaped spray jet 6. In the exemplary embodiment shown, the spray jet 6 is directed onto an endless and cooled metal strip 7 as a carrier.
Die Tröpfchen geschmolzenen Metalls sind zum Zeitpunkt des Auftreffens auf das Metallband 7 flüssig oder noch wenigstens teilweise flüssig und erstarren zu einer Metallfolie 8 mit homogener Oberfläche (ausgenommen die beiden Ränder) . Die Metallfolie 8 kann nach ihrem vollständigen Erstarren, das durch erzwungenes Abkühlen unterstützt werden kann, und Ablösen vom Metallband 7 zu einer Folienrolle 9 aufgewickelt werden.The droplets of molten metal are liquid or at least partially liquid at the time of impact with the metal strip 7 and solidify to form a metal foil 8 with a homogeneous surface (except for the two edges). After it has completely solidified, which can be assisted by forced cooling, and detached from the metal strip 7, the metal foil 8 can be wound up into a foil roll 9.
Durch Anpassen der Länge des Sprühstrahles 6 an die gesamte (ganze) Breite der Oberfläche des Trägers 7, z. B. des endlosen Metallbandes 7 oder des Halbzeuges - mit Ausnahme der beiden Ränder - kann Metall in gleichmäßiger Dicke auf den Träger 7 aufgebracht werden.By adjusting the length of the spray 6 to the entire (full) width of the surface of the carrier 7, for. B. the endless metal strip 7 or the semi-finished product - with the exception of the two edges - metal can be applied to the carrier 7 in a uniform thickness.
Fig. 3a zeigt das Sprühergebnis mit einer konventionellen Runddüse (vgl. US 6,043,451 A) , bei dem mehrere Metallraupen 1 bis 4 nebeneinander gesprüht werden. Fig. 3b zeigt eine Metallfolie 8, die mit dem erfin- dungsgemäßen Verfahren hergestellt worden ist, bei dem in einem einzigen Sprühvorgang eine gleichmäßig dicke Metallschicht (Folie 8) entsteht.3a shows the spraying result with a conventional round nozzle (cf. US Pat. No. 6,043,451 A), in which several metal beads 1 to 4 are sprayed side by side. 3b shows a metal foil 8 which has been produced using the method according to the invention, in which a uniformly thick metal layer (foil 8) is produced in a single spraying process.
Die Produktivität des Verfahrens der Erfindung läßt sich über die Länge des Sprühstrahls sowie über die Abschmelzheizleistung der Induktionshei- zung beliebig einstellen. Das als Rohmaterial bevorzugt in Form von Halbzeug zugefügte Metall wird in einem Arbeitsgang in das gewünschte Endprodukt übergeführt, kommt daher nur mit dem Verdüsungsgas in Berührung und kann, wenn die Reinheit der Gasatmosphäre hoch genug ist, ohne Zunahme an Verunreinigungen in das Erzeugnis aus Metall übergeführt werden.The productivity of the method of the invention can be set as desired via the length of the spray jet and via the melting heating power of the induction heating. The metal, which is preferably added as a raw material in the form of semi-finished products, is converted into the desired end product in one work step, therefore only comes into contact with the atomizing gas and, if the purity of the gas atmosphere is high enough, can be converted into the metal product without increasing impurities become.
Bei dem erfindungsgemäß Verfahren wird in einer Ausführungsform reaktives Metall oder Legierung durch Sprühkompaktieren thermisch verdichtet, wobei das Ausgangsmaterial in Form von Halbzeug berührungslos, insbesondere induktiv geschmolzen und zu einem linearen, keilförmigen Sprühstrahl zerstäubt wird. Die Teilchen des Sprühstrahls werden beispielsweise zu Metallpulver erstarren gelassen, auf einem Substrat zu einem Erzeugnis sprühkompaktiert oder als Oberflächenbeschichtung auf ein Bauteil aufgebracht.In the method according to the invention, in one embodiment, reactive metal or alloy is thermally compressed by spray compacting, the starting material in the form of semi-finished products being melted without contact, in particular inductively, and atomized to form a linear, wedge-shaped spray jet. The particles of the spray jet are, for example, solidified into metal powder, spray-compacted on a substrate to form a product or applied to a component as a surface coating.
