EP2689074A1 - Construction de bâtiment - Google Patents

Construction de bâtiment

Info

Publication number
EP2689074A1
EP2689074A1 EP12760484.1A EP12760484A EP2689074A1 EP 2689074 A1 EP2689074 A1 EP 2689074A1 EP 12760484 A EP12760484 A EP 12760484A EP 2689074 A1 EP2689074 A1 EP 2689074A1
Authority
EP
European Patent Office
Prior art keywords
extension
roof
building
building construction
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12760484.1A
Other languages
German (de)
English (en)
Other versions
EP2689074A4 (fr
Inventor
Nicolas Jean Paul PERREN
Thomas Addison GRANT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektum Ltd
Original Assignee
Tektum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2011901059A external-priority patent/AU2011901059A0/en
Application filed by Tektum Ltd filed Critical Tektum Ltd
Publication of EP2689074A1 publication Critical patent/EP2689074A1/fr
Publication of EP2689074A4 publication Critical patent/EP2689074A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/005Modulation co-ordination
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34869Elements for special technical purposes, e.g. with a sanitary equipment
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • E04H9/145Floods
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/343Structures characterised by movable, separable, or collapsible parts, e.g. for transport
    • E04B1/344Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts
    • E04B1/3442Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts folding out from a core cell
    • E04B1/3444Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts folding out from a core cell with only lateral unfolding
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/12Small buildings or other erections for limited occupation, erected in the open air or arranged in buildings, e.g. kiosks, waiting shelters for bus stops or for filling stations, roofs for railway platforms, watchmen's huts or dressing cubicles
    • E04H2001/1283Small buildings of the ISO containers type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Definitions

