EP2689864A1 - Method for processing milled goods in a rolling mill - Google Patents

Method for processing milled goods in a rolling mill Download PDF

Info

Publication number
EP2689864A1
EP2689864A1 EP12178196.7A EP12178196A EP2689864A1 EP 2689864 A1 EP2689864 A1 EP 2689864A1 EP 12178196 A EP12178196 A EP 12178196A EP 2689864 A1 EP2689864 A1 EP 2689864A1
Authority
EP
European Patent Office
Prior art keywords
drive
rolling
torque
load
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12178196.7A
Other languages
German (de)
French (fr)
Inventor
Jochen Wermke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46845596&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2689864(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12178196.7A priority Critical patent/EP2689864A1/en
Priority to CN201380036366.8A priority patent/CN104428075B/en
Priority to EP13729682.8A priority patent/EP2861360B1/en
Priority to PCT/EP2013/062141 priority patent/WO2014016043A1/en
Publication of EP2689864A1 publication Critical patent/EP2689864A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/10Motor power; motor current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/10Motor power; motor current
    • B21B2275/12Roll torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/02Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/02Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills
    • B21B35/04Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills each stand having its own motor or motors

Definitions

  • the invention relates to a method for processing rolling stock in a rolling mill with at least one rolling mill having a drive.
  • the rolling stock passes through a rolling train with one or more rolling stands.
  • the individual rolling stands each have a drive for rollers, with which the rolling stock is rolled into sheets or wires with a desired geometry, such as thickness or cross section.
  • the rollers must be controlled to a certain speed with the aid of the drives of the individual rolling stands. It is also important that during the entire operation of the rolling mill and the predetermined ratio of rotational speeds of the rollers of the individual rolling stands remains constant, otherwise tensile and compressive loads on the rolling occur, which in turn lead to an undesirable rolling result or even tearing or can cause a looping of the rolling stock.
  • each rolling stand with a separate drive for the rolls.
  • the individual drives each have a separate speed control, so that they can be controlled individually.
  • a major challenge of such a drive solution is the speed control of the rollers or drives of the individual rolling stands during the processing of rolling stock. This is especially true when different load moments act on the individual rolling stands, which for example when tapping, i. when striking the rolling stock on the rollers is the case. In such an action of a load torque on the drive, the rollers are braked, which thus leads to a collapse of the rotational speed of the rollers or of the drive to the relevant rolling stand.
  • the rollers of other rolling stands however, on the time of tapping no or a deviant, z. B. acts a smaller load torque, have an unchanged or only slightly changed speed.
  • a rolling mill has at least one rolling mill having a drive, in which a rolling moment pilot control of the drive by the torque-generating current supplied to the drive takes place in order to reduce a speed drop caused by a predictable load torque acting on the drive.
  • the occurrence of a foreseeable load torque is reduced by a rolling torque pilot control of the torque-generating current supplied to the drive.
  • suitable parameters such as roll gap geometry, position and characteristics of material sensors, distance of the individual rolling stands or roller and material speeds are used, with which it can be determined when the load torque and at what level it acts on the relevant drive.
  • the corresponding values including the amount of the foreseeable load torque can be determined, for example, by means of a model of the rolling mill.
  • the current supplied to the drive can then be selectively controlled in such a way that a reduction in the rotational speed of the drive associated with the occurrence of the load torque is reduced.
  • a controlled operation of the drives or the rollers of the individual rolling stands and thus the entire system is guaranteed. It is therefore no longer to individual tensile or compressive loads due to strong speed fluctuations of the individual drives or rollers of different rolling stands.
  • variations in the thickness are reduced and cracking of the rolling or looping largely avoided. This is especially true when the rolling mill has several rolling stands with separate drives and each drive is individually pre-controlled.
  • the foreseeable load torque is corrected by evaluating the actual values, in particular torque, speed, and derived actual accelerations. This results in a dynamic correction in the position of the tape head.
  • the height of the load torque can be corrected dynamically.
  • an evaluation is made by evaluating the deviation between the precontrol values for the foreseeable load torque and the actual load torque, an iterative optimization for correcting the Aufschaltzeitifiess and an iterative correction of the height of the predictable load torque.
  • the feedforward control is material-based. This means that material parameters such as hardness or influencing factors such as temperature and type of material are initially taken into account, how high the foreseeable load torque acts on the drive in question, so that depending on the drive, the drive is accordingly pre-controlled and thus the supplied current is changed.
  • the current is not leaps and bounds, but increasing, within a time window continuously, in particular increases ramped for pre-control of the drive.
  • the corresponding torque of the drive is changed only relatively slowly, so ramped.
  • the ramp can also be preset in a staircase.
  • the slope of the ramp for the torque is dimensioned such that the drive train remains in a defined and reproducible state at any time.
  • the overall system is better controlled and it shows a much improved timing of the individual drives and in particular the overall system.
  • a reproducibility of the behavior of the entire system is ensured.
  • the limitation of the increase of the current takes place with a corresponding ramp-shaped increase of the current setpoint value and can take place indirectly via a torque or also speed precontrol.
  • the steepness of the ramp depends on the dynamics of the power converter. In this case, type of converter, operating point and the design of the power converter, in particular the amount of current to be impressed, the speed and the voltage reserve play a role. With high reproducibility, the slope corresponds to an average value that can be achieved at the specified operating points. For complete reproducibility, the slope of the ramp or staircase must be smaller than the possible maximum slope that the power converter can provide over all specified operating points. The setpoint increase then does not exceed the achievable dynamics of the converter at the voltage limit at nominal motor voltage and maximum power. This eliminates deviations of the converter behavior in different operating points. This allows extremely accurate and predictable feedforward control at high speeds. The reproducible operation allows a very precise analysis of the inertia by interpolation, in addition a dynamic statement about the occurring load torque for the dynamic correction of the material position and the load height.
  • the ramp is designed such that the increase in torque of the drive achieved by the current increase causes a symmetrically acting deviation, so that the speed increase to the occurrence of the load and the delay after the occurrence of the load cancel until the complete build-up of the torque.
  • the torque input is thus realized halfway before and the other half after the load torque has occurred.
  • Pre-control is completed before the material enters the scaffold when the rise time between the occurrence of the load until complete torque application does not exceed the scaffold spacing divided by material velocity. In the case of a symmetrically acting deviation, this corresponds to twice the time required for the material to pass between two scaffolds.
  • FIG. 1 shows a section of a rolling train 2 with successive rolling stands 4 for processing a rolling stock 6.
  • eight consecutive rolling stands 4 are shown which pass through the rolling stock 6, eg a billet, which is rolled into wire.
  • Each mill stand 4 is a separate drive 8, comprising a motor 10 and a gear 12 associated with, wherein in the figure for clarity, only one drive 8 is indicated.
  • the drive is supplied by means of a power converter 14 with a control unit 16, a desired current I.
  • Each roll stand 4 further comprises at least one roller 13, which is driven by the respective drive 8 at a predetermined speed n, which is taken for example from a pass schedule.
  • the speed of rotation caused by a load torque M L acting on the drive 8 is reduced by the drive 8 with the aid of the control device 16 and the power converter 14 is precontrolled with respect to its supplied current I.
  • the load torque M L can be known or estimated, that is, a predictable size. For example, based on models of the rolling mill 2 as well as known sizes of the rolling stock 6 to be rolled, a corresponding expected value of the load moment M L acting on a drive 8 of a rolling stand 4 can be determined. This expectation value is determined over time so that the load moment M L for a particular drive 8 of a roll stand 4 is predicted over time. Depending on the foreseeable load torque M L , the rolling torque precontrol of the drive 8 is then effected by the torque-generating current I supplied to the drive such that a fall in the rotational speed of the drive 8 is compensated. For drives which, unlike the preferred solution, drive more than one rolling stand 4, the motor-related load torque M L determined over time reflects the sum of the individual motor-related rolling moments.
  • FIG. 2 is now exemplified for two rolling stands 4, each with a drive assigned to this 8, the time course of impinging on them load moments M L and these drives 8 supplied current I with the corresponding control variable, namely the current setpoint shown over time.
  • Curve 18 represents a sudden change of the load torque M L on the drive 8 of the first stand 4 at time t 2
  • curve 20 represents a jump of the load moment M L on the drive 8 of the second stand 4 at time t7.
  • the ramp for the current setpoint and for the current I is dimensioned such that the drive 8 remains in a stable state, which is also reproducible, that is, the increase of the current setpoint and the current I is so slow that the drive. 8 has a defined operating behavior.
  • the ramp of the current I is designed such that the torque increase of the drive 8 achieved by the increase in current is realized to one half before and the other half after the occurrence of the load torque M L. This means that the time span from t 1 to t 2 equals the period from t 3 to t 4 . When the time t 4 is reached, the amount of the load torque M L then corresponds to the amount of the torque M of the drive 8.
  • the current I according to curve 28 in the interval between t 6 and t 9 increases ramped such that the drive 8 remains in a stable state and the increase in torque achieved by the torque increase of the drive 8 to one half before and the other Half after the occurrence of the load torque M L is realized.
  • FIG. 3 now the speed curve of the two drives 8 is shown on the corresponding rolling stands 4.
  • the lower curve 30 shows the time course of the rotational speed n of the drive 8 of the first rolling stand 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

