EP2688937A1 - Vernetzbare massen auf basis von organyloxysilanterminierten polymeren - Google Patents

Vernetzbare massen auf basis von organyloxysilanterminierten polymeren

Info

Publication number
EP2688937A1
EP2688937A1 EP12710695.3A EP12710695A EP2688937A1 EP 2688937 A1 EP2688937 A1 EP 2688937A1 EP 12710695 A EP12710695 A EP 12710695A EP 2688937 A1 EP2688937 A1 EP 2688937A1
Authority
EP
European Patent Office
Prior art keywords
formula
different
radicals
possibly
compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12710695.3A
Other languages
English (en)
French (fr)
Inventor
Volker Stanjek
Marko Prasse
Wolfram Schindler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP2688937A1 publication Critical patent/EP2688937A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences
    • C09J183/12Block or graft copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33344Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing carbamate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33348Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides

Definitions

  • the invention relates to crosslinkable compositions based on silane-crosslinking prepolymers, processes for their preparation and their use as adhesives, in particular for bonding substrates.
  • Adhesives based on alkoxysilane-crosslinking polymers in the cured state show not only good adhesion properties on some substrates, but also very good mechanical properties, since they can be both tear-resistant and highly elastic.
  • Another key advantage of silane crosslinking systems over many other adhesive and sealant technologies e.g., over isocyanate crosslinking systems is the toxicological safety of the prepolymers.
  • one-component systems (1-component systems) are preferred which cure when exposed to atmospheric moisture.
  • the decisive advantages of single-component systems are, above all, their very easy applicability since no mixing of different adhesive components by the user is required here.
  • the time / labor savings and the safe avoidance of any dosage errors is at 4858
  • einkomonentigen systems also not given the need to process the adhesive / sealant within a usually quite narrow time window, as is the case with multi-component systems after mixing of the two components.
  • the corresponding mixtures therefore typically contain significant amounts of toxicologically harmful tin catalysts.
  • the use of so-called ⁇ -silane-terminated prepolymers is advantageous which have reactive alkoxysilyl groups which are connected by a methylene spacer to an adjacent urethane unit.
  • This class of compounds is highly reactive and requires neither tin catalysts nor strong acids or bases to achieve high cure rates on exposure to air.
  • silane-crosslinking adhesives generally have the disadvantage of not having sufficiently good adhesion on all materials. For example, they often show inadequate adhesion to concrete, especially wet concrete, as well as numerous plastics, especially PVC. The adhesion to wood is not optimal in many cases. This applies in particular to adhesives which have a tensile strength measured after curing according to DIN EN 14293 and / or DIN EN 53504 of at least 1 MPa. In particular, these tear solid adhesives for mechanically stressed adhesive seams high demands on the liability, as they not only do not tear when high tensile forces occur but of course not allowed to detach from the substrate.
  • the invention relates to crosslinkable compositions having a viscosity of at least 20,000 mPas at 25 ° C containing
  • A represents a divalent polyoxyalkylene radical
  • R may be identical or different and represents a monovalent, optionally substituted, Sic-bonded hydrocarbon radical
  • R 1 may be identical or different and is hydrogen or a monovalent, optionally substituted hydrocarbon 12 054858
  • R 2 may be the same or different and represents hydrogenator or a monovalent, optionally substituted hydrocarbon radical
  • a may be the same or different and is 0, 1 or 2, preferably 0 or 1, and
  • b may be identical or different and is an integer from 1 to 10, preferably 1, 3 or 4, particularly preferably 1 or 3, in particular 1,
  • R 3 may be identical or different and denotes a monovalent Sic-bonded hydrocarbon radical having 10 to 40 carbon atoms,
  • R 4 may be identical or different and is hydrogen or optionally substituted hydrocarbon radicals
  • R 5 may be identical or different and is a monovalent, Sic-bonded, hydrocarbon est having 1 or 2 carbon atoms
  • c is 1, 2, 3 or 4, preferably 1, and
  • d is 0, 1, 2 or 3, preferably 2 or 3, more preferably 3
  • radicals R are alkyl radicals such as methyl, ethyl, n ⁇ f propyl iso-propyl, ln-butyl, 2-n-butyl, iso-butyl, tert.
  • substituted radicals R are haloalkyl radicals, such as the 3, 3, 3-trifluoro-n-propyl radical, the 2, 2, 2, 2 ", 2 ', 2'-hexafluoroisopropyl radical and the heptafluoroisopropyl radical, and haloaryl radicals, such as o-, m- and p-chlorophenyl radical.
  • Radical R is preferably monovalent hydrocarbon radicals having 1 to 6 carbon atoms which are optionally substituted by halogen atoms, more preferably alkyl radicals having 1 or 2 carbon atoms, in particular the methyl radical.
  • radicals R 1 are hydrogen, the radicals indicated for R and optionally substituted by nitrogen, phosphorus, oxygen, sulfur, carbon or carbonyl group bonded to the carbon atom, optionally substituted hydrocarbon radicals.
  • Radical R 1 is preferably hydrogen atom and hydrocarbon radicals having 1 to 20 carbon atoms, in particular hydrogen atom.
  • radical R 2 are hydrogen atom or the examples given for radical R.
  • the radicals R 2 are preferably hydrogen atoms or alkyl radicals having 1 to 10 carbon atoms optionally substituted by halogen atoms, more preferably alkyl radicals having 1 to 4 carbon atoms, in particular the methyl and ethyl radical.
  • the polyoxyalkylene radicals A are preferably linear polyoxyalkylene radicals, particularly preferably those of the formula
  • R 8 may be the same or different and is an optionally substituted divalent hydrocarbon radical having 1 to 12 carbon atoms, which may be linear or branched, meaning and
  • e is an integer from 50 to 550.
  • radical R 8 are -CH 2 -, ⁇ CH 2 -CH 2 ⁇ , -CH 2 -CH (CH 3 ) -, -CH 2 - CH 2 -CH 2 ⁇ , -CH 2 -CH (-CH 2 -CH 3 ) ⁇ CH ⁇ CH 3 ) ⁇ CH ⁇ CH 3 ) -, -CH 2 ⁇ CH 2 -CH 2 -CH 2 - and -CH 2 ⁇ C ⁇ CH 3 ) 2 -.
  • Radical R 8 is preferably a divalent hydrocarbon est having 1 to 4 carbon atoms, particularly preferably a divalent hydrocarbon radical having 1 to 4 carbon atoms, very particularly preferably -CH 2 -CH 2 -, -CH (CH 3 ) -CH 2 - and -CH 2 -CH ⁇ CH 3 ) -, in particular -CH (CH 3 ) ⁇ CH 2 - and ⁇ CH 2 -CH (CH 3 ) -.
  • the polyoxyalkylene radical A is polyoxyalkylene radicals having 65 to 350 repeat units.
  • the polyoxyalkylene radicals A preferably have average molar masses M n of 4,000 to 30,000 daltons, particularly preferably 8,000 to 20,000 daltons.
  • Component (A) is preferably polypropylene glycols having hindered siloxymethylsilyl, trimethoxysilyl, diethoxymethylsilyl or triethoxysilyl end groups.
  • the viscosity of the compounds (A) is preferably at least 0.2 Pas, preferably at least 1 Pas, more preferably at least 5 Pas, and preferably at most 700 Pas, preferably at most 100 Pas, each measured at 20 ° C.
  • component (A) used according to the invention may contain only one type of compound of the formula (I) as well as mixtures of different types of compounds of the formula (I).
  • component (A) may contain exclusively compounds of the formula (I) in which more than 90%, preferably more than 95% and particularly preferably more than 98% of all silyl groups bound to the radical A are identical.
  • a component (A) which contains, at least in part, compounds of the formula (I) in which different silyl groups are bonded to a radical A.
  • component (A) it is also possible to use mixtures of different compounds of the formula ⁇ 1 ⁇ in which a total of at least 2 different types of silyl groups bonded to radicals A are present, but all silyl groups bound to one radical A are identical.
  • component (A) is a different type of compound of formula (I)
  • compositions of the invention preferably contain compounds (A) in concentrations of at most 60% by weight, more preferably at most 40% by weight and preferably at least 10% by weight, particularly preferably at least 15% by weight.
  • the radicals R 3 are preferably branched, linear or cyclic alkyl radicals having 14 to 40 carbon atoms, particularly preferably branched, linear or cyclic, preferably linear, alkyl radicals having 16 to 30 carbon atoms, the alkyl radicals preferably having an even number of carbon atoms ,
  • radical R 3 examples are the decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, docosyl or tetracosyl radical.
  • Preferred examples of the radical R 3 are the tetradecyl, hexadecyl, octadecyl, eicosyl, docosyl or tetracosyl radical.
  • hexadecyl and octadecyl are. 8th
  • the radicals R 4 are preferably a hydrogen atom and optionally with Halogenatottien substituted hydrocarbon radicals having 1 to 18 carbon atoms, particularly preferably a hydrogen atom and Kohlenwasserstof radicals having 1 to 10 carbon atoms, in particular methyl and Et yl radical.
  • R 5 is the methyl radical.
  • silanes (B) used according to the invention are decyltrimethoxysilanes, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, tetradecyltrimethoxysilane, tetradecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, octadecyltrimethoxysilane and octadecyltriethoxysilane, where the examples mentioned are preferably Alkyl silanes is.
  • the silanes used according to the invention are commercially available products or can be prepared by processes customary in chemistry.
  • compositions of the invention contain component (B) in amounts of preferably from 1 to 50 parts by weight, more preferably from 2 to 25 parts by weight, based in each case on 100 parts by weight of compound (A).
  • compositions according to the invention preferably contain at least 1% by weight, more preferably at least 2% by weight and less than 10% by weight, more preferably less than 7% by weight, of the component (B), based in each case on the entire composition the crosslinkable formulation. 54858
  • compositions according to the invention may contain all other substances which have hitherto been used in crosslinkable compositions and which are different from components (A) and (B), such as e.g. further silane-trained polymers ( ⁇ '), basic nitrogen-containing organosilicon compound (C), fillers (D), catalyst (E), adhesion promoter (F), water scavenger (G), additives (H) and additives (K).
  • ⁇ ' silane-trained polymers
  • C basic nitrogen-containing organosilicon compound
  • fillers D
  • catalyst catalyst
  • adhesion promoter F
  • water scavenger G
  • additives H
  • additives (K) additives
  • compositions according to the invention preferably contain no component (A ') or these in amounts of preferably at most 15% by weight, preferably at most 10% by weight and particularly preferably at most 5% by weight, based in each case on the total weight of the components (A ) and ⁇ A ').
  • Component (C) is preferably organosilicon compounds containing units of the formula D h Si (OR 7 ) g R 6 fO ( 4 .fgh) / 2 (III), in which
  • R 6 may be the same or different and a monovalent, optionally substituted SiC-bonded, of basic
  • R 7 may be identical or different and is hydrogen or is optionally substituted hydrocarbon radicals
  • D may be identical or different and represents a monovalent, SiC-bonded radical with basic nitrogen
  • f 0, 1, 2 or 3, preferably 1,
  • g is 0, 1, 2 or 3, preferably 1, 2 or 3, more preferably 1 or 3, and
  • h is 0, 1, 2, 3 or 4, preferably 1, 2 054858
  • radical R 6 are the examples given for R.
  • the radicals R s are preferably hydrocarbon radicals having 1 to 18 carbon atoms which are optionally substituted by halogen atoms, more preferably hydrocarbon radicals having 1 to 5 carbon atoms, in particular the methyl radical.
  • the radicals R 7 is preferably a hydrogen atom and an optionally halogen-substituted hydrocarbon radicals having 1 to 18 carbon atoms, particularly preferably a hydrogen atom and hydrocarbon radicals having 1 to 10 carbon atoms, in particular methyl and ethyl radicals.
  • radicals D are radicals of the formulas H 2 N ⁇ CH 2 ) 3 ⁇ ,
  • radical D is the H 2 N (CH 2 ) 3 -,
  • Silanes of the formula (III) are H 2 N (CH) 3 -Si ⁇ OCH 3 ⁇ 3 ,
  • Phenyl-NH (CH 2 ) -Si (OC 2 H 5 ) 3 phenyl-NH (CH 2 ) -Si (OCH 3 ) 2 CH 3 , phenyl-NH (CH 2 ) -Si (OC 2 H 5 ⁇ 2 CH 3 , phenyl-NH (CH 2 ) -Si (OH) 3 and
  • organosilicon compounds (C) optionally used according to the invention can also assume the function of a curing catalyst or cocatalyst in the compositions according to the invention.
  • organosilicon compounds (C) which may optionally be used according to the invention may act as adhesion promoters and / or as water scavengers.
  • organosilicon compounds (C) used according to the invention are commercially available products or can be prepared by processes customary in chemistry.
  • compositions according to the invention comprise component (C), these are amounts of preferably 0.01 to 25 parts by weight, more preferably 0.1 to 10 parts by weight, in particular 0.5 to 5 parts by weight, in each case based on 100 parts by weight of component ( A).
  • the compositions of the invention preferably contain component (C).
  • the fillers (D) optionally used in the compositions according to the invention may be any known fillers known to date.
  • Examples of fillers (D) are non-reinforcing fillers, ie fillers having a BET surface area of preferably up to 50 m 2 / g, such as quartz, diatomaceous earth, calcium silicate, zirconium silicate, talc, kaolin, zeolites, metal oxide powder, such as aluminum, titanium -, iron or zinc oxides or their
  • fillers such as asbestos and plastic fibers.
  • the fillers mentioned may be rendered hydrophobic, for example by treatment with organosilanes or siloxanes or with stearic acid or by etherification of hydroxyl groups to alkoxy group.
  • the optional fillers (D) used are preferably calcium carbonate, talc, aluminum trihydroxide and silicic acid.
  • Preferred calcium carbonate types are ground or precipitated and optionally surface-treated with fatty acids such as stearic acid or its salts.
  • Preferred silica is preferably fumed silica.
  • Optionally used fillers (D) have a moisture content of preferably less than 1% by weight, more preferably less than 0.5% by weight.
  • compositions according to the invention contain fillers (D), these are amounts of preferably 10 to 1000 parts by weight, more preferably 50 to 500 parts by weight, in particular 80 to 300 parts by weight, in each case based on 100 parts by weight of component (A).
  • the compositions of the invention preferably contain fillers (D).
  • the compositions according to the invention as fillers (D) comprise a combination of
  • silica in particular fumed silica
