EP2689295B1 - Organe regulateur pour montre-bracelet mecanique - Google Patents

Organe regulateur pour montre-bracelet mecanique Download PDF

Info

Publication number
EP2689295B1
EP2689295B1 EP12710090.7A EP12710090A EP2689295B1 EP 2689295 B1 EP2689295 B1 EP 2689295B1 EP 12710090 A EP12710090 A EP 12710090A EP 2689295 B1 EP2689295 B1 EP 2689295B1
Authority
EP
European Patent Office
Prior art keywords
axis
hub
organ according
regulating
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12710090.7A
Other languages
German (de)
English (en)
Other versions
EP2689295A1 (fr
Inventor
Guy Semon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LVMH Swiss Manufactures SA
Original Assignee
LVMH Swiss Manufactures SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LVMH Swiss Manufactures SA filed Critical LVMH Swiss Manufactures SA
Publication of EP2689295A1 publication Critical patent/EP2689295A1/fr
Application granted granted Critical
Publication of EP2689295B1 publication Critical patent/EP2689295B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F7/00Apparatus for measuring unknown time intervals by non-electric means
    • G04F7/04Apparatus for measuring unknown time intervals by non-electric means using a mechanical oscillator
    • G04F7/08Watches or clocks with stop devices, e.g. chronograph
    • G04F7/0866Special arrangements
    • G04F7/088Special arrangements with display of fraction of seconds, e.g. foudroyante