The method involves performing rolling torque-pre control of a drive by a torque-forming current (I), which is supplied to the drive, for reducing a rotational speed undershoot of the drive, where the rotational speed undershoot is caused by an anticipated load torque acting on the drive. The load torque caused by a rolling process is precontrolled in the drive. The current is stepwise increased for precontrolling the drive. The load torque is corrected by evaluation of rotational speed or torque actual values.

Description

Die Erfindung betrifft ein Verfahren zum Bearbeiten von Walzgut in einem Walzwerk mit mindestens einem einen Antrieb aufweisenden Walzgerüst.The invention relates to a method for processing rolling stock in a rolling mill with at least one rolling mill having a drive.

Bei der Bearbeitung von Walzgut, z.B. Stahl oder verschiedenen Metallen in Form von sogenannten Brammen oder Knüppeln durchläuft das Walzgut eine Walzstraße mit einem oder mehreren Walzgerüsten. Die einzelnen Walzgerüste weisen jeweils einen Antrieb für Walzen auf, mit denen das Walzgut zu Platten oder Drähten mit einer gewünschten Geometrie, wie beispielsweise Dicke oder Querschnitt gewalzt wird.In the processing of rolling stock, e.g. Steel or various metals in the form of so-called slabs or billets, the rolling stock passes through a rolling train with one or more rolling stands. The individual rolling stands each have a drive for rollers, with which the rolling stock is rolled into sheets or wires with a desired geometry, such as thickness or cross section.

Um dies zu erreichen, müssen die Walzen mit Hilfe der Antriebe der einzelnen Walzgerüste auf eine bestimmte Drehzahl geregelt werden. Dabei ist es auch wichtig, dass während des gesamten Betriebs der Walzstraße auch das vorbestimmte Verhältnis der Drehzahlen der Walzen der einzelnen Walzgerüste konstant bleibt, da sonst Zug- und Druckbelastungen auf das Walzgut auftreten, die wiederum zu einem ungewünschten Walzergebnis oder sogar zu einem Reißen oder einer Schlingenbildung des Walzguts führen können.To achieve this, the rollers must be controlled to a certain speed with the aid of the drives of the individual rolling stands. It is also important that during the entire operation of the rolling mill and the predetermined ratio of rotational speeds of the rollers of the individual rolling stands remains constant, otherwise tensile and compressive loads on the rolling occur, which in turn lead to an undesirable rolling result or even tearing or can cause a looping of the rolling stock.

Um dies insbesondere bei großen Walzgeschwindigkeiten mechanisch zu gewährleisten, werden beispielsweise einige in einer Langprodukt-Walzstraße befindlichen Walzen in einem mehrgerüstigen Drahtblock über ein mechanisches Verteilergetriebe starr miteinander gekoppelt und mit einem gemeinsamen Motor angetrieben. Ein großer Nachteil hierbei ist jedoch, dass die Teilanlage aufgrund der festen Drehzahlverhältnisse für weitere Produkte nicht angepasst werden kann und dass beispielsweise bei Verschleiß einzelner Walzen der komplette Walzensatz nachgeschliffen werden muss, da es sonst zu den oben genannten Effekten kommen kann.In order to ensure this mechanically, in particular at high rolling speeds, for example, some rolls located in a long-product rolling mill are rigidly coupled together in a multi-stand wire block via a mechanical transfer case and driven by a common motor. A major disadvantage here is that the subsystem can not be adjusted due to the fixed speed ratios for other products and that, for example, the wear of individual rolls of complete set of rolls must be reground, otherwise it may cause the above effects.

Diese Nachteile können dadurch überwunden werden, dass jedes Walzgerüst einen separaten Antrieb für die Walzen aufweist. Dabei weisen die einzelnen Antriebe jeweils eine separate Drehzahlregelung auf, so dass diese einzeln geregelt werden können.These disadvantages can be overcome by having each rolling stand with a separate drive for the rolls. In this case, the individual drives each have a separate speed control, so that they can be controlled individually.

