EP2686410A1 - Procede de fonctionnement d'un moteur alimente par un carburant contenant un catalyseur de regeneration d'un filtre a particules - Google Patents

Procede de fonctionnement d'un moteur alimente par un carburant contenant un catalyseur de regeneration d'un filtre a particules

Info

Publication number
EP2686410A1
EP2686410A1 EP12708549.6A EP12708549A EP2686410A1 EP 2686410 A1 EP2686410 A1 EP 2686410A1 EP 12708549 A EP12708549 A EP 12708549A EP 2686410 A1 EP2686410 A1 EP 2686410A1
Authority
EP
European Patent Office
Prior art keywords
fuel
catalyst
regeneration
additive
particulate filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12708549.6A
Other languages
German (de)
English (en)
Inventor
Virginie Harle
Michael Lallemand
Thierry Seguelong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Operations SAS
Original Assignee
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS filed Critical Rhodia Operations SAS
Publication of EP2686410A1 publication Critical patent/EP2686410A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1216Inorganic compounds metal compounds, e.g. hydrides, carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1208Inorganic compounds elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/04Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by adding non-fuel substances to combustion air or fuel, e.g. additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging

Definitions

  • the present invention relates to a method of operating an internal combustion engine, in particular diesel, fueled by a fuel containing a regeneration catalyst of a particulate filter. This process applies to motor vehicles equipped with a catalyzed particulate filter to suppress black fumes from the engine exhaust.
  • DPF particulate filters
  • the regeneration of the FAP is done by periodically increasing the temperature upstream of the FAP, at a temperature sufficient to cause the combustion of soot and thus regenerate the FAP.
  • This temperature is typically higher than 650 ° C and fuel is therefore usually burned in the engine (post injection) or on an oxidation catalyst upstream of the FAP to achieve this thermal level.
  • the temperature of the diesel engine exhaust gases is generally much lower, typically below 400 ° C.
  • the temperature of the exhaust gas tends to fall further with new combustion technologies such as HCCI type homogeneous combustion. It is also very low, often less than 250 ° C when the vehicle is used in certain conditions as in urban use.
  • a second important parameter is the duration of the regeneration of the FAP, that is to say the time during which the temperature upstream of the FAP must be maintained at a high level.
  • duration of the regeneration of the FAP that is to say the time during which the temperature upstream of the FAP must be maintained at a high level.
  • a catalyst that promotes this regeneration is generally used according to two main principles:
  • the FAP is then called catalyzed or called Catalyst Soot Filter (CSF).
  • CSF Catalyst Soot Filter
  • the catalyst is generally composed of a noble metal, such as platinum and transition metal oxides such as alumina or reducible oxides such as oxides based on cerium, cerium and zirconium or more generally rare earths. This technology is currently widely implemented on recent vehicles meeting the Euro 5 standard in Europe;
  • FAP regeneration additive vectorized by the fuel supplying the engine or Fuel Borne Catalyst (FBC).
  • FBC Fuel Borne Catalyst
  • BCF additives are known, in particular those based on cerium and / or iron. This technology is currently also installed on diesel vehicles.
  • the second principle is generally more efficient and can regenerate the FAP in all driving conditions, especially urban, and more economical and more environmentally friendly.
  • the major disadvantage of the FBC technology lies in the complexity of its implementation, in particular to ensure a concentration of additive as constant as possible in the fuel as is currently implemented on vehicles equipped with this technology. Typically, it will be sought to maintain a concentration of additive that does not significantly evolve in the fuel, that is to say typically with concentration differences of less than 20% or even less than 10%.
  • the object of the invention is to propose a process whose implementation is less complex and therefore less expensive than for known methods.
  • the method of the invention is a method of operating an internal combustion engine of a vehicle equipped with an exhaust system comprising a catalyzed particle filter (CSF) in which the engine is powered with a fuel containing a regeneration catalyst of the particulate filter and characterized in that the catalyst concentration in the fuel varies in a discontinuous manner.
  • CSF catalyzed particle filter
  • the process of the invention makes it possible to regenerate CSF efficiently, especially at low temperature, without requiring the complex systems of the prior art to maintain the concentration in the fuel at a constant value.
  • the essential feature of the process of the invention is that the catalyst concentration in the fuel varies in a discontinuous manner.
  • this concentration is not constant but it is variable in time and it varies more in a non-continuous manner. So it can take in a very short time or instantly different values. It can be zero and vary in ranges which can for example vary by a factor of 0 to 30, more particularly from 0 to 20. Even more particularly these ranges can range from 0 to 15 and in particular from 0 to 5.
  • This concentration can also stay constant at a certain value for a certain period of time and then go in a very short time or instantly at another value to remain constant for another period of time.
  • the method of the invention can be implemented according to different variants.
  • the process is carried out under conditions such that during the CSF loading period, the concentration of catalyst in the fuel varies one more time in an increasing manner. It thus passes from a value V 0 which can be zero to a value V n such that V n > Vo.
  • filter loading period is meant the period during which the exhaust gas circulates inside the CSF and where it is gradually loaded into soot. This is all periods of engine operation outside the filter regeneration period.
  • the concentration of catalyst in the fuel varies several times more and more. It thus passes from a value V 0 which can be zero to a value V n and then to another value V n + i, these values being such that V n + i> V n > Vo.
  • the method is implemented in such a way that during the loading period of the particulate filter, the catalyst concentration in the fuel varies one or more times in a decreasing manner. It can thus go from a value V 0 which is not zero to a value V n and possibly to another value V n + i, these values being such that V n + i ⁇ V n ⁇ Vo.
  • the number of times the variation occurs may not be limited.
  • the catalyst concentration in the fuel can be varied several times increasing or decreasing during the CSF loading period, which concentration can be zero over a period of time.
  • the invention can be used with any type of CSF regeneration catalyst. These catalysts are well known. More particularly and by way of example only, this catalyst may be in the form of a colloidal dispersion.
  • the colloids of this colloidal dispersion may be based on a compound of a rare earth and / or a metal selected from groups MA, IVA, VIIA, VIII, IB, MB, IIIB and IVB of the periodic table.
  • They may be more particularly based on cerium and / or iron compounds.
  • Colloidal dispersions that include detergent compositions can also be used.
  • colloidal dispersions examples include those described in patent applications EP 671205, WO 97/19022, WO 01/10545 and WO 03/053560, the latter two notably describing dispersions based on cerium and iron compounds respectively. these dispersions additionally containing an amphiphilic agent.
  • WO 2010/150040 which describes a colloidal dispersion based on an iron compound, an amphiphilic agent and a detergent composition comprising a quaternary ammonium salt.
  • the quaternary ammonium salt may be the reaction product:
  • the quaternizing agent may comprise dialkyl sulfates, benzyl halides, hydrocarbon-substituted carbonates; hydrocarbon-substituted epoxides in combination with an acid or mixtures thereof.
  • Catalyzed PAFs are also well known. They generally comprise a catalyst based on at least one metal selected from platinum or platinum group metals, such as palladium. Combinations of platinum with these metals or these metals between them are of course possible.
  • the catalyst metal may be incorporated in the filter or deposited thereon in a known manner. It can be for example included in a coating (washcoat) itself disposed on the filter.
  • This coating may be chosen from alumina, titanium oxide, silica, spinels, zeolites, silicates, crystalline aluminum phosphates or their mixtures. Alumina can be particularly used.