Definitions

  • the present invention relates to a regulating organ for a mechanical wristwatch.
  • the present invention relates in particular to a regulating organ for a chronograph.
  • Mechanical watches generally comprise a regulating member consisting of a flywheel called pendulum on the axis of which is fixed a spiral spring called spiral.
  • rockers Given the energy available, rockers usually have a high moment of inertia for a low mass; that is to say that their diameter is as large as the volume available, and that the mass is concentrated at the periphery, for example in the serge or in other elements, for example weights.
  • This moment of inertia can also be modified to adjust the watch, either manually with screws, or automatically in the case of bimetallic rockers that deform with the temperature. Involuntary deformations of the balance, for example due to expansion, however, have the effect of disrupting the progress of the watch.
  • the term balance can be defined by its function, unique or in any case principal, which is to increase the inertia of the regulating member to determine, together with the spiral spring, the oscillation frequency of the regulating member.
  • the sprung balance oscillates around its equilibrium position at a frequency that depends mainly on the rigidity of the balance spring and the moment of inertia of the balance.
  • a rocker therefore constitutes a piece mounted on the balance shaft, pivotable with this axis and whose mass is distributed around the axis so as to give the regulating member a greater inertia in rotation.
  • the word "pendulum” in this context indicates a piece whose main function, or even unique, is to accumulate at each oscillation a potential and kinetic energy which is higher, generally much higher, than that accumulated by the axis of the balance around which the oscillation takes place.
  • the potential and kinetic energy accumulated by a balance is greater than or equal to at least 10 times that accumulated by the balance shaft, typically at least 1000 times greater.
  • the balance therefore has a moment of inertia which is greater than or equal to at least 10 times the moment of inertia of the axis, preferably at least 1000 times greater.
  • the moment of inertia of a regulating member is determined by the set of rotating parts, including the balance shaft, the balance, the hub, the plate, the spiral, etc. In conventional regulating devices, this moment of inertia is, however, largely determined by the pendulum alone, which contributes at least 80% to the moment of total inertia of the rotating assembly. Preferably the moment of inertia of the balance represents at least 95% of the moment of inertia of the rotating assembly.
  • the rocker must therefore be distinguished from other elements such as the hub or the dowel plate, whose main function is not to increase the mass or the moment of inertia of the regulating member, whose moment of inertia is generally of the same order as the moment of the balance shaft, and which contribute only a small percentage to the moment of inertia of the rotating assembly
  • the balance serves as flywheel and fills the lack of energy stored in the hairspring during deformation.
  • the pendulum is source of many disturbances, due to inaccuracies of its inertia during its manufacture, dilations, etc.
  • the number of alternations per unit of time determines the temporal resolution of the regulator.
  • a mechanical watch displaying the seconds of the current time must comprise a regulating member performing at least 3,600 vibrations per hour.
  • the usual regulating bodies perform 28,800 or sometimes 36,000 vibrations per hour, which makes it possible to measure the time with a resolution of 0.125 or 0.1 seconds, respectively.
  • the temporal resolution is improved, allowing shorter time intervals to be counted.
  • An improved temporal resolution is especially useful for chronographs, for which a time resolution of the hundredth of a second is sometimes desired.
  • a high oscillation frequency however, generates significant energy losses, especially at the exhaust, which reduces the power reserve of the watch. For this reason, the oscillation frequency chosen is usually a compromise between the resolution requirements of the chronograph and the desire to maintain as high a power reserve as possible for the display of the current time.
  • the usual chronograph watches take the energy necessary for the operation of the chronograph on the kinematic chain linking the barrel to the regulating organ and to the indicators of the watch. As a result, the watch is disturbed when the chronograph is started.
  • the patent application WO03 / 065130 in the name of TAG Heuer SA suggests a construction in which a basic movement intended for the display of the current time is provided with a first barrel and a first regulating organ performing 28,800 oscillations per hour, while an auxiliary chronograph module is provided with a second barrel and a second regulator member performing 360'000 oscillations per hour.
  • This construction makes it possible to produce a chronograph watch capable of measuring the time with a resolution of one hundredth of a second, without affecting the power reserve of the basic movement used for the display of the current time.
  • the two kinematic chains are independent, the start of the chronograph does not affect the precision of the basic movement and the running of the watch.
  • This solution was implemented in TAG Heuer's "Caliber 360" which demonstrated the technical feasibility of the solution.
  • An object of the present invention is to provide a regulating organ for a mechanical wristwatch, in particular a regulating organ for a mechanical chronograph, capable of measuring the time with an improved resolution compared to the prior art.
  • Another object of the invention is to propose a regulating organ for a mechanical wristwatch which makes it possible to measure the time with a resolution of one hundredth or even one thousandth of a second.
  • the claimed regulating member is therefore devoid of any pendulum according to the definition given above, that is to say of any rotary member whose sole or principal function is to increase the moment of inertia of the assembly. rotation, and whose moment of inertia would contribute at least 80% to the moment of inertia of the rotating assembly.
  • This solution also has the advantage of considerably reducing the moment of inertia of the rotating elements on the axis of the spiral, and therefore to increase the frequency of oscillation.
  • FIG. 1 and 2 An embodiment of a regulating member according to one embodiment of the invention is illustrated on the Figures 1 and 2 .
  • This regulating organ is in particular intended to serve as a regulator for the chronograph function of a mechanical chronograph; the same movement may comprise two regulating members on the same plate, or on two separate plates, one of the regulating organs serving to regulate the operation of the watch while the other regulating organ, similar or similar to that described in this application , serves to adjust the operation of the chronograph function.
  • a separate barrel provides the energy required by each regulator member, which avoids disruptions in the operation of the watch when the chronograph is engaged.
  • the power reserve of the second cylinder which indicates the duration that can still be timed before having to recharge the second cylinder, is preferably indicated on the dial by means of a chronograph power reserve indicator.
  • the power reserve of the first barrel charging the first regulator member used for the display of the current time is advantageously indicated separately on the dial by means of a power reserve indicator of the watch.
  • the two barrels can preferably be loaded simultaneously by means of a common winding rod engaging on the two barrels and / or by means of a common oscillating mass.
  • the first barrel is automatically reassembled and the second manually.
  • the two barrels can be raised separately by means of two separate winding rods and / or oscillating masses.
  • one of the barrels (for example the chronograph cylinder) is loaded by the other cylinder manually or automatically remounted; the energy available is distributed between the two barrels.
  • the illustrated regulator comprises a hairspring 1 mounted with a ferrule 5 on a hairspring axis 2.
  • the regulating member is devoid of balance.
  • the regulating organ of the chronograph is sized to oscillate at frequencies never reached before, preferably at a frequency of 3'600'000 vibrations per hour, or 500 Hz.
  • the regulating member comprises in particular an axis 2, which is intended to rotate between two non-represented bearings when the hairspring 1 is stretched and relaxed.
  • a plate 4 mounted on this axis carries the plate pin 40 which collaborates with the horns 60, 65 and with the stinger 61 of an anchor 6 shown in FIGS. Figures 5 and 6 , similar to the more conventional Swiss anchor escapements.
  • the word "plate” therefore designates a part intended to be mounted on the axis of the regulating organ and which comprises an ankle, called a plateau pin, arranged to collaborate with the horns and with the stinger of an anchor .
  • the plate 4 is advantageously made of silicon or ceramic or other material with a lower density than that of the axis 2, in order to reduce its moment of inertia. It is advantageously formed of two disks: the large plate 42 and the small plate 43, interconnected by a gun 45.
  • the small plate may comprise a notch 430 for the dart.
  • a simple tray, with a single disc, can also be used.
  • Axle 2 also carries a hub 3 driven or glued which serves to provide a bearing surface for whip 72 of the launcher, described below in connection with the figure 4 .
  • the axis of the regulating member is thus accelerated almost instantaneously when the pushbutton 75 is engaged so as to communicate a pulse to the hub 3 through the blade 73, the column wheel 74 and the launcher 7.
  • the pressure of the whip 72 on the hub makes it possible to block the hub while maintaining the regulating organ of the chronograph and thus to preserve the position of the chronograph hands.
  • the term "hub” indicates any part intended to be mounted on the balance shaft, pivoting with this axis and cooperating with a spiral spring, which accumulates a potential energy and kinetics weak or comparable to that accumulated by the balance shaft.
  • the potential and kinetic energy accumulated by the hub is comparable to that accumulated by the balance shaft, or less than 10 times greater than the potential and kinetic energy of the axis, or smaller than that of the axis. 'axis.
  • the moment of inertia of the hub is generally neglected because it is significantly lower than the moment of inertia of the balance.
  • the moment of inertia of the hub is of the order of magnitude of 0.001 mg ⁇ cm 2 , that of the axis 0.010 mg ⁇ cm 2 and that of the balance 10 mg ⁇ cm 2 .
  • the only function of the hub according to the invention is to provide a bearing surface for the launcher whip 7.
  • the hub 3 is a separate part of the plate 4.
  • the hub 3 and the plate 4 are integrated into a single element.
  • axis 2 which provides a bearing surface of the launcher whip: in this case the presence of the hub 3 is not necessary.
  • the hub 3 is devoid of rays; its mass is thus concentrated near the center, so as to reduce its moment of inertia.
  • the hub 3 is advantageously made of silicon or of another material with a lower density than that of the axis 2, in order to reduce its moment of inertia.
  • the hub is made of titanium and / or aluminum and / or an alloy containing at least one of these materials.
  • Blind openings 30 in a plane perpendicular to the axis 2 further lighten the hub 3.
  • Blind or through openings in other direction including holes through the hub parallel to the axis or according to any which direction, can also be used to lighten the hub 3. It is also possible to lighten the hub 3 by making it with a lighter core covered with a stronger coating on which the whip 72 of the launcher can give a pulse without deforming the hub 3.