Eine große Herausforderung einer solchen Antriebslösung stellt jedoch die Drehzahlregelung der Walzen bzw. Antriebe der einzelnen Walzgerüste während der Bearbeitung von Walzgut dar. Dies gilt insbesondere dann, wenn unterschiedliche Lastmomente auf die einzelnen Walzgerüste wirken, was beispielsweise beim Anstich, d.h. beim Auftreffen des Walzguts auf die Walzen der Fall ist. Bei einem derartigen Einwirken eines Lastmoments auf den Antrieb werden die Walzen abgebremst, was somit zu einem Einbruch der Drehzahl der Walzen bzw. des Antriebs an dem betreffenden Walzgerüst führt. Die Walzen anderer Walzgerüste hingegen, auf die zum Anstichzeitpunkt kein oder ein abweichendes, z. B. ein kleineres Lastmoment wirkt, weisen eine unveränderte bzw. nur leicht veränderte Drehzahl auf. Dies hat zur Folge, dass die Drehzahlen der einzelnen Antriebe bzw. Walzen nicht mehr synchron, also nicht mehr in einem vorgegebenen Drehzahlverhältnis zueinander arbeiten. Dies führt zu Fehlern der Materialdicke und kann bei unzulässiger Zug- oder Druckbelastung zu einem Reißen des Drahtes oder zur Schlingenbildung des Walzgutes zwischen den einzelnen Walzgerüsten führen.A major challenge of such a drive solution, however, is the speed control of the rollers or drives of the individual rolling stands during the processing of rolling stock. This is especially true when different load moments act on the individual rolling stands, which for example when tapping, i. when striking the rolling stock on the rollers is the case. In such an action of a load torque on the drive, the rollers are braked, which thus leads to a collapse of the rotational speed of the rollers or of the drive to the relevant rolling stand. The rollers of other rolling stands, however, on the time of tapping no or a deviant, z. B. acts a smaller load torque, have an unchanged or only slightly changed speed. This has the consequence that the rotational speeds of the individual drives or rollers are no longer synchronous, so no longer work in a predetermined speed ratio to each other. This leads to errors in the material thickness and can lead to tearing of the wire or looping of the rolling stock between the individual rolling stands in case of unacceptable tensile or compressive load.

Mit den bisherigen Drehzahlregelungen mit teilweise überlagerten Korrekturaufschaltungen war zudem auch das Verhalten des Gesamtsystems, also der einzelnen Antriebe bzw. Walzen der Walzgerüste und somit deren Auswirkungen auf das Walzergebnis nicht immer vorhersehbar, so dass die Qualität des Walzguts nicht immer den Anforderungen entsprach.In addition, the behavior of the overall system, that is to say the individual drives or rollers of the rolling stands and thus their effects on the rolling result, was not always predictable with the previous speed controls with partially overlaid correction setups, so that the quality of the rolling stock did not always meet the requirements.

Es ist daher Aufgabe der Erfindung ein Verfahren zum Bearbeiten von Walzgut in einem Walzwerk anzugeben, bei dem die oben genannten Nachteile vermieden werden.It is therefore an object of the invention to provide a method for processing rolling stock in a rolling mill, in which the above-mentioned disadvantages are avoided.

Die Aufgabe wird durch ein Verfahren zum Bearbeiten von Walzgut in einem Walzwerk mit den Merkmalen des Patentanspruches 1 gelöst. Dabei weist ein Walzwerk mindestens ein einen Antrieb aufweisendes Walzgerüst auf, bei dem zur Reduzierung eines durch ein auf den Antrieb wirkendes vorhersehbares Lastmoment verursachten Drehzahleinbruches des Antriebs eine Walzmoment-Vorsteuerung des Antriebs durch den dem Antrieb zugeführten momentenbildenden Strom erfolgt.The object is achieved by a method for processing rolling stock in a rolling mill with the features of claim 1. In this case, a rolling mill has at least one rolling mill having a drive, in which a rolling moment pilot control of the drive by the torque-generating current supplied to the drive takes place in order to reduce a speed drop caused by a predictable load torque acting on the drive.

Bei dem erfindungsgemäßen Verfahren wird also bei Auftreten eines vorhersehbaren Lastmoments, wie es beispielsweise beim Anstich der Fall ist, der dadurch bedingte Drehzahleinbruch, durch eine Walzmoment-Vorsteuerung des dem Antrieb zugeführten momentenbildenden Stromes reduziert. Zur Vorhersehbarkeit des Lastmoments werden geeignete Parameter wie beispielsweise Walzspaltgeometrie, Lage und Charakteristik von Materialsensoren, Abstand der einzelnen Walzgerüste oder Walzen- und Materialgeschwindigkeiten verwendet, anhand derer ermittelt werden kann, wann das Lastmoment und in welcher Höhe es auf den betreffenden Antrieb wirkt. Die entsprechenden Werte inklusive Höhe des vorhersehbaren Lastmomentes können beispielsweise mittels eines Modells des Walzwerkes ermittelt werden. In Abhängigkeit dieser Vorhersage kann dann der dem Antrieb zugeführte Strom derart gezielt vorgesteuert werden, dass ein mit dem Auftreten des Lastmoments verbundener Drehzahleinbruch des Antriebs reduziert wird. Somit wird ein kontrollierter Betrieb der Antriebe bzw. der Walzen der einzelnen Walzgerüste und somit auch der gesamten Anlage gewährleistet. Es kommt damit nicht mehr zu einzelnen Zug- oder Druckbelastungen auf Grund starker Drehzahlschwankungen der einzelnen Antriebe bzw. Walzen unterschiedlicher Walzgerüste. Somit werden Abweichungen in der Dicke reduziert und ein Reißen des Walzguts bzw. eine Schlingenbildung weitestgehend vermieden. Dies trifft insbesondere dann zu, wenn das Walzwerk mehrere Walzgerüste mit separaten Antrieben aufweist und jeder Antrieb einzeln vorgesteuert wird.In the method according to the invention, therefore, the occurrence of a foreseeable load torque, as is the case, for example, when piercing, the resulting reduction in speed is reduced by a rolling torque pilot control of the torque-generating current supplied to the drive. For the predictability of the load torque suitable parameters such as roll gap geometry, position and characteristics of material sensors, distance of the individual rolling stands or roller and material speeds are used, with which it can be determined when the load torque and at what level it acts on the relevant drive. The corresponding values including the amount of the foreseeable load torque can be determined, for example, by means of a model of the rolling mill. Depending on this prediction, the current supplied to the drive can then be selectively controlled in such a way that a reduction in the rotational speed of the drive associated with the occurrence of the load torque is reduced. Thus, a controlled operation of the drives or the rollers of the individual rolling stands and thus the entire system is guaranteed. It is therefore no longer to individual tensile or compressive loads due to strong speed fluctuations of the individual drives or rollers of different rolling stands. Thus, variations in the thickness are reduced and cracking of the rolling or looping largely avoided. This is especially true when the rolling mill has several rolling stands with separate drives and each drive is individually pre-controlled.