  • the present invention relates to a building construction.
  • a prefabricated building unit for transport as an ISO standard shipping container is provided.
  • a building construction comprising a body portion having a floor extension adapted to extend from the body portion and provide a floor area wherein the floor extension includes a fitting facility for receiving a building module.
  • a building construction having a body portion of a box configuration suitable for transportation as a transport container wherein the body portion has an upper structure having at least two elongate upper external edge portions with a gutter arrangement disposed inwardly of and along at least one of the two elongate upper edge portions.
  • a building construction comprising: a body portion and a gutter arrangement wherein the gutter arrangement includes a moveable hinge portion and a gutter portion, the moveable hinge portion being adapted to mount a roof extension to the body portion, the moveable hinge portion being movable to allow the roof extension to be inclined at angle relative to the body portion in a position adjacent the gutter portion such that when water falls onto the roof extension the water will flow downwardly along the roof extension into the gutter portion.
  • a building construction comprising: a body portion having an upper structure and a lower structure, the lower structure being adapted to provide at least one water compartment, the at least one water compartment being adapted to be emptied and provide the lower structure with sufficient buoyancy to lift the body portion in flood conditions.
  • a building construction comprising: at least one module, the or each module being adapted to be provided as ISO shipping container, when in a transport condition; the at least one module being adapted to provide a building body which has a floor area at least 2.5 times the combined horizontal area of the modules, when in the transport condition; and a panel system comprising a plurality of interchangeable panels allowing the building to be provided with different facade layouts suited to different site orientations and other conditions.
  • a building construction comprising: a body portion; and panel system; wherein the panel system comprises a number of interchangeable panels that can be arranged to provide the body portion with different facade layouts so as to adapt building to different site orientations and conditions.
  • a building construction for providing a building, the building construction comprising a body portion, a floor extension and a moveable hinge portion, the hinge portion mounting the floor extension to the lower end of the body portion such that the floor extension is moveable between collapsed and extended conditions; wherein in the collapsed condition the floor extension provides side walls of the building construction at least in part providing the building construction with ISO shipping certification; further wherein the building construction comprises a roof extension that is put onto the building after the floor extension has been moved to the extended condition, the floor extension being of a heavy weight in comparison to the roof extension.
  • a method of construction comprising: providing a building construction; swinging out floor extensions provided as side walls that at least in part provide the building constructions as an ISO shipping container wherein the floor extensions are of a substantial weight; and then attaching roof extensions to the building construction where the roof extension are of a relatively light weight.
  • a method of construction comprising: providing a building construction, positioning roof and flooring extensions relative to a body of the building construction; and providing a flotation arrangement beneath the floor extensions to assist with lifting the building construction during flood conditions.
  • a method of construction comprising: providing a building construction; extending floor extensions to provide an extended floor area; using a facility of the floor extensions to receive a building module; positioning the building module such that the building module provides a portion of the floor area of the building construction.
  • a method of construction comprising: providing a building construction; positioning roof and flooring extensions relative to a body of the building construction; using a hinge of a gutter arrangement to dispose the roof extension in an inclined condition relative to the body of the building construction such that when water falls onto the roof extension the water flows flow downwardly along the roof extension into the a gutter portion of the gutter arrangement.
  • a unit for a building comprising: a base; and a roof supported above the base.
  • a building construction providing a transportable module, the transportable module providing kitchen or bathroom facilities for installation within a larger building construction.
  • the transportable module providing kitchen or bathroom facilities for installation within a larger building construction.
  • Figures 1 to 9 provide several views illustrating a method of construction according to a first preferred embodiment of the present invention
  • Figure 10 provides several views of a building construction according to another preferred embodiment of the present invention.
  • Figures 11 to 17 illustrate a completed building construction according to a further embodiment, the building construction being provided according to the method illustrated in Figures 1 to 9;
  • Figures 18 and 19 illustrate another building construction according to a further preferred embodiment of the present invention.
  • Figures 20a to 20f illustrate a further system and method according to a further embodiment
  • Figures 21 to 23 illustrate a kitchen bathroom module according to yet another embodiment of the present invention
  • Figure 24 illustrates a building construction according to yet another embodiment of the present invention.
  • Figures 25 to 27 illustrate a building construction according to a further embodiment -of the present invention.
  • FIGS 28 to 45 illustrate yet further preferred embodiments of the present invention.
  • FIG. 1 to 9 there is shown a method of construction 10 according to a first preferred embodiment of the present invention.
  • the method of construction 10 employs two building constructions 12 that form preferred embodiments of the present invention in their own right.
  • the method 10 is considered to provide for the ready construction of a building with several advantageous features that are discussed below.
  • the method of construction 10 provides a footing arrangement 14. More particularly, in the footing arrangement 14, the method 10 provides a plurality of first side footings 16 , a plurality of intermediate footings 18 and a plurality of opposite, side footings 20. A slide structure 22 in the form of a pair of bearers 24 is also provided.
  • the first side footings 16 and the opposite side footings 20 form a plurality of rows 26 comprising a first row 28, a second row 30, a third row 32, and a fourth row 34.
  • the slide structure 22 provides a first intermediate footing 36 and a second intermediate footing 38 that form part of the first row 28.
  • an intermediate footing 40 forms part of the second row 30
  • an intermediate footing 42 forms part of the third row 32
  • an intermediate footing 44 forms part of the fourth row 34.
  • a first one of the building constructions 12 is placed on: (i) the first side footings 16 of the first row 28 and the second row 30; as well as on (ii) the intermediate footing 36 and the intermediate footing 40. This is performed using a crane.
  • the second building construction 12 is placed on: (i) the opposite side footings 20 of the first row 28 and the second row 30; as well as on (ii) the intermediate footing 36 and the intermediate footing 40.
  • the intermediate footing 36 and intermediate footing 40 are provided as "T" footings to advantageously support both of the building constructions 12.
  • the building constructions 12 are secured to the footings.
  • the two building constructions 12 are each provided as a standard container module 46 certified to meet ISO shipping standards.
  • Each of the standard modules 46 comprises a body portion 48 having an advantageous gutter arrangement 50.
  • each gutter arrangement 50 of each standard module 46 includes a moveable hinge portion 52 and a gutter portion 54.
  • each gutter arrangement 50 is advantageously protected by a number of floor extensions 56 that are connected to the lower portion 58 of each module 46.
  • the floor extensions 56 are connected to the lower portion 58 by a number of butt hinges 60.
  • the floor extensions 56 are provided in the form of outer panels and, in the method 10, are unfolded to form a floor area 62 as shown in Figure 5.
  • the top of each of the floor extensions 56 is swung away from the upper portion 64 of each respective module 46.
  • the floor extensions 56 are brought to rest on and are secured to the footings 14.
  • FIGs 6 to 8 illustrate the process of attaching a roof extension 66 to the body portion 48 of each module 46.
  • the moveable hinge portions 52 of the modules 46 are adapted to mount a plurality of roof components 68 in the form of roof panels to form the roof extension 66 which is mounted to the body portions 48.
  • the moveable hinge portions 52 are able to move from a first position 70, shown in Figure 4, to an intermediate position 72 shown in Figure 6.
  • a number of roof components 68 are attached in series along the hinges 52 such that the roof components 68 extend from one side of the overall structure to the other, to form the roof extension 66.
  • the floor extensions 56 are of a relatively heavy weight in comparison to the roof extension 66 so as to provide weight to base of the final building.
  • the floor extensions 56 provide a floor area that feels similar to a house having a concrete floor in terms of the stability provided.
  • the roof extension 66 can then be advantageously provided by lighter roof components that are subsequently connected in the intermediate position 72 shown. Assembly in this vertical-type position allows the person assembling the building to advantageously assess the quality of the water proofing of the completed roof extension 66.
  • Six roof components 68 are provided within each of the constructions 12 during transport to provide the overall roof extensions on either side.
  • the gutter arrangement 50 provides an elongate channel 74 having a first lateral side portion 76 and a second lateral side portion 78.
  • the first lateral side portion 76 is configured for extending along the length of the body portion 48 and the second lateral side portion is configured for extending along an along an edge portion 80 of the roof extension 66.
  • the roof extension 66 is moved by an outward swinging movement with the hinges 52 moving from the intermediate position 72 shown in Figure 6 to an inclined position 82 shown in Figure 8.
  • a plurality of supporting members 84 are installed and secured in position using conventional attachment means.
  • the process is repeated on the opposite side of the each module 46 which has an identical advantageous mirror image gutter arrangement to provide a full extended building structure 86 shown in Figure 9. After this has been performed a number of supporting brackets 88 are removed.
  • the form and arrangement of the building structure 86 is considered to be advantageous given that the hinge portions 52 are moveable from a vertical position shown in Figure 3 to the intermediate position 72 with the roof extension finally being fixed in the inclined position 82 shown in Figure 8.