  • the washcoat may also contain reducible materials capable of directly or indirectly assisting the combustion of soot. Mention may be made, for example, of materials based on cerium oxide such as ceria, mixed oxides based on cerium and zirconium, optionally doped, or even oxides of manganese.
  • the FAP catalyst is a catalyst for assisting in the combustion of soot, it is therefore present on the filter in a relatively small amount, that is to say generally in an amount of plus 70 g / ft 3 (2.5 g / dm 3 ).
  • This quantity is expressed in mass of metal element, for example in weight of platinum, with respect to the volume of the FAP. This amount may more particularly be at most 60 g / ft 3 (2.1 g / dm 3 ) and even more particularly at most 50 g / ft 3 (1.8 g / dm 3 ).
  • the concentration of regeneration catalyst mass in the fuel, especially when it is in the form of a colloidal dispersion will advantageously be between 0 and 30 ppm, this content being expressed in metal element such as iron in the case of a colloidal dispersion based on iron.
  • the catalyst content of the soot emitted by the engine, expressed as a mass of metal element may be between 0 and 8%, depending on the content of regeneration catalyst of the fuel, the fuel consumption of the vehicle and its production of soot.
  • the vehicle will operate with a fuel containing a variable content of regeneration catalyst, this content may be zero over certain periods.
  • the soot produced by the engine will be more or less rich in active elements for the regeneration of CSF depending on the rate of additive fuel.
  • soot loading of the CSF will be done alternately by soot that is not additive or additive in a variable concentration of catalyst. regeneration.
  • the fuel used during the periodic regeneration of the CSF may be additive or non-additive.
  • Regeneration is then classically controlled by the ECU of the vehicle according to the technology chosen by the manufacturer.
  • the advantage of the invention is that the additive can be introduced into the fuel by simple systems, less expensive than those known and whose dosing strategy is simpler and faster to implement on the vehicle.
  • Particularly preferred are systems that do not require interfacing with the ECU electronic central system of the vehicle so as to simplify its implementation on the vehicle.
  • a first embodiment is to manually add a dose of additive, usually liquid, which is poured into the fuel tank of the vehicle.
  • the additive dose is calculated so that the content of active ingredient for the regeneration of the CSF is sufficient to promote the combustion of the soot entrapped in the CSF.
  • the iron element content of the fuel just after manual additivation may advantageously be between 2 and 30 ppm by weight of iron metal, more particularly between 5 and 20 ppm by weight of iron metal.
  • This simple way makes it possible to add the fuel when it is necessary: in particular at regular frequency when the vehicle is used mainly in town - for example by adding it every 1000 to 3000 km.
  • This means can also be used when the indicator light of the dashboard of the vehicle signals a defect of the means of depollution.
  • FIG. 1 illustrates an example of a regeneration catalyst concentration profile in the fuel that can be obtained when a dose of additive is added regularly to the tank here every 2200 km (or 44 hours of taxiing). ).
  • a fixed fuel consumption of 6 1/100 km was considered, a fixed speed of 50 km / h or a fixed fuel consumption of 3 l / h.
  • the iron content increases sharply from 0 to 15 ppm.
  • the figure also mentions the regeneration periods of the CSF (stars in the figure) - the regenerations being done at regular intervals of 700 km or every 14 hours of operation. It can be noted, for example, that the soot loading of the CSF corresponding to the first regeneration was done with a vehicle operating 50% of the time with a non-additive fuel and 50% of the time with an additive fuel at 15 ppm iron weight.
  • Example 1 below illustrates the benefit obtained by means of a regeneration engine test of a CSF carried out under these loading conditions.
  • soot loading of the CSF is done with a fuel whose concentration of additive is variable and that the benefit is obtained by implementing a very simple system of pouring every 2200 km here (44 hours here) a additive dose manually into the tank.
  • Another embodiment can be used by equipping the vehicle with means for introducing the simple and autonomous regeneration catalyst, that is to say without connection with the central ECU of the vehicle.
  • This means may consist in the introduction of a small FBC catalyst tank, typically 1 L or less, of a metering pump for injecting at regular intervals a given amount of additive into the fuel tank.
  • the pump can be less complicated and therefore less expensive since the quantity injected will be fixed.
  • No interfacing with the ECU is necessary since the pump can be programmed to inject for example at regular intervals (time interval as every 5 to 10 hours and / or kilometer interval as every 1000 to 3000 km).
  • Local devices on the pump such as a power-up or GPS chip may indicate to the pump that the vehicle is driving or giving the distance covered by the vehicle.
  • the downstream exhaust line is a commercial line consisting of an oxidation catalyst containing a platinum-alumina washcoat followed by a commercial CSF containing a platinum-alumina washcoat (volume total of filter 3 L).
  • the fuel used is a commercial fuel meeting the standard
  • the fuel is additive by the amount of FBC additive making it possible to achieve different iron metal content expressed as ppm mass relative to the mass of the fuel.
  • the FBC additive used is an additive based on a colloidal dispersion of iron particles such as dispersion C of Example 3 of the patent application WO 2010/150040, the iron element content of this additive being 4. , 3% mass of iron metal.
  • the iron content of the additive fuel is controlled by the
  • the test is carried out in two successive steps: a CSF soot loading step, followed by a regeneration step thereof.
  • the conditions of these two stages are strictly identical for the different tests, apart from the fuel used (additive or not).
  • the loading phase is carried out by operating the engine at a speed of 3000 rpm and using a torque of 45 Nm for approximately 6 hours. This loading phase is stopped when 12 g of particles (or soot) are loaded into the CSF. During this phase the temperature of the gases upstream of the CSF is 230-235 ° C. Under these conditions the particle emissions are about 2 g / h.
  • the CSF is disassembled and weighed to control the mass of charged particles during this phase.
  • the CSF is then reassembled on the bench and warmed by the engine which is reset for 30 minutes in the operating conditions of the load (3000 rpm / 45 Nm).
  • the engine conditions are then modified (torque 80 Nm / 2200 rpm) and a post-injection is controlled by the central electronic engine unit (ECU), which allows the temperature upstream of the CSF to be raised to 500 ° C and to start its regeneration. These conditions are maintained for 60 minutes, this time being counted from the start of the post-injection.
  • ECU central electronic engine unit
  • the fuel used during the regeneration is the last fuel used for the CSF loading phase.
  • the regeneration efficiency of CSF is measured by two parameters:
  • % burned soot (t) ((DPc-DPt) / (Dpc-Dpr)) * % total burnt soot
  • test 1 Three reference tests (not in accordance with the invention) were carried out either with a non-additive fuel (test 1) or using an additive fuel throughout the loading of the CSF and its regeneration (test 10 with a rate of additive fuel at 15 ppm iron and test 1 1 with a fuel additivation rate at 3 ppm iron).
  • tests were carried out using a non-additive fuel at the start of charging the CSF (Fuel No. 1) and an additive fuel (Fuel No. 2) at the end of charging (tests 2 to 5 and 8 to 9) or in the reverse order ie fuel additive at the beginning of loading and not additive (tests 6 to 7).
  • Each of the tests represents either a respective loading time without and with added fuel or a change in the amount of FBC additive in the fuel.
  • Table 1 compares the results obtained during the regeneration of the CSF by expressing the% of soot burned in total, ie at the end of the regeneration period (1 hour) or at the beginning of the regeneration (20 minutes).
  • test 1 when a non-additive fuel is used (test 1), the regeneration is not total (60% after 1 hour) and it is also much slower (39% regeneration after 20 minutes). minutes).
  • the loading of the CSF using an alternation of non-additive fuel then additive (or reverse) can greatly increase the regenerative efficiency of the CSF.
  • the test 2 represents the loading conditions of the CSF described for the loading of the CSF during its first regeneration in FIG.