Das vorhersehbare Lastmoment wird durch Auswertung der Istwerte, im besonderen, Drehmoment-, Drehzahl-, und daraus abgeleiteter Beschleunigungsistwerte korrigiert. Damit erfolgt eine dynamische Korrektur bei der Position des Bandkopfes. Durch Beobachtermodelle kann zusätzlich die Höhe des Lastmoments dynamisch korrigiert werden. Bei sich wiederholenden Vorgängen mit gleichem Material erfolgt durch Auswertung der Abweichung zwischen Vorsteuerwerten für das vorhersehbare Lastmoment und tatsächlichem Lastmoment eine iterative Optimierung zur Korrektur des Aufschaltzeitpunktes sowie eine iterative Korrektur der Höhe des vorhersehbaren Lastmoments.The foreseeable load torque is corrected by evaluating the actual values, in particular torque, speed, and derived actual accelerations. This results in a dynamic correction in the position of the tape head. By means of observer models, the height of the load torque can be corrected dynamically. In the case of repetitive processes with the same material, an evaluation is made by evaluating the deviation between the precontrol values for the foreseeable load torque and the actual load torque, an iterative optimization for correcting the Aufschaltzeitpunktes and an iterative correction of the height of the predictable load torque.

Bei einer bevorzugten Ausgestaltung der Erfindung erfolgt die Vorsteuerung materialbasiert. Dies bedeutet dass auch Materialparameter wie beispielsweise die Härte oder deren beeinflussende Faktoren wie Temperatur und Materialart zunächst dabei berücksichtigt werden, wie hoch das vorhersehbare Lastmoment auf den betreffenden Antrieb wirkt, so dass in dessen Abhängigkeit der Antrieb entsprechend vorgesteuert und somit der zugeführte Strom verändert wird.In a preferred embodiment of the invention, the feedforward control is material-based. This means that material parameters such as hardness or influencing factors such as temperature and type of material are initially taken into account, how high the foreseeable load torque acts on the drive in question, so that depending on the drive, the drive is accordingly pre-controlled and thus the supplied current is changed.

Wenn zur Vorsteuerung des Antriebs der Strom bei einem auftretenden Lastmoment sprungartig erhöht wird, reagiert das System kurzzeitig auf das Auftreten des Lastmoments. Nachteilig hierbei ist jedoch, dass bei derartigen sprunghaften Änderungen des zugeführten momentenbildenden Stromes neben den Eigenschaften der Mechanik auch das Verhalten des Stromrichters im jeweiligen Betriebspunkt Einfluss auf das Antwortverhalten des Gesamtsystems hat.If, in order to pre-control the drive, the current is suddenly increased when a load torque occurs, the system reacts briefly to the occurrence of the load torque. The disadvantage here, however, is that in such sudden changes in the supplied torque-generating current in addition to the properties of the mechanism and the behavior of the power converter in each operating point has an influence on the response of the overall system.

Um dies zu vermeiden, wird zur Vorsteuerung des Antriebs der Strom nicht sprunghaft, sondern ansteigend, innerhalb eines Zeitfensters kontinuierlich, insbesondere rampenförmig erhöht. Somit wird auch das entsprechende Drehmoment des Antriebs nur relativ langsam, also rampenförmig geändert. Abweichend kann die Rampe auch treppenförmig vorgegeben werden.To avoid this, the current is not leaps and bounds, but increasing, within a time window continuously, in particular increases ramped for pre-control of the drive. Thus, the corresponding torque of the drive is changed only relatively slowly, so ramped. Alternatively, the ramp can also be preset in a staircase.

Die Steilheit der Rampe für das Drehmoment ist dabei derart bemessen, dass der Antriebsstrang in einem definierten und jederzeit reproduzierbaren Zustand bleibt. Damit wird das Gesamtsystem besser kontrolliert und es zeigt sich ein stark verbessertes Zeitverhalten der einzelnen Antriebe und insbesondere des Gesamtsystems. Somit ist eine Reproduzierbarkeit des Verhaltens des Gesamtsystems sichergestellt. Die Begrenzung des Anstiegs des Stromes erfolgt mit einer entsprechenden rampenförmigen Erhöhung des Strom-Sollwertes und kann indirekt über eine Drehmoment- oder auch Drehzahlvorsteuerung erfolgen.The slope of the ramp for the torque is dimensioned such that the drive train remains in a defined and reproducible state at any time. Thus, the overall system is better controlled and it shows a much improved timing of the individual drives and in particular the overall system. Thus, a reproducibility of the behavior of the entire system is ensured. The limitation of the increase of the current takes place with a corresponding ramp-shaped increase of the current setpoint value and can take place indirectly via a torque or also speed precontrol.

Die Steilheit der Rampe hängt von der Dynamik des Stromrichters ab. Dabei spielen Stromrichtertyp, Betriebspunkt und die Auslegung des Stromrichters, insbesondere die Höhe des einzuprägenden Stromes, die Drehzahl und die Spannungsreserve eine Rolle. Bei einer hohen Reproduzierbarkeit entspricht die Steilheit einem durchschnittlichen Wert, der bei den spezifizierten Betriebspunkten erzielt werden kann. Für eine vollständige Reproduzierbarkeit muss die Steilheit der Rampe oder Treppe dabei kleiner als die mögliche maximale Steilheit sein, die der Stromrichter über alle spezifizierten Betriebspunkte zur Verfügung stellen kann. Der Sollwertanstieg übersteigt dann nicht die erzielbare Dynamik des Stromrichters an der Spannungsgrenze bei Motornennspannung und maximaler Leistung. Dies eliminiert Abweichungen des Stromrichterverhaltens in unterschiedlichen Betriebspunkten. Dadurch ist eine äußerst akkurate und vorhersehbare Vorsteuerung bei hohen Geschwindigkeiten möglich. Der reproduzierbare Betrieb ermöglicht durch Interpolation eine sehr genaue Analyse der Trägheiten zusätzlich eine dynamische Aussage über das auftretende Lastmoment zur dynamischen Korrektur der Materialposition und der Lasthöhe.The steepness of the ramp depends on the dynamics of the power converter. In this case, type of converter, operating point and the design of the power converter, in particular the amount of current to be impressed, the speed and the voltage reserve play a role. With high reproducibility, the slope corresponds to an average value that can be achieved at the specified operating points. For complete reproducibility, the slope of the ramp or staircase must be smaller than the possible maximum slope that the power converter can provide over all specified operating points. The setpoint increase then does not exceed the achievable dynamics of the converter at the voltage limit at nominal motor voltage and maximum power. This eliminates deviations of the converter behavior in different operating points. This allows extremely accurate and predictable feedforward control at high speeds. The reproducible operation allows a very precise analysis of the inertia by interpolation, in addition a dynamic statement about the occurring load torque for the dynamic correction of the material position and the load height.

Um eine Vorsteuerung ohne Drehzahlabweichung vor und nach der Aufschaltung zu erhalten, ist die Rampe derart gestaltet, dass die durch die Stromerhöhung erzielte Drehmomenterhöhung des Antriebs eine symmetrisch wirkende Abweichung verursacht, damit sich die Geschwindigkeitsüberhöhung bis zum Auftreten der Last und die Verzögerung nach Auftreten der Last bis zum vollständigen Aufbau des Drehmomentes aufheben. Bei sprungförmiger Last und konstanter Rampe wird die Drehmomentaufschaltung somit zur einen Hälfte vor und zur anderen Hälfte nach Auftreten des Lastmoments realisiert.In order to obtain a pre-control without speed deviation before and after the connection, the ramp is designed such that the increase in torque of the drive achieved by the current increase causes a symmetrically acting deviation, so that the speed increase to the occurrence of the load and the delay after the occurrence of the load cancel until the complete build-up of the torque. In the event of a sudden load and a constant ramp, the torque input is thus realized halfway before and the other half after the load torque has occurred.