  • gutter arrangement 50 as described and shown in the drawing is considered to serve to advantageously protect the body portions 48 for water seepage and to provide advantageous water capture in a prefabricated two module container system.
  • the building construction 90 comprises a body portion 92 and a gutter arrangement 94.
  • the gutter arrangement 94 includes a moveable hinge portion 96 and a gutter portion 98.
  • the moveable hinge portion 96 is adapted to mount a roof extension 100 to the body portion 92.
  • the moveable hinge portion 96 is movable to allow the roof extension 100 to be inclined at an upward angle relative to the body portion 92 in a position adjacent the gutter portion 98. As such when water falls onto the roof extension 100, the water is caused by the action of gravity to flow downwardly along the roof extension 100 into the gutter portion 98.
  • the gutter arrangement 94 is provided as an elongate channel 102 having a first lateral side portion 104 and a second lateral side portion 106.
  • the first lateral side portion 104 is configured for extending along the length of the body portion 92 and the second lateral side portion 106 is configured for extending along an edge portion 108 of the roof extension 100.
  • the gutter arrangement 94 is provided on a first side 110 of the building construction 90 and a 'mirror image' gutter arrangement 112 is provided on an opposite side 114.
  • the gutter arrangement 94 and the gutter arrangement 112 form an overall gutter arrangement 116.
  • both the gutter arrangement 94 and the gutter arrangement 112 are advantageously protected by lateral elongate side panels of the body portion 92 in the form of two floor extensions 118.
  • the two floor extensions 118 in the transport condition, extend upwardly to protect the gutter arrangement 94 and the gutter arrangement 112 from sideways damage which could be caused by say a forklift.
  • the gutter portion 98 is provided as a u-shaped channel portion 120 located between the roof extension 100 and remainder of the body portion 92.
  • the channel portion 120 is advantageously able to be readily cleaned using a ladder and conventional extendable gutter cleaners.
  • the hinge portion 96 comprises an elongate butt hinge 122 having a first leaf 124 for connection to the gutter portion 98 and a second leaf 126 for connection to the roof extension 100 as shown.
  • Various hinge and connection arrangements are of course possible.
  • the body portion 92 has a slightly inclined upper portion 128 for causing water falling on the included upper portion 128 to flow into the gutter arrangement 94.
  • the upper portion 128 is inclined by being slightly convexly shaped.
  • each lateral side of the building construction 90 is provided by an elongate floor extension 118 adapted to extend from the lower portion of the body portion 92 and provide a floor area.
  • the floor extensions 130 are latched in position for transport purposes.
  • the floor extensions extend slightly beyond the central main portion 132 of the body portion 92 to provide strength during transport.
  • the width of each elongate floor extension 130 (vertical height) is only slightly greater than the height of the main portion 132 of the body portion 92.
  • the hinge portion 96 of the gutter arrangement 94 allows for the roof extension 100 to be substantially wider than the height of the body portion 92 such that when the building is assembled there is provided a desirable feeling of spaciousness and comfort.
  • the embodiment is considered to provide a building construction 90 having a body portion 92 of a box configuration suitable for transportation as a transport container.
  • the floor extension 130 provides an upper structure having at least two elongate upper external edge portions 134 provided by the floor extensions 118 with the gutter arrangement 94 and the gutter arrangement 112 being disposed inwardly thereof.
  • the gutter arrangements extend along the external edge portions 134 and provide a channel 120 on the upper portion for the flow of water.
  • the building construction 90 is considered to be advantageous for reasons discussed above.
  • the building construction 136 comprises two modular building constructions 138 adapted to be transported as ISO certified shipping containers.
  • Each of the modular building constructions 138 includes a body portion 140 having a floor extension 142 pivotally attached to a lower portion of the respective body portion 140.
  • a pivotal attachment may not be provided, and the floor extensions 142 may be positioned manually with say straps and chains that are used to constrain the lower edge of each floor extension 142 during lowering.
  • the floor extensions are mounted vertically on the sides of the main chassis of the building construction 138 during transport. This may be advantageously achieved with a bolting system as is discussed in further detail below with reference to Figures 18 and 19.
  • each floor extension 142 is adapted to extend from the body portion 140 and provide a floor area 144.
  • each floor extension 142 includes a fitting facility 146 for receiving a building module 148 in the form of a kitchen or bathroom module 150 (See Figure 13).
  • the building constructions 138 are provided as mirror images with the fitting facility 146 being provided at a corner of each corresponding building construction 138. By being provided as mirror images this means that the fitting facilities 146 provide a central fitting facility in the overall building construction 136.
  • each fitting facility 146 comprises a removable portion 152 that is removable from the respective floor extension 142 to provide a floor recess 154 (See Figure 12) for receiving a corresponding half of the building module 148, (See Figure 13).
  • the recesses 154 are together positioned on a lateral outer edge of the building construction 136, and are centrally positioned. Whilst each of the building constructions 138 provides a recess that receives only half of the horizontal cross-section of the building module 148, the recess 156 of the overall building construction 136 receives the full cross-section of the building module (in the horizontal plane). This is illustrated in Figure 12.
  • the recess 156 is provided by removing centre panels that each form about half of the respective floor extension 142.
  • a sliding system 160 that is adapted to allow ready positioning of the building module 148.
  • the sliding system 160 comprises two spaced apart bearers that allow the building module 148 to be placed thereon and slid into the recess 156 of the full building construction 136. As shown the bearers extend perpendicularly from the building construction 136. The bearers if relatively accurately positioned can also be used as a guide.
  • the removable portions 152 are advantageously used to provide further flooring in the form of a verandah.
  • the building module 148 is placed outside the house on the bearers. Module end caps are removed and the module is slid along the bearers into the installed position. Internal and exterior wall panels can then be installed.
  • the building module comprises a kitchen / bathroom module.
  • Each floor extension is adapted to be mounted vertically when in a transport condition and then to be position horizontally to provide the floor area.
  • the removable portions are provided adjacent a top corner of the floor extensions so that when removed a recess is relatively centrally provided to accommodate the floor of a rectangularly configured recess/fitting facility. Whilst the removable portions are preferred other mounting arrangements allowing the incorporation of a kitchen/bathroom module are of course possible.
  • the overall recess provided receives the full floor area of the building module.
  • FIG. 18 there is shown a further embodiment of the present invention.
  • the embodiment comprises a single 40ft building unit 139 that is advantageously provided as a unitary 40ft ISO standard shipping container.
  • a number of floor extensions 141 are bolted to a main chassis 143. The bolting occurs along top edges 147 and bottom edges 149.
  • the complete side of the building unit 139, including its top and bottom corner fittings comprises a single welded frame of a floor extension 141. This is illustrated in Figure 18 and provides for advantageous strength.
  • FIG 19 illustrates the use of bolts 151 and mounting portions 153 that are used to fix the floor extensions 141 to the main chassis 143 during transport.
  • the mounting portions are openly configured to allow ready access to the nuts that are used to secure the opposite end of the bolts 151.
  • the floor extensions are moved from a vertically mounted position and are then positioned horizontally to form an extended floor area. This can be achieved by several methods including say manually with straps, chains or brackets that constrain the lower edge during assembly.
  • the floor extensions 141 span the full height to the main chassis 143. This is considered to be advantageous.
  • the building unit 139 in this embodiment, comprises a single/unitary 40'ft reinforced container rather than two 20' containers placed end to end.
  • the fixing arrangement comprises the floor extensions 141 being bolted by extending the bolts 151 through the main peripheral frame 155 of each floor extension 141. This is also considered to be advantageous for the reason that the bolts are able to advantageously transfer impact loads and maintain the floor extensions 141 in a desirable position during transportation.
  • the floor extensions 141 each advantageously form a complete side of the container vertically and horizontally with respect to the chassis 143.
  • the floor extensions 141 provide ISO standard corners 157 as part of their outer frame 155.
  • the ISO standard corner castings 157 are separate, as shown, from the centre chassis 143 to which the floor extensions 141 are bolted. By bolting in this manner, the floor extensions 141 are advantageously secured in a steadfast manner.
  • the floor extensions 141 each provide a structural frame of a similar structural reinforcement to the chassis 143 to which they are bolted.
  • the floor extensions 141 are detached from the centre chassis 143 of the container, are lowered in to position using a pivoting motion (but without an integral pivot) and then are re-attached by bolting.
  • one of the floor extensions 141 of the unitary 40' ft building unit 139 advantageously provides a fitting facility.
  • the fitting facility is advantageously adapted to receive a separate building construction in the form of a kitchen or bathroom module. It is considered that allowing a separate building unit to be inserted into the container, enables the advantageous provision of relatively full sized rooms. In comparison to other container building units the kitchen and bathroom is not positioned in the relatively narrow central spine of the 40' container.
  • a kitchen and bathroom module is received within/on one of a floor extensions 141 extending from the base of the ⁇ chassis 143.
  • FIG. 20a to 20f there is shown a method of construction 159 according to a further embodiment providing a unitary 40ft building unit.
  • the floor extensions provide the ISO standard corners 161.
  • the kitchen/bathroom module is transported as a container having a floor 163.
  • the kitchen/bathroom unit also provides ISO end mounts 165 and a protecting roof 167.
  • the protecting roof is reusable and advantageously includes flooring as part of the protecting layering for use as part of the verandah of the building.