  • compositions according to the invention contain this particularly preferred combination of different fillers (D), they preferably contain from 1 to 80 parts by weight, more preferably from 5 to 40 parts by weight, of silica, in particular pyrogenic, diacid, and preferably from 10 to 500 parts by weight, particularly preferably from 50 to 300 Parts by weight, calcium carbonate, aluminum trihydroxide, talc or mixtures of these materials, each based on 100 parts by weight of component (A).
  • the catalysts (E) which may optionally be used in the compositions according to the invention may be any, hitherto known catalysts for compositions which cure by silane condensation.
  • metal-containing curing catalysts (E) are organic titanium and tin compounds, for example titanic acid esters, such as tetrabutyl titanate, tetrapropyl titanate, tetraisopropyl titanate and titanium tetraacetylacetonate; compounds such as dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin dioctanoate, dibutyltin acetylacetonate, di-butyltin oxides, and corresponding dioctyltin compounds.
  • titanic acid esters such as tetrabutyl titanate, tetrapropyl titanate, tetraisopropyl titanate and titanium tetraacetylacetonate
  • compounds such as dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutylt
  • metal-free curing catalysts (E) are basic compounds, such as triethylamine, tributylamine, 1,4-diazabicyclo [2,2,2] octane, 1,5-diazabicyclo [4.3.0] non-5-ene, 1, 8-diazabicyclo [5.4.0] undec-7-ene, ⁇ , ⁇ -bis- (N, N-direthyl-2-aminoethyl) -methylamine, N, N-dimethylcyclohexylamine, N, N-dimethylphenylamine, and N- Ethylmorpholinin.
  • basic compounds such as triethylamine, tributylamine, 1,4-diazabicyclo [2,2,2] octane, 1,5-diazabicyclo [4.3.0] non-5-ene, 1, 8-diazabicyclo [5.4.0] undec-7-ene, ⁇ , ⁇ -bis- (N, N-dire
  • acidic compounds such as phosphoric acid and its esters, toluenesulfonic acid, sulfuric acid, nitric acid or organic carboxylic acids, e.g. Acetic acid and benzoic acid.
  • novel compositions comprise catalysts (E), these are amounts of preferably 0.01 to 20 parts by weight, more preferably 0.05 to 5 parts by weight, based in each case on 100 parts by weight of component ⁇ A).
  • the optionally used catalysts (E) are metal-containing curing catalysts, preferably tin-containing catalysts.
  • This embodiment of the invention is particularly preferred when component (A) is wholly or at least partially, ie at least 90% by weight, preferably at least 95% % By weight of compounds of the formula (I) in which b is not equal to 1.
  • metal-containing catalysts (E) preference may then be given to metal-containing catalysts (E), and in particular to catalysts containing tin, if component (A) is wholly or at least partially, ie at least 10% by weight, preferably at least 20 wt .-%, consists of compounds of formula (I), in which b is 1 and R 1 has the meaning of hydrogen atom.
  • component (A) is wholly or at least partially, ie at least 10% by weight, preferably at least 20 wt .-%, consists of compounds of formula (I), in which b is 1 and R 1 has the meaning of hydrogen atom.
  • This embodiment of the invention without metal and in particular without tin-containing catalysts is particularly preferred.
  • the adhesion promoters (F) optionally used in the compositions according to the invention may be any adhesion promoters hitherto known to cure by silane condensation.
  • adhesion promoters are epoxysilanes, such as glycidoxypropyltrimethoxysilanes, glycidoxypropylmethyldimethoxysilane, glycidoxypropyltriethoxysilane or glycidoxypropylmetyldiethoxysilane, 2- (3-triethoxysilylpropyl) maleic anhydride, N- ⁇ 3-trimethoxysilylpropyl ⁇ urea, (3 Triethoxysilylpropyl) urea, N ⁇ (trimethoxysilylmethyl) urea, N- (methyldimethoxysilymethyl) urea, N- (3-triethoxysilylmethyl) urea, N- (3-triethoxysilylpropyl) urea
  • Methyldiethoxysilylmethyl) harnstof f O ethylcarbamatomethyl- methyldimethoxysilane, O- ethy1carbamatomethy1 -1rimethoxysila, Q-EthyIcarbamatomethy1-methyIdiethoxysilan, O-methyl- Ethylcarbamato- riethoxysilan, 3 -Met acryloxypropyl trimethoxysilane, methacryloxymethyl trimethoxysilane, Methacryloxymethy1-methyldimethoxysilane, methacryloxymethyl triethoxysilane, Methacryloxymethyl-methyldiethoxysilane, 3-acryloxypropyltrimeth- oxysilane, acryloxymethyltrimethoxysilane, acryloxymethylmethyldimethoxysilanes, acryloxymethyltriethoxysilane and acryloxymethyl-methyldiethoxysilane
  • compositions according to the invention comprise adhesion promoters (F), these are amounts of preferably 0.5 to 30 parts by weight, particularly preferably 1 to 10 parts by weight, in each case based on 100 parts by weight of crosslinkable composition.
  • adhesion promoters (F) these are amounts of preferably 0.5 to 30 parts by weight, particularly preferably 1 to 10 parts by weight, in each case based on 100 parts by weight of crosslinkable composition.
  • the water scavengers (G) optionally used in the compositions according to the invention may be any water scavengers described for systems which cure by silane condensation.
  • water scavengers examples include silanes, such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, O-methylcarbamatomethylmethyldimethoxysilane, O-methylcarbamatomethyl-1-trimethoxysilane, O-ethylcarbamatomethylmethyldiethoxysilane, O-ethylcarbamatomethyltriethoxysilane, and / or their partial condensates and orthoesters such as 1, 1, 1-trimethoxyethane, 1, 1, 1-triethoxyethane, trimethoxymethane and triethoxymethane.
  • silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, O-methylcarbamatomethylmethyldimethoxysilane, O-methylcarbamatomethyl-1-trimethoxysilane, O-ethylcarbamatomethylmethyldieth
  • compositions according to the invention contain water scavengers (G), they are amounts of preferably 0.5 to 30 parts by weight, more preferably 1 to 10 parts by weight, based in each case on 100 parts by weight of crosslinkable composition.
  • the compositions of the invention preferably contain water scavenger ⁇ G ⁇ .
  • the additives (H) which may be used in the compositions according to the invention may be any desired additives known hitherto for silane-crosslinking systems.
  • the additives (H) optionally used according to the invention are preferably antioxidants, UV stabilizers, such as, for example, HALS compounds, fungicides and pigments. If the compositions according to the invention contain additives (H), these are amounts of preferably 0.01 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, in each case based on 100 parts by weight of component (A).
  • the compositions of the invention preferably contain additives (H).
  • the additives ⁇ K) optionally used according to the invention are preferably tetraalkoxysilanes, e.g. Tetraethoxysilane and / or their partial condensates, plasticizers, rheology additives, flame retardants and organic solvents.
  • plasticizers (K) are such as phthalic acid esters (e.g., dioctyl phthalate, diisooctyl phthalate and diundecyl phthalate), perhydrogenated phthalic acid esters ⁇ e.g. 1,2-cyclohexanedicarboxylic acid isoisononyl ester and 1,2-cyclohexanedicarboxylic acid dioctyl ester), adipic acid ester (e.g., dioctyl adipate), benzoic acid ester, glycollene ester, esters of saturated alkanediols ⁇ e.g.
  • phthalic acid esters e.g., dioctyl phthalate, diisooctyl phthalate and diundecyl phthalate
  • perhydrogenated phthalic acid esters ⁇ e.g. 1,2-cyclohexanedicarboxylic acid isoisonony
  • the rheology additives (K) are preferably polyamide waxes, hydrogenated castor oils or stearates.
  • organic solvents (K) are the compounds already mentioned above as solvents, preferably alcohols. Preferably no organic solvents (K) are added to the compositions according to the invention.
  • compositions according to the invention comprise one or more components (K), they are each preferably amounts of from 0.5 to 200 parts by weight, more preferably 1 to 100 parts by weight, in particular 2 to 70 parts by weight, in each case based on 100 parts by weight of component ( A).
  • compositions of the invention are preferably those containing
  • compositions according to the invention preferably contain no further components apart from the components (A) to ().
  • the components used according to the invention may in each case be one type of such a component as well as a mixture of at least two types of a respective component.
  • the compositions according to the invention are preferably viscous to pasty compositions having viscosities of preferably from 25,000 to 1,000,000 mPas, more preferably from 30,000 to 500,000 mPas, in each case at 25 ° C.
  • the preparation of the compositions according to the invention can be carried out in any manner known per se, such as by methods and mixing methods, as are customary for the preparation of moisture-curing compositions. The order in which the various components are mixed together can be varied as desired.
  • Another object of the present invention is a process for preparing the composition according to the invention by mixing the individual components in any order.
  • This mixing can be carried out at room temperature and the pressure of the surrounding atmosphere, that is about 900 to 1100 hPa.
  • this mixing can also take place at relatively high temperatures, for example at temperatures in the range from 30 to 130.degree.
  • the mixing according to the invention is preferably carried out with the exclusion of moisture.
  • compositions according to the invention are preferably one-component crosslinkable compositions.
  • the compositions according to the invention can also be part of two-component crosslinking systems in which OH-containing compounds, such as water, are added in a second component.
  • compositions according to the invention can be used for all uses for which materials which are storable with the exclusion of water and can crosslink on admission of water at room temperature to elastomeric materials can be used, in particular as adhesives.
  • Another object of the invention is the use of crosslinkable compositions containing
  • the usual content of water in the air is sufficient.
  • the crosslinking of the compositions of the invention is preferably carried out at room temperature. It may, if desired, even at higher or lower temperatures than room temperature, for example at -5 ° to 15 ° C or at 30 ° , 12 054858
  • the crosslinking is carried out at a pressure of 100 to 1100 hPa, in particular at the pressure of the surrounding atmosphere, that is about 900 to 1100 hPa.
  • Another object of the present invention are molded articles prepared by crosslinking of the inventive masses.
  • the moldings according to the invention preferably have a tensile strength of at least 1 MPa, preferably of at least 1.5 MPa, more preferably of at least 2 MPa, in particular of at least 3 MPa, in each case measured according to DIN EN 53504.
  • the moldings according to the invention may be any shaped articles, such as, for example, gaskets, pressed articles, extruded profiles, coatings, impregnations, potting, lenses, prisms, polygonal structures, laminate or adhesive layers.
  • Another object of the invention is a method for producing composite materials, in which the composition of the invention is applied to at least one substrate and then allowed to crosslink.
  • Composite molded parts is to be understood here as meaning a uniform molded article made of a composite material which is composed of a cross-linked product of the compositions according to the invention and at least two substrates, that there is a strong, permanent connection between the substrates.
  • the composition according to the invention can also be vulcanized between at least two identical or different substrates, such as e.g. for gluing or laminates.
  • substrates which can be bonded according to the invention are plastics including PVC, concrete, wood, mineral substrates, metals, glass, ceramics and painted surfaces.
  • compositions of the invention have the advantage that they are easy to prepare.
  • crosslinkable compositions according to the invention have the advantage that they are distinguished by a very high storage stability and a high crosslinking rate. Furthermore, the crosslinkable compositions according to the invention have the advantage that they have an excellent adhesion profile.
  • crosslinkable compositions according to the invention have the advantage that they are easy to process.
  • all viscosity data refer to a temperature of 25 ° C. Unless otherwise specified, the examples below are at a pressure of the surrounding atmosphere, ie at about 1000 hPa, and at room temperature, ie at about 23 ° C, or at a temperature resulting from combining the reactants at room temperature without additional heating or cooling, as well performed at a relative humidity of about 50%. Furthermore, all parts and percentages are by weight unless otherwise specified.
  • silane-terminated polypropylene glycol having an average molecular weight (M n ) of 12,000 daltons and end groups of the formula
  • the formulation is filled into 310 ml PE cartridges and stored for 1 day at 25 ° C prior to testing.
  • the other examples are formulated analogously.
  • the corresponding plasticizers are initially introduced together with the silane-terminated polymers.
  • the fumed silica is incorporated after incorporation of the chalks and digested with stirring for one minute at 600 U / min.
  • Plasticizers polypropylene glycol having a M n of 2,000 plasticizer Hexamoll DINCH (BASF)
  • crosslinkable compositions obtained in a 2 mm thick layer applied to PE TM film and stored under standard conditions (23 ° C and 50% relative humidity). During curing, the formation of a skin is tested every 5 min. For this purpose, a dry laboratory spatula is carefully placed on the surface of the sample and pulled upwards. If the sample sticks to the finger, no skin has formed yet. If no sample sticks to the finger, a skin has formed and the time is noted.
  • Mechanical properties obtained in a 2 mm thick layer applied to PE TM film and stored under standard conditions (23 ° C and 50% relative humidity).
  • compositions were each spread on afterfrrittten Teflon plates with 2 mm depth and 2 weeks at 23 ° C, 50 rel. Humidity cured. Shore A hardness is determined according to DIN 53505.
  • Tensile strength is determined according to DIN 5350 -Sl.
  • Elongation at break is determined according to DIN 53504-S1. Liability profile:
  • a 5-7 cm thick bead is applied to the substrate and stored for 7 days at room temperature.
  • Storage B A 5-7 cm thick bead is applied to the substrate and stored in water at room temperature for 7 days and also at room temperature for 2 weeks
  • a peel test is performed in which the caterpillar is cut at one end with a sharp knife over a length of about 2 cm from the substrate. Subsequently, starting from this cut, the remainder of the bead is torn from the substrate and the nature of the resulting crack (cohesive and / or adhesive) is assessed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Die Erfindung betrifft vernetzbare Massen mit einer Viskosität von mindestens 20 000 mPas bei 25°C enthaltend (A) Verbindungen der Formel A-[-0-C(=0)-NH-(CR1 2)b-SiRa(OR2)3-a]2 (I) und (B) Silane der Formel R3 cSi(OR4)dR5 4-c-d (II), sowie deren Teilhydrolysate, worin die Reste und Indizes die in Anspruch 1 angegebene Bedeutung haben, Verfahren zu deren Herstellung und deren Verwendung als Klebstoffe, insbesondere zum Verkleben von Substraten.