  • the openings in the hub and / or in the plate have the sole function of reducing their mass and therefore their moment of inertia. They do not serve as fixing means, and do not allow to receive adjustment screws or to avoid breaks in the hub or plate and are not used either to fix the hub or the plate to the axis.
  • the regulating organ is devoid of a pendulum; its adjustment is done only with the raquetterie spiral 1, preferably by adjusting the length of the oscillating portion of the spiral by means of a screw perpendicular to the plate and to adjust the fixing point of the outer end of the spiral on platinum or on a bridge.
  • This system allows a very precise adjustment of the length of the hairspring, but other known types of adjustment are applicable to the hairspring.
  • the expression "regulating member without pendulum” indicates that the regulating member comprises a spring arranged to oscillate at high frequencies, for example at 50 Hz, or even at 500 Hz or more, and a solid balance shaft , that is to say an axis which determines, with a hub and / or plateau, the moment of inertia of the regulating member, no additional piece being added on this axis in order to increase the moment of inertia.
  • the diameter of the hub 3 is as small as possible, always in order to reduce its moment of inertia.
  • the diameter of the hub 3 is between 1.5 and 10 times the maximum diameter of the axis 2, for example between 5 and 6 times the diameter of the axis 2.
  • the The outer diameter of the hub 3 is identical to the outside diameter of the plate 4. If a bearing surface for the larger launcher 7 is required, it will be possible to use a hub 3 which is slightly larger than the plate 4, although its diameter preferably does not exceed not double the maximum diameter of the large plate 42.
  • the potential and kinetic energy accumulated by the hub 3 is less than that which is accumulated by the axis 2 at each oscillation, preferably negligible compared to that of the axis 2.
  • the hub 3 can also be an integral part of the axis 2.
  • the hub 3 and the plate 4 are integrated in a single element, for example made by bar turning, which carries the plate pin 40 is on which s' supports the launcher 7.
  • the ferrule is also integrated in this element.
  • This element may advantageously be made of titanium and / or aluminum and / or an alloy containing at least one of these materials.
  • the ferrule 5 maintains the inner end of the spring 1 on the axis 2. It is advantageously made in the form of a circular disc whose two or more segments are truncated to lighten it and reduce its momentum. inertia. A notch 50 in the side of the shell 5 is used to fix the spiral.
  • the maximum diameter of the ferrule is preferably of the same order of magnitude as the maximum diameter of the plate and the hub. For example, the diameter of the hub 3 may be between 1 and 3 times the maximum diameter of the ferrule 5.
  • the ratio ( e 3 ⁇ h ) / l, e being the thickness of the hairspring, its height and its length, is about 30 times greater than the same ratio of a conventional hairspring.
  • the spiral is advantageously constituted by a perfect Archimedean spiral, which is favorable to isochronism. Because of its stiffness and short length, it hardly deforms under the effect of gravity so that Philips end curves may not be necessary or even advantageous. Its rigidity also makes it less sensitive to disturbances due to magnetostriction. In addition, a rigid spring has the effect of increasing the frequency of oscillations and reducing their amplitude, which makes it possible to operate in a reduced oscillation range favorable to isochronism. Oscillations of reduced amplitude bring in other words a great precision to the watch. Since the oscillations of the hairspring are practically isochronous, the use of a coating, for example of silicon oxide, is no longer necessary.
  • the stiffness of the hairspring gives it an effective geometric stability: the hairspring therefore does not deform almost in different planes of space.
  • this stiff spring has a greater static and dynamic stability compared to conventional spirals at 3-5 Hz.
  • the stiffness of the hairspring also makes it non-self-starting, unlike conventional spring-balance regulators.
  • This frequency is thus inversely proportional to the square root of the moment of inertia / balance.
  • Equations 2) and 3) can not, however, be applied to the regulator of the invention, since this body is devoid of a pendulum.
  • the regulating member is therefore dimensioned by integrating in the equation 1) above a moment of inertia I calculated taking into account elements that are traditionally neglected in the prior art, notably by integrating into the calculation of the moment of inertia I the moments of inertia of the axis 2, the plate 4, the hub 3 and the spiral 1 itself, which gives us an approximation for the frequency of oscillation.
  • Prototypes were made with regulating devices capable of performing 500 oscillations per second, which makes it possible to measure timed durations with a resolution of one thousandth of a second. It is thus possible to achieve a mechanical chronograph at 500 Hz or thousandths of a second.
  • the Figures 5 and 6 illustrate an embodiment of an escapement anchor 6 that can be used with such a regulating member.
  • the regulating member of the invention is characterized by substantially higher axis rotation speeds, for example 125 times greater.
  • the impulse provided by the tooth of the anchor wheel (not shown) to the anchor 6 is therefore much shorter, the energy transmitted being on the other hand more important.
  • the rotational speed of the teeth of the anchor wheel is such that the vanes can be removed and these teeth rest directly on the anchor inlet and outlet arms by projecting the entry and exit arms. the anchor at a distance as soon as they hit them; the arms do not have time to slip on the teeth of the anchor wheel.
  • the impulse response of the anchor is faster than those known and is of the annular type.
  • the pallets are removed and an annular contact, that is to say a point contact on a stop or distributed according to a set of coplanar points and whose contact norms compete, is done directly between the teeth of the anchor wheel and the arms 62, 63 of the anchor.
  • the length of the contact between the anchor and the anchor wheel is advantageously less than one tenth of a millimeter, instead of one millimeter of the state of the art.
  • the end of these arms has a rounded shape, for example involute or spiral or involute, this shape can be adjusted finely depending on the frequency of the spiral.
  • the teeth of the anchor wheel advantageously have a shape in complementary development, which makes it possible to better adapt to high frequencies and to ensure a perfectly punctual contact.
  • These forms of anchor arms are advantageous for ensuring a fast and punctual contact between the anchor and the anchor wheel, without rebound and almost without slipping, even if, for example following an impact, the anchor or the wheel anchor are not exactly at the expected position during the impulse.
  • the anchor 6 is preferably made of a material lighter than steel, for example silicon. Through holes 64 can lighten it even more.
  • the stinger 61 is constituted by a bridge joining the two horns 60 and 65 but less thick than these horns and the rest of the anchor. The end of the stinger 61 opposite the center of the anchor is pointed to cooperate with the plateau pin 40.
  • the regulating member illustrated in the figures is advantageously used as an independent regulating member for a chronograph, in order to adjust the running of a chronograph hand in the center of the movement.
  • this regulator member may cause a hand in the center of the dial displaying thousandths of a second of a timed duration, and which travels 100 graduations on the periphery of the dial in a tenth of a second.
  • the regulating member is preferably arranged in an unusual manner very close to the center of the watch movement, which makes it possible to drive the needle directly to the center, or in any case through a gear chain as short as possible, for example a chain gear having a single wheel to reverse the direction of rotation given by the anchor wheel.
  • the axis 2 of the hairspring is in an imaginary circle coaxial with the movement and of diameter less than 50% of the maximum external diameter of the movement, preferably less than 30% of the maximum external diameter of the movement, therefore very close to the center of the movement.
  • the accelerated chronograph hand can be deformed in the manner of a fishing rod during acceleration, which affects the reading accuracy during movement.
  • the needle is advantageously ribbed and / or profiled to make it more rigid.
  • the needle can also be replaced by a disc.
  • the figure 4 illustrates the launcher mechanism that allows to start the chronograph regulator member when the user presses the push button 75, then to block the regulator organ off.
  • the launcher comprises a flexible whip 72 which bears directly on the hub 3.
  • this launcher mechanism may comprise a whip 72 coming to rest on the pendulum.
  • the whip can include one or more parts and is more flexible than the rest of the launcher, precisely to whip the hub and start it instantly.
  • the pressure of the pushbutton 75 is transmitted by the blade 73 to the column wheel 74, which suddenly releases the launcher 7 which is actuated by the launcher spring 71.
  • this spring 71 The energy of this spring 71 is transmitted to the whip 72, which imparts a force at the hub 3 having a large tangential component, so as to accelerate suddenly the hub or the balance and the axis of the spiral which allows to launch almost instantaneously the oscillator.
  • the whip 72 presses on the hub 3 exerting a large radial force, in the position illustrated on the figure 4 , which blocks the axis of the hub or balance momentarily and energetically.
  • the push button 75 in a preferred embodiment allows the user to perform both START and STOP functions. Another push button, not shown, allows reset.
  • the launcher When the user actuates the STOP function, he allows the launcher to mount on one of the columns of the column wheel 74. When he actuates the STOP function, the spring of the launcher 71 allows the launcher 7 to fall in the space between two columns of the column wheel 74 and at the same time to give a speed whip 72 which accelerates the hub or the balance.
  • the blade 73 comprises a hook 730 which is intended to cooperate with the column wheel 74.
  • the blade and the hook constitute a single piece which is quite difficult to machine but which allows a reduction in the number of parts.
  • the hook 730 is a separate part of the blade 73 and connected to it for example through a screw, which allows a better ease of machining.
  • the figure 7 illustrates a three-dimensional view of the regulating member according to the invention, the spring 1, the anchor 6 and the anchor wheel 8.
  • the racket 9 cooperates with the screw 90 of fine adjustment of the length of the spring 1, with a tuning fork 10 as well as with a bridge 12 which is connected to the plate of the movement through the screw 14.
  • the regulating member of the invention is also distinguished from the regulating members of the prior art by the noise produced, which is different from the noise of the watch; because of the high oscillation frequencies, the usual ticking is replaced by a high-frequency hum, with a main harmonic at 500 Hz and secondary harmonics at multiples of 500 Hz.
  • This very characteristic and very noticeable buzz allows the user to detect by ear that the chronograph is running, and thus avoid an unwanted discharge of the chronograph cylinder if the chronograph is started inadvertently or if one forgets to stop it.
  • the chronograph regulator is therefore used as a signal indicating that the chronograph works.
  • the watch case may advantageously comprise elements, for example vents or a resonance cage, in order to amplify this useful noise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Description