  • Figures 21 to 23 illustrate a modular unit 169 according to a further preferred embodiment of the present invention.
  • the modular unit 169 is advantageously provided as a 20 foot container 171.
  • the container 171 advantageously comprises a chassis 173 having a box shaped frame 175 with an internal reinforcement 177.
  • the frame 173 is elongate and includes a first end 179 and a second end 183.
  • a first carrier element 185 is mounted to the first end 179 and a second carrier element 187 (not shown) is mounted to the second end 183.
  • the carrier elements 185 and 187 are removably attached to the chassis 172 and have a relatively flat planar configuration. The removable attachment is provided a number of bolting elements as shown.
  • the carrier elements 185 and 187 are of a shape protecting the periphery of the chassis 173 and substantially span the full width and height of the ends 179, 183.
  • the carrier elements 185, 187 each include ISO corner elements 189.
  • the modular unit 169 is provided to ISO shopping container standards. Furthermore, the modular unit 169 is designed to provide both kitchen facilities and bathroom facilities for a larger modular unit of the type described above. By providing the majority of the plumbing and kitchen facilities in the modular unit 169, other material such as roofing can be advantageously transported in the larger modular unit (40ft). The smaller modular unit 169 containing the kitchen and bathroom facilities is separately transported to the assembly site. The applicant considers that this is advantageous.
  • the modular unit 169 may include low friction material on its lower surface to assist with being moved on a plurality of bearers mounted to the large modular unit during assembly. This could for example comprise a strip of nylon material.
  • a winch is connected to the inner edge of a recess provided within a floor extension of the larger modular unit, and that the smaller unit 169 in pulled on the bearers using the winch.
  • the bearers By bolting to the larger unit the bearers can be advantageously used to provide a guide.
  • the system is preferably able to be installed by two or three relatively unskilled persons.
  • Another advantage of the approach is considered to be that it allows one to relatively maximise the floor area of the house.
  • the applicant considers that such a design in combination with a modular roof system could possibly give a substantial additional effective floor space in some embodiments. .
  • This is considered to allow for the design of more generous spaces which contribute to the overarching goal of creating a home that looks and feels like a site built house.
  • Kitchen and bathroom facilities are centrally located on a floor extension rather than in the main chassis.
  • the relatively empty chassis of the larger unit can be advantageously used to transport other material such as roofing panels. This provides several advantageous assembly aspects on site.
  • the building construction 162 comprises a body portion 164 having an upper structure 166 and a lower structure 168.
  • the lower structure 168 is advantageously adapted provide a water compartment 170 that is adapted to be emptied to provide the lower structure 168 with sufficient buoyancy " to lift the body portion 164 in flood conditions.
  • the water compartment 170 comprises a symmetrical arrangement adapted to accommodate a plurality of footings 172 extending therethrough and to allow the building to be formed using two ISO certified containers.
  • the water compartment 170 is fitted within the lower structure 168 so as to form part of the lower structure 168 and extend around along the boundary thereof.
  • the building construction 162 includes a vertical guiding system 174 that is adapted to guide the body portion 164 up and down during flood conditions.
  • the vertical guiding system 174 comprises four guiding members 176 that are adapted to guide the body portion 164 up and down.
  • the building construction 162 is considered to be particularly advantageous for use in floodplain areas that are subject to flooding. Generally where houses are formed from ISO complaint shipping containers they would otherwise be washed away.
  • the building construction 162 is provided by positioning the roof and flooring extensions relative to two prefabricated units and providing a flotation arrangement beneath the floor extensions.
  • the building construction comprises a body 180 provided by two transportable modules 182 (as previously discussed) where each module 182 is adapted to be provided as an ISO shipping container, when in a transport condition.
  • the modules 182 can be assembled from the transport condition to provide a building 184, in an extended condition.
  • the building 184 has a floor area 185 about three times the combined horizontal area of the bases of modules 182, when assembled in the transport condition.
  • the building construction 178 further includes a panel system 186 comprising a plurality of interchangeable panels 188 allowing the building 184 to be provided with different facade layouts suited to different site orientations and other conditions.
  • the building system is considered to be particularly advantageous as it allows the provision of a building formed from ISO certified shipping containers where the building is able to be desirably adapted by builders to suite the site orientations. Owners can also advantageously decide where to position windows, doors as well as internal walls.
  • the building body 180 as assembled includes a floor portion 190 that forms part of the sides of the modules 182 when the modules 182 are provided in the transport condition.
  • the floor portion 188 forms at least part of the floor area 184 in the building body.
  • the interchangeable panels 188 are arrahgeable. around the boundary of the floor area 185 to provide the different facade layouts.
  • the panel system 186 includes a wall panel 194, a high window panel 196, a medium window panel 198, a full window panel 200, a door panel 202 and a sliding window double panel 204.
  • Each of the panels of the panel system 186 is advantageously of the same width apart from the sliding window double panel 204 which is twice the standard width.
  • mass manufactured container type houses are considered to be able to be readily manufactured. Different positions of facade and internal layouts can be readily provided.
  • the floor area 185 is substantially square comprising a width 206 of approximately 6 standard panel widths and height 208 of approximately 6 standard panel widths 206. This is considered to be advantageous.
  • Figure 27 shows the wall panel 194 in cross section.
  • the wall panel 194 is provided with an extension 210 and an abutment 212.
  • the abutment 212 is provided as a lower surface for bearing against the floor portion 190.
  • the extension 210 extends from the front of the abutment 212 downwardly past the front face 214 of the floor portion 190 as shown in Figure 27. This serves to advantageously assist with weatherproofing the join between the wall panel 194 and the floor portion 190.
  • the extension is preferably longer than 10cm. In the embodiment the extension is about 30cm long which also serves to advantageously hide water tanks provided beneath the floor portion 190.
  • the wall panels of the panel system 186 are hung at the top and then attached with screws along the sides and the bottom for the pressure seals to be sufficiently watertight.
  • the wall panels of the panel system 186 are hung at the top and then attached with screws along the sides and the bottom for the pressure seals to be sufficiently watertight.
  • the wall panels of the panel system 186 are hung at the top and then attached with screws along the sides and the bottom for the pressure seals to be sufficiently watertight.
  • the wall panels of the panel system 186 are hung at the top and then attached with screws along the sides and the bottom for the pressure seals to be sufficiently watertight.
  • the wall panels of the panel system 186 are no cables in the exterior wall panels, all the power and plumbing runs through the main floor structures and the centre chassis.
  • Floor boxes are used rather than standard wall mounted outlets) to provide power outlets to each room.
  • Figure 28 shows an exploded perspective view of one embodiment of a building
  • Figure 29 shows steps of one embodiment of a method of erecting the building of Figure 28 in accordance with an aspect of the invention
  • Figure 30 shows a site with screw piles installed
  • Figure 31 is a perspective view of one embodiment of two units for a building, in accordance with another aspect of the present invention, in collapsed mode and received by the screw piles
  • Figure 32 shows one of the units with roof extensions swung up
  • Figure 33 and Figure 34 show base extensions swung down into respective extended positions
  • Figure 35 shows the units with a sub unit disposed therein and columns installed over the base extensions
  • Figures 36 and 37 show the roof extensions in respective extended positions
  • Figure 38 shows the unit with outer panels installed
  • Figure 39 shows the building in a final or near final form
  • Figure 40 shows an example of a cap which may form part of the unit of Figure 31
  • Figure 41 shows an example of a hinge that has more than one degree of freedom which is a part of the units of Figure 31
  • FIG. 28 an exploded perspective view of one embodiment of a building is generally indicated by the numeral 312.
  • a considerable fraction of the building 312 is manufactured within a controlled factory environment, that is it is prefabricated. This reduces the amount of skilled labour and time required onsite.
  • the building 312 is delivered as one or more units in a collapsed state.
  • the building 312 has an external form commensurate with a shipping container, such as an ISO shipping container.
  • a shipping container such as an ISO shipping container.
  • Another label for a shipping container in the context of this document, is an intermodal container.
  • the base may have the same footprint as the base of an ISO shipping container
  • the roof may also have the same width and length as the roof of an ISO shipping container
  • the side walls may also have the same width and length as corresponding side walls of an ISO shipping container.
  • the external form of the collapsed unit may, in some alternative embodiments, be commensurate with a non ISO container standard.
  • the United States often uses longer units at 48 ft (14.63 m) and 53 ft (16.15 m).
  • Some European containers are about 2 inches wider at 2.5 m (8 ft 2.4 in) to accommodate Euro-pallets.
  • Australian RACE containers are also slightly wider to accommodate Australia Standard Pallets.
  • the unit in this particular embodiment, is not a shipping container but has been constructed to take certain features of a shipping container so that it can be transported over an intermodal freight transport system which may comprise, for example, a container ship, a container train, a truck, and specialized container handling equipment such as a portainer.
  • an intermodal freight transport system which may comprise, for example, a container ship, a container train, a truck, and specialized container handling equipment such as a portainer.
  • the unit is a shipping container that Has been suitably modified.
  • the outer form of the unit is commensurate with a high cube shipping container.
  • High cube containers have a width of around 2.44m (8 feet), and a height of 2.89 m (9.5 feet).
  • High cube containers are available in lengths of, for example, 10, 20, 30 or 40 feet.
  • the length of the unit in this, but not necessarily all embodiments, is 20 feet.