Mit dem erfindungsgemäß Verfahren können beliebige Metalle, insbesondere reaktive Metalle, wie Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, Rhenium oder eine Legierung auf Basis dieser Metalle, verarbeitet werden.With the method according to the invention, any metals, in particular reactive metals such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, rhenium or an alloy based on these metals can be processed.
Insbesondere ist das erfindungsgemäße Verfahren für das Verarbeiten einer Nickel-Titan-Legierung oder einer Superlegierung auf Basis von Nickel oder Kobalt geeignet.In particular, the method according to the invention is suitable for processing a nickel-titanium alloy or a superalloy based on nickel or cobalt.
In einer Ausführungsform des erfindungsgemäßen Verfahrens ist das zu verarbeitende Halbzeug ein Verbundwerkstoff aus hochschmelzenden Phasen und niedrigschmelzender Bindematrix. Die hochschmelzende Phase kann ein Carbid sein.In one embodiment of the method according to the invention, the semi-finished product to be processed is a composite material consisting of high-melting phases and low-melting binder matrix. The high melting phase can be a carbide.
Mit dem erfindungsgemäßen Verfahren können unter anderem Erzeugnisse in Form von Folien, Blechen, Rohren oder Bolzen hergestellt werden.The method according to the invention can be used, inter alia, to produce products in the form of films, sheets, tubes or bolts.
Ein Vorteil des erfindungsgemäßen Verfahrens ist es, dass sich die Reinheit des Erzeugnisses nur geringfügig von der Reinheit des Ausgangs- materials (Halbzeug) unterscheidet.One advantage of the method according to the invention is that the purity of the product differs only slightly from the purity of the starting material (semi-finished product).
Bei dem erfindungsgemäßen Verfahren besteht die Möglichkeit, die Produktivität je Längeneinheit des Sprühstrahls über die zugeführte Heizleistung (induktive Heizung) stufenlos zu regeln. Bei dem erfindungsgemäßen Verfahren besteht auch die Möglichkeit, nacheinander mehrere langgestreckte Sprühstrahlen auf ein und dasselbe Substrat zu sprühen, um eine höhere Schichtdicke zu erzielen.In the method according to the invention, there is the possibility of continuously regulating the productivity per unit length of the spray jet via the heating power supplied (inductive heating). In the method according to the invention, there is also the possibility of spraying several elongated spray jets in succession onto one and the same substrate in order to achieve a higher layer thickness.
In einer Ausführungsform des erfindungsgemäßen Verfahrens werden zusätzlich zu dem Sprühstrahl aus geschmolzenem Metall in Form von Tröpfchen über eine weitere Düse Dispersoide gezielt eingebracht. Solche Disper- soide können beispielsweise sein: Siliziumcarbid, Wolframcarbid, Korund (A1203) oder Zirkoniumoxid. Zweck des Zusatzes solcher Dispersoide und anderer Zusatzstoffe, die auch flüchtig sein können, ist es, die Eigenschaften des Verfahrensproduktes in die gewünschte Richtung zu beeinflussen.In one embodiment of the method according to the invention, in addition to the spray of molten metal in the form of droplets, dispersoids are introduced in a targeted manner via a further nozzle. Such dispersides can be, for example: silicon carbide, tungsten carbide, corundum (A1 2 0 3 ) or zirconium oxide. The purpose of adding such dispersoids and other additives, which can also be volatile, is to influence the properties of the process product in the desired direction.
Um das Ablösen des Erzeugnisses vom Träger 7 (Substrat) zu vereinfachen, kann auf das Substrat vor dem Sprühkompaktieren ein Trennmittel aufgebracht werden.In order to simplify the detachment of the product from the carrier 7 (substrate), a release agent can be applied to the substrate before the spray compacting.
Das erfindungsgemäße Verfahren kann insbesondere beim Herstellen von Metallpulver wie nachstehend an einem Beispiel beschrieben ausgeführt werden.The method according to the invention can be carried out in particular in the production of metal powder as described below using an example.