Description

Vernetzbare Massen auf Basis von Organyloxysilan erminier en Polymeren
Die Erfindung betrifft vernetzbare Massen auf Basis von silan- vernetzenden Prepolymeren, Verfahren zu deren Herstellung und deren Verwendung als Klebstoffe, insbesondere zum Verkleben von Substraten.
PolymerSysteme , die über reaktive Alkoxy ilylgruppen verfügen, sind seit langem bekannt. Bei Kontakt mit Wasser bzw. Luftfeuchtigkeit sind diese alkoxysilanterminierten Polymere bereits bei Raumtemperatur in der Lage, unter Abspaltung der Alk- oxygruppen miteinander zu kondensieren. Eine der wichtigsten Anwendungen von derartigen Materialien ist die Herstellung von Klebstoffen, insbesondere von elastischen Klebesystemen.
So zeigen Klebstoffe auf Basis von alkoxysilanvernetzenden Polymeren im ausgehärteten Zustand nicht nur gute Haftungseigenschaften auf einigen Substraten, sondern auch sehr gute mecha- nische Eigenschaften, da sie sowohl reißfest als auch hochelastisch sein können. Ein weiterer entscheidender Vorteil silan- vernetzender Systeme gegenüber zahlreichen anderen Kleb- und Dichtstofftechnologien (z.B. gegenüber isocyanatvernetzenden Systemen) ist die toxikologische Unbedenklichkeit der Prepoly- mere .
Dabei werden in vielen Anwendungen einkomponentige Systeme (1K- Systeme) bevorzugt, die bei Kontakt mit Luftfeuchtigkeit aushärten. Die entscheidenden Vorteile von einkomponentigen Syste- men sind vor allem deren sehr leichte Applizierbarkeit , da hier keine Mischung verschiedener Klebstoffkomponenten durch den Anwender erforderlich ist. Neben der Zeit- /Arbeitsersparais und der sicheren Vermeidung eventueller Dosierungsfehler, ist bei 4858
einkomonentigen Systeme auch nicht die Notwendigkeit gegeben, den Kleb- /Dichtstoff innerhalb eines meist recht engen Zeitfensters zu verarbeiten, wie dies bei mehrkomponentigen Systemen nach erfolgter Durchmischung der beiden Komponenten der Fall ist.
Nachteilig an diesen Systemen entsprechend des Standes der Technik, wie sie z.B. in WO-A 2010126937 beschrieben werden, ist insbesondere die geringe Reaktivität der entsprechenden MS~ bzw. SPUR-Polymere gegenüber Feuchtigkeit, was eine aggressive Katalyse erforderlich macht. Die entsprechenden Mischungen enthalten daher typischerweise erhebliche Mengen toxikologisch bedenklicher Zinnkatalysatoren. Hier ist der Einsatz von sogenannten α-silanterminierten Prepo- lymeren von Vorteil, die über reaktive Alkoxysilylgruppen verfügen, die durch einen Methylenspacer mit einer benachbarten Urethaneinheit verbunden sind. Diese Verbindungsklasse ist hochreaktiv und benötigt weder Zinnkatalysatoren noch starke Säuren oder Basen, um bei Luftkontakt hohe Aushärtgeschwindigkeiten zu erreichen. Kommerziell verfügbare a-silanterminierte Prepolymere sind GENIOSIL STP-E10 oder -E30 der Fa. Wacker·- Chemie AG. Silanvernetzende Klebstoffe besitzen jedoch im Allgemeinen den Nachteil, nicht auf allen Materialien eine hinreichend gute Haftung aufzuweisen. So zeigen sie z.B. oftmals eine unzureichende Haftung auf Beton, insbesondere feuchtem Beton sowie zahlreichen Kunststoffen, insbesondere PVC. Auch die Haftung auf Holz ist in vielen Fällen nicht optimal. Dies gilt insbesondere für Klebstoffe, die nach ihrer Aushärtung eine Reißfestigkeit gemessen nach DIN EN 14293 und/oder DIN EN 53504 von mindesten 1 MPa aufweisen. So stellen insbesondere diese reiß- festen Klebstoffe für mechanisch entsprechend beanspruchte Klebenähte hohe Anforderungen an die Haftung, da sie beim Auftreten hoher Zugkräfte nicht nur nicht reißen sondern sich selbstverständlich auch nicht vom Untergrund ablösen dürfen.
Zwar kann das Haftungsprofil von reißfesten Klebstoffen durch den Zusatz von organof nktionellen Silanen, insbesondere von Silanen mit primärer Aminogruppe, verbessert werden. Die o.g. beschriebenen Haftungsprobleme werden auf diese Weise jedoch nur unzureichend gelöst. Auch Kombinationen dieser Silane, wie sie z.B. in EP 1 179 571 oder EP 1 975 910 beschrieben werden, oder der Einsatz von organischen Harzen wie in EP 1 724 321 beschrieben, stellen keine hinreichende Verbesserung dar. Eine Aufgabe der Erfindung war die Entwicklung von silanvernet- zenden Klebstoffen, die nach ihrer Aushärtung eine Reißfestigkeit gemessen nach DIN EN 53504 von mindestens 1 MPa aufweisen, mit denen die Nachteile des Standes der Technik überwunden werden können .
Gegenstand der Erfindung sind vernetzbare Massen mit einer Viskosität von mindestens 20 000 mPas bei 25 °C enthaltend
(A) Verbindungen der Formel A- [-O-C(-O) -NH- ( CRl a)b- S iRa { OR2 ) 3 -a]2 (I), wobei
A einen zweiwertigen Polyoxyalkylenrest bedeutet,
R gleich oder verschieden sein kann und einen einwertigen, ge- gebenenfalls substituierten, Sic-gebundenen Kohlenwasserstoff- rest darstellt,
R1 gleich oder verschieden sein kann und Wasserstoffatom oder einen einwertigen, gegebenenfalls substituierten Kohlenwasser- 12 054858
4
Stoffrest darstellt, der über Stickstoff, Phosphor, Sauerstoff, Schwefel oder Carbonylgruppe an das Kohlenstoffatora angebunden sein kann,
R2 gleich oder verschieden sein kann und Wasserstoffatora oder einen einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest darstellt,
a gleich oder verschieden sein kann und 0, 1 oder 2, bevorzugt 0 oder 1, ist und
b gleich oder verschieden sein kann und eine ganze Zahl von 1 bis 10, bevorzugt 1, 3 oder 4, besonders bevorzugt 1 oder 3, insbesondere 1, ist,
und
(B) Silane der Formel R3 cSi (O 4}dR5 4-c-d {II), worin
R3 gleich oder verschieden sein kann und einen einwertigen Sic- gebundenen Kohlenwasserstoffrest mit 10 bis 40 Kohlenstoffato- men bedeutet,
R4 gleich oder verschieden sein kann und Wasserstoffatom oder gegebenenfalls substituierte Kohlenwasserstoffreste bedeutet, R5 gleich oder verschieden sein kann und einen einwertigen, Sic-gebundenen, Kohlenwasserstoff est mit 1 oder 2 Kohlenstoff - atomen bedeutet,
c 1, 2, 3 oder 4, bevorzugt 1, ist und
d 0, 1, 2 oder 3, bevorzugt 2 oder 3, besonders bevorzugt 3, ist
mit der Maßgabe, dass die Summe aus c+d gleich 2, 3 oder 4 ist, sowie deren Teilhydrolysate .
Beispiele für Reste R sind Alkylreste, wie der Methyl-, Ethyl-, n~Propyl-f iso-Propyl-, l-n-Butyl-, 2-n-Butyl-, iso-Butyl-, tert . -Butyl- , n-Pentyl-, iso-Pentyl-, neo-Pentyl-, tert.-Pen~ tylrest; Hexylreste, wie der n-Hexylrest ; Heptylreste, wie der n-Heptylrest ; Octylreste, wie der n-Octylrest, iso-Octylreste und der 2 , 2 , -Trimethylpentylrest ; Nonylreste, wie der n-Nonyl- rest; Decylreste, wie der n-Decylrest; Dodecylreste , wie der n- Dodecylrest; Octadecylreste , wie der n-Octadecylrest ; Cycloal- kylreste, wie der Cyclopentyl- , Cyclohexyl- , Cycloheptylrest und Methylcyclohexylreste; Alkenylreste, wie der Vinyl-, 1- Propenyl- und der 2-Propenylrest ; Arylreste, wie der Phenyl-, Nap thyl-, Anthryl- und Phenant rylrest ; Alkarylreste , wie o- , m- , p-Tolylreste ; Xylylreste und Ethylp enylreste und Aralkyl- reste, wie der Benzylrest, der a- und der ß~Phenylethylrest .
Beispiele für substituierte Reste R sind Halogenalkylreste, wie der 3 , 3 , 3-Trifluor-n-propylrest , der 2 , 2 , 2 , 2 " , 2 ' , 2 ' -Hexafluorisopropylrest und der Heptafluorisopropylrest , und Halogenaryl- reste, wie der o-, m- und p-Chlorp enylrest .
Bevorzugt handelt es sich bei Rest R um gegebenenfalls mit Ha- logenatomen substituierte, einwertige Kohlenwasserstoffreste mit 1 bis 6 Kohlenstoffatomen, besonders bevorzugt um Alkylres- te mit 1 oder 2 Kohlenstoffatomen, insbesondere um den Methylrest . Beispiele für Reste R1 sind Wasserstoffatom, die für R angegebenen Reste sowie über Stickstoff, Phosphor, Sauerstoff, Schwefel, Kohlenstoff oder Carbonylgruppe an das Kohlenstoffatom gebundene, gegebenenfalls substituierte Kohlenwasserstoffreste . Bevorzugt handelt es sich bei Rest R1 um Wasserstoffatom und Kohlenwasserstoffreste mit 1 bis 20 Kohlenstoffatomen, insbesondere um Wasserstoffatom. P T/EP2012/054858
6
Beispiele für Rest R2 sind Wasserstoffatom oder die für Rest R angegebenen Beispiele.
Bevorzugt handelt es sich bei Rest R2 um Wasserstoffatom oder gegebenenfalls mit Halogenatomen substituierte Alkylreste mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt um Alkylreste mit 1 bis 4 Kohlenstoffatomen, insbesondere um den Methyl- und Ethylrest . Bei den Polyoxyalkylenresten A handelt es sich bevorzugt um lineare Polyoxyalkylenreste, besonders bevorzugt um solche der Formel
-[R80]e-R8- (IV), wobei