  • the building 312 is be assembled by extending the unit onsite, typically in a few weeks by an owner/builder, or by an experienced construction crew in a matter of days.
  • Figure 29 shows the steps of one embodiment of a method of erecting the building 312 from one or more units and a sub unit.
  • one or more units such as units 310, 311 for the building 312, and a sub unit 374 are-delivered to a site on which the units 310,311 and thus the resulting building 312 is to be located.
  • the units 310,311 are substantially identical, but do not need to be, and have dimensions which are commensurate with a shipping container, such as an ISO shipping container.
  • the units 310,311 have external dimensions commensurate with a high cube shipping container which is higher than "standard" , shipping containers.
  • the corresponding building thus has a relatively high roof and relatively more internal volume than that which can be achieved using lower shipping containers.
  • the units 310,311 are delivered on a B-triple truck which is configured to carry ISO shipping containers.
  • the B-triple truck also carries and delivers the sub unit 374 which is to be located in the units 310,311.
  • the sub unit 374 has external dimensions which are also commensurate with a shipping container, but a shipping container smaller than that corresponding to the unit 10 (typically lower but having the same footprint).
  • the sub-unit external dimensions may be commensurate with an ISO shipping container.
  • caps such as 374 are removed from the ends of the units, and then the units 310,311 are positioned end to end upon the site by, for example, a crane that is a part of the truck.
  • the units 310,311 are located on a plurality of columns 360 (as shown in Figure 29) each having the form of a screw pile, for example.
  • the screw piles are typically installed on the site before the units 310,311 and sub unit 374 are delivered.
  • the unit 310 has a rectangular roof extension 18 folded down to form a sidewall but which may be extended to form an extension of the rectangular roof 316 of the unit 310.
  • the roof extension 318 is fastened down in a collapsed position by clamps, cables, or ties for example. Before the roof is swung up it is released.
  • a rectangular base extension 320 which may form an extension of a rectangular base 314 of the unit 310 when folded down, is revealed.
  • the base extension 20 is fastened during transport. When it is to be swung down, the base extension 20 is first released.
  • the base extension 320 is swung down to form a larger floor area than that provided by the base 314 alone.
  • the sub unit 374 which in this example has a form commensurate with a 20 foot ISO container, is disposed within the one or more units.
  • the sub-unit is ' not a high cube container.
  • the sub unit 374 in this embodiment, may be a bath and/or a kitchen and may have all of the plumbing and other services in place.
  • the sub-unit may have one or more doors, for example opening into the kitchen and/or bathroom.
  • step 6 the roof extension 18 has been swung down from the elevated mode into an extended mode.
  • step 7 panels are placed around the periphery of the extended unit 310, the panels being, for example, wall panels, doors and exterior windows.
  • the panels may be all of the same width, typically but not necessarily 1.2 m, and so the panels are interchangeable. Generally, the use of panels is greatly simplified when the roof extension is extended before the floor extension is extended.
  • FIG 30 a plurality of columns in the form of screw piles such as 360 and 362 are first installed on the site.
  • Figure 31 shows two units for a building abutted end to end, the foremost unit indicated by the numeral 310 and the rearmost unit indicated by a numeral 311.
  • the resulting building may be described as a modular building.
  • a vertical line indicates the boundary of the units 310,311.
  • a capping member is disposed over the boundary of the respective roofs and/or roof extensions.
  • the capping member in this embodiment in the form of a seal capping, is attached using adhesives and/or fasteners.
  • the units are shown in a collapsed mode located on the piles 360.
  • the unit 310 has opposing ends 348, 350 that are open, as does the unit 311. During transport, however, the open ends 348, 350 may be capped, the additional cap structure stiffening the unit for transport.
  • a unit With the caps installed, a unit may have dimensions equal to an ISO shipping container, for example a 20 foot long high cube. With the cap removed, the unit may be slightly shorter than an ISO shipping container.
  • the caps may be removed on site, for example, and used as a component of the building 132.
  • Figure 40 shows a front perspective view of an example of a cap 374. The rear end of the cap is open and presents a cavity into which an end of a unit may be received.
  • the caps may be configured to engage an intermodal container transport, such as a container ship, by a pair of cooperating elements, each of the pair of elements being located on one of the cap and the transport respectively. When the elements are engaged, the unit can be secured in handling and in transit.
  • the element may, for example, be a standard ISO mounting point 376 in the form a corner casting, an element compatible with a twistlock (a fastening device used in the container shipping industry). Any suitable fastening system may be employed.
  • the elements 376 may be located at one or more corners of the cap 374 as for an ISO shipping container.
  • the unit 310 has a roof extension 318 which can adopt a collapsed, an extended, or an elevated mode.
  • the roof extension 318 is shown in the collapsed mode (folded down).
  • the roof extension 318 extends essentially the entire span between the base and the roof to form an external wall of the unit 310.
  • the roof extension does not extend the entire span.
  • the roof extension in this embodiment, is slightly smaller than an outer wall of a high cube container, and in particular its width in this, but not necessarily all embodiments, is around 2.8m.
  • the base extension 320 can adopt either a collapsed mode or an extended mode.
  • the base extension 320 is shown in the collapsed mode.
  • the base extension has a width of 2.4m.
  • the base extension 320 in this but not all embodiments, is of a lesser width than the roof extension and thus does not extend the entire span between the base 314 and the roof 316. This may provide space for, for example, a mechanism such as a hinge connecting the roof extension to the unit.
  • the base extension 320 is an extension of the base 314; the top surfaces of the base and the base extension lie in the same plane.
  • the house is provided with an awning.
  • the awning advantageously improves passive thermal management making the house more sustainable.
  • the roof extension 318 has a proximal edge 322 adjacent the roof 316 and also a distal edge 324.
  • the distal edge 324 is located adjacent the base 314.
  • the distal edge 324 of the roof extension 318 is elevated above the proximal edge 322 of the roof extension 318, as shown in Figure 28.
  • the internal space is generally higher than that provided by a container because the distal edge is elevated. More height is provided on an outer edge 324 of the house than the interior under the roof 316. This enhances the sense of space within the house, especially when looking outwards beyond the distal edges of the roof extension.
  • the inward slope of the roof extension causes rain that falls on the house 312 to flow inwards where it can be centrally collected and transported via a conduit to a water reservoir, such as a tank located under the house.
  • the roof extension 318 can, at least in this embodiment, be swung up by greater than 180 degrees revealing the base extension 320.
  • the roof extension 18 is attached to the roof by a hinge 342 shown in Figure 28.
  • the use of a hinge is convenient as it supports half the weight of the roof extension as it is swung around.
  • a hinge also pre-aligns the roof extension with respect to the roof and walls.
  • the base extension 320 is attached to the base 314 by another hinge 344 shown in Figure 32.
  • the roof extension in the elevated mode typically makes an angle of between 180 - 270 degrees with the roof extension in the collapsed mode.
  • the roof extension is actually one of two roof extensions and in the elevated mode respective distal edges of the roof extensions are brought together. This is a relatively stable position, especially if the extensions are fastened together, and expensive and cumbersome equipment is not required to bring the extensions into the elevated mode or hold them in this mode.
  • the roof extensions are self supporting and conveniently out of the way during the preliminary stages of erection.
  • the base extension 320 may be swung down into the extended position after the roof extension 318 has been swung up.
  • the hinge 342 is configured so that the roof extension 318 can be swung either above or below the roof 316 and so adopt various positions used during transport, construction and final use of the building. This may be impossible using prior art arrangements.
  • a hinge that provides movement along a path rather than around an axis may be used. That is, it may be advantageous to use a hinge that has two or more degrees of freedom, such as for example the double hinge shown in Figure 42.
  • the double hinge has a first 380 and a second 382 pivot, the pivots being each connected to a connecting member 383 common to the pivots.
  • the first pivot 380 is attached to a first leaf 384 and the second pivot is attached to a second leaf 386.
  • this double hinge has 2 degrees of freedom, unlike a standard hinge which has only one degree of freedom.
  • the first leaf may be fastened to an internal surface of the roof 16 adjacent an edge, and the second leaf is attached to an internal surface of the roof extension 318.
  • rotation around the first pivot 380 causes the second pivot 382 to swing out of the interior of the unit and free of the roof.
  • the roof extension can then be rotated around the second pivot without interference from the roof.
  • a hinge with more than 2 degrees of freedom may be employed.
  • a hinge having one or more translational degrees of freedom may be employed.
  • the hinge is attached to external surfaces of the unit, however it may be attached to internal surfaces of the unit as described. This protects the hinge during transport etc, and in this case the hinge does not extend beyond the dimensions of the standard container the unit is modelled on.
  • The, unit 312 has a water proofing material over at least a portion of a boundary between the roof and the roof extension.
  • the material takes the form of a strip of water proof membrane, such as a strip of PVC plastic sheet or a bituminous sheet.
  • the water proofing material may be a membrane applied as a fluid and allowed to set, such as silicone.
  • the roof extension 318 is swung between the collapsed and extended modes around the hinge 344 however it will be appreciated that the roof extension need not be hinged.
  • the roof 316 (or even the base 314) can be detached from the unit and then reattached in the required position or mode.
  • the roof 316 is supported above the base 314 by a plurality of posts 346 extending between the base 314 and the roof 316.
  • the posts 346 may be, for example, steel tube of a square cross sectional profile or in some embodiments, timber. Generally any suitable material may be used for the posts 346.