    Domaine technique
  • La présente invention concerne un organe régulateur pour montre-bracelet mécanique. La présente invention concerne en particulier un organe régulateur pour chronographe.
  • Etat de la technique
  • Les montres mécaniques comportent généralement un organe régulateur composé d'un volant d'inertie appelé balancier sur l'axe duquel est fixé un ressort en spirale appelé spiral.
  • Il existe dans l'art antérieur différents types de balanciers de diverses formes ; les balanciers les plus communs employés dans les montres-bracelets sont constitués d'une masse annulaire, la serge, tenue par deux ou trois bras. D'autres types de balancier existent, par exemple des balanciers dépourvus de serge et comportant uniquement des bras, comme dans FR330210A , ou des bras coopérant avec des masselottes réalisées en métal de forte densité afin d'améliorer le rapport masse/inertie du balancier, comme décrit par exemple dans CH698125 .
  • Compte tenu de l'énergie à disposition, les balanciers ont généralement un grand moment d'inertie pour une faible masse ; c'est-à-dire que leur diamètre est aussi grand que le permet le volume à disposition, et que la masse est concentrée en périphérie, par exemple dans la serge ou dans d'autres éléments, par exemple des masselottes. Ce moment d'inertie peut en outre être modifié pour régler la montre, soit manuellement à l'aide de vis, soit automatiquement dans le cas de balanciers bimétalliques qui se déforment avec la température. Des déformations involontaires du balancier, par exemple suite à des dilatations, ont cependant pour effet de perturber la marche de la montre.
  • Malgré la multitude de formes que peuvent prendre les balanciers dans l'état de la technique, on peut définir le terme balancier par sa fonction, unique ou en tout cas principale, qui est d'augmenter l'inertie de l'organe réglant de manière à déterminer, ensemble avec le ressort spiral, la fréquence d'oscillation de l'organe réglant. En effet, dans l'état de la technique, le balancier-spiral oscille autour de sa position d'équilibre à une fréquence qui dépend principalement de la rigidité du spiral et du moment d'inertie du balancier.
  • Selon cette définition, un balancier constitue donc une pièce montée sur l'axe de balancier, pivotante avec cet axe et dont la masse est répartie autour de l'axe de façon à donner à l'organe réglant une plus grande inertie en rotation. En d'autres termes le mot « balancier » dans ce contexte indique une pièce dont la fonction principale, voire unique, est d'accumuler à chaque oscillation une énergie potentielle et cinétique qui est supérieure, généralement nettement supérieure, à celle accumulée par l'axe du balancier autour duquel l'oscillation a lieu. Par exemple l'énergie potentielle et cinétique accumulée par un balancier selon cette définition est supérieure ou égale à au moins 10 fois celle accumulée par l'axe de balancier, typiquement au moins 1000 fois supérieure.
  • Le balancier a donc un moment d'inertie qui est supérieur ou égal à au moins 10 fois le moment d'inertie de l'axe, de préférence au moins 1000 fois supérieure.
  • Le moment d'inertie d'un organe régulateur est déterminé par l'ensemble des pièces en rotation, y compris l'axe de balancier, le balancier, le moyeu, le plateau, le spiral etc. Dans les organes régulateurs conventionnels, ce moment d'inertie est cependant déterminé en très grande partie par le balancier seul, qui contribue pour au moins 80% au moment d'inertie total de l'ensemble en rotation. De préférence le moment d'inertie du balancier représente au moins 95% du moment d'inertie de l'ensemble en rotation.
  • Le balancier doit donc être distingué d'autres éléments tels que le moyeu ou le plateau de cheville, dont la fonction principale n'est pas d'augmenter la masse ou le moment d'inertie de l'organe réglant, dont le moment d'inertie est généralement du même ordre que le moment de l'axe de balancier, et qui ne contribuent que pour un faible pourcentage au moment d'inertie de l'ensemble en rotation
  • En d'autres termes le balancier sert comme volant d'inertie et comble le manque d'énergie stockée dans le spiral pendant la déformation. Cependant le balancier est source de nombreuses perturbations, due aux imprécisions de son inertie lors de sa fabrication, aux dilatations, etc.
  • Un balancier donné couplé à un spiral donné oscille à une fréquence déterminée. Le nombre d'alternances par unité de temps détermine la résolution temporelle de l'organe régulateur. Par exemple, une montre mécanique affichant les secondes du temps courant doit comporter un organe régulateur effectuant au moins 3'600 alternances par heure. En pratique, les organes régulateurs usuels effectuent 28'800 ou parfois 36'000 alternances par heure, ce qui permet de mesurer le temps avec une résolution de 0,125 respectivement de 0,1 seconde.
  • En augmentant la fréquence d'oscillation, on améliore la résolution temporelle, ce qui permet de compter des intervalles de temps plus courts. Une résolution temporelle améliorée est surtout utile pour des chronographes, pour lesquels une résolution temporelle du centième de seconde est parfois souhaitée. Une fréquence d'oscillation élevée engendre cependant des pertes énergétiques importantes notamment au niveau de l'échappement, ce qui réduit la réserve de marche de la montre. Pour cette raison, la fréquence d'oscillation choisie est habituellement un compromis entre les exigences de résolution du chronographe et la volonté de maintenir une réserve de marche aussi élevée que possible pour l'affichage du temps courant.
  • Les montres chronographes usuelles prélèvent l'énergie nécessaire au fonctionnement du chronographe sur la chaîne cinématique liant le barillet à l'organe régulateur et aux indicateurs de la montre. Par conséquent, la marche de la montre est perturbée lorsque le chronographe est démarré.
  • La demande de brevet WO03/065130 au nom de TAG Heuer SA suggère une construction dans laquelle un mouvement de base destiné à l'affichage de l'heure courante est muni d'un premier barillet et d'un premier organe régulateur effectuant 28'800 oscillations par heure, tandis qu'un module chronographe auxiliaire est muni d'un deuxième barillet et d'un deuxième organe régulateur effectuant 360'000 oscillations par heure. Cette construction permet de réaliser une montre chronographe capable de mesurer le temps avec une résolution du centième de seconde, sans affecter la réserve de marche du mouvement de base utilisé pour l'affichage du temps courant. Par ailleurs, les deux chaînes cinématiques étant indépendantes, le démarrage du chronographe n'affecte pas la précision du mouvement de base et la marche de la montre. Cette solution a été mise en oeuvre dans le « Calibre 360 » de TAG Heuer qui a démontré la faisabilité technique de la solution.
  • Bref résumé de l'invention
  • Un but de la présente invention est de proposer un organe régulateur pour montre-bracelet mécanique, en particulier un organe régulateur pour chronographe mécanique, capable de mesurer le temps avec une résolution améliorée par rapport à l'art antérieur.
  • Un autre but de l'invention est de proposer un organe régulateur pour montre-bracelet mécanique qui permette de mesurer le temps avec une résolution du centième ou même du millième de seconde.
  • Selon l'invention, ces buts sont atteints notamment au moyen d'un organe régulateur comportant les caractéristiques de la revendication indépendante 1 et d'un chronographe mécanique comportant un tel organe régulateur.
  • Cette solution présente notamment l'avantage par rapport à l'art antérieur de s'affranchir des problèmes liés au balancier, notamment des problèmes de précision dus aux déformations et aux tolérances de fabrication du balancier.
  • L'organe régulateur revendiqué est donc dépourvu de tout balancier selon la définition donnée ci-dessus, c'est-à-dire de tout organe rotatif dont la fonction unique ou principale est d'augmenter le moment d'inertie de l'ensemble en rotation, et dont la moment d'inertie contribuerait à au moins 80% au moment d'inertie de l'ensemble en rotation.
  • Cette solution présente aussi l'avantage de réduire considérablement le moment d'inertie des éléments en rotation sur l'axe du spiral, et donc d'augmenter la fréquence d'oscillation.
  • Des tests et des calculs ont démontré qu'il est possible de réaliser grâce à cette solution des organes régulateurs purement mécaniques capables d'osciller à 50 Hz, voire même à 500 Hz ou plus.
  • Brève description des figures
  • Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
    • La figure 1 illustre une vue en perspective d'un organe régulateur selon l'invention.
    • La figure 2 illustre une vue de dessus d'un organe régulateur selon l'invention.
    • La figure 3 illustre une vue en perspective de l'axe, du moyeu et du plateau d'un organe régulateur selon l'invention.
    • La figure 4 illustre un lanceur.
    • La figure 5 illustre une vue de dessus de l'ancre.
    • La figure 6 illustre une vue de dessous de l'ancre.
    • La figure 7 illustre une vue tridimensionnelle de l'organe régulateur selon l'invention, du ressort, de l'ancre et de la roue d'ancre.
    Exemple(s) de mode de réalisation de l'invention
  • Un mode de réalisation d'organe régulateur selon un mode de réalisation de l'invention est illustré sur les figures 1 et 2. Cet organe régulateur est en particulier destiné à servir de régulateur pour la fonction chronographe d'un chronographe mécanique ; un même mouvement peut comporter deux organes régulateurs sur la même platine, ou sur deux platines distinctes, un des organes régulateurs servant à régler la marche de la montre tandis que l'autre organe régulateur, semblable ou similaire à celui qui est décrit dans cette demande, sert à régler la marche de la fonction chronographe. Un barillet distinct fournit l'énergie nécessaire à chaque organe régulateur, ce qui permet d'éviter les perturbations de la marche de la montre lorsque le chronographe est enclenché.
  • La réserve de marche du deuxième barillet, qui indique la durée pouvant encore être chronométrée avant de devoir recharger le deuxième barillet, est de préférence indiquée sur le cadran au moyen d'un indicateur de réserve de marche du chronographe. La réserve de marche du premier barillet chargeant le premier organe régulateur utilisé pour l'affichage du temps courant est avantageusement indiquée séparément sur le cadran au moyen d'un indicateur de réserve de marche de la montre. Les deux barillets peuvent de préférence être chargés simultanément au moyen d'une tige de remontage commune embrayant sur les deux barillets et/ou au moyen d'une masse oscillante commune. Dans une autre variante le premier barillet est remonté automatiquement et le deuxième manuellement. Dans une variante, les deux barillets peuvent être remontés séparément au moyen de deux tiges de remontage et/ou masses oscillantes distinctes. Dans une autre variante, un des barillets (par exemple le barillet de chronographe) est chargé par l'autre barillet remonté manuellement ou automatiquement; l'énergie à disposition se répartit alors entre les deux barillets.