R8 gleich oder verschieden sein kann und einen gegebenenfalls substituierten zweiwertigen Kohlenwasserstof rest mit 1 bis 12 Kohlenstoffatomen, der linear oder verzweigt sein kann, bedeu- tet und
e eine ganze Zahl von 50 bis 550 ist.
Beispiele für Rest R8 sind -CH2-, ~CH2-CH2~, -CH2~CH (CH3) - , -CH2- CH2-CH2~, -CH2-CH(-CH2-CH3) ~CH <CH3) ~CH <CH3) - , -CH2~CH2-CH2-CH2- und -CH2~C{CH3) 2- .
Bevorzugt handelt es sich bei Rest R8 um einen zweiwertigen, Kohlenwasserstoff est mit 1 bis 4 Kohlenstoffatomen, besonders bevorzugt um einen zweiwertigen Kohlenwasserstoffrest mit 1 bis 4 Kohlenstoffatomen, ganz besonders bevorzugt um -CH2-CH2-, -CH(CH3) -CH2- und -CH2-CH {CH3) - , insbesondere um -CH (CH3) ~CH2- und ~CH2-CH(CH3) - . Insbesondere handelt es sich bei dem Polyoxyalkylenrest A um Polyoxyalkylenreste mit 65 bis 350 Wiederholungseinheiten.
Die Polyoxyalkylenreste A weisen vorzugsweise mittlere Molmas- sen Mn von 4 000 bis 30 000 Dalton, besonders bevorzugt von 8 000 bis 20 000 Dalton auf.
Beispiele für die erfindungsgemäß eingesetzte Komponente (A) sowie Verfahren zu deren Herstellung sind unter anderem in EP 1 535 940 Bl {Absätze [0005] ~ [0025] sowie Beispiele 1-3 und Vergleichsbeispiel 1-4) oder EP 1 896 523 Bl (Absätze [0008]- [0047] ) beschrieben, die zum Offenbarungsgehalt der vorliegenden Anmeldung zu zählen sind. Bevorzugt handelt es sich bei Komponente (A) um Polypropylen- glycole mit Dirne hoxymethylsilyl- , Trimethoxysilyl- , Diethoxy- methylsilyl- oder Triethoxysilyl-Endgruppen.
Die Viskosität der Verbindungen (A) beträgt vorzugsweise min- destens 0,2 Pas, bevorzugt mindestens 1 Pas, besonders bevorzugt mindestens 5 Pas, und vorzugsweise höchstens 700 Pas, bevorzugt höchstens 100 Pas, jeweils gemessen bei 20°C.
Die erfindungsgemäß eingesetzte Komponente (A) kann nur eine Art von Verbindung der Formel (I) enthalten wie auch Gemische unterschiedlicher Arten von Verbindungen der Formel (I) . Dabei kann die Komponente (A) ausschließlich Verbindungen der Formel (I) enthalten, in denen mehr als 90%, bevorzugt mehr als 95% und besonders bevorzugt mehr als 98% aller an den Rest A gebun- denen Silylgruppen identisch sind. Es kann dann aber auch eine Komponente (A) eingesetzt werden, die zumindest zum Teil Verbindungen der Formel (I) enthält, bei denen an einen Rest A unterschiedliche Silylgruppen gebunden sind. Schließlich können als Komponente (A) auch Gemische verschiedener Verbindungen der Formel {1} eingesetzt werden, in denen insgesamt mindestens 2 unterschiedliche Arten von an Reste A gebundene Silylgruppen vorhanden sind, wobei jedoch sämtliche an jeweils einen Rest A gebundenen Silylgruppen identisch sind.
Falls es sich bei Komponente (A) um verschiedene Arten von Verbindungen der Formel (I) handelt, sind Mischungen, die sowohl Verbindungen (AI) mit Endgruppen der Formel (I) , bei denen b=l und R1=H bedeutet und a=0 oder 1 ist, enthalten, als auch Verbindungen (A2) mit Endgruppen der Formel (I) , bei denen b=3 und RX=H bedeutet und a= 0 ist, bevorzugt und solche besonders bevorzugt, in denen das Gewichtsverhältnis von (AI) zu (A2) 0,1 bis 10, vorzugsweise 0,2 bis 5, beträgt.
Vorzugsweise enthalten die erfindungsgemäßen Massen Verbindungen (A) in Konzentrationen von höchstens 60 Gew.-%, besonders bevorzugt höchstens 40 Gew.-% und vorzugsweise mindestens 10 Gew.-%, besonders bevorzugt mindestens 15 Gew.-%.
Bevorzugt handelt es sich bei Rest R3 um verzweigte, lineare oder cyclische Alkylreste mit 14 bis 40 Kohlenstoffatomen, besonders bevorzugt um verzweigte, lineare oder cyclische, vorzugsweise lineare, Alkylreste mit 16 bis 30 Kohlenstoffatomen, wobei die Alkylreste bevorzugt eine gerade Anzahl an Kohlenstoffatomen aufweisen.
Beispiele für den Rest R3 sind der Decyl-, Dodecyl-, Tetrade- cyl-, Hexadecyl-, Octadecyl-, Eicosyl-, Docosyl- oder Tetraco- sylrest. Bevorzugte Beispiele für den Rest R3 sind der Tetrade- cyl-, Hexadecyl-, Octadecyl, Eicosyl, Docosyl oder Tetracosyl- rest. Ganz besonders sind der Hexadecyl- und Octadecylrest . 8
9
Beispiele für gegebenenfalls substituierte Kohlenwasserstoff- reste R4 sind die für Rest R angegebenen Beispiele.
Bei den Resten R4 handelt es sich vorzugsweise um Wasserstoff- atom und gegebenenfalls mit Halogenatottien substituierte Kohlenwasserstoffreste mit 1 bis 18 Kohlenstoffatomen, besonders bevorzugt um Wasserstoffatom und Kohlenwasserstof reste mit 1 bis 10 Kohlenstoffatomen, insbesondere um Methyl- und Et ylrest. Bevorzugt handelt es sich bei Rest R5 um den Methylrest.
Beispiele für die erfindungsgemäß eingesetzten Silane (B) sind Decyltrimethoxysilane, Decyltriethoxysilan, Dodecyltrimethoxy- silan, Dodecyltriethoxysilan, Tetradecyltrimethoxysilan, Tetra- decyltriethoxysilan, Hexadecyltrimethoxysilan, Hexadecyltrieth- oxysilan, Octadecyltrimethoxysilan sowie Octadecyltriethoxy- silan, wobei es sich bei den genannten Beispielen bevorzugt um die n-Alkylsilane handelt. Die erfindungsgemäß eingesetzten Silane sind handelsübliche Produkte bzw. nach in der Chemie gängigen Verfahren herstellbar .
Die erfindungsgemäßen Massen enthalten Komponente (B) in Mengen von bevorzugt 1 bis 50 Gewichtsteilen, besonders bevorzugt 2 bis 25 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Verbindung (A) .
Vorzugsweise enthalten die erfindungsgemäßen Massen mindestens 1 Gew.-%, besonders bevorzugt mindestens 2 Gew.-% und weniger als 10 Gew.-%, besonders bevorzugt weniger als 7 Gew.-% der Komponente (B) , jeweils bezogen auf die gesamte Masse der vernetzbaren Formulierung. 54858
10
Zusätzlich zu den eingesetzten Komponenten (A) und (B) können die erfindungsgemäßen Massen alle weiteren Stoffe enthalten, die auch bisher in vernetzbaren Massen eingesetzt wurden und die unterschiedlich sind zu Komponenten (A) und (B) , wie z.B. weitere silanterrainierte Polymere (Α') , basischen Stickstoff aufweisende Organosiliciumverbindung (C) , Füllstoffe (D) , Katalysator (E) , Haftvermittler (F} , Wasserfänger (G) , Additive (H) und Zuschlagstoffe (K) .
Bevorzugt enthalten die erfindungsgemäßen Massen keine Komponente (A' } oder diese in Mengen von vorzugsweise höchstens 15 Gew.-%, bevorzugt höchstens 10 Gew.-% und besonders bevorzugt höchstens 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponenten (A) und {A' ) .
Bevorzugt handelt es sich bei Komponente (C) um Organosilicium- Verbindungen enthaltend Einheiten der Formel DhSi(OR7)gR6fO(4.f-g-h)/2 (III), worin
R6 gleich oder verschieden sein kann und einen einwertigen, gegebenenfalls substituierten SiC-gebundenen, von basischem
Stickstoff freien organischen Rest bedeutet,
R7 gleich oder verschieden sein kann und Wasserstoff tom oder gegebenenfalls substituierte Kohlenwasserstoffreste bedeutet, D gleich oder verschieden sein kann und einen einwertigen, SiC- gebundenen Rest mit basischem Stickstoff bedeutet,
f 0, 1, 2 oder 3, bevorzugt 1, ist,
g 0, 1, 2 oder 3, bevorzugt 1, 2 oder 3, besonders bevorzugt 1 oder 3, ist und
h 0, 1, 2, 3 oder 4, bevorzugt l,ist, 2 054858
I I mit der Maßgabe, dass die Summe aus f+g+h kleiner oder gleich 4 ist und pro Molekül mindestens ein Rest D anwesend ist.
Bei den erfindungsgemäß gegebenenfalls eingesetzten Organosili- ciumverbindungen (C) kann es sich sowohl um Silane handeln, d.h. Verbindungen der Formel (III) mit f+g+h=4, als auch um Si- loxane, d.h. Verbindungen enthaltend Einheiten der Formel (III) mit f+g+h<3, wobei es sich bevorzugt um Silane handelt. Beispiele für Rest R6 sind die für R angegebenen Beispiele.
Bei Rest Rs handelt es sich vorzugsweise um gegebenenfalls mit Halogenatomen substituierte Kohlenwasserstoffreste mit 1 bis 18 Kohlenstoffatomen, besonders bevorzugt um Kohlenwasserstoffres - te mit 1 bis 5 Kohlenstoffatomen, insbesondere um den Methylrest .
Beispiele für gegebenenfalls substituierte Kohlenwasserstoff- reste R7 sind die für Rest R angegebenen Beispiele.
Bei den Resten R7 handelt es sich vorzugsweise um Wasserstoffatom und gegebenenfalls mit Halogenatomen substituierte Kohlenwasserstoffreste mit 1 bis 18 Kohlenstoffatomen, besonders bevorzugt um Wasserstoffatom und Kohlenwasserstoffreste mit 1 bis 10 Kohlenstoffatomen, insbesondere um Methyl- und Ethylrest.
Beispiele für Reste D sind Reste der Formeln H2N{CH2)3~,
H2N(CHa)2NH(CH2)3-, H2N (CH2) 2NH (CH2) 2NH (CH2) 3- , H3CNH (CH2) 3- ,
C2H5NH(CH2)3-, C3H7NH(CH2)3~, C4H9NH (CH2) 3- , C5HnNH ( CH2 ) 3 - ,
C6H13NH(CH2)3-, C7H15NH(CH3)3~, H2N(CH2)4-, H2N-CH2-CH (CH3) - CH2 - , H2N(CH2)5-, cyclo-C5HsNH(CH2) 3- , cyclo- C6HnNH (CH2) 3- , Phenyl- NH(CH2)3-, (CH3)2N(CH2)3-, (C2H5 } 2N {CH2} 3 - , (C3H7) 2NH {CH2} 3 - ,