Abstract

L'invention concerne un procédé de fonctionnement d'un moteur à combustion interne d'un véhicule équipé d'un système d'échappement comprenant un filtre à particules catalysé dans lequel on alimente le moteur avec un carburant contenant un catalyseur de régénération du filtre à particules. Le procédé est caractérisé en ce que la concentration en catalyseur dans le carburant varie d'une manière discontinue.

Description

PROCEDE DE FONCTIONNEMENT D'UN MOTEUR ALIMENTE PAR UN CARBURANT CONTENANT UN CATALYSEUR DE REGENERATION D'UN
FILTRE A PARTICULES
La présente invention concerne un procédé de fonctionnement d'un moteur à combustion interne, notamment diesel, alimenté par un carburant contenant un catalyseur de régénération d'un filtre à particules. Ce procédé s'applique aux véhicules automobiles équipés d'un filtre à particules catalysé pour supprimer les fumées noires des gaz d'échappement du moteur.
Pour répondre aux nouvelles normes de contrôle des émissions des véhicules, notamment diesel, ceux-ci sont progressivement équipés de Filtres à Particules (FAP). C'est déjà le cas en Europe depuis l'avènement de la norme Euro 5. Dans la plupart des cas, un catalyseur est utilisé pour aider à brûler périodiquement les suies retenues sur le filtre et ainsi régénérer le FAP.
La régénération du FAP se fait par augmentation périodique de la température en amont du FAP, à une température suffisante pour provoquer la combustion des suies et ainsi régénérer le FAP.
Cette température est typiquement supérieure à 650°C et du carburant est donc généralement brûlé dans le moteur (post injection) ou sur un catalyseur d'oxydation en amont du FAP pour permettre d'atteindre ce niveau thermique. En effet la température des gaz d'échappement des moteurs diesel est généralement nettement plus basse, typiquement en dessous de 400°C. La température des gaz d'échappement tend en outre à baisser avec les nouvelles technologies de combustion comme les combustions homogènes de type HCCI. Elle est également très basse, souvent inférieure à 250°C lorsque le véhicule est utilisé dans certaines conditions comme lors d'un usage urbain.
Un second paramètre important est la durée de la régénération du FAP, c'est-à-dire la durée pendant laquelle la température en amont du FAP doit être maintenue à un niveau élevé. Au-delà de l'aspect économique et environnemental lié à la surconsommation plus importante de carburant, dans certains cas, comme pour les trajets urbains souvent de courte durée, il n'est pas possible de maintenir ces conditions suffisamment longtemps pour régénérer le FAP.
On comprend qu'il est intéressant de pouvoir diminuer la périodicité et la durée de ces régénérations et aussi de pouvoir les faire à une température plus faible. Ceci entraîne en effet une diminution de la consommation du véhicule par suite de la plus faible quantité de carburant consommée pour la post-injection. De ce fait on réduit les émissions de gaz à effet de serre (CO2) par le véhicule.
Cela permet aussi d'utiliser pour les FAP des matériaux qui n'ont pas besoin de présenter une résistance thermique aussi élevée par exemple que le carbure de silicium et donc des matériaux moins coûteux. Par ailleurs réduire la durée des post injections est également profitable sur d'autres critères comme pour la longévité du moteur et de certains organes comme les injecteurs carburants haute pression ou encore l'espacement des intervalles de changement d'huile moteur.
Pour atteindre ces objectifs, un catalyseur qui favorise cette régénération est généralement utilisé selon deux grands principes :
- l'introduction d'un catalyseur d'oxydation dans la porosité des murs du FAP : le FAP est alors dit de catalysé ou encore appelé Catalyst Soot Filter (CSF). Le catalyseur est généralement composé d'un métal noble, comme le platine et d'oxydes de métaux de transition comme l'alumine ou encore des oxydes réductibles comme les oxydes à base de cérium, de cérium et zirconium ou plus généralement de terres rares. Cette technologie est actuellement largement implantée sur les véhicules récents répondant à la norme Euro 5 en Europe;
- l'utilisation d'un additif de régénération des FAP, vectorisé par le carburant alimentant le moteur ou encore Fuel Borne Catalyst (FBC). Différents additifs FBC sont connus notamment ceux à base de cérium et/ou de fer. Cette technologie est actuellement également implantée sur des véhicules diesel.
Le second principe est généralement plus efficace et permet de régénérer le FAP dans toutes les conditions de roulage, notamment urbaines, et de façon plus économique et plus respectueuse de l'environnement.
Toutefois, l'inconvénient majeur de la technologie FBC réside dans la complexité de sa mise en œuvre, notamment pour assurer une concentration en additif la plus constante possible dans le carburant comme cela est actuellement mis en œuvre sur les véhicules équipés de cette technologie. Typiquement on cherchera à maintenir une concentration en additif n'évoluant pas de façon significative dans le carburant c'est-à-dire typiquement avec des écarts de concentration de moins de 20%, voire moins de 10%.
Les systèmes permettant d'introduire dans le carburant les additifs catalytiques FBC d'aide à la régénération des FAP reposent généralement sur un réservoir de grande taille de 2 à 3 litres minimum de volume renfermant la réserve d'additif et qu'il faut implanter dans des zones proches du réservoir à carburant.
Les procédés actuels de dosage d'additif font aussi appel à des pompes doseuses de haute précision, qu'il faut commander, via une unité électronique additionnelle et dédiée. Cette unité électronique est généralement asservie à l'unité électronique centrale du véhicule ou ECU. Ce dispositif de dosage doit être géré de manière fine afin d'assurer une teneur en additif dans le carburant suffisante pour permettre une bonne régénération du FAP, mais pas trop excessive pour éviter l'encrassement prématuré du FAP du fait des résidus minéraux de régénération du FAP qui restent collectés en son sein. Généralement lorsque le niveau de carburant augmente dans le réservoir, suite à l'ajout de carburant, l'ECU communique au calculateur l'information et le calculateur indique à la pompe la quantité d'additif à injecter dans le réservoir de façon à maintenir une concentration en additif constante dans le carburant et ceci à tout moment.
Ces pompes doseuses sont d'une extrême précision et leur coût est important. L'utilisation de tels procédés implique aussi de bien asservir le système de dosage et de bien vérifier son état de fonctionnement. On a donc des systèmes complexes et, de ce fait, coûteux.
L'objet de l'invention est de proposer un procédé dont la mise en œuvre soit moins complexe et donc moins coûteuse que pour les procédés connus.
Dans ce but, le procédé de l'invention est un procédé de fonctionnement d'un moteur à combustion interne d'un véhicule équipé d'un système d'échappement comprenant un filtre à particules catalysé (CSF) dans lequel on alimente le moteur avec un carburant contenant un catalyseur de régénération du filtre à particules et il est caractérisé en ce que la concentration en catalyseur dans le carburant varie d'une manière discontinue.