In einem gasdichten, argongefüllten Behälter, der sich auf gleichem Druck wie die Behälterumgebung befindet, wird eine Stange aus Titan mit rechteckigem Querschnitt (Ausgangsabmessung: Breite 50 mm, Dicke 40 mm, Länge 3000 mm) tiegelfrei mit einer Induktionsfrequenz von 350 kHz abgeschmolzen und mit 5 kg/min verdüst. Wenn die erste Stange auf eine Länge von 500 mm abgeschmolzen ist, wird eine neue Stange, nachdem sie die Vorschleusenkammer mit Inertisierung und Druckausgleich passiert hat, an das der Verdüsung abgewandte Ende der ersten Stange herange- führt, und die beiden Stangen werden an ihren beiden dem Abschmelzaggregat abgewandten Seiten linear mittels Laserstrahl ohne Zusatzwerkstoff miteinander verschweißt. Die Nahtstelle hält beide Stangen zusammen, bis sie schließlich selbst die Abschmelzzone erreicht und mitaufgeschmolzen wird. Durch wiederholtes Einschleusen und Anschweissen einer neuen Metallstange kann der eigentliche Verdüsungsprozess kontinuierlich und kostengünstig durchgeführt werden. Bei einem Gasdruck von 30 bar in der Rohrleitung vor der linearen Gasdüse wird ein Pulver mit einer mittleren Korngröße von 9,0 μm erhalten. Eine hiezu beispielsweise geeignete Vorrichtung ist in Fig. 2 darge- stellt. Diese Vorrichtung besitzt eine lineare Gasdüse 10 mit interner Zuführung des primären Verdüsungsgases 13. In die lineare Gasdüse 10 ist eine Induktionsspule 12 integriert. Aus der linearen Gasdüse 10 tritt, wie in Fig. 2 schematisch angedeutet, primäres Verdüsungsgas 13 aus und zwar im gezeigten Ausführungsbeispiel symmetrisch, sodass zwei Ströme primären Verdüsungsgases 13 vorliegen.In a gas-tight, argon-filled container, which is at the same pressure as the container environment, a rod made of titanium with a rectangular cross-section (initial dimensions: width 50 mm, thickness 40 mm, length 3000 mm) is melted crucible with an induction frequency of 350 kHz and with 5 kg / min atomized. When the first rod has melted to a length of 500 mm, a new rod, after having passed the pre-lock chamber with inerting and pressure equalization, is brought to the end of the first rod facing away from the atomization, and the two rods become on their two The sides facing away from the melting unit are linearly welded together using a laser beam without filler material. The seam holds both rods together until it finally reaches the melting zone and is melted along with it. The actual atomization process can be carried out continuously and inexpensively by repeated insertion and welding of a new metal rod. At a gas pressure of 30 bar in the pipeline in front of the linear gas nozzle, a powder with an average grain size of 9.0 μm is obtained. A device suitable for this purpose, for example, is shown in FIG. provides. This device has a linear gas nozzle 10 with internal supply of the primary atomizing gas 13. An induction coil 12 is integrated in the linear gas nozzle 10. As indicated schematically in FIG. 2, primary atomizing gas 13 emerges from the linear gas nozzle 10, namely symmetrically in the exemplary embodiment shown, so that two streams of primary atomizing gas 13 are present.
Des Weiteren ist in der linearen Gasdüse 10 eine sekundäre Gas-strömung 14 vorgesehen, welche an dem von der Metallstange 15 mit rechteckigem Querschnitt abschmelzenden Metall einen Schmelzefilm 21 bildet. Im gezeigten Ausführungsbeispiel wird die abschmelzende Metallstange 15 durch drehangetriebene Führungsrollen 18 zur Gasdüse 10 hin vorgeschoben.Furthermore, a secondary gas flow 14 is provided in the linear gas nozzle 10, which forms a melt film 21 on the metal that melts from the metal rod 15 with a rectangular cross section. In the exemplary embodiment shown, the melting metal rod 15 is advanced towards the gas nozzle 10 by rotatingly driven guide rollers 18.
Die primären Gastströme 13 werden durch das primär innerhalb der Gasdüse 10 zugeführte Verdüsungsgas erzeugt. Die primären Gasströme 13 erzeugen einen lokalen Unterdruck, durch den Gas angesaugt wird, das die als Stützgas dienenden sekundären Gasströme 14 bildet.The primary guest streams 13 are generated by the atomizing gas supplied primarily within the gas nozzle 10. The primary gas streams 13 generate a local negative pressure, through which gas is sucked in, which forms the secondary gas streams 14 serving as support gas.
Die gesamte Anordnung ist in einem Gehäuse 19 untergebracht, das mit einem Inertgas, insbesondere Argon, gefüllt ist, wobei sich das Gas in dem Gehäuse 19 auf gleichem Druck wie die Behälterumgebung befindet.The entire arrangement is housed in a housing 19 which is filled with an inert gas, in particular argon, the gas in the housing 19 being at the same pressure as the container environment.