(C4H9)2NH(CH2}3~, (C5H11)2NH(CH2}3~, (C6H13 } 2NH (CH2 ) 3 - , EP2012/054858
12
(C7H15)2NH{CH2) 3-, H2N(CH2)-, H2N (CH2) 2NH (CH2) - ,
H2N(CH2) 2NH(CH2)2NH{CH2) -, H3CNH(CH2)~, C2H5NH (CH2) - , C3H7NH {CH2 ) - , C4H9NH (CH2) - , CsH HtCHa)-, C6Hi3NH (CH2) - , C7H15NH (CH2) - , cyclo- C5H9NH (CH2) - , cyclo-CeHnNHiCHa) Phenyl-NH (CH2) ~ , (CH3) 2N (CH2) - , (C2H5)2N(CH2) -, (C3H7)2NH(CH2) -, (C4H9) 2NH (CH2) - , (C5HiX) 2NH (CH2) - , (C6H13)2NH(CH2) -, (C7H1S)2NH(CH2) -, {CH30) 3Si {CH2) 3NH (CH2) 3- ,
(C2H50}3Si{CH2)3NH(CH2)3-, (CH30) 2 (CH3) Si (CH2) 3NH (CH2) 3- und
(C2HsO) 2 (CH3) Si (CH2) 3NH{CH2) 3- sowie Umsetzungsprodukte der obengenannten primären Aminogruppen mit Verbindungen, die gegenüber primären Aminogruppen reaktive Doppelbindungen oder Epoxidgrup- pen enthalten.
Bevorzugt handelt es sich bei Rest D um den H2N(CH2)3-,
H2N(CH2)2NH(CH2)3- und cyclo-C6HnNH (CH3) 3-Rest .
Beispiele für die erfindungsgemäß gegebenenfalls eingesetzten
Silane der Formel (III) sind H2N (CH ) 3-Si {OCH3} 3 ,
H2N (CH2) 3-Si (OC2H5) 3 , H2N (CH2) 3-Si (OCH3) 2CH3,
H2N (CH2) 3-Si (OC2H5) 2CH3 , H2N {CH2} 2NH {CH2) 3-Si (OCH3) 3 ,
H2N {CH2} 2NH {CH2} 3-Si {OC2H5) 3 , H2N (CH2) 2NH (CH2) 3-Si (OCH3 ) 2CH3 ,
H2N(CH2) 2NH (CH2) 3-Si (OC2H5) 2CH3, H2N (CH2) 2NH (CH2) 3-Si (OH) 3 ,
H2N(CH2) 2NH(CH2) 3-Si (OH)2CH3i H2N (CH2) 2NH (CH2) 2NH (CH2) 3-Si (OCH3)3, H2N (CH2) 2NH (CH2) 2NH (CH2) 3-Si (OC2Hs) 3 , cyclo-CeH NH (CH2) 3-Si (0CH3) 3 , cyclo-C6HnNH (CH2 ) 3-Si (OC2H5) 3 , cyclo-06ΗΧ1ΝΗ (CH2) 3 -Si {OCH3 ) 2CH3 , cyclo-C6HuNH (CH2) 3-Si (OC2H5) 2CH3 , cyclo-C6Hn H (CH2) 3-Si (OH) 3, cyclo-C6HuNH(CH2) 3-Si (OH) 2CH3, Phenyl-NH (CH2) 3~Si (OCH3) 3, Phenyl- NH (CH2) 3-Si (OC2H5) 3 , Phenyl-NH (CH2) 3-Si (OCH3) 2CH3 ,
Phenyl-NH (CH2) 3-Si (OC2H5) 2CH3, Phenyl-NH (CH2) 3-Si (OH) 3 , Phenyl- NH{CH2)3-Si(OH)2CH3, HN ( (CH2) 3-Si (OCH3 ) 3 ) 2 ,
HN( (CH2)3-Si(OC2H5)3)2 HN ( (CH2) 3-Si (OCH3) 2CH3) 2,
HN{ (CH2) 3-Si (OC2H5) 2CH3) 2, (CH2) -Si (OCH3) 3 , cyclo- CSHUNH(CH2) -Si (OC2Hs) 3, cyclo-C6Hu H (CH2) -Si (OCH3) 2CH3, cyclo- C6HnNH ( CH2 ) -Si{OC2Hs)2CH3, cyclo-C6HxlNH (CH2) -Si (OH) 3 , cyclo- C6HnNH ( CH2 ) -Si (OH) 2CH3, Phenyl-NH ( CH2 ) ~Si (OCH3) 3,
Phenyl-NH (CH2) -Si (OC2H5) 3, Phenyl-NH (CH2) -Si (OCH3) 2CH3, Phenyl- NH (CH2) -Si (OC2H5} 2CH3 , Phenyl-NH (CH2) -Si (OH) 3 und
Phenyl-NH (CH2) -Si (OH) 2CH3 sowie deren Teilhydrolysate, wobei H2N (CH2) 2NH (CH2) 3-Si (OCH3} 3 , H2N (CH2) 2NH (CH2) 3-Si (OC2H5) 3 ,
H2N (CH2) 2NH (CH2) 3-Si (OCH3) 2CH3, cyclo-C6HnNH (CH2) 3-Si (0CH3) 3, cyclo-C6HnNH(CH2) 3-Si (OC2H5) 3 und cyclo- C6Hn H (CH2) 3-Si (OCH3) 2CH3 sowie jeweils deren Teilhydrolysate bevorzugt und
H2N(CH2)2NH(CH2)3-Si(OGH3)3, H2N (CH2) 2NH (CH2) 3-Si (OCH3) 2CH3 , cyclo- C6HnNH(CH2) 3-Si (OCH3) 3, cyclo-C6H1:LNH (CH2) 3-Si (OCH3) 2CH3 sowie jeweils deren Teilhydrolysate besonders bevorzugt sind.
Die erfindungsgemäß gegebenenfalls eingesetzten Organosilicium- Verbindungen (C) können in den erfindungsgemäßen Massen auch die Funktion eines Härtungskatalysators oder -cokatalysators übernehmen .
Des Weiteren können die erfindungsgemäß gegebenenfalls einge- setzten Organosiliciumverbindungen (C) als Haftvermittler und/oder als Wasserfänger wirken.
Die erfindungsgemäß gegebenenf lls eingesetzten Organosiliciumverbindungen (C) sind handelsübliche Produkte bzw. nach in der Chemie gängigen Verfahren herstellbar.
Falls die erfindungsgemäßen Massen Komponente (C) enthalten, handelt es sich um Mengen von bevorzugt 0,01 bis 25 Gewichtsteilen, besonders bevorzugt 0,1 bis 10 Gewichtsteilen, insbe- sondere 0,5 bis 5 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) . Die erfindungsgemäßen Massen enthalten bevorzugt Komponente (C) . EP2012/054858
Bei den in den erfindungsgemäßen Massen gegebenenfalls eingesetzten Füllstoffen (D) kann es sich um beliebige, bisher bekannte Füllstoffe handeln. Beispiele für Füllstoffe (D) sind nicht verstärkende Füllstoffe, also Füllstoffe mit einer BET-Oberflache von vorzugsweise bis zu 50 m2/g, wie Quarz, Diatomeenerde, Calciumsilikat , Zirkoniumsilikat, Talkum, Kaolin, Zeolithe, Metalloxidpulver, wie Aluminium-, Titan-, Eisen- oder Zinkoxide bzw. deren
Mischoxide, Bariumsulfat, Calciumcarbonat, Gips, Silicium- nitrid, Siliciumcarbid, Bornitrid, Glas- und Kunststoffpulver, wie Polyacrylnitrilpulver; verstärkende Füllstoffe, also Füllstoffe mit einer BET-Oberflache von mehr als 50 m/g, wie pyrogen hergestellte Kieselsäure, gefällte Kieselsäure, gefällte Kreide, Ruß, wie Furnace- und Acetylenruß und Silicium-
Aluminium-Mischoxide großer BET-Oberflache ; Aluminiumtrihydro- xid, hohlkugelförmiger Füllstoffe, wie keramische Mikrokugel, wie z.B. solche erhältlich unter der Handelsbezeichnung Zeeo- spheres™ bei der Fa. 3M Deutschland GmbH in D-Neus , elastische Kunststoffkugeln, wie etwa solche erhältlich unter der Handelsbezeichnung EXPANCEL® bei der Fa. AKZO NOBEL, Expancel in
Sundsvall, Schweden, oder Glaskugeln; faserförmige Füllstoffe, wie Asbest sowie Kunststofffasern . Die genannten Füllstoffe können hydrophobiert sein, beispielsweise durch die Behandlung mit Organosilanen bzw. -siloxanen oder mit Stearinsäure oder durch Veretherung von Hydroxylgruppen zu Alkoxygruppe .
Bevorzugt handelt es sich bei den gegebenenfalls eingesetzten Füllstoffen (D) um Calciumcarbonat, Talkum, Aluminiumtrihydro- xid sowie Kieselsäure. Bevorzugte Calciumcarbonat-Typen sind gemahlen oder gefällt und gegebenenfalls oberflächenbehandelt mit Fettsäuren wie Stearinsäure oder deren Salze. Bei der be~ 4858
15 vorzugten Kieselsäure handelt es sich bevorzugt um pyrogene Kieselsäure .
Gegebenenf lls eingesetzte Füllstoffe (D) haben einen Feuchtig- keitsgehalt von bevorzugt unter 1 Gew.-%, besonders bevorzugt von unter 0,5 Gew.-%.
Falls die erfindungsgemäßen Massen Füllstoffe (D) enthalten, handelt es sich um Mengen von vorzugsweise 10 bis 1000 Ge- wichtsteilen, besonders bevorzugt 50 bis 500 Gewichtsteilen, insbesondere 80 bis 300 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Bestandteil (A) . Die erfindungsgemäßen Massen enthalten bevorzugt Füllstoffe (D) . In einer besonders bevorzugten Ausführung der Erfindung enthalten die erfindungsgemäßen Massen als Füllstoffe (D) eine Kombination aus
a) Kieselsäure, insbesondere pyrogene Kieselsäure, und
b) Calciumcarbonat, Aluminiumtrihydroxid und/oder Talkum.
Falls die erfindungsgemäßen Massen diese besonders bevorzugte Kombination verschiedener Füllstoffe (D) enthalten, enthalten sie vorzugsweise 1 bis 80 Gewichtsteile, besonders bevorzugt 5 bis 40 Gewichtsteile, Kieselsäure, insbesondere pyrogene Kie- seisäure, und vorzugsweise 10 bis 500 Gewichtsteile, besonders bevorzugt 50 bis 300 Gewichtsteile, Calciumcarbonat, Aluminiumtrihydroxid, Talkum oder Mischungen aus diesen Materialien, jeweils bezogen auf 100 Gewichtsteile Bestandteil (A) . Bei den in den erfindungsgemäßen Massen gegebenenfalls eingesetzten Katalysatoren (E) kann es sich um beliebige, bisher bekannte Katalysatoren für durch Silankondensation härtende Massen handeln. Beispiele für metallhaltige Härtungskatalysatoren (E) sind organische Titan- und Zinnverbindungen, beispielsweise Titansäureester, wie Tetrabutyltitanat , Tetrapropyltitanat , Tetraiso- propyltitanat und Titantetraacetylacetonat ; nnverbindungen, wie Dibutylzinndilaurat , Dibutylzinnmaleat , Dibutylzinndi- acetat, Dibutylzinndioctanoat, Dibutylzinnacetylacetonat , Di- butylzinnoxide, und entsprechende Dioctylzinnverbindungen. Beispiele für metallfreie Härtungskatalysatoren (E) sind basische Verbindungen, wie Triethylamin, Tributylamin, 1,4-Diazabi- cyclo [2 , 2 , 2] octan, 1 , 5 -Diazabicyclo [4.3.0] non- 5 -en, 1, 8-Diaza- bicyclo [5.4.0] undec-7-en, Ν,Ν-Bis- (N, N-diraethyl-2-aminoethyl) - methylamin, N , N-Dimethylcyclohexylamin, N, N-Dimethylphenylamin und N-Ethylmorpholinin.
Ebenfalls als Katalysator (E) können saure Verbindungen eingesetzt werden, wie Phosphorsäure and ihre Ester, Toluolsulfon- säure, Schwefelsäure, Salpetersäure oder auch organische Car- bonsäuren, z.B. Essigsäure und Benzoesäure.
Falls die erfindungsgemäSen Massen Katalysatoren (E) enthalten, handelt es sich um Mengen von vorzugsweise 0,01 bis 20 Gewichtsteilen, besonders bevorzugt 0,05 bis 5 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Bestandteil {A) .
In einer Ausführung der Erfindung handelt es sich bei den gegebenenfalls eingesetzten Katalysatoren (E) um metallhaltige Härtungskatalysatoren, bevorzugt um zinnhaltige Katalysatoren. Diese Ausführungsform der Erfindung ist insbesondere dann bevorzugt, wenn die Komponente (A) ganz oder zumindest teilweise, d.h. zu mindestens 90% Gew.-%, vorzugsweise zu mindestens 95 Gew.-% aus Verbindungen der Formel (I) besteht, in denen b ungleich 1 ist.