Eine Vorsteuerung ist vor Eintritt des Materials in das Folgegerüst abgeschlossen, wenn die Anstiegszeit zwischen Auftreten der Last bis zum kompletten Aufschalten des Drehmoments den Wert von Gerüstabstand geteilt durch Materialgeschwindigkeit nicht übersteigt. Bei einer symmetrisch wirkenden Abweichung entspricht das der doppelten Zeit, die das Material beim Durchlauf zwischen zwei Gerüsten benötigt.Pre-control is completed before the material enters the scaffold when the rise time between the occurrence of the load until complete torque application does not exceed the scaffold spacing divided by material velocity. In the case of a symmetrically acting deviation, this corresponds to twice the time required for the material to pass between two scaffolds.

Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden.The above-described characteristics, features, and advantages of this invention, as well as the manner in which they will be achieved, will become clearer and more clearly understood in connection with the following description of the embodiments, which will be described in detail in conjunction with the drawings.

Für eine weitere Beschreibung der Erfindung wird auf die Ausführungsbeispiele der Zeichnungen verwiesen. Es zeigen in einer schematischen Prinzipskizze:

FIG 1
einen Ausschnitt einer Walzstraße mit aufeinanderfolgenden Walzgerüsten und mit einem separaten Antrieb für jedes Walzgerüst,
FIG 2
eine Diagramm, bei dem jeweils auf Antriebe von Walzgerüsten wirkende Lastmomente sowie der diesen Antrieben zugeführte Strom im zeitlichen Verlauf dargestellt ist,
FIG 3
ein Diagramm, bei dem der entsprechende Drehzahlverlauf der Antriebe bei Einwirkung der in FIG 2 dargestellten Größen im zeitlichen Verlauf dargestellt ist
For a further description of the invention reference is made to the embodiments of the drawings. In a schematic schematic diagram:
FIG. 1
a section of a rolling train with successive rolling stands and with a separate drive for each roll stand,
FIG. 2
a diagram in which in each case acting on drives of rolling stands load moments and the power supplied to these drives is shown over time,
FIG. 3
a diagram in which the corresponding speed curve of the drives under the action of in FIG. 2 shown sizes over time is shown

FIG 1 zeigt einen Ausschnitt einer Walzstraße 2 mit aufeinanderfolgenden Walzgerüsten 4 zur Bearbeitung eines Walzgutes 6. In FIG 1 sind beispielhaft acht aufeinanderfolgende Walzgerüste 4 dargestellt, die das Walzgut 6, z.B. ein Knüppel der zu Draht gewalzt wird, durchläuft. FIG. 1 shows a section of a rolling train 2 with successive rolling stands 4 for processing a rolling stock 6. In FIG. 1 By way of example, eight consecutive rolling stands 4 are shown which pass through the rolling stock 6, eg a billet, which is rolled into wire.

Jedem Walzgerüst 4 ist ein separater Antrieb 8, umfassend einen Motor 10 und ein Getriebe 12 zugeordnet, wobei in der Figur zur besseren Übersichtlichkeit nur ein Antrieb 8 angedeutet ist. Dem Antrieb wird mittels eines Stromrichters 14 mit einer Steuereinheit 16 ein gewünschter Strom I zugeführt. Jedes Walzgerüst 4 umfasst weiterhin mindestens eine Walze 13, die von dem jeweiligen Antrieb 8 mit einer vorgegebenen Drehzahl n angetrieben wird, welche beispielsweise aus einem Stichplan entnommen wird.Each mill stand 4 is a separate drive 8, comprising a motor 10 and a gear 12 associated with, wherein in the figure for clarity, only one drive 8 is indicated. The drive is supplied by means of a power converter 14 with a control unit 16, a desired current I. Each roll stand 4 further comprises at least one roller 13, which is driven by the respective drive 8 at a predetermined speed n, which is taken for example from a pass schedule.

Trifft nun Walzgut 6 auf die Walze 4 eines Walzgerüstes 13, so wird auf den Antrieb 8 des entsprechenden Walzgerüstes 13 ein Lastmoment ML ausgeübt. Dieses Lastmoment ML führt nun dazu, dass die Drehzahl n des betreffenden Antriebs 8 einbricht. In Walzwerken 2 gemäß dem Stand der Technik erfolgt dann eine entsprechende Korrektur der Drehzahl n nach oben, so dass nach einer bestimmten Verzögerungszeit der Antrieb 8 des betreffenden Walzgerüstes 4 wieder die gewünschte Drehzahl n aufweist. Jedoch ist das Verhalten des Antriebs 8 insbesondere unmittelbar nach dem Auftreten des Lastmoments ML nicht immer reproduzierbar. Aufgrund der daraus entstehenden Drehzahlabweichungen mit verbundenen Zugschwankungen entspricht die Qualität des Walzergebnisses nicht immer den Anforderungen. Mit anderen Worten: Das dynamische Verhalten der Antriebe hängt von dem auftretenden Lastmoment ML und dem Verhalten des Reglers ab. Dieses Verhalten ist jedoch nicht immer exakt genug vorhersehbar und aufgrund der Abhängigkeit vom Betriebspunkt nur bedingt reproduzierbar.If rolling stock 6 now encounters the roll 4 of a roll stand 13, then a load moment M L is exerted on the drive 8 of the corresponding roll stand 13. This load torque M L now causes the speed n of the relevant drive 8 to break down. In rolling mills 2 according to the prior art, a corresponding correction of the rotational speed n then takes place upward, so that after a certain delay time the drive 8 of the respective rolling stand 4 again has the desired rotational speed n. However, the behavior of the drive 8, in particular immediately after the occurrence of the load torque M L is not always reproducible. Due to the resulting speed deviations with associated tension fluctuations, the quality of the rolling result does not always meet the requirements. In other words: The dynamic behavior of the drives depends on the occurring load torque M L and the behavior of the controller. However, this behavior is not always sufficiently predictable and due to the dependence on the operating point only partially reproducible.

Gemäß der vorliegenden Erfindung wird der durch ein auf den Antrieb 8 wirkendes Lastmoment ML verursachte Drehzahleinbruche reduziert, indem der Antrieb 8 mit Hilfe der Steuereinrichtung 16 und dem Stromrichter 14 hinsichtlich seines zugeführten Stromes I vorgesteuert wird.According to the present invention, the speed of rotation caused by a load torque M L acting on the drive 8 is reduced by the drive 8 with the aid of the control device 16 and the power converter 14 is precontrolled with respect to its supplied current I.