Die Metallstange 15 kann beispielsweise eine Stange aus Titan sein. Unter der Einwirkung der primären Verdüsungsgasströme 13 wird aus dem Schmelzefilm 21 ein Sprühstrahl aus Metalltröpfchen 22 gebildet. Diese Tröpfchen geschmolzenen Metalls 22 können zu einem Pulver erstarren oder, wie anhand von Fig. 1 und 2b beschrieben, sprühkompaktiert werden.The metal rod 15 can be a rod made of titanium, for example. Under the action of the primary atomizing gas streams 13, a spray jet of metal droplets 22 is formed from the melt film 21. These droplets of molten metal 22 can solidify into a powder or, as described with reference to FIGS. 1 and 2b, can be spray compacted.
Um ein quasi kontinuierliches Arbeiten zu ermöglichen, kann beim erfindungsgemäßen Verfahren, so wie in Fig. 2 angedeutet, an den abschmelzenden Metallstab 15 ein weiterer Metallstab mit rechteckigem Querschnitt angefügt werden, indem er mit dem Metallstab 15 durch zwei Schweißnähte 17, die insbesondere parallel zur Zeichenebene der Fig. 2 ausgerichtet sind, verbunden wird. Der nachgeführte Metallstab 16 wird ebenfalls durch drehangetriebene Führungsrollen 18 geführt. Im Anschluss an die lineare Gasdüse 10 ist noch ein Behälter 25 vorgesehen, in dem sich das in Tröpfchen zerteilte, geschmolzene Metall (Metalltröpfchen bzw. Pulverpartikel 22) zu einem Metallpulver verfestigen. Zusammenfassend kann ein Ausführungsbeispiel der Erfindung wie folgt dargestellt werden:In order to enable quasi-continuous work, in the method according to the invention, as indicated in FIG. 2, a further metal rod with a rectangular cross-section can be added to the melting metal rod 15 by connecting it to the metal rod 15 by means of two weld seams 17, which are particularly parallel to 2 are aligned, is connected. The tracked metal rod 16 is also guided by rotationally driven guide rollers 18. Following the linear gas nozzle 10, a container 25 is also provided, in which the molten metal (metal droplets or powder particles 22), which is divided into droplets, solidify to form a metal powder. In summary, an embodiment of the invention can be represented as follows:
Zum Herstellen von Erzeugnissen aus Metall, wie Pulvern, Folien, Be- Schichtungen, und Formteilen, wie Bolzen, Rohren oder Blechen aus Metall in Form von Halbzeug 15, wird das Metall des Halbzeuges 15 durch ein induktives Magnetfeld 12 geschmolzen, zerstäubt und in einer Kammer 25 zu einem Pulver erstarren gelassen oder auf einen Träger gesprüht und auf dem Träger verfestigt. Das geschmolzene Metall wird in einer Gasdüse 10, die entweder als Laval-Düse oder als Venturi-Düse ausgebildet ist, als Film 21, der durch Gasströme 14 stabilisiert wird, zugeführt und dann durch weitere Gasströme 13 zerstäubt. To produce products made of metal, such as powders, foils, coatings, and moldings, such as bolts, pipes or sheets made of metal in the form of semi-finished products 15, the metal of the semi-finished products 15 is melted, atomized and atomized by an inductive magnetic field 12 Chamber 25 is solidified to a powder or sprayed onto a support and solidified on the support. The molten metal is supplied in a gas nozzle 10, which is designed either as a Laval nozzle or as a Venturi nozzle, as a film 21, which is stabilized by gas streams 14, and then atomized by further gas streams 13.