  • the posts are offset from corners of the unit. This allows the extensions to span the entire length of a unit in the collapsed mode.
  • the base extension 320 when in the extended mode, sits on a plurality of columns such as 362.
  • the column 362 may take the form of, for example, a screw pile, or alternatively a brick pile with a concrete foundation. Generally any form of suitable column may be employed. Screw piles, however, may be rapidly deployed.
  • the base extension (and indeed the base) may have, for example, integral strengthening plates that engage the columns.
  • the unit 310 may receive the sub unit 374, which is in this embodiment has a length commensurate with a 20 foot long ISO shipping container.
  • more than one sub unit is disposed within the unit 310.
  • the unit in this embodiment, comprises a kitchen and bathroom.
  • the further units may be, for example, bedrooms or studies or some other specialised room.
  • the embodiments of the unit 310 and sub unit 374 shown are each configured to receive one or more services such as a water service, a gas service, an electrical service, a communication service such as telephone or internet and a sewerage service.
  • the unit 310 may come with one or more of an electrical distribution board and electrical outlets, apertures for receiving pipes and cables therethrough and ducts for pipes and cables, as appropriate.
  • the apertures may be capped for transport and handling of the unit.
  • An exterior service of the unit can comprise an electrical connector for connection to the grid.
  • the connector may be recesses. Electrical wiring may be located within a floor cavity, for example. Generally, no additional electrical work needs to be done inside the house on site besides connecting the house to an electrical supply such as an electrical grid.
  • the sub-unit 374 has a toilet, shower, stove, and oven all connected to service conduits such as wires and pipes, for example, within the unit.
  • the sub-unit of this embodiment has a base that is removed prior to being disposed within the one or more units. In this case, there is no step into the interior of the sub-unit from the unit.
  • the sub-unit 374 has a vessel 388, shown in Figure 41, adapted to hold a thermal mass such as water, sand, or any suitable material capable of storing heat.
  • the vessel is typically adjacent a side wall of the sub-unit and fixed to a wall of the sub-unit. When the sub-unit is installed the vessel is ideally located near or at the centre of the building.
  • the unit is delivered with the vessel empty.
  • the empty vessel reduces the mass of the sub- unit during transport and installation.
  • the vessel is a water tank of around 1,000 litres. Once the sub-unit is installed, the tank may be filled with, for example, water delivered via a hose connected to the water mains. Alternatively, sand, soil etc. may be used, possibly sourced from the site.
  • the thermal mass may help stabilise the temperature within the building providing a better interior climate without unnecessary transport of the mass.
  • a plurality of columns in this embodiment in the form of steel posts 376, are erected above the base extension 320.
  • the posts such as 376 are located over respective screw piles.
  • the roof extension 318 is then swung down into the extended mode to rest upon the columns 376 as shown in Figure 36.
  • the extensions may Have integral strengthening plates that engage the columns.
  • the roof extension in the extended mode makes an angle of 50 - 135 degrees with the roof in the collapsed mode.
  • walls are disposed within the unit.
  • At least one of the walls 412 is a collapsible wall that is transported in a collapsed mode (Figure 44) and after being installed adopts an extended mode (Figure 45).
  • the wall has first 414 and second sheets 416 of material.
  • a structure 418 is attached to the first and second sheets.
  • the structure at least in this embodiment, has a hinge although any suitable equivalent structure such as a joint may be used.
  • the structure actually has two double hinges 418.
  • the double hinge has first and second leaves, the first leaf being attached to the first sheet and the second leaf being attached to the second sheet.
  • the double hinge is located between the sheets.
  • the sheets are relatively closer (say, 100mm rather than 300mm spacing) when the structure is in the collapsed mode than the extended mode.
  • material such as an insulating material may be disposed in the space between the sheets.
  • Figure 38 shows the building with outer wall panels installed.
  • the panels are interchangeable to adapt to site specifications and orientation.
  • the outer walls are panels, cladding materials can be exchanged as required.
  • the cladding material may be fibre cement, timber, metal sheet, plastic or the like.
  • the outer walls are hung, they have improved water proofing compared to outer walls attached via hinges to the roof and/or base and which can be swung out on the hinges.
  • the load bearing features of the building 312 are columns 376.
  • the outer walls are self supporting, making the final structure relatively easy to build and significantly lighter.
  • the base extension may have a proximal edge adjacent the base and a distal edge.
  • the distal edge is, in this but not necessarily all ⁇ embodiments, configured to receive a respective edge of a panel.
  • the distal edge is configured to engage the panel by a pair of cooperating elements, each of the pair of elements being located on one of the distal edge and panel respectively.
  • the cooperating elements may comprise a pin configured to be located in a corresponding recess. In another embodiment, however, the cooperating elements may comprise a protruding rib configured to be located in a corresponding slot.
  • any suitable engaging elements may be employed. It may be preferable, in some embodiments, to have the male element, such as a pin or rib, located on the panel.
  • the panel may comprise, for example, at least one of a window, a wall panel and a door.
  • Figure 43 shows various embodiments of the exterior panels indicated by the numerals 390 to 400.
  • Panel 390 for example, has a first end 402 and a second end 404 that is spaced apart from the first end 402.
  • a surface 406 is disposed between the ends.
  • the surface may be, for example, the outer face of cladding, a surface of a door, a window, a double sliding window, sliding doors etc.
  • the panels each have a, flange 408 parallel to the surface and extending away from one of the ends that it is attached to.
  • the flange has a surface which is adapted to be an exterior surface.
  • the exterior surface may be painted or treated metal or timber, plastic etc, and can withstand the weather and/or sun.
  • the flange 408 is substantially in the same plane as the surface 406.
  • the flange may comprise an insulating material which covers the edges of the base and/or base extensions.
  • an insulating material such as a glass fibre mat, may be disposed between the flange and the base. This is advantageous when the base and/or base extension is fabricated of a thermally conductive material such as steel which would normally act as a thermal conduit between the edges of the base/base extension and the interior of the unit.
  • the flanges may also aid in waterproofing the structure because they may terminate at or below the bottom of the base extension. Located behind the flanges are the one or more elements that cooperate with corresponding elements on the distal edge of the base extension.
  • Figure 38 shows the building in a final or near final form.
  • a vergeboard (or Bargeboard) 368 has been installed at an end of the unit above the end panels 372.
  • the verge board comprises material of high thermal resistance, such as glass fibre matting, air blown plastic such as Styrofoam, an analogue of these or any other suitable material.
  • a biodegradable insulating material is used.
  • One or more glass elements 370 are installed above the side wall panels 336,338.
  • the glass elements each comprise glass panels of high thermal resistance, such as double glazing, low emissivity glass, or even vacuum glazing.
  • the final building 312, such as that shown in Figure 38, may not have any reminiscence to a shipping container.
  • embodiments of the unit 310 are configured to receive at least one solar collector such as a photovoltaic panel or solar hot water heater.
  • the roof or roof extensions may have mounts 374 attached or formed therein ready to engage a solar collector or a solar collector supporting member.
  • mounting plates 374 ( Figure 28) are fixed to an exterior top surface by an adhesive such as a 2-part epoxy or cyanoacrylate adhesive.
  • an adhesive such as a 2-part epoxy or cyanoacrylate adhesive.
  • the use of an adhesive is preferable to the use of mechanical fasteners, such as screws, which may penetrate one or more apertures formed in the roof.
  • the apertures may provide a conduit through which water or another substance may enter the interior of the unit, which is generally undesirable.
  • the apparatus may be starting points for corrosion.
  • the mounting plates may be fabricated of aluminium, for example, but any suitable material may be used.
  • one or more exterior wall panels such as 390 may one or have mounts such as 374 to engage a solar collector or a collar collecting supporting member.
  • a wall panel may have an integrated solar collector. The solar collector may be installed when the building is in a final or near final condition.
  • a unit for a building comprising: a base; and a roof supported above the base.
  • the unit may be prefabricated in a factory and form at least part of a prefabricated or modular building. Mass production techniques may be employed to reduce costs and construction time. Because units from the factory may be similar or identical economies of scale may be realised reducing costs. A quality, for example one or more of energy rating, sustainability of the materials used, or build quality, of the unit may be greater and more certain when produced in a controlled environment typical of a factory.
  • the unit comprises a roof extension having a collapsed mode and an extended mode, in the collapsed mode a surface of the roof extension is also an external side surface of the unit, and in the extended mode the roof extension is an extension of the roof.
  • the roof extension in the extended mode may make an angle of 50 - 135 degrees with the roof extension in the collapsed mode.
  • the roof extension has a proximal edge adjacent the roof and a distal edge that is, in the extended mode, elevated above the proximal edge.
  • the collapsible unit may be easily transported in the collapsed mode and still provide significant building space in the extended mode.
  • the distal edge being elevated above the proximal edge is desirable for architectural ' reasons, including giving more internal space and a greater sense of openness when looking outward from within the building. Without the elevated distal edge the building may feel unacceptably confined to a person, who may even experience claustrophobia.
  • the roof extension also may have an elevated mode wherein the distal edge of the roof extension is located over the roof.
  • the roof extension in the elevated mode may make an angle of 180 - 270 degrees with the roof extension in the collapsed mode.
  • the roof extension may be one of two roof extensions. In the elevated mode respective distal edges of the two roof extensions may be brought together.
  • roof extensions When the roof extensions are in the elevated mode they are conveniently out of the way during work performed at the level of the base. The roof extensions are less likely to be damaged while in the elevated mode during the work.