Le procédé de l'invention permet de régénérer le CSF de façon efficace notamment à basse température sans nécessiter les systèmes complexes de l'art antérieur de maintien de la concentration dans le carburant à une valeur constante.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre faite en référence au dessin annexé et dans lequel :
- la figure 1 unique donne la concentration en catalyseur d'un carburant au cours du temps et en fonction du remplissage du réservoir de carburant.
La caractéristique essentielle du procédé de l'invention est que la concentration en catalyseur dans le carburant varie d'une manière discontinue. On entend par là que, contrairement aux procédés connus, cette concentration n'est pas constante mais elle est variable dans le temps et elle varie en plus d'une manière non continue. Ainsi elle peut prendre en un temps très court ou instantanément des valeurs différentes. Elle peut être nulle et varier dans des gammes qui peuvent par exemple varier d'un facteur 0 à 30, plus particulièrement de 0 à 20. Encore plus particulièrement ces gammes peuvent varier de 0 à 15 et notamment de 0 à 5. Cette concentration peut aussi rester constante à une certaine valeur sur une certaine durée puis passer en un temps très court ou instantanément à une autre valeur pour rester constante pendant une autre période de temps.
Le procédé de l'invention peut être mis en œuvre selon différentes variantes.
Selon une première variante, le procédé est mis en œuvre dans des conditions telles que pendant la période de chargement du CSF, la concentration en catalyseur dans le carburant varie une seule fois de manière croissante. Elle passe ainsi d'une valeur V0 qui peut être nulle à une valeur Vn telle que Vn>Vo.
On entend par période de chargement du filtre, la période pendant laquelle les gaz d'échappement circulent à l'intérieur du CSF et où celui-ci se charge progressivement en suies. Il s'agit de toutes les périodes de fonctionnement du moteur en dehors de la période de régénération du filtre.
Selon une seconde variante du procédé de l'invention et toujours pendant la période de chargement du CSF, la concentration en catalyseur dans le carburant varie plusieurs fois de manière croissante. Elle passe ainsi d'une valeur V0 qui peut être nulle à une valeur Vn puis à une autre valeur Vn+i , ces valeurs étant telles que Vn+i> Vn>Vo.
Selon une autre variante, on met en œuvre le procédé de manière telle que pendant la période de chargement du filtre à particules, la concentration en catalyseur dans le carburant varie une ou plusieurs fois de manière décroissante. Elle peut ainsi passer d'une valeur V0 qui n'est pas nulle à une valeur Vn puis éventuellement à une autre valeur Vn+i , ces valeurs étant telles que Vn+i<Vn<Vo.
Dans le cas de la seconde ou de la troisième variante, le nombre de fois où se produit la variation peut ne pas être limité.
Enfin, selon encore une autre variante, on peut faire varier la concentration en catalyseur dans le carburant plusieurs fois de manière croissante ou décroissante pendant la période de chargement du CSF, cette concentration pouvant être nulle sur une période de temps. L'invention peut être utilisée avec tout type de catalyseur de régénération du CSF. Ces catalyseurs sont bien connus. Plus particulièrement et à titre d'exemple uniquement, ce catalyseur peut se présenter sous forme d'une dispersion colloïdale. Les colloïdes de cette dispersion colloïdale peuvent être à base d'un composé d'une terre rare et/ou d'un métal choisi dans les groupes MA, IVA, VIIA, VIII, IB, MB, IIIB et IVB de la classification périodique.
Ils peuvent être plus particulièrement à base de composés du cérium et/ou du fer.
On peut aussi utiliser des dispersions colloïdales qui comprennent des compositions détergentes.
La classification périodique des éléments à laquelle il est fait référence est celle publiée dans le Supplément au Bulletin de la Société Chimique de France n° 1 (janvier 1966).
Comme exemple de dispersions colloïdales on peut mentionner celles décrites dans les demandes de brevets EP 671205, WO 97/19022, WO 01/10545 et WO 03/053560, ces deux dernières décrivant notamment des dispersions à base de composés de cérium et de fer respectivement, ces dispersions contenant en outre un agent amphiphile.
On peut aussi mentionner la demande WO 2010/150040 qui décrit une dispersion colloïdale à base d'un composé du fer, d'un agent amphiphile et d'une composition détergente comprenant un sel d'ammonium quaternaire.
Le sel d'ammonium quaternaire peut être le produit de réaction :
(i) d'au moins un composé qui peut comprendre :
(a) le produit de condensation d'un agent d'acylation à substitution hydrocarboné et d'un composé comportant un atome d'oxygène ou d'azote capable de condenser l'agent d'acylation, le produit de condensation possédant au moins une fonction aminé tertiaire ;
(b) une aminé à substitution polyalcène comportant au moins une fonction aminé tertiaire ; et
(c) un produit de réaction de Mannich comportant au moins une fonction aminé tertiaire, le produit de réaction de Mannich étant dérivé d'un phénol à substitution hydrocarbonée, d'un aldéhyde et d'une aminé ; et
(ii) d'un agent de quaternisation approprié pour convertir la fonction aminé tertiaire du composé (i) en azote quaternaire.
L'agent de quaternisation peut comprendre des sulfates de dialkyle, des halogénures de benzyle, des carbonates à substitution hydrocarbonée; des époxydes à substitution hydrocarbonée en combinaison avec un acide ou des mélanges de ceux-ci. Les FAP catalysés sont aussi bien connus. Ils comprennent généralement un catalyseur à base d'au moins un métal choisi parmi le platine ou les métaux du groupe du platine, comme par exemple le palladium. Des combinaisons du platine avec ces métaux ou encore de ces métaux entre eux sont bien entendu possibles.
Le métal du catalyseur peut être incorporé dans le filtre ou déposé sur celui-ci d'une manière connue. Il peut être par exemple inclus dans un revêtement (washcoat) lui-même disposé sur le filtre. Ce revêtement peut être choisi parmi l'alumine, l'oxyde de titane, la silice, les spinelles, les zéolites, les silicates, les phosphates d'aluminium cristallins ou leurs mélanges. L'alumine peut être tout particulièrement utilisée. Le washcoat peut aussi contenir des matériaux réductibles capables d'aider directement ou indirectement la combustion des suies. On peut citer à titre d'exemple les matériaux à base d'oxyde de cérium comme la cérine, les oxydes mixtes à base de cérium et de zirconium, éventuellement dopés, ou encore des oxydes de manganèse.
Dans la mesure où le catalyseur du FAP est un catalyseur d'aide à la combustion des suies, il est de ce fait présent sur le filtre dans une quantité relativement faible, c'est-à-dire en générale dans une quantité d'au plus 70 g/pied3 (2,5 g/dm3). Cette quantité est exprimée en masse d'élément métal, par exemple en masse de platine, par rapport au volume du FAP. Cette quantité peut être plus particulièrement d'au plus 60 g/pied3 (2, 1 g/dm3) et encore plus particulièrement d'au plus 50 g/pied3 (1 ,8 g/dm3).