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/629,658 US20080093045A1 (en) | 2004-06-17 | 2005-06-16 | Method for Producing Metal Products |
DE502005006882T DE502005006882D1 (en) | 2004-06-17 | 2005-06-16 | METHOD FOR PRODUCING PRODUCTS FROM METAL |
CA002570924A CA2570924A1 (en) | 2004-06-17 | 2005-06-16 | Method for producing metal products |
EP05748361A EP1765536B1 (en) | 2004-06-17 | 2005-06-16 | Method for producing metal products |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA1028/2004 | 2004-06-17 | ||
AT0102804A AT413702B (en) | 2004-06-17 | 2004-06-17 | Process for inductive magnetic heating of metal and gas jet spray application onto a substrate to manufacture e.g. metal foil |
ATA1322/2004 | 2004-08-02 | ||
AT13222004 | 2004-08-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005123305A2 true WO2005123305A2 (en) | 2005-12-29 |
WO2005123305A3 WO2005123305A3 (en) | 2006-06-01 |
Family
ID=35276348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2005/000214 WO2005123305A2 (en) | 2004-06-17 | 2005-06-16 | Method for producing metal products |
Country Status (6)
Country | Link |
---|---|
US (1) | US20080093045A1 (en) |
EP (1) | EP1765536B1 (en) |
AT (1) | ATE425832T1 (en) |
CA (1) | CA2570924A1 (en) |
DE (1) | DE502005006882D1 (en) |
WO (1) | WO2005123305A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006051936A1 (en) * | 2006-11-01 | 2008-05-15 | Zollern Bhw Gleitlager Gmbh & Co. Kg | Process for producing two interconnected layers and functional component which can be produced by the process |
US10946449B2 (en) | 2013-12-20 | 2021-03-16 | Nanoval Gmbh & Co. Kg | Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder |
EP3983157B1 (en) | 2019-08-15 | 2024-10-09 | ALD Vacuum Technologies GmbH | Method and device for splitting an electrically conductive liquid |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013008396B4 (en) | 2013-05-17 | 2015-04-02 | G. Rau Gmbh & Co. Kg | Method and device for remelting and / or remelting of metallic materials, in particular nitinol |
FR3054462B1 (en) * | 2016-07-29 | 2020-06-19 | Safran Aircraft Engines | METHOD FOR ATOMIZING METAL DROPS FOR OBTAINING A METAL POWDER |
CN108247075A (en) * | 2018-04-23 | 2018-07-06 | 安徽哈特三维科技有限公司 | A kind of atomizer arrangement that the metal ball shaped powder of superhigh temperature is prepared for gas atomization |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2864137A (en) * | 1952-10-25 | 1958-12-16 | Helen E Brennan | Apparatus and method for producing metal strip |
GB1359486A (en) * | 1970-06-20 | 1974-07-10 | Vandervell Products Ltd | Methods and apparatus for producing composite metal material |
GB1517283A (en) * | 1974-06-28 | 1978-07-12 | Singer Alec | Production of metal articles |
JPS6217103A (en) * | 1985-07-16 | 1987-01-26 | Tanaka Kikinzoku Kogyo Kk | Production of metallic powder |
DE3533964C1 (en) * | 1985-09-24 | 1987-01-15 | Alfred Prof Dipl-Ing Dr-I Walz | Method and device for producing fine powder in spherical form |
US5022455A (en) * | 1989-07-31 | 1991-06-11 | Sumitomo Electric Industries, Ltd. | Method of producing aluminum base alloy containing silicon |
DE4102101C2 (en) * | 1991-01-25 | 2003-12-18 | Ald Vacuum Techn Ag | Device for producing powders from metals |
US5609922A (en) * | 1994-12-05 | 1997-03-11 | Mcdonald; Robert R. | Method of manufacturing molds, dies or forming tools having a cavity formed by thermal spraying |
US6254661B1 (en) * | 1997-08-29 | 2001-07-03 | Pacific Metals Co., Ltd. | Method and apparatus for production of metal powder by atomizing |
US6652804B1 (en) * | 1998-04-17 | 2003-11-25 | Gkn Sinter Metals Gmbh | Method for producing an openly porous sintered metal film |
-
2005
- 2005-06-16 EP EP05748361A patent/EP1765536B1/en not_active Expired - Lifetime
- 2005-06-16 AT AT05748361T patent/ATE425832T1/en not_active IP Right Cessation
- 2005-06-16 WO PCT/AT2005/000214 patent/WO2005123305A2/en not_active Application Discontinuation
- 2005-06-16 DE DE502005006882T patent/DE502005006882D1/en not_active Expired - Fee Related
- 2005-06-16 CA CA002570924A patent/CA2570924A1/en not_active Abandoned