Um dieses Ziel zu erreichen ist es zunächst erforderlich, dass das Lastmoment ML bekannt bzw. abgeschätzt werden kann, also eine vorhersehbare Größe ist. Beispielsweise anhand von Modellen des Walzwerkes 2 sowie von bekannten Größen des zu walzenden Walzguts 6 kann ein entsprechender Erwartungswert des auf einen Antrieb 8 eines Walzgerüsts 4 wirkenden Lastmoments ML ermittelt werden. Dieser Erwartungswert wird dabei über der Zeit ermittelt, so dass das Lastmoment ML für einen bestimmten Antrieb 8 eines Walzgerüsts 4 im zeitlichen Verlauf vorhergesehen wird. In Abhängigkeit des vorhersehbaren Lastmoments ML erfolgt dann die Walzmoment-Vorsteuerung des Antriebs 8 durch den dem Antrieb zugeführten momentenbildenden Strom I derart, dass ein Drehzahleinbruch des Antriebs 8 kompensiert wird. Für Antriebe, die abweichend von der Vorzugslösung mehr als ein Walzgerüst 4 antreiben, spiegelt das über die Zeit ermittelte motorbezogene Lastmoment ML die Summe der einzelnen motorbezogenen Walzmomente dar.To achieve this goal, it is first necessary that the load torque M L can be known or estimated, that is, a predictable size. For example, based on models of the rolling mill 2 as well as known sizes of the rolling stock 6 to be rolled, a corresponding expected value of the load moment M L acting on a drive 8 of a rolling stand 4 can be determined. This expectation value is determined over time so that the load moment M L for a particular drive 8 of a roll stand 4 is predicted over time. Depending on the foreseeable load torque M L , the rolling torque precontrol of the drive 8 is then effected by the torque-generating current I supplied to the drive such that a fall in the rotational speed of the drive 8 is compensated. For drives which, unlike the preferred solution, drive more than one rolling stand 4, the motor-related load torque M L determined over time reflects the sum of the individual motor-related rolling moments.

In FIG 2 ist nun exemplarisch für zwei Walzgerüste 4 mit jeweils einem diesen zugeordneten Antrieb 8 der zeitliche Verlauf von auf sie auftreffenden Lastmomenten ML sowie der diesen Antrieben 8 zugeführte Strom I mit der entsprechenden Steuergröße, nämlich dem Stromsollwert im zeitlichen Verlauf dargestellt. Kurve 18 stellt eine sprungartige Änderung des Lastmoments ML auf den Antrieb 8 des ersten Walzgerüsts 4 zum Zeitpunkt t2 dar, während Kurve 20 einen Sprung des Lastmoments ML auf den Antrieb 8 des zweiten Walzgerüsts 4 zum Zeitpunkt t7 repräsentiert.In FIG. 2 is now exemplified for two rolling stands 4, each with a drive assigned to this 8, the time course of impinging on them load moments M L and these drives 8 supplied current I with the corresponding control variable, namely the current setpoint shown over time. Curve 18 represents a sudden change of the load torque M L on the drive 8 of the first stand 4 at time t 2 , while curve 20 represents a jump of the load moment M L on the drive 8 of the second stand 4 at time t7.

Um den Drehzahleinbruch des Antriebs 8, welcher durch das auf den Antrieb 8 wirkende Lastmoment ML hervorgerufen wird zu reduzieren, erfolgt eine gezielte Vorsteuerung des Antriebs 8 durch den dem Antrieb zugeführten Strom I mittels der Steuereinheit 16 und dem Stromrichter 14. Dazu wird bereits zum Zeitpunkt t0, also vor dem Auftreten des Lastmoments ML der Sollwert für den Strom I rampenförmig erhöht, wie dies in Kurve 22 dargestellt ist. Der Strom I folgt dann mit leichter zeitlicher Verzögerung ab dem Zeitpunkt t1, welcher aber auch noch vor dem Zeitpunkt t2 des Auftretens des Lastmoments ML liegt, wie es in Kurve 24 dargestellt ist. Die Rampe für den Stromsollwert sowie für den Strom I ist dabei derart bemessen, dass der Antrieb 8 in einem stabilen Zustand bleibt, welcher auch reproduzierbar ist, das heißt, dass der Anstieg des Stromsollwertes und des Stromes I so langsam erfolgt, dass der Antrieb 8 ein definiertes Betriebsverhalten aufweist. Insbesondere ist die Rampe des Stromes I derart gestaltet, dass die durch die Stromerhöhung erzielte Drehmomenterhöhung des Antriebs 8 zur einen Hälfte vor und zur anderen Hälfte nach Auftreten des Lastmoments ML realisiert wird. Dies bedeutet also, dass die Zeitspanne von t1 bis t2 gleich der Zeitspanne von t3 bis t4 entspricht. Beim Erreichen des Zeitpunktes t4 entspricht dann der Betrag des Lastmoments ML dem Betrag des Drehmoments M des Antriebs 8.In order to reduce the speed of rotation of the drive 8, which is caused by acting on the drive 8 load torque M L , there is a targeted feedforward control of the drive 8 by the drive I supplied current I by means of the control unit 16 and the power converter 14. This is already for Time t 0 , ie before the occurrence of the load torque M L of Set point for the current I ramped increases, as shown in curve 22. The current I then follows with a slight time delay from the time t 1 , which is also before the time t 2 of the occurrence of the load torque M L , as shown in curve 24. The ramp for the current setpoint and for the current I is dimensioned such that the drive 8 remains in a stable state, which is also reproducible, that is, the increase of the current setpoint and the current I is so slow that the drive. 8 has a defined operating behavior. In particular, the ramp of the current I is designed such that the torque increase of the drive 8 achieved by the increase in current is realized to one half before and the other half after the occurrence of the load torque M L. This means that the time span from t 1 to t 2 equals the period from t 3 to t 4 . When the time t 4 is reached, the amount of the load torque M L then corresponds to the amount of the torque M of the drive 8.

Nach einer gewissen Zeitdauer trifft beispielsweise beim einfädeln des Walzguts 6 dieses auf das zweite Walzgerüst 4 auf und verursacht dort einen Sprung des Lastmoments ML in einer unterschiedlichen Höhe, wie es in Kurve 20 dargestellt ist. Das entsprechende Lastmoment ML ist wiederum durch bekannte Größen vorhersehbar. Auch hier erfolgt zur Reduzierung eines durch das Lastmoment ML verursachten Drehzahleinbruches des Antriebs 8 eine Vorsteuerung des Antriebs 8 mittels des Stromsollwerts, welcher zwischen den Zeitpunkten t5 und t8 rampenförmig erhöht wird, wie es in Kurve 26 dargestellt ist. Auch hier wird nach entsprechender Verzögerungszeit der Strom I gemäß Kurve 28 im Intervall zwischen t6 und t9 derart rampenförmig erhöht, dass der Antrieb 8 in einem stabilen Zustand bleibt und die durch die Stromerhöhung erzielte Drehmomenterhöhung des Antriebs 8 zur einen Hälfte vor und zur anderen Hälfte nach Auftreten des Lastmoments ML realisiert wird.After a certain period of time, for example, during threading of the rolling stock 6, it encounters the second rolling stand 4, where it causes a jump of the load moment M L at a different height, as shown in curve 20. The corresponding load torque M L is again predictable by known sizes. Here again, in order to reduce a speed drop of the drive 8 caused by the load torque M L , a precontrol of the drive 8 takes place by means of the current setpoint, which is ramped between the times t 5 and t 8 , as shown in curve 26. Again, after appropriate delay time, the current I according to curve 28 in the interval between t 6 and t 9 increases ramped such that the drive 8 remains in a stable state and the increase in torque achieved by the torque increase of the drive 8 to one half before and the other Half after the occurrence of the load torque M L is realized.