La concentration en masse en catalyseur de régénération dans le carburant, notamment lorsque celui-ci est sous forme d'une dispersion colloïdale sera avantageusement comprise entre 0 et 30 ppm, cette teneur étant exprimée en élément métal comme le fer dans le cas d'une dispersion colloïdale à base de fer. La teneur en catalyseur des suies émises par le moteur, exprimée en masse d'élément métal, pourra être comprise entre 0 et 8%, en fonction de la teneur en catalyseur de régénération du carburant, de la consommation du véhicule en carburant et de sa production de suies.
Lors de la mise en œuvre du procédé de l'invention, le véhicule fonctionnera avec un carburant contenant une teneur variable en catalyseur de régénération, cette teneur pouvant être nulle sur certaines périodes. Les suies produites par le moteur seront plus ou moins riches en éléments actifs pour la régénération du CSF en fonction du taux d'additivation du carburant.
Ainsi le chargement en suies du CSF se fera alternativement par des suies non additivées ou additivées en concentration variable en catalyseur de régénération. Le carburant utilisé au cours de la régénération périodique du CSF pourra être additivé ou non additivé.
La régénération se fait ensuite classiquement par pilotage par l'ECU du véhicule selon la technologie choisie par le constructeur.
L'avantage de l'invention est que l'additif peut être introduit dans le carburant par des systèmes simples, moins onéreux que ceux connus et dont la stratégie de dosage est plus simple et plus rapide à mettre en place sur le véhicule. On privilégiera notamment des systèmes ne nécessitant pas d'interfaçage avec le système central électronique ECU du véhicule de façon à simplifier sa mise en place sur le véhicule.
Des modes de réalisation simples permettant l'introduction d'additif en quantité différente et variable dans le temps vont être donnés ci-dessous.
Un premier mode de réalisation consiste à ajouter manuellement une dose d'additif, généralement liquide, que l'on verse dans le réservoir à carburant du véhicule. La dose d'additif est calculée pour que la teneur en matière active pour la régénération du CSF soit suffisante pour promouvoir la combustion des suies piégées dans le CSF. A titre d'exemple pour un additif à base d'une suspension colloïdale de particules de fer telle que la dispersion C de l'exemple 3 de la demande de brevet WO 2010/150040, la teneur en élément fer du carburant juste après additivation manuelle peut être avantageusement comprise entre 2 et 30 ppm en masse de fer métal, plus particulièrement entre 5 et 20 ppm en masse de fer métal.
Ce moyen simple permet d'additiver le carburant lorsque cela est nécessaire : en particulier à fréquence régulière lorsque le véhicule est utilisé majoritairement en ville - par exemple en additivant tous les 1000 à 3000 km. Ce moyen peut aussi être utilisé lorsque le voyant lumineux du tableau de bord du véhicule signale un défaut des moyens de dépollution.
La figure 1 illustre un exemple de profil de concentration en catalyseur de régénération dans le carburant que l'on peut obtenir lorsque l'on ajoute manuellement une dose d'additif de façon régulière au réservoir ici tous les 2200 km (ou 44 heures de roulage). Dans cet exemple on a considéré une consommation en carburant fixe de 6 1/100 km, une vitesse fixe de 50 km/h soit une consommation en carburant fixe de 3 l/h. Typiquement dès que l'on ajoute une dose d'additif (événement 1 , noté Ev1 sur la figure : un volume de catalyseur de régénération permettant d'atteindre une teneur en fer métal de 15 ppm dans les 40 litres de carburant présents dans le réservoir), la teneur en fer augmente brutalement passant ici de 0 à 15 ppm. Cette teneur en fer est constante dans le temps jusqu'à ce que du carburant soit ajouté au réservoir ce qui conduit à une dilution de la concentration en fer dans les proportions respectives du volume de carburant additivé résiduel et du volume de carburant (donc non additivé) ajouté (événement 2, noté Ev2 : 40 L de carburant (non additivé) ajouté au 20 L de carburant résiduel dans le réservoir). Cet événement est répété 4 fois dans cet exemple. A chaque ajout la concentration en fer baisse en proportion.
La figure mentionne également les périodes de régénération du CSF (étoiles sur la figure) - les régénérations se faisant à intervalle régulier de 700 km soit toutes les 14 heures de fonctionnement. On constate par exemple que le chargement en suies du CSF correspondant à la première régénération s'est fait avec un véhicule fonctionnant 50% du temps avec un carburant non additivé et 50% du temps avec un carburant additivé à 15 ppm poids en fer. L'exemple 1 ci-dessous illustre le bénéfice obtenu par le biais d'un essai moteur de régénération d'un CSF réalisé dans ces conditions de chargement.
On constate ainsi que le chargement en suies du CSF se fait avec un carburant dont la concentration en additif est variable et que le bénéfice est obtenu en mettant en œuvre un système très simple consistant à verser tous les 2200 km ici (44 heures ici) une dose d'additif manuellement dans le réservoir.
Un autre mode de réalisation peut être utilisé en équipant le véhicule de moyen d'introduction du catalyseur de régénération simple et autonome, c'est- à-dire sans connexion avec l'ECU centrale du véhicule. Ce moyen peut consister en l'introduction d'un petit réservoir de catalyseur FBC, typiquement 1 L ou moins, d'une pompe doseuse permettant d'injecter à intervalle régulier une quantité donnée d'additif dans le réservoir carburant. Par rapport au système existant, la pompe peut être moins compliquée et donc moins coûteuse puisque la quantité injectée sera fixe. Aucun interfaçage avec l'ECU n'est nécessaire puisque la pompe peut être programmée pour injecter par exemple à intervalle régulier (intervalle temporel comme toutes les 5 à 10 heures et/ou intervalle kilométrique comme tous les 1000 à 3000 km). Des dispositifs locaux sur la pompe comme une mise sous tension ou une puce GPS peuvent indiquer à la pompe que le véhicule roule ou donner la distance couverte par le véhicule.
Des exemples vont maintenant être donnés.
EXEMPLE 1
Un moteur diesel fourni par le groupe Volkswagen (4 cylindres, 2 litres, turbocompresseur avec refroidissement d'air, 81 kW) a été utilisé sur un banc d'essai moteur. La ligne d'échappement montée en aval est une ligne commerciale composée d'un catalyseur d'oxydation contenant un washcoat à base de platine et d'alumine suivi d'un CSF commercial contenant un washcoat à base de platine et d'alumine (volume total du filtre 3 L).
Le carburant utilisé est un carburant commercial répondant à la norme
EN590 DIN 51628 contenant moins de 10 ppm de soufre et contenant 7% en volume d'EMAG ou Ester Méthylique d'Acide Gras. Dans le cas où un catalyseur de régénération FBC est utilisé, le carburant est additivé par la quantité d'additif FBC permettant d'atteindre différentes teneur en fer métal exprimée sous la forme de ppm masse par rapport à la masse du carburant. L'additif FBC utilisé est un additif à base d'une dispersion colloïdale de particules de fer telle que la dispersion C de l'exemple 3 de la demande de brevet WO 2010/150040, la teneur en élément fer de cet additif étant de 4,3% masse de fer métal.