Bei den er indungsgemäßen Massen kann vorzugsweise dann auf me- tallhaltige Katalysatoren (E) , und insbesondere auf Zinn enthaltende Katalysatoren, verzichtet werden, wenn die Komponente (A) ganz oder zumindest teilweise, d.h. zu mindestens 10 Gew. - %, vorzugsweise zu mindestens 20 Gew.-%, aus Verbindungen der Formel (I) besteht, in denen b gleich 1 ist und R1 die Bedeu- tung von Wasserstoffatom hat. Diese Ausführungs form der Erfindung ohne metall- und insbesondere ohne zinnhaltige Katalysatoren wird besonders bevorzugt .
Bei den in den erfindungsgemäßen Massen gegebenenfalls einge- setzten Haftvermittlern (F) kann es sich um beliebige, bisher für durch Silankondensation härtenden Systemen beschriebene Haftvermittler handeln.
Beispiele für Haftvermittler (F) sind Epoxysilane, wie Gly- cidoxypropyltrimethoxysilane , Glycidoxypropyl- methyldimethoxysilan, Glycidoxypropyltriethoxysilan oder Gly- cidoxypropyl-metyhldiethoxysilan, 2- (3-Triethoxysilylproypl) - maleinsäureanhydrid, N- { 3 -Trimethoxysilylpropyl } -harnstoff , - (3-Triethoxysilylpropyl) -harnstoff, N~ (Trimethoxysilylmethyl} - harnstoff, N- (Methyldimethoxysilymethyl) -harnstoff, N-(3- Triethoxysilylmethyl) -harnstoff, N- (3-
Methyldiethoxysilylmethyl) harnstof f , O- ethylcarbamatomethyl- methyldimethoxysilan, O- ethy1carbamatomethy1 -1rimethoxysila , Q-EthyIcarbamatomethy1-methyIdiethoxysilan, O-Ethylcarbamato- methyl- riethoxysilan, 3 -Met acryloxypropyl- trimethoxysilan, Methacryloxymethyl-trimethoxysilan, Methacryloxymethy1-methyldimethoxysilan, Methacryloxymethyl- triethoxysilan, Methacry- loxymethyl-methyldiethoxysilan, 3 -Acryloxypropyl-trimeth- oxysilan, Acryloxymethyl-trimethoxysilan, Acryloxymethyl- methyldimethoxysilane, Acryloxymethyl-triethoxysilan und Acry- loxymethyl-methyldiethoxysilan sowie deren Teilkondensate. Falls die erfindungsgemäßen Massen Haftvermittler (F) enthalten, handelt es sich um Mengen von vorzugsweise 0,5 bis 30 Gewichtsteilen, besonders bevorzugt 1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile vernetzbare Masse. Bei den in den erfindungsgemäßen Massen gegebenenfalls eingesetzten Wasserfängern (G) kann es sich um beliebige, für durch Silankondensation härtenden Systemen beschriebene Wasserfänger handeln. Beispiele für Wasserfänger (G) sind Silane wie Vinyltrimethoxy- silan, Vinyltriethoxysilan, Vinylmethyldimethoxysilan, O-Me- thylcarbamatomethyl-methyldimethoxysilan, O-Methylcarbamatome- thy1-1rimethoxysilan, O-Ethylcarbamatomethyl-methyldiethoxysi- lan, O-Ethylcarbamatomethyl™triethoxysilan, und/oder deren Teilkondensate sowie Orthoester, wie 1 , 1 , 1-Trimethoxyethan, 1, 1, 1-Triethoxyethan, Trimethoxymethan und Triethoxymethan.
Falls die erfindungsgemäßen Massen Wasserfänger (G) enthalten, handelt es sich um Mengen von vorzugsweise 0,5 bis 30 Gewichts™ teilen, besonders bevorzugt 1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile vernetzbare Masse. Die erfindungsgemäßen Massen enthalten bevorzugt Wasserfänger {G} .
Bei den in den erfindungsgemäßen Massen gegebenenfalls einge- setzten Additiven (H) kann es sich um beliebige, bisher bekannte für silanvernetzende Systeme typische Additive handeln. Bei den erfindungsgemäß gegebenenfalls eingesetzten Additiven (H) handelt es sich bevorzugt um Antioxidantien, UV-Stabilisatoren, wie z.B. HALS-Verbindungen, Fungizide und Pigmente. Falls die erfindungsgemäßen Massen Additive (H) enthalten, handelt es sich um Mengen von vorzugsweise 0,01 bis 30 Gewichtsteilen, besonders bevorzugt 0,1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Bestandteil (A) . Die erfindungsgemäßen Massen enthalten bevorzugt Additive (H) .
Bei den erfindungsgemäß gegebenenfalls eingesetzten Zuschlagsstoffen {K) handelt es sich bevorzugt um Tetraalkoxysilane, z.B. Tetraethoxysilan und/oder deren Teilkondensate, Weichmacher, Rheologieadditive, Flammschutzmittel und organische Lö- sungsmittel.
Beispiele für Weichmacher (K) sind wie Phthalsäureester (z.B. Dioctylphthalat, Diisooctylphthalat und Diundecylphthalat) , perhydrierte Phthalsäureester {z.B. 1 , 2~Cyclohexandicarbonsäu- rediisononylester und 1, 2-Cyclohexandicarbonsäuredioctylester) , Adipinsäureester (z.B. Dioctyladipat) , Benzoesäureester, Glyco- lester, Ester gesättigter Alkandiole {z.B. 2, 2, 4-Trimethyl-l , 3- pentandiolmonoisobutyrate und 2 , 2 , -Trimethyl-1 , 3 -pentandioldi- isobutyrate) , Phosphorsäureester, Sulfonsäureester, Polyester, Polyether (z.B. Polyethylenglycole und Polypropylenglycole mit Molmassen von vorzugsweise 1000 bis 10 000 Dalton) , Polystyrole, Polybutadiene, Polyisobutylene , paraffinische Kohlenwasserstoffe und hochmolekulare, verzweigte Kohlenwasserstoffe, wobei bevorzugte keine Weichmacher (K) eingesetzt werden.
Bei den Rheologieadditiven (K) handelt es sich bevorzugt um Polyamidwachse, hydrierte Rizinusöle oder Stearate . Beispiele für organische Lösungsmittel (K) sind die bereits oben als Lösungsmittel genannten Verbindungen, bevorzugt Alkohole . Den erfindungsgemäßen Massen werden vorzugsweise keine organischen Lösungsmitteln (K) zugesetzt.
Falls die erfindungsgemäßen Massen eine oder mehrere Komponenten (K) enthalten, handelt es sich jeweils um Mengen von bevor- zugt 0,5 bis 200 Gewichtsteilen, besonders bevorzugt 1 bis 100 Gewichtsteilen, insbesondere 2 bis 70 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) .
Bei den erfindungsgemäßen Massen handelt es sich bevorzugt um solche enthaltend
(A) Verbindungen der Formel (I) ,
(B) Silane der Formel (II) ,
gegebenenfalls
{Ά' ) silanterminierte Polymere,
gegebenenfalls
(C) basischen Stickstoff aufweisende Verbindung,
gegebenenfalls
(D) Füllstoffe,
gegebenenfalls
(E) Katalysatoren,
gegebenenfalls
(F) Haftvermittler,
gegebenenfalls
(G) Wasserfänger,
gegebenenfalls
(H) Additive und
gegebenenfalls
(K) Zuschlagstoffe. T EP2012/054858
21
Die erfindungsgemaßen Massen enthalten außer den Komponenten (A) bis ( ) vorzugsweise keine weiteren Bestandteile. Bei den erf ndungsgemäß eingesetzten Komponenten kann es sich jeweils um eine Art einer solchen Komponente wie auch um ein Gemisch aus mindestens zwei Arten einer jeweiligen Komponente handeln. Bei den erfindungsgemäßen Massen handelt es sich bevorzugt um zähflüssig bis pastöse Massen mit Viskositäten von bevorzugt 25 000 bis 1 000 000 mPas , besonders bevorzugt von 30 000 bis 500 000 mPas, jeweils bei 25°C. Die Herstellung der erfindungsgemäßen Massen kann nach beliebiger und an sich bekannter Art und Weise erfolgen, wie etwa nach Methoden und Mischverfahren, wie sie zur Herstellung von feuch- tigkeitshärtenden Zusammensetzungen üblich sind. Die Reihenfolge, in der die verschiedenen Bestandteile miteinander vermischt werden, kann dabei beliebig variiert werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Zusammensetzung durch Mischen der einzelnen Komponenten in beliebiger Reihen- folge.
Dieses Vermischen kann bei Raumtemperatur und dem Druck der umgebenden Atmosphäre, also etwa 900 bis 1100 hPa, erfolgen.
Falls erwünscht, kann dieses Vermischen aber auch bei höheren Temperaturen erfolgen, z.B. bei Temperaturen im Bereich von 30 bis 130°C. Weiterhin ist es möglich, zeitweilig oder ständig unter vermindertem Druck zu mischen, wie z.B. bei 30 bis 500 hPa Absolutdruck, um flüchtige Verbindungen und/oder Luft zu entfernen.
Das er indungsgemäße Vermischen erfolgt bevorzugt unter Aus- schluss von Feuchtigkeit.
Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden. Bei den erfindungsgemäßen Massen handelt es sich bevorzugt um einkomponentige vernetzbare Massen. Die erfindungsgemäßen Massen können aber auch Teil von zweikomponentigen Vernetzungssys - temen sein, bei denen in einer zweiten Komponente OH-haltige Verbindungen, wie Wasser, hinzugefügt werden.
Die erfindungsgemäßen Massen können für alle Verwendungszwecke eingesetzt werden, für die unter Ausschluss von Wasser lagerfähige, bei Zutritt von Wasser bei Raumtemperatur zu elastomeren Materialien vernetzende Massen eingesetzt werden können, insbe- sondere als Klebstoffe.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von vernetzbaren Massen enthaltend
(A) Verbindungen der Formel (I) und
(B) Silane der Formel (II)
sowie deren Teilhydrolysate
als Klebstoff.