  • Le régulateur illustré comporte un spiral 1 monté à l'aide d'une virole 5 sur un axe de spiral 2. L'organe régulateur est dépourvu de balancier. Selon l'exemple, l'organe régulateur du chronographe est dimensionné pour osciller à des fréquences jamais atteintes auparavant, de préférence à une fréquence de 3'600'000 alternances par heure, soit 500 Hz.
  • Afin d'atteindre ces fréquences élevées, l'organe régulateur comprend notamment un axe 2, qui est destiné à tourner entre deux paliers non représentés lorsque le spiral 1 se tend et se détend. Un plateau 4 monté sur cet axe porte la cheville de plateau 40 qui collabore avec les cornes 60, 65 et avec le dard 61 d'une ancre 6 représentée sur les figures 5 et 6, de manière analogue aux échappements à ancre suisse plus conventionnels.
  • Dans ce contexte le mot « plateau » désigne donc une pièce destinée à être montée sur l'axe de l'organe réglant et qui comprend une cheville, nommée cheville de plateau, agencée pour collaborer avec les cornes et avec le dard d'une ancre.
  • Le plateau 4 est avantageusement réalisé en silicium ou en céramique ou dans un autre matériau à masse volumique plus réduite que celle de l'axe 2, afin de réduire son moment d'inertie. Il est avantageusement formé de deux disques : le grand plateau 42 et le petit plateau 43, reliés entre eux par un canon 45. Le petit plateau peut comprendre une encoche 430 pour le dard. Un plateau simple, avec un seul disque, peut aussi être employé.
  • L'axe 2 porte aussi un moyeu 3 chassé ou collé qui sert à offrir une surface d'appui pour le fouet 72 du lanceur, décrit plus bas en relation avec la figure 4. L'axe de l'organe régulateur est ainsi accéléré de façon quasi instantanée lorsque le bouton-poussoir 75 est enclenché de manière à communiquer une impulsion au moyeu 3 au travers de la lame 73, de la roue à colonne 74 et du lanceur 7. A l'arrêt du chronographe, la pression du fouet 72 sur le moyeu permet de bloquer le moyeu en maintenant l'organe régulateur du chronographe et de conserver ainsi la position des aiguilles du chronographe.
  • Dans ce contexte l'expression « moyeu » indique toute pièce destinée à être montée sur l'axe de balancier, pivotante avec cet axe et coopérant avec un ressort spiral, qui accumule une énergie potentielle et cinétique faible ou comparable à celle accumulée par l'axe de balancier. Par exemple l'énergie potentielle et cinétique accumulée par le moyeu est comparable à celle accumulée par l'axe de balancier, ou moins de 10 fois plus grande que l'énergie potentielle et cinétique de l'axe, ou plus petite que celle de l'axe. Dans le calcul des organes réglants pour montres-mécaniques conventionnelles, le moment d'inertie du moyeu est généralement négligé car il est nettement plus faible que le moment d'inertie du balancier.
  • Par exemple le moment d'inertie du moyeu est de l'ordre de grandeur de 0.001 mg·cm2, celui de l'axe 0.010 mg·cm2 et celui du balancier 10 mg·cm2.
  • La seule fonction du moyeu selon l'invention est de fournir une surface d'appui pour le fouet du lanceur 7.
  • Dans une variante préférentielle le moyeu 3 est une pièce distincte du plateau 4. Dans une autre variante, comme on le verra plus loin, le moyeu 3 et le plateau 4 sont intégrés en un seul élément.
  • Dans une autre variante, c'est l'axe 2 qui fournit une surface d'appui au fouet du lanceur : dans ce cas la présence du moyeu 3 n'est pas nécessaire.
  • Au contraire d'un balancier, le moyeu 3 est dépourvu de rayons ; sa masse est donc concentrée près du centre, de façon à réduire son moment d'inertie. Le moyeu 3 est avantageusement réalisé en silicium ou dans un autre matériau à masse volumique plus réduite que celle de l'axe 2, afin de réduire son moment d'inertie. Dans une variante le moyeu est réalisé en titane et/ou en aluminium et/ou dans un alliage contenant au moins un de ces matériaux.
  • Des ouvertures borgnes 30 dans un plan perpendiculaire à l'axe 2 permettent d'alléger encore le moyeu 3. Des ouvertures borgnes ou traversantes dans d'autre direction, y compris des trous traversant le moyeu parallèlement à l'axe ou selon n'importe quelle direction, peuvent aussi être utilisées pour alléger le moyeu 3. Il est aussi possible d'alléger le moyeu 3 en le réalisant avec une âme allégée recouverte d'un revêtement plus résistant sur lequel le fouet 72 du lanceur peut donner une impulsion sans déformer le moyeu 3.
  • De la même façon, il est aussi possible d'alléger le plateau 4 en y ménageant des ouvertures traversantes ou borgnes, on en lui donnant une forme non circulaire, dans le but de réduire son moment d'inertie.
  • Les ouvertures dans le moyeu et/ou dans le plateau ont pour seule fonction de diminuer leur masse et donc leur moment d'inertie. Elles ne servent pas de moyens de fixation, et ne permettent pas de recevoir des vis de réglages ni d'éviter des ruptures du moyeu ou plateau et ne servent pas non plus à fixer le moyeu ou le plateau à l'axe.
  • L'organe régulateur est dépourvu de balancier ; son réglage se fait donc uniquement avec la raquetterie du spiral 1, avantageusement en ajustant la longueur de la portion oscillante du spiral au moyen d'une vis perpendiculaire à la platine et permettant de régler le point de fixation de l'extrémité extérieure du spiral sur la platine ou sur un pont. Ce système permet un réglage très précis de la longueur du spiral, mais d'autres types de réglage connus sont applicables au spiral.
  • Dans une variante l'expression « organe régulateur dépourvu de balancier » indique que l'organe régulateur comprend un ressort agencé pour osciller à des fréquences élevées, par exemple à 50 Hz, voire même à 500 Hz ou plus, et un axe de balancier massif, c'est-à-dire un axe qui détermine, avec un moyeu et/ou plateau éventuel, le moment d'inertie de l'organe réglant, aucune pièce additionnelle n'étant ajoutée sur cet axe dans le but d'augmenter le moment d'inertie.
  • Le diamètre du moyeu 3 est aussi réduit que possible, toujours dans le but de réduire son moment d'inertie. Dans un mode de réalisation préférentiel, le diamètre du moyeu 3 est compris entre 1.5 et 10 fois le diamètre maximal de l'axe 2, par exemple entre 5 et 6 fois le diamètre de l'axe 2. Dans l'exemple illustré, le diamètre extérieur du moyeu 3 est identique au diamètre extérieur du plateau 4. Si une surface d'appui pour le lanceur 7 plus grande est requise, on pourra utiliser un moyeu 3 légèrement plus grand que le plateau 4, son diamètre ne dépassant toutefois de préférence pas le double du diamètre maximal du grand plateau 42.
  • A la différence d'un organe régulateur comprenant un balancier, qui apporte une énergie potentielle et cinématique sensiblement supérieure que celle de l'axe 2, l'énergie potentielle et cinétique accumulée par le moyeu 3 est inférieure à celle qui est accumulée par l'axe 2 à chaque oscillation, de préférence négligeable par rapport à celle de l'axe 2.
  • Le moyeu 3 peut aussi faire partie intégrale de l'axe 2. Dans une variante, le moyeu 3 et le plateau 4 sont intégrés en un seul élément, par exemple réalisé par décolletage, qui porte la cheville de plateau 40 est sur lequel s'appuie le lanceur 7. Dans une autre variante la virole aussi est intégrée en cet élément. Cet élément peut être avantageusement réalisé en titane et/ou en aluminium et/ou dans un alliage contenant au moins un de ces matériaux.
  • La virole 5 permet de maintenir l'extrémité interne du spiral 1 sur l'axe 2. Elle est avantageusement réalisée sous la forme d'un disque circulaire dont deux ou plusieurs segments sont tronqués afin de l'alléger et de réduire son moment d'inertie. Une encoche 50 dans le flanc de la virole 5 permet de fixer le spiral. Le diamètre maximal de la virole est de préférence du même ordre de grandeur que le diamètre maximal du plateau et du moyeu. Par exemple, le diamètre du moyeu 3 peut être compris entre 1 et 3 fois le diamètre maximal de la virole 5.
  • Le spiral 1 peut être réalisé en métal, de préférence en invar, en silicium, en diamant, en corindon ou dans tout autre matériau approprié. Avantageusement, le spiral est nettement plus raide qu'un spiral conventionnel, et exerce donc un couple de rappel vers la position de repos nettement plus important qu'un spiral classique. La raideur (ou rigidité) du spiral est donnée par la formule : C = M / ϕ
    Figure imgb0001
    • C = constante de rigidité du spiral
    • M = couple de rappel du spiral,
    • ϕ = angle de torsion.
  • Une rigidité élevée nécessaire à une oscillation à 500 Hz peut être obtenue en combinant au moins deux des mesures suivantes :
    • Le nombre de spires est moins élevé que dans les spiraux traditionnels, de manière à réduire la longueur de la partie vibrante. Avantageusement, le spiral comporte moins de 5 spires, par exemple 4,5, de préférence 3 spires ou moins.
    • Le spiral est plus épais que les spiraux conventionnels : par exemple son épaisseur est supérieur à 40 µm, de préférence supérieur à 50 µm, par exemple 55 µm.
    • Il est plus haut que les spiraux conventionnels : par exemple son hauteur est supérieure à 200 µm, de préférence supérieure à 215 µm, par exemple 230 µm.
    • Il peut être réalisé dans un matériau plus rigide, de préférence pas sensible aux variations de température.
    • Des nervures ou une section rectangulaire peuvent être utilisés pour le rigidifier.
    • Un revêtement de surface peut être utilisé pour le rigidifier.
    • La section du spiral peut être non constante le long du spiral pour le rigidifier.
  • Le rapport (e 3·h)/l, e étant l'épaisseur du spiral, h son hauteur et I sa longueur, est environ 30 fois supérieur au même rapport d'un spiral conventionnel.
  • Le spiral est avantageusement constitué par une spirale d'Archimède parfaite, ce qui est favorable à l'isochronisme. En raison de sa rigidité et de sa faible longueur, il ne se déforme pratiquement pas sous l'effet de la gravité en sorte que des courbes terminales de Philips peuvent ne pas être ni nécessaires ni même avantageuses. Sa rigidité le rend aussi moins sensible aux perturbations dues à la magnétostriction. Par ailleurs, un ressort rigide a pour effet d'augmenter la fréquence des oscillations et de réduire leur amplitude, ce qui permet de le faire fonctionner dans un domaine d'oscillations réduit favorable à l'isochronisme. Des oscillations d'amplitude réduite apportent en d'autres termes une grande précision à la montre. Puisque les oscillations du spiral sont pratiquement isochrone, l'utilisation d'un revêtement, par exemple en oxyde de silicium, n'est plus nécessaire.
  • La raideur du spiral lui donne une efficace stabilité géométrique : le spiral donc ne se déforme presque pas dans différents plans de l'espace. Avantageusement donc ce ressort raide a une majeure stabilité statique et dynamique par rapport aux spiraux conventionnels à 3-5 Hz. La raideur du spiral le rend aussi non auto-démarrant, à la différence des organes régulateurs balancier-ressort conventionnels.
  • La fréquence d'oscillation des ensembles spiral-balancier classiques utilisés en horlogerie peut être déterminée à l'aide de la formule connue f = 1 2 Π M I
    Figure imgb0002
  • Cette fréquence est ainsi inversement proportionnelle à la racine carrée du moment d'inertie / du balancier.