La teneur en fer du carburant additivé est contrôlée par la technique de
Fluorescence X directement sur le liquide organique.
Le test est réalisé en deux étapes successives : une étape de chargement en suies du CSF, suivie d'une étape de régénération de celui-ci. Les conditions de ces deux étapes sont rigoureusement identiques pour les différents essais, mis à part le carburant utilisé (additivé ou non).
La phase de chargement est effectuée en faisant fonctionner le moteur à un régime de 3000 tours/min (trm) et en utilisant un couple de 45 Nm pendant approximativement 6 heures. Cette phase de chargement est stoppée quand 12 g de particules (ou suies) sont chargés dans le CSF. Pendant cette phase la température des gaz en amont du CSF est de 230 à 235°C. Dans ces conditions les émissions de particules sont d'environ 2 g/h.
Après cette phase de chargement, le CSF est démonté et pesé afin de contrôler la masse de particules chargées pendant cette phase.
Le CSF est ensuite remonté sur le banc et réchauffé par le moteur qui est remis 30 minutes dans les conditions de fonctionnement du chargement (3000 trm / 45 Nm). Les conditions du moteur sont ensuite modifiées (couple 80 Nm / 2200 trm) et une post-injection est pilotée par l'unité électronique centrale du moteur (ECU), ce qui permet de monter la température en amont du CSF à 500°C et de démarrer sa régénération. Ces conditions sont maintenues pendant 60 minutes, ce temps étant décompté à partir du démarrage de la post-injection.
Dans tous les cas, le carburant utilisé lors de la régénération correspond au dernier carburant utilisé pour la phase de chargement du CSF. L'efficacité de régénération du CSF est mesurée par deux paramètres :
- la masse de suies brûlées pendant la régénération, calculée à partir des pesées du CSF avant chargement (Mo), après chargement (Me) et en fin de régénération (Mr). Le % de suies brûlées au bout des 60 minutes de régénération est exprimé de la façon suivante :
% suies brûlées totale = (Mc-Mr)/(Mc-Mo)*100
- la masse de suies brûlées à chaque instant t de la régénération calculée à partir de l'évolution de la perte de charge du CSF à chaque instant DPt considérant que la perte de charge en début de régénération (DPc) correspond à celle du CSF chargé par la masse de suies (Mc-Mo) et la perte de charge au bout des 60 minutes (DPr) correspond à celle du CSF chargé par les suies n'ayant pas brûlées (Mr-Mo).
% suies brûlées (t) = ((DPc-DPt)/(Dpc-Dpr)) * % suies brûlées totale De manière générale, plus ces paramètres sont élevés, plus la régénération est efficace.
Différents tests ont été réalisés en utilisant des carburants différents au cours du chargement du CSF.
Trois tests de référence (non-conformes à l'invention) ont été réalisés soit avec un carburant non additivé (test 1 ) soit en utilisant un carburant additivé tout au long du chargement du CSF et de sa régénération (test 10 avec un taux d'additivation du carburant à 15 ppm de fer et test 1 1 avec un taux d'additivation du carburant à 3 ppm de fer).
8 tests (conformes à l'invention) ont été réalisés en utilisant un carburant non additivé en début de chargement du CSF (Fuel N°1 ) puis un carburant additivé (Fuel N°2) en fin de chargement (tests 2 à 5 et 8 à 9) ou dans l'ordre inverse c'est à dire carburant additivé en début de chargement puis non additivé (tests 6 à 7).
Chacun des tests représente soit un temps respectif de chargement sans et avec carburant additivé soit une variation de la quantité d'additif FBC dans le carburant.
Le tableau 1 compare les résultats obtenus au cours de la régénération du CSF en exprimant le % de suies brûlées au total, c'est à dire en fin de période de régénération (1 heure) ou au début de la régénération (20 minutes).
A chacun des temps une comparaison est faite avec l'efficacité théorique obtenue en calculant la moyenne entre l'efficacité du CSF avec un carburant non additivé (test 1 ) et celle du CSF chargé avec un carburant additivé (test Tableau 1 : Résultats des essais moteurs de régénération du CSF
utilisant différents carburants
* tests comparatifs non conformes à l'invention
** E = expérimental Th = théorique
*** % exprimé par rapport au temps total de chargement du filtre
On constate tout d'abord que l'ajout d'un FBC au carburant pendant toute la période de chargement du CSF (tests 10 et 1 1 ) permet d'augmenter grandement l'efficacité de la régénération puisque celle-ci est quasiment complète (88 à 90% de suies brûlées) au bout de 20 minutes à 500°C, la concentration en Fer (3 à 15 ppm) a peu d'impact sur la régénération.
A l'opposé, lorsqu'un carburant non additivé est utilisé (test 1 ), la régénération n'est pas totale (60% au bout de 1 heure) et elle est aussi beaucoup plus lente (39% de régénération au bout de 20 minutes).
Le chargement du CSF en utilisant une alternance de carburant non additivé puis additivé (ou inverse) permet d'augmenter grandement l'efficacité en régénération du CSF.
Le chargement à 50% du temps avec un carburant additivé de 15 ppm en fer (test 2 ou 6) permet d'atteindre une régénération quasi-totale (85 à 87%) à la fin du test et grandement avancée au bout de 20 minutes de régénération (72 à 80%).
On observe de façon inattendue que les valeurs expérimentalement observées sont significativement supérieures aux valeurs théoriques considérant l'apport du FBC introduit et du carburant non additivé.
Le test 2 représente les conditions de chargement du CSF décrit pour le chargement du CSF lors de sa première régénération dans la figure 1 .
Ces conclusions sont valables quelle que soit la proportion de temps de chargement du CSF avec un carburant additivé (15% à 50%) et quel que soit l'ordre d'utilisation du carburant additivé (en début ou en fin de chargement).
On observe par ailleurs que l'effet bénéfique de synergie peut être observé avec de très faibles quantités de FBC dans le carburant comme cela est illustré dans les tests 8 et 9. EXEMPLE 2
Une autre série d'essai moteur de régénération de CSF a été conduit selon le même protocole et les mêmes équipements que ceux décrits dans l'exemple 1.
Ici le chargement du CSF a été conduit en faisant varier plus fréquemment la concentration en FBC (le même que celui de l'exemple 1 ) dans le carburant.
Les chargements du CSF ont donc été conduits en utilisant la séquence de carburants telle que décrite dans le tableau 2. Tableau 2
* tests comparatifs non conformes à l'invention Le tableau 3 compare les résultats obtenus au cours de la régénération du
CSF en exprimant le % suies brûlées au total, c'est à dire en fin de période de régénération (1 heure) ou au début de la régénération (20 minutes).
Tableau 3
On constate que l'ajout d'additif FBC au carburant (tests 10, 12 et 13) permet d'augmenter l'efficacité (régénération quasi complète et cinétique de régénération accrue) en comparaison avec celle du CSF chargé avec un carburant non additivé (test 1 ). L'ajout à des doses différentes dans le temps, incluant l'incorporation de périodes au cours de laquelle le carburant n'est pas additivé (tests 12 et 13) conduit au même résultat que l'utilisation d'un carburant dont la teneur en additif est parfaitement contrôlée dans le temps (test 10).