- 2005-06-16 US US11/629,658 patent/US20080093045A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006051936A1 (en) * | 2006-11-01 | 2008-05-15 | Zollern Bhw Gleitlager Gmbh & Co. Kg | Process for producing two interconnected layers and functional component which can be produced by the process |
US8573283B2 (en) | 2006-11-01 | 2013-11-05 | Zollern Bhw Gleitlager Gmbh & Co., Kg | Method for producing two bonded-together layers and functional component that can be produced by the method |
DE102006051936B4 (en) * | 2006-11-01 | 2014-03-20 | Zollern Bhw Gleitlager Gmbh & Co. Kg | Process for producing two interconnected layers and functional component which can be produced by the process |
US10946449B2 (en) | 2013-12-20 | 2021-03-16 | Nanoval Gmbh & Co. Kg | Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder |
EP3983157B1 (en) | 2019-08-15 | 2024-10-09 | ALD Vacuum Technologies GmbH | Method and device for splitting an electrically conductive liquid |
Also Published As
Publication number | Publication date |
---|---|
CA2570924A1 (en) | 2005-12-29 |
WO2005123305A3 (en) | 2006-06-01 |
DE502005006882D1 (en) | 2009-04-30 |
US20080093045A1 (en) | 2008-04-24 |
EP1765536B1 (en) | 2009-03-18 |
ATE425832T1 (en) | 2009-04-15 |
EP1765536A2 (en) | 2007-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68917132T2 (en) | METHOD AND DEVICE FOR SPRAYING A METAL MELT. | |
DE3505659A1 (en) | MELT SPRAYING WITH REDUCED GAS FLOW AND DEVICE FOR SPRAYING | |
DE69126296T2 (en) | METHOD AND NOZZLE FOR ATOMIZING MELT | |
DE3505660A1 (en) | DEVICE AND METHOD FOR SPRAYING UNSTABLE MELTING FLOWS | |
DE60210267T2 (en) | DEVICE AND METHOD FOR THE SOLIDAGE APPLICATION AND COMPRESSION OF POWDER PARTICLES BY MEANS OF HIGH SPEED AND THERMALLY PLASTIC FORMING | |
DE3018290C2 (en) | Method and device for producing fine-grain castings | |
EP3725439B1 (en) | Production of a metal powder of an aluminium alloy for use as a material in additive production | |
DE102015115963B4 (en) | Process for the additive manufacturing of a shaped body from a metallic material mixture | |
DE3434110A1 (en) | METHOD AND DEVICE FOR PRODUCING A METAL OBJECT | |
DE3306142A1 (en) | METHOD FOR PRODUCING A TWO-PHASE OR MULTI-PHASE METAL MATERIAL | |
DE3883430T2 (en) | Hydrometallurgical process for the production of fine powder from copper or from copper alloys. | |
EP1042093B1 (en) | Method and device for producing fine powder by atomizing molten materials with gases | |
DE2043882C3 (en) | Process for the production of a cast steel block, in particular a slab from unkilled steel and device for carrying out the process | |
WO2021058374A1 (en) | Device for atomizing a melt stream by means of a gas | |
EP1765536B1 (en) | Method for producing metal products | |
DE3505662A1 (en) | METHOD FOR THE PRODUCTION OF FINE POWDER FROM MOLTEN METAL AND A DEVICE FOR SPRAYING | |
DE2656330A1 (en) | Metal or alloy powders or granulates - prepd. by melting and atomising in an ultrasonic field | |
DE3883256T2 (en) | DEVICE AND METHOD FOR ATOMIZING LIQUIDS, IN PARTICULAR MELTED METALS. | |
DE3883429T2 (en) | Hydrometallurgical process for the production of fine iron-based powder. | |
DE2412079B2 (en) | METHOD AND APPARATUS FOR PRODUCING COMPOSITION METAL POWDER | |
DE3211861A1 (en) | METHOD AND DEVICE FOR PRODUCING HIGH-PURITY CERAMIC-FREE METAL POWDERS | |
DE3505661A1 (en) | METHOD FOR SPRAYING A MELT FROM A TIGHTLY COUPLED NOZZLE AND DEVICE FOR SPRAYING AND PRODUCT PRODUCED | |
AT413702B (en) | Process for inductive magnetic heating of metal and gas jet spray application onto a substrate to manufacture e.g. metal foil | |
EP0594633B1 (en) | Process and device for producing metal strip and laminates | |
AT8454U1 (en) | METHOD FOR PRODUCING PRODUCTS FROM METAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005748361 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11629658 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2570924 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005748361 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11629658 Country of ref document: US |