  • the extensions may be substantially self supporting when the respective distal edges are brought together, reducing the need of building tools/equipment.
  • the roof extension in the collapsed mode extends at least in part between the base and the roof.
  • the roof extension when in the collapsed mode may extend between the base and the roof.
  • a roof extension that extends between the base and the roof may form a superior barrier to external interference such as from bumps, moisture etc. during transport.
  • the roof extension is pivotally attached to the roof.
  • the roof extension may be attached to the roof via a hinge such that the roof extension can be swung above and below the roof.
  • the roof extension is swung between the collapsed, extended and elevated modes around the hinge.
  • the hinge has more than one degree of freedom.
  • the hinge may be a double hinge.
  • the roof extension is configured to receive at least one solar collector.
  • Retrofitting buildings with fittings to engage a solar collector may be more expensive than including the fitting during fabrication of the unit. Ad hoc installation may cause inadvertent damage to the building, for example if apertures for fasteners need to be made.
  • the unit comprises a water proofing material disposed at least a portion of a boundary between the roof and the roof extension.
  • the unit comprises a base extension having a collapsed mode and an extended mode, in the collapsed mode the base extension extends at least in part between the base and the roof, and in the extended mode the base extension is an extension of the base.
  • the base extension when in the collapsed mode may extend only in part between the base and the roof.
  • the base extension may have a proximal edge adjacent the base and a distal edge.
  • the distal edge may be configured to receive a respective edge of a panel.
  • the distal edge may be configured to engage the panel by a pair of cooperating elements, each of the pair of elements being located on one of the distal edge and panel respectively.
  • the cooperating elements may comprise a male element, such as a pin, configured to be located in a corresponding female element, such as a recess.
  • the cooperating elements may comprise a protruding rib configured to be located in a corresponding slot.
  • the panel may comprise at least one of a window, a wall panel and a door.
  • a collapsible base provides easier transport while allowing significant floor space.
  • the use of interchangeable panels may greatly extend the flexibility of the design of the building.
  • the panels may aid in waterproofing the building, especially compared with, for example, wall panels that are hinged to the building.
  • the roof is supported above the base by a plurality of posts extending between the base and the roof.
  • Each post may be offset from a respective corner of the base.
  • the posts may each comprise a steel tube.
  • Offset posts may not interfere with the roof extension and/or base extension providing more design freedom and may maximise roof and/or base extension area.
  • the roof extension forms an external side surface of the unit behind which the base extension is disposed.
  • the external side surface may be a relatively tough surface, such as steel, which protects the base extension and other parts internal of the unit during transport.
  • the base extension is configured, when in the extended mode, to be supported by a plurality of columns.
  • Columns may provide a level structure on which the base and base extension can be housed and reduce,the ingress of moisture and/or pests into the building.
  • One or more dimensions of the unit are commensurate with the dimensions of a shipping container.
  • the shipping container may be an ISO shipping container.
  • the ISO shipping container may be a high cube shipping container.
  • a unit which takes aspects of an ISO shipping container may conveniently take advantage of the existing shipping and handling infrastructure for shipping containers.
  • the unit may be configured to receive one or more services.
  • the unit may comprise conduits for the one or more services. At least one service may comprise one or more of a water service, a gas service, an electricity service, a communications service and a sewerage service. The requirement for on site tradesmen may be thus reduced.
  • the unit comprises opposing ends that are open.
  • an end of the unit is capped by a cap.
  • the caps may assist in sealing the unit against the ingress of moisture etc. during transport.
  • the caps may also provide engaging means for the existing shipping transport and handing infrastructure to engage, and may subsequently be removed on site without compromising the design of the building.
  • Removable caps provide greater freedom to configure the ends of the building which may otherwise be aesthetically unsatisfactory.
  • the cap which may be fabricated from a strong material such as steel for transportation and handling considerations, may be used as part of the building, instead of being unnecessarily used as ends of the building.
  • the unit is configured to be supported on a plurality of columns.
  • the unit may be configured to receive within it a sub unit having dimensions commensurate with a shipping container.
  • the sub-unit may have external dimensions of a non-high cube shipping container.
  • the sub-unit may comprise a vessel adapted to contain a thermal mass.
  • the sub unit may have a complete kitchen and/or bathroom, for example, reducing the requirements for tradesmen on site.
  • the use of a thermal mass may stabilise the internal temperature of the building.
  • the vessel may be installed when empty and subsequently filled, with water from a pipe for example, which makes handling easier. Thermal masses are typically between 1000 and 10,000 kg and are thus difficult to handle.
  • a sub-unit the height of a standard ISO shipping container may fit within units having the height of a high-cube container.
  • a sub-unit adapted to be received by a unit in accordance with the first aspect of the invention comprises a door.
  • the sub-unit may comprise one or more services.
  • the sub-unit may comprise a bathroom.
  • the sub-unit may comprise a kitchen.
  • the sub-unit may comprise a vessel adapted to contain a thermal mass.
  • the vessel may be a water tank.
  • a method of erecting a building comprising the steps of: providing a unit in accordance with the first aspect of the invention with the roof extension in the collapsed mode; and causing the roof extension to adopt the respective extended mode.
  • the method comprises the step of causing the roof extension to adapt the elevated mode. In an embodiment, the method further comprises the steps of causing the base extension to adopt the respective extended mode. A distal edge of the base extension may receive a panel after the base extension is caused to adopt the extended mode. In an embodiment, the method comprises the step of disposing one or more posts between the roof extension and the base extension. Most or all of the load of the roof extensions may be taken by the posts, instead of the panels for example, which provides considerable freedom in design. For example, the panels need not be load bearing and their other aspects, such as visual appearance, may be thus accentuated.
  • the method comprises the step of locating the unit on a plurality of columns.
  • the method may comprise the step of installing the plurality of columns.
  • the method comprises the step of disposing a sub unit within the unit.
  • the sub-unit comprises a bathroom and/or kitchen.
  • the step of causing the roof extension to adopt the respective extended mode occurs before the step of causing the base extension to adopt the respective extended mode.
  • a method of erecting a building comprising the step of, during erection, disposing a vessel adapted to contain a thermal mass in the building.
  • the vessel when disposed in the building, is empty.
  • the method may comprise the step of disposing the thermal mass in vessel.
  • the vessel may be adapted to hold water.
  • the step of disposing the thermal mass in the vessel may comprise filling the tank with water.
  • the vessel is part of a sub- unit in accordance with the second aspect of the invention and the step of disposing the vessel in the building comprises the step of disposing the sub-unit in the building.
  • the method comprises the step of providing a unit in accordance with the first aspect of the invention and extending the unit.
  • an exterior panel for a building comprising: a first end and a second end spaced apart from the first end; a flange attached to one of the ends and adapted to engage an edge of either one of a base of a building and an extension of a base of a building.
  • the panel and particularly the flange may provide thermal insulation, and may improve the water proofing of the building.
  • the flange has a surface which is adapted to be an exterior surface.
  • the flange is substantially in the same plane as a surface of one of the ends.
  • the flange comprises an insulating material.
  • the panel is configured to engage the building by a pair of co-operating elements, each of the pair of elements being located on one of the building and panel respectively.
  • the panel comprises a surface disposed between the ends.
  • a corner may be located directly behind the flange. The corner may be adapted to receive an edge of the building.
  • the flange may be attached to one of the ends.
  • the flange may be is parallel to the surface disposed between the ends.
  • the flange is configured to conceal the edge.
  • a collapsible wall comprising: first and second sheets of material; a structure attached to the first and second sheets having an extended mode and a collapsed mode, wherein the sheets are relatively closer when the structure is in the collapsed mode than in the extended mode.
  • the collapsible wall may be collapsed during, for example, transport and storage but expanded when installed in the building.
  • the structure comprises a hinge.
  • the structure may comprise a double hinge.
  • the hinge may comprise first and second leaves, the first leaf being attached to the first sheet and the second leaf being attached to the second sheet.
  • the structure is located between the sheets.
  • a unit for a building comprising: a base; a roof supported above the base; a roof extension having a collapsed mode and an extended mode, in the collapsed mode a surface of the roof extension is also ah external surface of the unit and in the extended mode the roof extension is an extension of the roof, the roof extension having a proximal edge adjacent the roof and a distal edge that is, in the extended mode, elevated above the proximal edge.
  • the unit comprises: a base extension having a collapsed mode and an extended mode, in the collapsed mode the base extension extends at least in part between the base and the roof, and in the extended mode the base extension is an extension of the base.
  • the roof extension also has an elevated mode wherein the distal edge of the roof extension is located over the roof.
  • a modified shipping container comprising: a base; a roof supported above the base; a roof extension having a collapsed mode and an extended mode, in the collapsed mode a surface of the roof extension is also an external surface of the unit and in the extended mode the roof extension is an extension of the roof.
  • the roof extension has a proximal edge adjacent the roof and a distal edge that is, in the extended mode, elevated above the proximal edge.