  • Dans l'état de la technique, le moment d'inertie I des pièces en rotation de l'organe régulateur est déterminé presque exclusivement par la serge, qui constitue en approximation une portion de cylindre creux. I = 1 2 m R 2 + r 2
    Figure imgb0003
  • D'où l'on déduit: f = 1 2 Π M 1 2 Π R 4 r 4
    Figure imgb0004
    • f Fréquence d'oscillation [Hz]
    • M Couple élastique du spiral [Nm]
    • I Moment d'inertie du balancier [kg·m2]
    • R Diamètre externe du balancier [m]
    • r Diamètre interne du balancier [m]
    • h Epaisseur du balancier [m]
    • ρ Masse spécifique du balancier [kg/m3]
  • Les équations 2) et 3) ne peuvent cependant pas être appliquées à l'organe régulateur de l'invention, puisque cet organe est dépourvu de balancier. Selon l'invention, l'organe régulateur est donc dimensionné en intégrant dans l'équation 1) ci-dessus un moment d'inertie I calculé en tenant compte d'éléments qui sont traditionnellement négligés dans l'art antérieur, notamment en intégrant dans le calcul du moment d'inertie I les moments d'inertie de l'axe 2, du plateau 4, du moyeu 3 et du spiral 1 lui-même, ce qui nous donne une approximation pour la fréquence d'oscillation.
  • Le moment d'inertie du spiral 1 varie cependant au cours de chaque cycle lorsque le spiral se déforme, en sorte que l'application de la formule ci-dessus ne donne qu'une approximation. En pratique, un organe régulateur oscillant à la fréquence souhaitée est obtenu à l'aide de la formule 1) ci-dessus, I étant approximé en additionnant la masse d'inertie de toutes les pièces en rotation. Un ajustement est ensuite obtenu par approximations successives en modifiant au moyen du coq, d'une raquette avec une vis sur le haut, ou d'un autre élément de réglage non représenté la longueur de la portion du spiral 1 qui peut vibrer.
  • Des prototypes ont été réalisés avec des organes régulateurs aptes à effectuer 500 oscillations par seconde, ce qui permet de mesurer des durées chronométrées avec une résolution du millième de seconde. Il est ainsi possible de réaliser un chrono mécanique à 500 Hz ou au millième de seconde.
  • Les figures 5 et 6 illustrent un mode de réalisation d'une ancre d'échappement 6 pouvant être utilisée avec un tel organe régulateur. Par rapport à un organe régulateur conventionnel, l'organe régulateur de l'invention se caractérise par des vitesses de rotation de l'axe nettement supérieures, par exemple 125 fois plus importantes. L'impulsion fournie par la dent de la roue d'ancre (non représentée) à l'ancre 6 est donc nettement plus brève, l'énergie transmise étant en revanche plus importante. Il en résulte une accélération beaucoup plus rapide de l'ancre 6 : à chaque fois que la roue d'ancre lui transmet une impulsion, l'ancre bascule presque instantanément (en moins d'un millième de seconde) entre une position et la position opposée. La vitesse de rotation des dents de la roue d'ancre est telle que les palettes peuvent être supprimées et ces dents s'appuient directement sur les bras d'entrée et de sortie de l'ancre en projettant les bras d'entrée et de sortie de l'ancre à distance dès qu'elles les heurtent ; les bras n'ont pas le temps de glisser sur les dents de la roue d'ancre. En d'autres termes la réponse impulsionelle de l'ancre est plus vite que celles connues et est du type annulaire.
  • Par conséquent, selon une caractéristique indépendante de l'invention, et comme illustré sur les figures 5 et 6, les palettes sont supprimées et un contact annulaire, c'est-à-dire un contact ponctuel sur un arrêt ou réparti suivant un ensemble de points coplanaires et dont les normales de contact concourent, se fait directement entre les dents de la roue d'ancre et les bras 62, 63 de l'ancre. La longueur du contact entre l'ancre et la roue d'ancre est avantageusement inférieure au dixième de millimètre, au lieu d'un millimètre de l'état de la technique. De manière avantageuse, l'extrémité de ces bras a une forme arrondie, par exemple en développante ou en spirale ou en involute, cette forme pouvant être réglée de façon fine en fonction de la fréquence du spiral. Dans une variante les dents de la roue d'ancre ont avantageusement une forme en développante complémentaire, ce qui permet de mieux s'adapter à des fréquences élevées et d'assurer un contact parfaitement ponctuel. Ces formes de bras d'ancre sont avantageuses pour assurer un contact rapide et ponctuel entre l'ancre et la roue d'ancre, sans rebond et quasiment sans glissement, même si, par exemple suite à un choc, l'ancre ou la roue d'ancre ne se trouvent pas exactement à la position prévue lors de l'impulsion.
  • Afin de pouvoir se déplacer rapidement, l'ancre 6 est de préférence réalisée dans un matériau plus léger que l'acier, par exemple en silicium. Des trous traversants 64 permettent de l'alléger encore davantage. Le dard 61 est constitué par un pont joignant les deux cornes 60 et 65 mais moins épais que ces cornes et que le reste de l'ancre. L'extrémité du dard 61 opposée au centre de l'ancre est pointue pour coopérer avec la cheville de plateau 40.
  • L'organe régulateur illustré sur les figures est avantageusement employé comme organe régulateur indépendant pour un chronographe, afin de régler la marche d'une aiguille de chronographe au centre du mouvement. Par exemple, cet organe régulateur peut entraîner une aiguille au centre du cadran affichant les millièmes de seconde d'une durée chronométrée, et qui parcourt 100 graduations sur la périphérie du cadran en un dixième de seconde. Afin d'éviter tout jeu et toute déperdition d'énergie, l'organe régulateur est de préférence disposé de manière inhabituelle très près du centre du mouvement de montre, ce qui permet d'entraîner l'aiguille au centre directement, ou en tout cas au travers d'une chaîne d'engrenage aussi courte que possible, par exemple une chaîne d'engrenage comportant une seule roue pour inverser le sens de rotation donné par la roue d'ancre. De manière préférentielle, l'axe 2 du spiral se trouve dans un cercle imaginaire coaxial au mouvement et de diamètre inférieur au 50% du diamètre externe maximal du mouvement, de préférence inférieur au 30% du diamètre externe maximal du mouvement, donc très près du centre du mouvement.
  • L'aiguille du chronographe ainsi accélérée peut se déformer à la manière d'une canne à pêche lors des accélérations, ce qui nuit à la précision de lecture lors du déplacement. Afin de limiter l'ampleur de ces déformations, l'aiguille est avantageusement nervurée et/ou profilée pour la rendre plus rigide. L'aiguille peut aussi être remplacée par un disque.
  • La figure 4 illustre le mécanisme de lanceur qui permet de démarrer l'organe régulateur du chronographe lorsque l'utilisateur appuie sur le bouton-poussoir 75, puis de bloquer cet organe régulateur à l'arrêt. Dans le cas d'un organe régulateur selon l'invention, le lanceur comprend un fouet 72 flexible qui s'appuie directement sur le moyeu 3. Dans une variante comportant un balancier, ce mécanisme de lanceur peut comprendre un fouet 72 venant s'appuyer sur le balancier. Le fouet peut comprendre une ou plusieurs parties et est plus flexible que le reste du lanceur, afin précisément de fouetter le moyeu et de le démarrer instantanément. La pression du bouton-poussoir 75 est transmise par la lame 73 à la roue à colonne 74, qui libère brusquement le lanceur 7 qui actionné par le ressort de lanceur 71. L'énergie de ce ressort 71 est transmise au fouet 72, qui impartit une force au moyeu 3 comportant une importante composante tangentielle, de manière à accélérer brusquement le moyeu ou le balancier et l'axe du spiral ce qui permet de lancer quasi instantanément l'oscillateur. Au repos, lorsque l'utilisateur a appuyé sur le bouton-poussoir 75, ou sur un bouton-poussoir additionnel STOP non représenté, le fouet 72 appuie sur le moyeu 3 en exerçant une force radiale importante, dans la position illustrée sur la figure 4, ce qui bloque instantanément et énergiquement l'axe du moyeu ou du balancier.
  • Le bouton-poussoir 75 dans une variante préférentielle permet à l'utilisateur de réaliser les deux fonctions START et STOP. Una autre bouton-poussoir, non représenté, permet la remise à zero.
  • Quand l'utilisateur actionne la fonction STOP, il permet au lanceur de monter sur une des colonnes de la roue à colonne 74. Quand il actionne la fonction STOP, le ressort du lanceur 71 permet au lanceur 7 de tomber dans l'espace entre deux colonnes de la roue à colonne 74 et au même temps de donner une vitesse au fouet 72 qui permet d'accélérer le moyeu ou le balancier.
  • Avantageusement la lame 73 comprend un crochet 730 qui est destiné à coopérer avec la roue à colonne 74. Dans une variante la lame et le crochet constituent une seule pièce qui est assez difficile à usiner mais qui permet une réduction du nombre de pièces. Dans une autre variante le crochet 730 est une pièce distincte de la lame 73 et connectée à elle par exemple à travers une vis, ce qui permet une meilleure facilité d'usinage.
  • La figure 7 illustre une vue tridimensionnelle de l'organe régulateur selon l'invention, du ressort 1, de l'ancre 6 et de la roue d'ancre 8. La raquette 9 coopère avec la vis 90 de réglage fin de la longueur du ressort 1, avec un diapason 10 ainsi qu'avec un pont 12 qui est connecté à la platine du mouvement à travers la vis 14.
  • L'organe régulateur de l'invention se distingue aussi des organes régulateurs de l'art antérieur par le bruit produit, qui est différent du bruit de la montre ; en raison des fréquences d'oscillations élevées, le tic-tac habituel est remplacé par un bourdonnement à fréquence élevée, avec une harmonique principale à 500 Hz et des harmoniques secondaires aux multiples de 500 Hz. Ce bourdonnement très caractéristique et très perceptible permet à l'utilisateur de détecter à l'oreille que le chronographe est en marche, et d'éviter ainsi une décharge indésirable du barillet de chronographe si le chronographe est démarré par inadvertance ou si on oublie de l'arrêter. Le bruit distinct et caractéristique de l'organe régulateur du chronographe est donc utilisé comme signal indiquant que le chronographe fonctionne. La boîte de montre peut avantageusement comporter des éléments, par exemple des évents ou une cage de résonance, afin d'amplifier ce bruit utile.
  • Numéros de référence employés sur les figures
  • 1
    Spiral
    10
    Diapason
    12
    Pont
    14
    Vis de fixage du pont à la platine
    2
    Axe du spiral
    3
    Moyeu
    30
    Evidement dans le moyeu
    4
    Plateau
    40
    Cheville de plateau
    42
    Grand plateau
    43
    Petit plateau
    430
    Encoche du petit plateau
    45
    Canon
    5
    Virole
    50
    Encoche de la virole
    6
    Ancre
    60
    Corne d'entrée
    61
    Dard
    62
    1èr bras de l'ancre
    63
    2ème bras de l'ancre
    64
    Trous traversant à travers l'ancre
    65
    Corne de sortie
    7
    Lanceur
    71
    Ressort de lanceur
    72
    Fouet
    73
    Lame
    730
    Crochet de la lame
    74
    Roue à colonne
    75
    Bouton-poussoir
    8
    Roue d'ancre
    9
    Raquette
    90
    Vis de réglage fin de la longueur du spiral