Für die Vernetzung der erfindungsgemäßen Massen reicht der üb- liehe Wassergehalt der Luft aus. Die Vernetzung der erfindungsgemäßen Massen erfolgt vorzugsweise bei Raumtemperatur. Sie kann, falls erwünscht, auch bei höheren oder niedrigeren Temperaturen als Raumtemperatur, z.B. bei -5° bis 15 °C oder bei 30° . 12 054858
23 bis 50°C und/oder mittels den normalen Wassergehalt der Luft übersteigenden Konzentrationen von Wasser durchgeführt werden.
Vorzugsweise wird die Vernetzung bei einem Druck von 100 bis 1100 hPa, insbesondere beim Druck der umgebenden Atmosphäre, also etwa 900 bis 1100 hPa, durchgeführt.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Formkörper, hergestellt durch Vernetzung der erfindungsgemäßen Mas- sen.
Vorzugsweise haben die erfindungsgemäßen Formkörper eine Reißfestigkeit von mindestens 1 MPa, bevorzugt von mindestens 1,5 MPa, besonders bevorzugt von mindestens 2 MPa, insbesondere von mindestens 3 MPa, jeweils gemessen nach DIN EN 53504.
Bei den erfindungsgemäßen Formkörpern kann es sich um beliebige Formkörper handeln, wie etwa Dichtungen, Preßartikel, extru- dierte Profile, Beschichtungen, Imprägnierungen, Verguss, Lin- sen, Prismen, polygone Strukturen, Laminat- oder Klebschichten.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Materialverbunden, bei denen die erfindungsgemäße Masse auf mindestens ein Substrat aufgebracht und an- schließend vernetzen gelassen wird.
Beispiele hierfür sind die Herstellung von Verbundmaterialien und Verbundformteile. Unter Verbundformteilen soll hier ein einheitlicher Formartikel aus einem Verbundmaterial verstanden werden, der aus einem Vernetzungsprodukt der erfindungsgemäßen Massen und mindestens zwei Substraten so zusammengesetzt ist, dass zwischen den Substraten eine feste, dauerhafte Verbindung besteh .
Beim erfindungsgemäßen Verfahren zur Herstellung von Material- verbunden kann die erf ndungsgemäße Masse auch zwischen mindestens zwei gleichen oder verschiedenen Substraten vulkanisiert werden, wie z.B. bei Verklebungen oder Laminaten.
Beispiele für Substrate, die erfindungsgemäß verklebt werden können, sind Kunststoffe inkl. PVC, Beton, Holz, mineralische Untergründe, Metalle, Glas, Keramik und lackierte Oberflächen.
Die erfindungsgemäßen Massen haben den Vorteil, dass sie leicht herzustellen sind.
Die erf ndungsgemäßen vernetzbaren Massen haben den Vorteil, dass sie sich durch eine sehr hohe Lagerstabilität und eine hohe Vernetzungsgeschwindigkeit auszeichnen. Ferner haben die erfindungsgemäßen vernetzbaren Massen den Vorteil, dass sie ein ausgezeichnetes Haftungsprofil aufweisen.
Des Weiteren haben die erfindungsgemäßen vernetzbaren Massen den Vorteil, dass leicht zu verarbeiten sind.
In den nachstehend beschriebenen Beispielen beziehen sich alle Viskositätsangaben auf eine Temperatur von 25 °C. Sofern nicht anders angegeben, werden die nachstehenden Beispiele bei einem Druck der umgebenden Atmosphäre, also etwa bei 1000 hPa, und bei Raumtemperatur, also bei etwa 23 °C, bzw. bei einer Temperatur, die sich beim Zusammengeben der Reaktanden bei Raumtemperatur ohne zusätzliche Heizung oder Kühlung einstellt, sowie bei einer relativen Luftfeuchtigkeit von etwa 50 % durchgeführt. Des Weiteren beziehen sich alle Angaben von Teilen und Prozentsätzen, soweit nichts anderes angegeben ist, auf das Gewicht .
Beispiel 1: Vorschrift zur Formulierung des Klebstoffs
75 g beidseitig silanterminiertes lineares Polypropylenglycol mit einer mittleren Molmasse (Mn) von 12000 Dalton und Endgruppen der Formel
-0-C(=0) -3MH-CH2-SiCH3 (OCH3}2
®
(käuflich erhältlich unter der Bezeichnung GENIOSIL STP-E10 bei der Wacker Chemie AG, D-München} und 50 g beidseitig silanterminiertes Polypropylenglycol mit einer mittleren Molmasse (Mn) von 12000 Dalton und Endgruppen der Formel
-0-C(=0} -NH- (CH2) 3-Si (OCH3) 3
(käuflich erhältlich unter der Bezeichnung GEHIOSIL9 STP-E15 bei der Wacker Chemie AG, D-München) werden vermischt und in einem Laborplanetenmischer der Fa. PC-Laborsystem, ausgestattet mit zwei Balkenmischern bei ca. 25 °C mit 10 g Vinyltrimethoxy- silan, 50 g Hexadecyltrimethoxysilan und 2,5 g Stabilisator
(käuflich erhältlich unter der Bezeichnung TINUVIN" 123 bei der BASF AG, Deutschland; CAS-NR: 129757-67-1) 2 Minuten bei 200 U/min homogenisiert. Danach werden 155 g Kreide mit einer BET- Oberflache von 15 m2/g und einem d50-Wert von 0,45 ]xm (käuflich erhältlich unter der Bezeichnung „Socal U1S2" bei der Fa. Solvay) und 155 g Kreide mit einer BET-Oberfläche von 3 m2/g und einem d50-Wert von 0,45 pm (käuflich unter der Bezeichnung „I- merseal 50" bei der Fa. Imerys) unter Rühren eine Minute bei 600 u/min aufgeschlossen. Nach Einarbeitung der Kreide werden 5 g Aminopropyl-trimethoxysilan 1 Minute bei 200 U/min vermischt, 2 Minuten bei 600 U/min und 1 Minute bei 200 ü/min im Teilvakuum (ca. 100 mbar) homogenisiert und blasenfrei gerührt. EP2012/054858
26
Die Formulierung wird in 310 ml PE-Kartuschen abgefüllt und einen Tag bei 25°C vor der Untersuchung gelagert.
Beispiel 2 , 3 und Vergleichsbeispiel VI
Die weiteren Beispiele werden analog formuliert. Die entsprechenden Weichmacher werden zusammen mit den silanterminierten Polymeren am Anfang vorgelegt. Die pyrogene Kieselsäure wird nach Einarbeitung der Kreiden eingemischt und unter Rühren eine Minute bei 600 U/min aufgeschlossen.
Tabelle 1: Zusammensetzung der Klebstoffformulierungen
Weichmacher Polypropylenglycol mit einem Mn von 2000 Weichmacher Hexamoll DINCH (BASF)
Kreide 1 Socal U1S2 (Solvay)
Kreide 2 Imerseal 50 (Imerys)
Kreide 3 Omyacarb 5GU
Pyrogene Kieselsäure: HDK H18 von Wacker Chemie GmbH Alkylsilan: Hexadecy1- rimethoxysilan
Wasserfänger : Vinyltrimethoxysilan
Aminosilan: Aminopropyltrimethoxysilan
Stabilisator: TINUVIN® 123 (BASF)
Beispiel 4
Die in den Beispielen 1 bis 3 sowie im Vergleichsbeispiel 1 erhaltenen Klebstoffe wurden vernetzen gelassen und hinsichtlich ihrer Hautbildung, ihrer mechanischen Eigenschaften und ihres Haftsprofils untersucht. Die Ergebnisse finden sich in Tabelle 2.
Hautbildungszeit (HBZ)
Zur Bestimmung der Hautbildungszeit werden die in den
Beispielen erhaltenen vernetzbaren Massen in einer 2 mm dicken Schicht auf PE™Folie aufgetragen und bei Normklima (23°C und 50% relative Luftfeuchtigkeit) gelagert. Während des Aushärtens wird alle 5 min die Bildung einer Haut getestet. Dazu wird ein trockener Laborspatel vorsichtig auf die Oberfläche der Probe aufgesetzt und nach oben gezogen. Bleibt Probe am Finger kleben, hat sich noch keine Haut gebildet. Bleibt keine Probe am Finger mehr kleben, so hat sich eine Haut gebildet und die Zeit wird notiert. Mechanische Eigenschaften
Die Massen wurden jeweils auf ausgefraßten Teflonplatten mit 2 mm Tiefe ausgestrichen und 2 Wochen bei 23°C, 50 rel. Luftfeuchte gehärtet. Shore-A~Härte wird gemäß DIN 53505 bestimmt.
Reißfestigkeit wird gemäß DIN 5350 -Sl bestimmt.
Reißdehnung wird gemäß DIN 53504-S1 bestimmt. Haftungsprofil :
Mit den Massen wurden jeweils Haftversuche auf den in Tabelle 2 angegebenen Substraten unter den folgenden Bedingungen durchgeführt :
Lagerung A: Eine 5-7 cm dicke Raupe wird auf dem Substrat aufgetragen und 7 Tage bei Raumtemperatur gelagert.
Lagerung B: Eine 5-7 cm dicke Raupe wird auf dem Substrat aufgetragen und 7 Tage bei Raumtemperatur und 2 Wochen ebenfalls bei Raumtemperatur in Wasser gelagert
(bei Holz, 2 Wochen bei 50°C und 95% rel . Luftfeuchtigkeit} .
Lagerung C: Eine 5-7 cm dicke Raupe wird auf dem Substrat aufgetragen und 7 Tage bei Raumtemperatur und 4 Wochen ebenfalls bei Raumtemperatur in Wasser gelagert
(bei Holz: 4 Wochen bei 50°C und 95% rel. Luftfeuchtigkeit) .
Nach der Lagerung wird ein Peel-Test durchgeführt, bei dem die Raupe an einem Ende mit einem scharfen Messer auf einer Länge von ca. 2 cm vom Substrat abgeschnitten wird. Anschließend wird, ausgehend von diesem Schnitt, der Rest der Raupe von dem Substrat abgerissen und die Art des entstehenden Risses (kohä- siv und/oder adhäsiv) beurteilt.
Tabelle 2: Mechanische Eigenschaften und Haftung der Klebstoff- formulierungen
Masse aus Beispiel 1 2 3 VI
HBZ [min] 40 55 45 35
Shore-A-Härte 70 58 62 67
Reißfestigkeit [N/mm2] 2,4 1,8 1, 9 2,3
Reißdehnung [%] 170 220 200 250
Lagerung A B C A B C A B C A B C EP2012/054858
29
Aluminium - + + + + 0 + + 0 + 0
Eloxal + + + + 0 0 + 0 0 + +
Stahl 0 + + + + 0 + + 0 + + -
Glas + + + + + + + + + + +
Beton + - - + - + - - +
Holz - Fichte + + + + + + + + + + +
Holz - Alkydlack + + + 0 - - 0 - - + -
Polycarbonat - + - - 0 0 - 0 - -
PM A. + ~ - + 0 0 + 0 - -
PVC + 0 - + 0 + + 0 0 - -
Polystyrol + 0 - - 0 0 +