In FIG 3 ist nun der Drehzahlverlauf der beiden Antriebe 8 an den entsprechenden Walzgerüsten 4 dargestellt. Die untere Kurve 30 zeigt den zeitlichen Verlauf der Drehzahl n des Antriebs 8 des ersten Walzgerüsts 4. Durch die Vorsteuerung des dem Antriebs 8 zugeführten Strom I wird zunächst das Drehmoment M ab dem Zeitpunkt t1 wie oben beschrieben erhöht und somit auch die Drehzahl n gesteigert. Dies geschieht bis zu dem Zeitpunkt t2, an dem das Lastmoment ML auf den Antrieb 8 wirkt, welcher nun einen Drehzahleinbruch unter die gewünschte Drehzahl n zur Folge hat. Durch ein weiteres Erhöhen des Stromes I und somit des Drehmoments M zwischen den Zeitpunkten t2 und t4 wird dann die Drehzahl n auf den gewünschten Wert gebracht.In FIG. 3 now the speed curve of the two drives 8 is shown on the corresponding rolling stands 4. The lower curve 30 shows the time course of the rotational speed n of the drive 8 of the first rolling stand 4. By the precontrol of the drive 8 supplied current I, the torque M is first increased from the time t 1 as described above and thus also increases the speed n , This happens up to the time t 2 at which the load torque M L acts on the drive 8, which now has a speed drop below the desired speed n result. By further increasing the current I and thus the torque M between the times t 2 and t 4 , the speed n is then brought to the desired value.

Ein entsprechender Verlauf ist in Kurve 32 für den Antrieb 8 des zweiten Walzgerüsts 4 gezeigt.A corresponding course is shown in curve 32 for the drive 8 of the second roll stand 4.

Anhand der Kurvenverläufe der Drehzahlen n ist also zu erkennen, dass ein Drehzahleinbruch der Antriebe 8 durch die entsprechende Vorsteuerung kompensiert wird. Überlagerte abklingende Torsionsschwingungen sind zur Vereinfachung nicht dargestellt. Durch die Vorsteuerung des Stromes I und des damit verbundenen vordefinierten Anstieg des Stromes I, hier in Rampenform, wird auch während des dynamischen Betriebs des Antriebs dafür gesorgt, dass dieser stets in einem definierten und reproduzierbaren Zustand betrieben wird, so dass eine Schlingenbildung oder gar ein Reißen des Walzguts während des Walzvorganges verhindert wird. Somit ist auch das Systemverhalten durch die Vorsteuerung besser beeinflussbar, um ein auftretendes Lastmoment ML zu kompensieren.On the basis of the curves of the rotational speeds n, it can be seen that a fall in the rotational speed of the drives 8 is compensated by the corresponding precontrol. Superimposed decaying torsional vibrations are not shown for the sake of simplicity. By the precontrol of the current I and the associated predefined increase in the current I, here in ramp form, it is also ensured during the dynamic operation of the drive that this is always operated in a defined and reproducible state, so that a looping or even a Tearing of the rolling stock is prevented during the rolling process. Thus, the system behavior by the pilot control is better influenced to compensate for a load torque occurring M L.

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been further illustrated and described in detail by the preferred embodiment, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.

Claims (8)

Verfahren zum Bearbeiten von Walzgut (6) in einem Walzwerk (2) mit mindestens einem einen Antrieb (8) aufweisenden Walzgerüst (4), bei dem zur Reduzierung eines durch ein auf den Antrieb (8) wirkendes vorhersehbares Lastmoment (ML) verursachten Drehzahleinbruches des Antriebs (8) eine Walzmoment-Vorsteuerung des Antriebs (8) durch den dem Antrieb (8) zugeführten momentenbildenden Strom (I) erfolgt.Method for processing rolling stock (6) in a rolling mill (2) with at least one rolling mill (4) having a drive (8) in which a reduction in rotational speed caused by a foreseeable load moment (M L ) acting on the drive (8) is reduced the drive (8) is a rolling torque pilot control of the drive (8) by the drive (8) supplied torque-generating current (I). Verfahren nach Anspruch 1, bei dem das Walzwerk (2) ein Langprodukt- Walzwerk ist und mehrere Walzgerüste (4) mit jeweils einem separaten Antrieb (8) für hohe Walzgeschwindigkeiten aufweist und das durch den Walzprozess bedingte Lastmoment (ML) bei jedem Antrieb (8) einzeln vorgesteuert wird.Method according to Claim 1, in which the rolling mill (2) is a long-product rolling mill and has a plurality of rolling stands (4) each with a separate drive (8) for high rolling speeds and the load moment (M L ) caused by the rolling process for each drive ( 8) is individually pre-controlled. Verfahren nach Anspruch 1 oder 2, bei dem die Vorsteuerung materialbasiert erfolgt.Method according to Claim 1 or 2, in which the precontrol is material-based. Verfahren nach einem der vorhergehenden Ansprüche, bei dem zur Vorsteuerung des Antriebs (8) der Strom (I) sprungartig erhöht wird.Method according to one of the preceding claims, in which the feedforward control of the drive (8), the current (I) is increased suddenly. Verfahren nach einem der Ansprüche 1 bis 3, bei dem zur Vorsteuerung des Antriebs (8) der Strom (I) rampenförmig oder treppenförmig erhöht wird.Method according to one of Claims 1 to 3, in which the current (I) is ramped or stepped in order to feedforward the drive (8). Verfahren nach Anspruch 5, bei dem die Steilheit im Verlauf der Rampe durch Reduktion der Dynamik in Abhängigkeit von Stromrichtereigenschaften derart bemessen ist, dass der Antrieb (8) ein hohes oder vollständig reproduzierbares Verhalten bietet.Method according to Claim 5, in which the steepness in the course of the ramp is dimensioned by reducing the dynamics as a function of converter characteristics such that the drive (8) offers a high or completely reproducible behavior. Verfahren nach Anspruch 5 oder 6, bei dem die Rampe zur Elimination einer verbleibenden Drehzahldifferenz zeitlich derart gestaltet ist, dass die Abweichung zwischen Lastmoment (ML) und der durch die Vorsteuerung erzielten Drehmomenterhöhung des Abtriebs (8) nach dem Auftreten der Last bis zum vollständigen Aufbau des Lastmoments (ML) die Drehzahldifferenz bis zum Auftreten des Lastmoments (ML) ausgleicht.The method of claim 5 or 6, wherein the ramp for eliminating a remaining speed difference is designed in time such that the deviation between the load torque (M L) and the increase in torque generated by the feedforward control of the output (8) after the onset of load to the complete structure of the load moment (M L), the speed difference until the occurrence of the load torque (M L) compensates. Verfahren nach Anspruch 6 oder 7, bei dem durch Auswertung der auf die Form der Vorsteuerung resultierenden Drehzahl- oder Drehmomentistwerte das vorhersehbare Lastmoment (ML) korrigiert wird.Method according to Claim 6 or 7, in which the foreseeable load torque (M L ) is corrected by evaluating the speed or torque actual values resulting from the form of the precontrol.
EP12178196.7A 2012-07-27 2012-07-27 Method for processing milled goods in a rolling mill Withdrawn EP2689864A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12178196.7A EP2689864A1 (en) 2012-07-27 2012-07-27 Method for processing milled goods in a rolling mill
CN201380036366.8A CN104428075B (en) 2012-07-27 2013-06-12 The method of process rolled piece in milling train
EP13729682.8A EP2861360B1 (en) 2012-07-27 2013-06-12 Method for processing milled goods in a rolling mill
PCT/EP2013/062141 WO2014016043A1 (en) 2012-07-27 2013-06-12 Method for processing rolling stock in a rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12178196.7A EP2689864A1 (en) 2012-07-27 2012-07-27 Method for processing milled goods in a rolling mill