Claims (22)

  1. Organe régulateur pour mouvement de montre mécanique, comportant :
    un axe (2) ;
    un spiral (1) monté sur ledit axe (2), et arrangé pour osciller autour d'une position d'équilibre ;
    dans lequel ledit spiral (1) est arrangé pour osciller autour de ladite position d'équilibre à une fréquence de 50 Hz ou plus;
    caractérisé en ce que ledit axe (2) est massif en déterminant ainsi la plupart du moment d'inertie de l'organe réglant.
  2. L'organe régulateur de la revendication 1, comportant uniquement des pièces montées sur ledit axe (2) dont le moment d'inertie est inférieur à 10 fois le moment d'inertie de l'axe.
  3. L'organe régulateur de la revendication 1, comportant un plateau (4) monté sur ledit axe (2), et une cheville de plateau (40) montée sur ledit plateau (4).
  4. L'organe régulateur selon la revendication 3, ledit axe (2) étant en métal et ledit plateau (4) étant en silicium ou en céramique.
  5. L'organe régulateur selon l'une des revendications 2 à 4, lesdites pièces comportant un moyeu (3) monté sur ledit axe (2) et destiné à collaborer avec un lanceur (7) pour accélérer ou décélérer ledit organe régulateur.
  6. L'organe régulateur selon la revendication 5, ledit moyeu (3) étant constitué d'un disque monté sur ledit axe (2).
  7. L'organe régulateur selon l'une des revendications 5 ou 6, ledit moyeu (3) étant muni de plusieurs ouvertures borgnes (30) dans un plan perpendiculaire audit axe (2), afin de réduire moment d'inertie dudit moyeu (3) et/ou des ouvertures borgnes ou traversantes dans d'autre direction.
  8. L'organe régulateur selon l'une des revendications 5 à 7, ledit moyeu (3) étant réalisé dans un matériau à masse volumique plus faible que celle dudit axe (2).
  9. L'organe régulateur selon l'une des revendications 5 à 8, le diamètre dudit moyeu (3) étant compris entre 1.5 et 10 fois le diamètre maximal de l'axe (2).
  10. L'organe régulateur selon l'une des revendications 2 à 9, lesdites pièces comportant un plateau de cheville (4) monté sur ledit axe (2)
  11. L'organe régulateur selon la revendication 10, le diamètre dudit moyeu (3) étant inférieur au double du diamètre dudit plateau (4).
  12. L'organe régulateur selon la revendication 11, le diamètre dudit moyeu (3) étant égal à celui du plateau (4).
  13. L'organe régulateur selon l'une des revendications 6 à 12, ledit moyeu (3) et ledit plateau (4) étant intégrés en un seul élément portant ladite cheville de plateau (40).
  14. L'organe régulateur selon l'une des revendications 10 à 13, ledit moyeu (3) et/ou ledit plateau (4) et/ou ledit élément étant réalisés en titane et/ou en aluminium et/ou dans un alliage contenant au moins un de ces matériaux.
  15. L'organe régulateur selon l'une des revendications 1 à 14, comportant en outre une virole (5) pour monter ledit spiral (1) sur ledit axe (2).
  16. L'organe régulateur selon la revendication 15, ladite virole (5) étant constituée par une bague montée sur ledit axe (2) et comportant une encoche (50) pour fixer l'extrémité interne dudit spiral (1).
  17. L'organe régulateur selon l'une des revendications 15 ou 16, ladite virole (5) étant constituée par une bague montée sur ledit axe (2) et dont la section est non circulaire afin de réduire le moment d'inertie de ladite virole (5).
  18. L'organe régulateur selon la revendication 17, le diamètre dudit moyeu (3) étant compris entre 1 et 3 fois le diamètre maximal de ladite virole (5).
  19. L'organe régulateur selon l'une des revendications 1 à 18, ledit spiral (1) comportant trois spires ou moins.
  20. L'organe régulateur selon l'une des revendications 1 à 19, ledit spiral (1) étant dépourvu de courbe terminale.
  21. L'organe régulateur selon l'une des revendications 1 à 20, ledit spiral étant agencé pour osciller à une fréquence de 500 Hz ou plus.
  22. Chronographe mécanique comportant un premier organe régulateur selon l'une des revendications 1 à 21 pour mesurer des durées, et un second organe régulateur oscillant plus lentement pour l'affichage de l'heure courante.
EP12710090.7A 2011-03-22 2012-03-22 Organe regulateur pour montre-bracelet mecanique Active EP2689295B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00494/11A CH703573A3 (fr) 2011-03-22 2011-03-22 Organe régulateur pour montre-bracelet mécanique et chronographe muni d'un tel organe régulateur.
PCT/EP2012/055152 WO2012127016A1 (fr) 2011-03-22 2012-03-22 Organe regulateur pour montre-bracelet mecanique