Claims

Patentansprüche
1. Vernetzbare Massen mit einer Viskosität von mindestens
20 000 mPas bei 25°C enthaltend
(A) Verbindungen der Formel
A- [-O-C(-O) -NH- (CR1 2)b"SiRa(OR2) 3-a] 2 (I) , wobei
A einen zweiwertigen Polyoxyalkylenrest bedeutet,
R gleich oder verschieden sein kann und einen einwertigen, gegebenenfalls substituierten, SiC-gebundenen Kohlenwasserstof£- rest darstellt,
R1 gleich oder verschieden sein kann und Wasserstoffatom oder einen einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest darstellt, der über Stickstoff, Phosphor, Sauerstoff, Schwefel oder Carbonylgruppe an das Kohlenstoffatom angebunden sein kann,
R2 gleich oder verschieden sein kann und Wasserstoffatom oder einen einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest darstellt,
a gleich oder verschieden sein kann und 0, 1 oder 2 ist und b gleich oder verschieden sein kann und eine ganze Zahl von 1 bis 10 ist,
und
(B) Silane der Formel
R3 cSi{OR)dR5 4-c-d (Ii) , worin
R3 gleich oder verschieden sein kann und einen einwertigen SiO gebundenen Kohlenwasserstoffrest mit 10 bis 40 Kohlenstoffato- men bedeutet, R4 gleich oder verschieden sein kann und Wasserstof atom oder gegebenenfalls substituierte Kohlenwasserstoffreste bedeutet, R£ gleich oder verschieden sein kann und einen einwertigen, SiC-gebundenen, Kohlenwasserstoffrest mit 1 oder 2 Kohlenstoff- atomen bedeutet,
c 1, 2, 3 oder 4 ist und
d 0, 1, 2 oder 3 ist
mit der Maßgabe, dass die Summe aus c+d gleich 2, 3 oder 4 ist, sowie deren Teilhydrolysate .
2. Vernetzbare Massen gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Polyoxyalkylenresten A um solche der Formel -[RsO]e-R8- (IV) handelt, wobei
R8 gleich oder verschieden sein kann und einen gegebenenfalls substituierten zweiwertigen Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen, der linear oder verzweigt sein kann, bedeutet und
e eine ganze Zahl von 50 bis 550 ist.
3. Vernetzbare Massen gemäß Anspruch 1 oder 2, dadurch gekenn- zeichnet, dass e sich bei den erfindungsgemäßen Massen um solche enthaltend
(A) Verbindungen der Formel {I) ,
(B) Silane der Formel (II) ,
gegebenenfalls
(A' ) silanterminierte Polymere,
gegebenenfalls
(C) basischen Stickstoff aufweisende Verbindung,
gegebenenfalls ( D ) Füllstoffe,
gegebenenfalls
(E) Katalysatoren,
gegebenenfalls
(F) Haftvermittler,
gegebenenf lls
(G) Wasser änger,
gegebenenfalls
(H) Additive und
gegebenenfalls
(K) Zuschlagstoffe
handel . . Vernetzbare Massen gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei den Massen um zähflüssig bis pastöse Massen handelt mit Viskositäten von 25 000 bis 1 000 000 mPas bei 25°C.
5. Verfahren zur Herstellung der Zusammensetzung gemäß einem oder mehreren der Ansprüche 1 bis 4 durch Mischen der einzelnen Komponenten in beliebiger Reihenfolge.
6. Verwendung von vernetzbaren Massen enthaltend
(A) Verbindungen der Formel (I) und
(B) Silane der Formel (II)
sowie deren Teilhydrolysate
als Klebstoff.
7. Verwendung der Massen gemäß einem oder mehreren der Ansprü- che 1 bis 4 oder hergestellt nach Anspruch 5 als Klebstoff,
8. Formkörper, hergestellt durch Vernetzung der Massen gemäß einem oder mehreren der Ansprüche 1 bis 4 oder hergestellt nach Anspruch 5.
9. Formkörper gemäß Anspruch 8, dadurch gekennzeichnet, dass sie eine Reißfestigkeit von mindestens 1 MPa, gemessen nach DIN EN 53504, aufweisen.
10. Verfahren zur Herstellung von Materialverbunden, bei denen die Masse gemäß einem oder mehreren der Ansprüche 1 bis 4 oder hergestellt nach Anspruch 5 auf mindestens ein Substrat aufgebracht und anschließend vernetzen gelassen wird.
EP12710695.3A 2011-03-25 2012-03-20 Vernetzbare massen auf basis von organyloxysilanterminierten polymeren Withdrawn EP2688937A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110006128 DE102011006128A1 (de) 2011-03-25 2011-03-25 Vernetzbare Massen auf Basis von Organyloxysilanterminierten Polymeren
PCT/EP2012/054858 WO2012130663A1 (de) 2011-03-25 2012-03-20 Vernetzbare massen auf basis von organyloxysilanterminierten polymeren

Publications (1)

Publication Number Publication Date
EP2688937A1 true EP2688937A1 (de) 2014-01-29

Family

ID=45888193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12710695.3A Withdrawn EP2688937A1 (de) 2011-03-25 2012-03-20 Vernetzbare massen auf basis von organyloxysilanterminierten polymeren

Country Status (3)

Country Link
EP (1) EP2688937A1 (de)
DE (1) DE102011006128A1 (de)
WO (1) WO2012130663A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2872541B1 (de) 2012-07-13 2017-08-02 Sika Technology AG Hochgefüllte zusammensetzung auf basis von silanterminierten polymeren
DE102013216852A1 (de) 2013-08-23 2015-02-26 Wacker Chemie Ag Vernetzbare Massen auf Basis von organyloxysilanterminierten Polymeren
FR3015983B1 (fr) * 2013-12-30 2016-02-05 Bostik Sa Article auto-adhesif supporte sur mousse
WO2017176709A1 (en) 2016-04-05 2017-10-12 Slips Technologies, Inc. Curable polysiloxane compositions and slippery materials and coatings and articles made therefrom
EP3507320B1 (de) * 2016-09-05 2020-10-21 merz+benteli ag Verwendung eines organcarbonat modifizierten praepolymers als edukt zur herstellung von isocyanatfreien und isothiocyanatfreien alkoxysilan-polymeren

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2365171A1 (en) 1999-03-23 2000-09-28 Kaneka Corporation Curable resin compositions
DE10201703A1 (de) * 2002-01-17 2003-08-07 Consortium Elektrochem Ind Alkoxysilanterminierte Polymere enthaltende vernetzbare Polymerabmischungen
DE10355318A1 (de) 2003-11-27 2005-06-23 Wacker-Chemie Gmbh Verfahren zur Herstellung von organyloxysilylterminierten Polymeren
DE102005023319A1 (de) 2005-05-17 2006-11-23 Den Braven Sealants Bv Lösungsmittelfreier Kleb- und Dichtstoff
DE102005029169A1 (de) 2005-06-23 2006-12-28 Wacker Chemie Ag Kontinuierliche polymeranaloge Umsetzung von reaktiven Silanmonomeren mit funktionalisierten Polymeren
CN101341216B (zh) * 2005-12-02 2012-06-13 迈图高新材料日本合同公司 室温固化性的含硅基聚合物组合物
DE102006003821A1 (de) * 2006-01-26 2007-08-02 Wacker Chemie Ag Alkoxysilanterminierte Polymere enthaltende Polymerabmischungen
DE102006022095A1 (de) * 2006-05-11 2007-11-15 Wacker Chemie Ag Alkoxysilanterminierte Polymere enthaltende transparente Polymerabmischungen
DE102006022834A1 (de) * 2006-05-16 2007-11-22 Wacker Chemie Ag Verbesserung der elastischen Rückstellung bei alkoxysilanvernetzten Polymeren
KR100839386B1 (ko) 2007-03-26 2008-06-20 삼성에스디아이 주식회사 플라즈마 표시 장치 및 그 구동 방법
DE602007004228D1 (de) * 2007-11-02 2010-02-25 Drywood Coatings B V Verfahren zum Fügen von Holzelementen unter Verwendung eines feuchtigkeitsabdichtenden Klebstoffs
US8809479B2 (en) 2009-05-01 2014-08-19 Momentive Performance Materials Inc. Moisture curable silylated polymer compositions containing reactive modifiers
DE102009027357A1 (de) * 2009-06-30 2011-01-05 Wacker Chemie Ag Alkoxysilanterminierte Polymere enthaltende Kleb- oder Dichtstoffmassen
DE102009027817A1 (de) * 2009-07-17 2011-01-20 Wacker Chemie Ag Vernetzbare Zusammensetzungen auf der Basis von Organosiliciumverbindungen
DE102009029200A1 (de) * 2009-09-04 2011-03-17 Wacker Chemie Ag Isocyanatfreie silanvernetzende Zusammensetzungen
DE102010028143A1 (de) * 2010-04-23 2011-10-27 Wacker Chemie Ag Beschichtungszusammensetzung zum Abdichten von Oberflächen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012130663A1 *

Also Published As

Publication number Publication date
WO2012130663A1 (de) 2012-10-04
DE102011006128A1 (de) 2012-09-27

Similar Documents

Publication Publication Date Title
EP2812387B1 (de) Massen auf basis von organyloxysilanterminierten polymeren
EP2831192B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP2885339B1 (de) Mehrkomponentige vernetzbare massen auf basis von organyloxy-silanterminierten polymeren
EP2744842B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP3036266B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP3371270B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP2931815B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP3149095B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP3131997B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
DE102011006130B4 (de) Vernetzbare Massen auf Basis von organyloxysilanterminierten Polymeren, Verfahren zur Herstellung und Verwendung als Kleb- und Dichtstoffe sowie aus den Massen erhältliche Formkörper
WO2015158624A1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP2688937A1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP3924428B1 (de) Mehrkomponentige vernetzbare massen auf basis von organyloxysilanterminierten polymeren
WO2013079344A1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polyurethanen
WO2022128072A1 (de) Verfahren zur herstellung von vernetzbaren massen auf basis von organyloxysilanterminierten polymeren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140515