Publications (1)

Publication Number Publication Date
EP2689864A1 true EP2689864A1 (en) 2014-01-29

Family

ID=46845596

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12178196.7A Withdrawn EP2689864A1 (en) 2012-07-27 2012-07-27 Method for processing milled goods in a rolling mill
EP13729682.8A Revoked EP2861360B1 (en) 2012-07-27 2013-06-12 Method for processing milled goods in a rolling mill

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13729682.8A Revoked EP2861360B1 (en) 2012-07-27 2013-06-12 Method for processing milled goods in a rolling mill

Country Status (3)

Country Link
EP (2) EP2689864A1 (en)
CN (1) CN104428075B (en)
WO (1) WO2014016043A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107716564B (en) * 2017-10-27 2019-04-23 宝钢特钢韶关有限公司 Wire and rod continuous rolling rolled piece detection method and detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4132825A1 (en) * 1990-10-02 1992-04-16 Toshiba Kawasaki Kk METHOD AND DEVICE FOR REGULATING THE SPEED OF AN ELECTRIC MOTOR
DE19624717A1 (en) * 1995-07-31 1997-02-06 Gfm Gmbh Process for regulating the rolling stock through a continuous rolling mill
DE19726586A1 (en) * 1997-06-23 1999-01-07 Siemens Ag Method and device for reducing or compensating for speed drops when threading a rolling stock into a roll stand

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE757704C (en) 1937-10-10 1953-03-23 Siemens Schuckertwerke A G Device for speed control of the drive motors of a continuous roller line
JPS6099416A (en) 1983-11-04 1985-06-03 Mitsubishi Electric Corp Speed control device of rolling mill
JPH04361813A (en) 1991-06-07 1992-12-15 Kobe Steel Ltd Method for controlling biting speed of rolled stock in rolling line
JPH06218416A (en) 1993-01-22 1994-08-09 Kawasaki Steel Corp Method and device for controlling speed of rolling mill
DE19633213A1 (en) * 1996-08-17 1998-02-19 Schloemann Siemag Ag Control procedures
DE19653182A1 (en) * 1996-12-20 1998-06-25 Siemens Ag Drive device for roll stands
JP2005046898A (en) 2003-07-31 2005-02-24 Jfe Steel Kk Rolling mill speed control method
JP2005254289A (en) 2004-03-12 2005-09-22 Jfe Steel Kk Method for controlling speed of rolling mill
CN100441328C (en) * 2006-01-25 2008-12-10 冶金自动化研究设计院 Control system for suppressing impact speed drop and torsional oscillation of rolling mill transmission system
DE102009050710B4 (en) 2009-10-26 2016-08-04 Sms Group Gmbh Wire rolling stand with single drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4132825A1 (en) * 1990-10-02 1992-04-16 Toshiba Kawasaki Kk METHOD AND DEVICE FOR REGULATING THE SPEED OF AN ELECTRIC MOTOR
DE19624717A1 (en) * 1995-07-31 1997-02-06 Gfm Gmbh Process for regulating the rolling stock through a continuous rolling mill
DE19726586A1 (en) * 1997-06-23 1999-01-07 Siemens Ag Method and device for reducing or compensating for speed drops when threading a rolling stock into a roll stand

Also Published As

Publication number Publication date
CN104428075B (en) 2016-07-27
WO2014016043A1 (en) 2014-01-30
EP2861360A1 (en) 2015-04-22
CN104428075A (en) 2015-03-18
EP2861360B1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
DE102010013387B4 (en) Control device and method for a rolling mill
EP0121148B1 (en) Method of making hot rolled strip with a high quality section and flatness
EP3341142B1 (en) Method for operating an installation based on the csp concept
DE3109536C3 (en) Control arrangement for a four-high metal rolling mill
WO2013167366A1 (en) Method for processing rolling stock and rolling mill
EP2861360B1 (en) Method for processing milled goods in a rolling mill
EP1314491B1 (en) Method of operating a stretch-reducing mill and stretch-reducing mill
DE1116308B (en) Electric speed control for a rolling mill with at least three rolling stands each driven by a motor
EP0721811A1 (en) Method of regulating the roll gap section
EP2839892A1 (en) Method for processing rolled goods in a rolling line and rolling line
EP2328697B2 (en) Operating method for a stretch leveler with superimposed elongation control and subordinate tension control
EP2849896B1 (en) Method for processing milled goods in a mill train
EP3231522B1 (en) Robust strip tension control
EP3501811A1 (en) Method for regulating the rotor speed of a rotor of a rotary tablet press and rotary tablet press
EP0775537A2 (en) Method of controlling the cross section of rolled stock
DE3305995C2 (en)
EP3714999B1 (en) Determination of the adjustment of a roll stand
EP2796217A1 (en) Method for processing rolled products in a rolling mill with at least one rolling stand
EP1018376A2 (en) Rolling train for rolling bar-shaped rolling stock, e.g. steel bars or wire
DE1290234B (en) Device for controlling the thickness of the rolled material in hot rolling mills
EP3795267A1 (en) Method for operating a rolling mill
EP0439663B1 (en) Method of controlling a continuous multistand rolling mill
EP1514616A1 (en) Rolling device and rolling method
WO2024132315A1 (en) Improved operation of an induction furnace
EP4257259A1 (en) Roller conveyor for a rolling mill with improved lateral guide rollers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140730