Publications (2)

Publication Number Publication Date
EP2689295A1 EP2689295A1 (fr) 2014-01-29
EP2689295B1 true EP2689295B1 (fr) 2018-12-12

Family

ID=44653067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12710090.7A Active EP2689295B1 (fr) 2011-03-22 2012-03-22 Organe regulateur pour montre-bracelet mecanique

Country Status (3)

Country Link
EP (1) EP2689295B1 (fr)
CH (3) CH703573A3 (fr)
WO (1) WO2012127016A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH708999A1 (fr) * 2013-12-16 2015-06-30 Société Anonyme De La Manufacture D Horlogerie Audemars Piguet & Cie Dispositif de remise à zéro avec marteaux indépendants.
JP7143675B2 (ja) * 2018-08-14 2022-09-29 セイコーエプソン株式会社 時計用部品、ムーブメントおよび時計
WO2023223193A1 (fr) 2022-05-16 2023-11-23 Lvmh Swiss Manufactures Sa Montre-chronographe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR330210A (fr) 1903-03-13 1903-08-13 Wyss Haechler Soc Balancier pour montres
CH44553A (fr) * 1911-03-21 1909-09-01 A Lugrin Compteur de temps pour sports
CH1251873A4 (fr) * 1973-08-31 1975-12-15
CH678911B5 (fr) * 1990-04-12 1992-05-29 Ebauchesfabrik Eta Ag
EP1333345B1 (fr) 2002-02-01 2008-03-26 TAG Heuer SA Dispositif comportant un mouvement horaire et un module chronographe
CH698125B1 (fr) * 2004-03-11 2009-05-29 Bethune Sa De Balancier de mouvement d'horlogerie mécanique.
EP2073078B1 (fr) * 2007-12-21 2012-11-07 Omega SA Marteau bistable pour mécanisme de chronographe
DE602007008121D1 (de) * 2007-12-28 2010-09-09 Chopard Manufacture Sa Antriebs- und Übertragungsorgan für einen Hemmungsmechanimus, damit ausgestattete Platte und Hemmung und mit diesen ausgestattetes Uhrwerk

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CH703573A3 (fr) 2012-02-29
CH703579B1 (fr) 2015-11-30
CH703578A2 (fr) 2012-01-13
CH703578B1 (fr) 2015-11-13
EP2689295A1 (fr) 2014-01-29
CH703579A3 (fr) 2012-03-15
CH703579A2 (fr) 2012-01-13
WO2012127016A1 (fr) 2012-09-27
CH703573A2 (fr) 2012-01-13

Similar Documents

Publication Publication Date Title
EP3545370B1 (fr) Resonateur rotatif a guidage flexible entretenu par un echappement libre a ancre
EP1333345B1 (fr) Dispositif comportant un mouvement horaire et un module chronographe
EP2363762B1 (fr) Pièce d'horlogerie comportant un mouvement mécanique à haute fréquence
US8690420B2 (en) Mechanical watch movement
CH709328B1 (fr) Echappement, mouvement de pièce d'horlogerie et pièce d'horlogerie.
EP2508953A2 (fr) Mécanisme de chronographe
EP2689295B1 (fr) Organe regulateur pour montre-bracelet mecanique
EP2613205A2 (fr) Organe réglant pour montre ou chronographe
CH713530A2 (fr) Echappement, mouvement de pièce d'horlogerie et pièce d'horlogerie.
EP2689296B1 (fr) Mouvement mécanique pour montre chronographe
CH703574A2 (fr) Organe régulateur pour montre-bracelet mécanique et chronographe muni d'un tel organe régulateur.
CH703575A2 (fr) Ancre d'échappement pour montre-bracelet mécanique et assortiment comportant une telle ancre.
CH703581A2 (fr) Ressort-spiral pour organe régulateur d'un chronographe mécanique.
EP2802941B1 (fr) Organe réglant pour chronographe mécanique
CH703580B1 (fr) Chronographe mécanique au millième de seconde.
CH705967B1 (fr) Mécanisme d'horlogerie comprenant un organe réglant comprenant un oscillateur vibrant, et mouvement d'horlogerie comprenant un tel mécanisme.
CH713531A2 (fr) Echappement, mouvement de pièce d'horlogerie et pièce d'horlogerie.
CH714361A2 (fr) Résonateur rotatif à guidage flexible entretenu par un échappement libre à ancre.
CH705970B1 (fr) Mécanisme d'horlogerie comprenant un oscillateur vibrant.
EP2802944B1 (fr) Mouvement de montre a tourbillon pour chronographe
CH705969B1 (fr) Organe réglant pour un mouvement d'horlogerie.
CH705968A1 (fr) Chronographe ou mouvement d'horlogerie.
CH705998A1 (fr) Mouvement de montre à tourbillon pour chronographe.
CH343911A (fr) Mouvement de pièce d'horlogerie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180320

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180727

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1076814

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012054605

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1076814

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012054605

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012054605

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

26N No opposition filed

Effective date: 20190913

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190322

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190322

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190322

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: P&TS SA, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 13