Landscapes

  • Architecture (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Residential Or Office Buildings (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Floor Finish (AREA)
  • Building Environments (AREA)

Abstract

Dans une forme de réalisation préférée, l'invention concerne une construction de bâtiment (136), qui comprend une partie de corps (140) pourvue d'une extension de plancher (142) se déployant depuis la partie de corps (142) et qui forme une surface de plancher (144), ladite extension de plancher (142) comprenant une installation (146) destinée à recevoir un module de construction.
EP12760484.1A 2011-03-22 2012-03-22 Construction de bâtiment Withdrawn EP2689074A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2011901059A AU2011901059A0 (en) 2011-03-22 Building Construction
PCT/AU2012/000309 WO2012126066A1 (fr) 2011-03-22 2012-03-22 Construction de bâtiment

Publications (2)

Publication Number Publication Date
EP2689074A1 true EP2689074A1 (fr) 2014-01-29
EP2689074A4 EP2689074A4 (fr) 2014-08-27

Family

ID=46878549

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12760484.1A Withdrawn EP2689074A4 (fr) 2011-03-22 2012-03-22 Construction de bâtiment

Country Status (7)

Country Link
US (1) US20140000183A1 (fr)
EP (1) EP2689074A4 (fr)
JP (1) JP2014508873A (fr)
CN (1) CN103562472B (fr)
AU (1) AU2012231787A1 (fr)
CA (1) CA2830490A1 (fr)
WO (1) WO2012126066A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611637B2 (en) 2013-04-15 2017-04-04 Matthew Dynon Prefabricated foldable building module
DE102013105382A1 (de) * 2013-05-24 2014-11-27 Christmann & Pfeifer Construction Gmbh & Co. Kg Gebäude mit einem ortsgebundenen Gebäudeteil und einer transportablen Gebäudeeinheit
EP2876223A1 (fr) * 2013-11-20 2015-05-27 Drehtainer Technologie Transfer GmbH Bâtiment modulaire
US9631365B2 (en) 2014-07-18 2017-04-25 Williams Scotsman, Inc. Interlocking wall panels for modular building units
MX2017000796A (es) 2014-07-18 2017-08-07 Williams Scotsman Inc Ensamblaje de piso para unidades de construcción modulares.
US9347222B2 (en) * 2014-07-18 2016-05-24 Herve Bottin Welded roof for modular building units
DE202015102676U1 (de) 2015-05-25 2015-06-10 Rapid Housing Systems Gmbh Leichtes modulares Gebäude
EP3098132A1 (fr) 2015-05-25 2016-11-30 Rapid Housing Systems GmbH Batiment modulaire leger
US20180212551A1 (en) * 2015-09-10 2018-07-26 Diversified Solar Systems, Llc Mobile solar collector and electricity production system
WO2017069344A1 (fr) * 2015-10-20 2017-04-27 임춘만 Habitation mobile
CN105464385A (zh) * 2015-11-30 2016-04-06 柳承烈 高效模块化建筑用组装块及利用此的建筑施工方法
USD864418S1 (en) 2017-04-28 2019-10-22 Big 6, LLP Vault for active shooters and tornadoes
AU2018350371A1 (en) * 2017-10-18 2020-04-30 Lifting Point Construction Technologies Pty Ltd Modular housing system
CN113168280A (zh) * 2018-08-07 2021-07-23 利惠商业有限公司 激光修整设计工具
CN111287534B (zh) * 2020-02-28 2021-10-01 山东建筑大学 用于木构低矮房屋居民区抵抗风暴的应急防灾减灾装置
US11549275B2 (en) * 2020-07-21 2023-01-10 Best Gen Modular, Inc. Volumetric modular unit for modular building construction
FR3131911B1 (fr) * 2022-01-14 2024-04-05 Marc Descours Module d’assemblage pour une installation de déchèterie à impact écologique positif élargi, installation et procédé sur la base d’un tel module
CN117432251B (zh) * 2023-12-19 2024-03-12 山西省建筑科学研究院集团有限公司 一种建筑工地中的建筑材料防护棚

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020297A1 (fr) * 1992-03-31 1993-10-14 Shelter Technologies, Inc. Abri portatif
WO2002066755A1 (fr) * 2001-02-21 2002-08-29 Maisons Laprise Inc. Unite d"habitation se depliant
WO2007094692A1 (fr) * 2006-02-17 2007-08-23 Habode Ip Limited Systeme mural
WO2010004148A1 (fr) * 2008-07-11 2010-01-14 Philippe Denicourt Unite de soins medicaux autonome

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4447996A (en) * 1981-06-08 1984-05-15 Maurer Jr Edward J Factory built construction assembly
JP3083908B2 (ja) * 1992-04-14 2000-09-04 大和ハウス工業株式会社 浴室ユニット
US5463833A (en) * 1994-04-01 1995-11-07 Banez; Augusto E. Portable folding structure
US5596844A (en) * 1995-02-03 1997-01-28 Kalinowski; Juan R. Foldable portable building
US5966956A (en) * 1996-11-20 1999-10-19 Shelter Technologies, Inc. Portable refrigerated storage unit
US6341468B1 (en) * 2000-05-04 2002-01-29 William H. Bigelow Building with attic module
US20050108957A1 (en) * 2003-11-25 2005-05-26 Quesada Jorge D. Pre-fabricated building modules and method of installation
US20060277836A1 (en) * 2005-05-25 2006-12-14 Fabio Chazyn Collapsible ISO container-type modular shelter
AU2007276686B2 (en) * 2006-07-20 2012-12-13 Robert Graham Barry Convertible building
US20110259768A1 (en) * 2009-10-22 2011-10-27 David Monroe Campbell Convertible shipping container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020297A1 (fr) * 1992-03-31 1993-10-14 Shelter Technologies, Inc. Abri portatif
WO2002066755A1 (fr) * 2001-02-21 2002-08-29 Maisons Laprise Inc. Unite d"habitation se depliant
WO2007094692A1 (fr) * 2006-02-17 2007-08-23 Habode Ip Limited Systeme mural
WO2010004148A1 (fr) * 2008-07-11 2010-01-14 Philippe Denicourt Unite de soins medicaux autonome

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012126066A1 *

Also Published As

Publication number Publication date
JP2014508873A (ja) 2014-04-10
WO2012126066A1 (fr) 2012-09-27
CN103562472B (zh) 2015-10-14
CN103562472A (zh) 2014-02-05
NZ616379A (en) 2016-02-26
EP2689074A4 (fr) 2014-08-27
US20140000183A1 (en) 2014-01-02
AU2012231787A1 (en) 2013-10-24
CA2830490A1 (fr) 2012-09-27

Similar Documents

Publication Publication Date Title
US20140000183A1 (en) Building Construction
US9067721B2 (en) Height adjustable shipping container
US20120255240A1 (en) Prefabricated container house
US8286391B2 (en) Portable building
US3832956A (en) Relocatable building module and shipping crate
WO1998014670A1 (fr) Kit de structure transportable
WO2010090626A1 (fr) Maison conteneur préfabriquée
US20130291449A1 (en) Transportable, expandable containers & emergency structures for habitat & field use
US20190376303A1 (en) System and method of manufacturing transportable buildings
MX2011000809A (es) Construccion modular transportable, autocontenida en recipiente de embarque.
WO2011144941A2 (fr) Structure de bâtiment préfabriqué
RU84421U1 (ru) Сборно-разборное утепленное сооружение
WO2011053397A1 (fr) Maison en conteneurs préfabriquée
KR20200084978A (ko) 모듈러 하우스 및 모듈러 하우스 시공방법
AU2015230780B2 (en) Modular building structures
AU2009201125A1 (en) Building
AU2010202450A1 (en) Modular building structures
WO2017134241A1 (fr) Procédé d'assemblage une structure résidentielle
AU2012201988A1 (en) Modular building structures
NZ616379B2 (en) Building construction
GB2160239A (en) Building system
NZ205361A (en) Pivoted verandah roof of house
NZ605059B2 (en) Transportable buildings and methods of manufacture
OA17048A (en) Height adjustable shipping container.
AU2012211473A1 (en) Relocatable building system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20140728

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/348 20060101ALI20140722BHEP

Ipc: E04B 1/344 20060101AFI20140722BHEP

Ipc: E04H 1/12 20060101ALI20140722BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150225