Claims

REVENDICATIONS
1 - Procédé de fonctionnement d'un moteur à combustion interne d'un véhicule équipé d'un système d'échappement comprenant un filtre à particules catalysé dans lequel on alimente le moteur avec un carburant contenant un catalyseur de régénération du filtre à particules, caractérisé en ce que la concentration en catalyseur dans le carburant varie d'une manière discontinue. 2- Procédé selon la revendication 1 , caractérisé en ce que pendant la période de chargement du filtre à particules, la concentration en catalyseur dans le carburant varie une seule fois de manière croissante.
3- Procédé selon la revendication 1 , caractérisé en ce que pendant la période de chargement du filtre à particules, la concentration en catalyseur dans le carburant varie plusieurs fois de manière croissante.
4- Procédé selon la revendication 1 , caractérisé en ce que pendant la période de chargement du filtre à particules, la concentration en catalyseur dans le carburant varie une ou plusieurs fois de manière décroissante.
5- Procédé selon la revendication 1 , caractérisé en ce que pendant la période de chargement du filtre à particules, la concentration en catalyseur dans le carburant varie plusieurs fois de manière croissante ou décroissante.
6- Procédé selon l'une des revendications précédentes, caractérisé en ce que le catalyseur de régénération du filtre à particules se présente sous forme d'une dispersion colloïdale. 7- Procédé selon la revendication 6, caractérisé en ce que les colloïdes de la dispersion colloïdale sont à base d'un composé d'une terre rare et/ou d'un métal choisi dans les groupes MA, IVA, VIIA, VIII, IB, MB, IIIB et IVB de la classification périodique. 8- Procédé selon la revendication 7, caractérisé en ce que les colloïdes de la dispersion colloïdale sont à base d'un composé de cérium et/ou de fer.
9- Procédé selon l'une des revendications 6 à 8, caractérisé en ce que la dispersion colloïdale comprend une composition détergente.
10- Procédé selon la revendication 8 ou 9, caractérisé en ce que la dispersion colloïdale est à base d'un composé du fer, d'un agent amphiphile et d'une composition détergente comprenant un sel d'ammonium quaternaire.
EP12708549.6A 2011-03-17 2012-03-15 Procede de fonctionnement d'un moteur alimente par un carburant contenant un catalyseur de regeneration d'un filtre a particules Withdrawn EP2686410A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1100799A FR2972766B1 (fr) 2011-03-17 2011-03-17 Procede de fonctionnement d'un moteur alimente par un carburant contenant un catalyseur de regeneration d'un filtre a particules
PCT/EP2012/054549 WO2012123540A1 (fr) 2011-03-17 2012-03-15 Procede de fonctionnement d'un moteur alimente par un carburant contenant un catalyseur de regeneration d'un filtre a particules

Publications (1)

Publication Number Publication Date
EP2686410A1 true EP2686410A1 (fr) 2014-01-22

Family

ID=44202005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12708549.6A Withdrawn EP2686410A1 (fr) 2011-03-17 2012-03-15 Procede de fonctionnement d'un moteur alimente par un carburant contenant un catalyseur de regeneration d'un filtre a particules

Country Status (8)

Country Link
US (1) US20140048029A1 (fr)
EP (1) EP2686410A1 (fr)
JP (2) JP2014511960A (fr)
KR (1) KR101605597B1 (fr)
CN (1) CN103502402B (fr)
BR (1) BR112013023746A2 (fr)
FR (1) FR2972766B1 (fr)
WO (1) WO2012123540A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913431B1 (fr) 2007-03-06 2009-04-24 Rhodia Recherches & Tech Procede de fonctionnement d'un moteur diesel en vue de faciliter la regeneration d'un filtre a particules sur la ligne d'echappement
DE102008006391B4 (de) * 2008-01-28 2016-11-17 Airbus Operations Gmbh Chromatfreie Zusammensetzung, deren Verwendung als Korrosionsschutz und damit hergestellte Korrosionsschutzbeschichtung für Kraftstofftanks
MX2018014251A (es) * 2016-05-17 2019-08-16 Corning Inc Filtros de cerámica porosa y métodos para filtrar.

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668203A1 (fr) * 1990-10-23 1992-04-24 Peugeot Procede et dispositif d'introduction automatique d'un additif dans le reservoir de carburant d'un vehicule automobile et leur utilisation dans le cas d'un vehicule a moteur diesel.
FR2714694B1 (fr) * 1993-12-30 1996-03-15 Peugeot Procédé et dispositif de dosage variable d'additif de régénération pour filtre à particules.
EP0671205B1 (fr) 1994-02-18 2000-05-03 Rhodia Chimie Sol organique d'oxyde tétravalent et son utilisation comme additif de composés hydrocarbones
JP3750178B2 (ja) * 1995-04-05 2006-03-01 株式会社デンソー 排ガス浄化用フィルタ及びその製造方法
FR2741281B1 (fr) 1995-11-22 1998-02-13 Rhone Poulenc Chimie Sol organique comportant au moins un compose oxygene de terre(s) rare(s), procede de synthese du dit sol et utilisation du dit sol pour la catalyse
JP2000130153A (ja) * 1998-10-27 2000-05-09 Minnesota Mining & Mfg Co <3M> フィルタ再生方法及び排気浄化装置
FR2797199B1 (fr) 1999-08-04 2001-10-05 Rhodia Terres Rares Dispersion colloidale organique de particules essentiellement monocristallines d'au moins un compose a base d'au moins une terre rare, son procede de preparation et son utilisation
DK1299508T3 (da) * 2000-06-29 2005-05-23 Neuftec Ltd Brændstofadditiv
JP2004526902A (ja) * 2001-05-31 2004-09-02 ジ アソシエイテッド オクテル カンパニー リミテッド 方法
FR2833862B1 (fr) 2001-12-21 2004-10-15 Rhodia Elect & Catalysis Dispersion colloidale organique de particules de fer, son procede de preparation et son utilisation comme adjuvant de carburant pour moteurs a combustion interne
FR2853261B1 (fr) * 2003-04-04 2006-06-30 Rhodia Elect & Catalysis Dispersion colloidale d'un compose d'une terre rare comprenant un agent anti-oxydant et son utilisation comme adjuvant de gazole pour moteurs a combustion interne
WO2006007535A1 (fr) 2004-07-01 2006-01-19 Clean Diesel Technologies, Inc. Systeme de dosage d'additif de carburant concentre
FR2875149B1 (fr) * 2004-09-15 2006-12-15 Rhodia Chimie Sa Procede de fabrication d'un filtre a particules catalyse et filtre ainsi obtenu
EP2066767B1 (fr) * 2006-09-05 2015-10-21 Cerion LLC Additif pour carburant contenant des nanoparticules de dioxyde de cérium
GB0700534D0 (en) * 2007-01-11 2007-02-21 Innospec Ltd Composition
JP4928335B2 (ja) * 2007-04-17 2012-05-09 日野自動車株式会社 排気浄化装置
BRPI0815926A2 (pt) * 2007-08-31 2015-02-18 Shell Int Research Uso de um luibrificante, e, processo para operar um motor a diesel equipado com um captador de partícular de diesel.
US20100192546A1 (en) * 2009-02-03 2010-08-05 John Philip Nohl Method and Apparatus for Controlling Regeneration of a Particulate Filter
EP2435543A4 (fr) * 2009-05-26 2013-08-07 American Pellet Supply Llc Granulés et briquettes à partir de biomasse compressée
WO2010138438A2 (fr) * 2009-05-29 2010-12-02 Corning Incorporated Filtre de particules avec un revêtement faiblement chargé en suie
ES2606728T3 (es) * 2009-06-23 2017-03-27 RHODIA OPéRATIONS Combinación sinérgica de detergente y compuesto metálico activo

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012123540A1 *

Also Published As

Publication number Publication date
CN103502402B (zh) 2016-04-13
CN103502402A (zh) 2014-01-08
FR2972766A1 (fr) 2012-09-21
JP2016200149A (ja) 2016-12-01
KR20130133867A (ko) 2013-12-09
JP2014511960A (ja) 2014-05-19
US20140048029A1 (en) 2014-02-20
BR112013023746A2 (pt) 2016-12-13
KR101605597B1 (ko) 2016-03-22
WO2012123540A1 (fr) 2012-09-20
FR2972766B1 (fr) 2015-08-07

Similar Documents

Publication Publication Date Title
EP2739843B1 (fr) Dispositif de distribution d&#39;un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne, véhicule comportant un tel dispositif et procédé d&#39;utilisation dudit dispositif
EP3551319B1 (fr) Fluide de depollution de gaz d&#39;echappement comportant un carbonate metallique basique soluble, son procede de preparation et son utilisation pour les moteurs a combustion interne
WO2008107364A1 (fr) Procede de fonctionnement d&#39;un moteur diesel en vue de faciliter la regeneration d&#39;un filtre a particules sur la ligne d&#39;echappement
EP3230563B1 (fr) Dispositif de post-traitement des gaz d&#39;echappement d&#39;un moteur a combustion
WO1995018198A1 (fr) Un procede de filtration et de combustion de matieres carbonees issues de moteur a combustion interne
EP2686410A1 (fr) Procede de fonctionnement d&#39;un moteur alimente par un carburant contenant un catalyseur de regeneration d&#39;un filtre a particules
EP3149300B1 (fr) Dispositif de post-traitement des gaz d&#39;échappement d&#39;un moteur a combustion
EP2411648B1 (fr) Procede de controle des emissions polluantes d&#39;un moteur a combustion
FR2835564A1 (fr) Procede de fonctionnement d&#39;une installation d&#39;epuration des gaz d&#39;echappement
WO2010109100A1 (fr) Procede de controle des emissions polluantes d&#39;un moteur a combustion, groupe motopropulseur et vehicule equipe de ce groupe motopropulseur
EP2192293B1 (fr) Stratégie de régénération d&#39;un filtre à particules
EP2990097A1 (fr) Filtre à particules catalysé
WO2006010869A1 (fr) Procede et dispositif de reduction/elimination de la quantite de particules contenues dans les gaz d&#39;echappement d&#39;un moteur a combustion interne
FR3028037B1 (fr) Procede de qualification d’une huile de lubrification.
WO2011027083A1 (fr) Filtre a particules en sic incorporant du cerium
EP2976148A1 (fr) Filtre a particules
FR3088369A1 (fr) Vehicule equipe d’un moteur a allumage commande et d’un filtre a particules autoregenerant et procede de controle associe
FR2720441A1 (fr) Un procédé de filtration et de combustion de matières carbonées issues de moteur à combustion interne.
FR2943927A1 (fr) Filtre a particules pour moteur a combustion interne
FR2943729A1 (fr) Procede de controle des emissions polluantes d&#39;un moteur a combustion, groupe motopropulseur et vehicule equipe de ce groupe motopropulseur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180321

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/00 20060101ALI20200318BHEP

Ipc: F01N 9/00 20060101ALI20200318BHEP

Ipc: F02D 41/02 20060101ALI20200318BHEP

Ipc: F01N 3/023 20060101ALI20200318BHEP

Ipc: C10L 10/02 20060101ALI20200318BHEP

Ipc: C10L 1/12 20060101AFI20200318BHEP

Ipc: C10L 1/2383 20060101ALI20200318BHEP

INTG Intention to grant announced

Effective date: 20200401

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200812