EP2685507B1 - Solarmodul mit Anschlussanordnungen für elektrischen Außenanschluss - Google Patents

Solarmodul mit Anschlussanordnungen für elektrischen Außenanschluss Download PDF

Info

Publication number
EP2685507B1
EP2685507B1 EP12175486.5A EP12175486A EP2685507B1 EP 2685507 B1 EP2685507 B1 EP 2685507B1 EP 12175486 A EP12175486 A EP 12175486A EP 2685507 B1 EP2685507 B1 EP 2685507B1
Authority
EP
European Patent Office
Prior art keywords
connection
substrate
solar module
module
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12175486.5A
Other languages
English (en)
French (fr)
Other versions
EP2685507A1 (de
Inventor
Hans-Werner Kuster
Mitja Rateiczak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd
Original Assignee
CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd filed Critical CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd
Priority to EP12175486.5A priority Critical patent/EP2685507B1/de
Priority to ES12175486T priority patent/ES2772201T3/es
Publication of EP2685507A1 publication Critical patent/EP2685507A1/de
Application granted granted Critical
Publication of EP2685507B1 publication Critical patent/EP2685507B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Photovoltaic layer systems for the conversion of sunlight into electrical energy are well known. Commonly, these are referred to as “solar cells", wherein the term “thin film solar cells” refers to layer systems with thicknesses of only a few micrometers, which require a carrier substrate for sufficient mechanical strength. Since only voltage levels of less than 1 volt are usually achieved with individual solar cells, it is customary to connect a plurality of solar cells in a solar module in series. Thin-film solar modules offer the particular advantage that the solar cells can already be connected in integrated form during layer production. Thin-film solar modules are usually formed in a composite disk structure in which the solar cells are located between two individual disks firmly connected. Thin-layer solar modules have already been described many times in the patent literature.
  • connection housings which form a basis for electrical connection components such as connection conductors or connection plugs and enable an external electrical connection.
  • connection housing is known for example from German patent application no. 102005025632 A1 known.
  • the international patent application WO 2012/055808 A2 discloses an alternative approach in which the collecting electrode or bus bar is electrically connected to a foil conductor which is led out of the composite between the two substrates.
  • the object of the present invention is to develop conventional solar modules so that an automated production is even easier and cheaper to carry out.
  • a solar module in particular a thin-film solar module
  • the two substrates are formed such that at least one substrate edge of one substrate is recessed inward relative to an opposite substrate edge of the other substrate, such that a module edge zone is formed with a protruding substrate edge region (of the other substrate).
  • the modulus edge zone is formed only on one module side (or module edge) of the generally rectangular or parallelepiped-shaped solar module, it being equally conceivable for such a module edge zone to be located on mutually opposite or adjoining module sides (or modules). Module edges), so that the solar module two or more module edge zones having.
  • the two substrates can contain, for example, inorganic glass, polymers or metal alloys and can be designed as rigid plates or flexible films depending on layer thickness and material properties.
  • the solar module is preferably a thin-film solar module with thin-film solar cells connected in series in integrated form.
  • the semiconductor layer consists of a chalcopyrite compound, which is in particular an I-III-VI semiconductor from the group copper-indium / gallium-disulphide / diselenide (Cu (In / Ga) (S / SE) 2 )
  • Cu (In / Ga) (S / SE) 2 copper-indium diselenide
  • CuInSe 2 or CIS copper indium diselenide
  • the solar module comprises two connection arrangements, which are each assigned to a collecting electrode.
  • the connection arrangements each have a connection strip which is electrically conductively connected to the associated collecting electrode and a connection housing fastened to the composite with a connection component which is electrically conductively connected to the connection strip, for example a connecting line or a connection plug which serves for an external electrical connection.
  • the two connection arrangements can be common connection housing or each have a separate connection housing.
  • the terminal strips each comprise a foil conductor, which consists for example of a metal such as aluminum or tin-plated copper, but other electrically conductive materials can also be used which can be processed into foils. Examples of these are aluminum, gold, silver or tin and alloys thereof.
  • the film conductor may have, for example, a thickness in the range of 0.03 mm to 0.3 mm, a length in the range of 30 to 50 mm and a width in the range of 5 to 15 mm.
  • a connection between collecting electrode and connecting band takes place, for example, by welding, bonding, soldering, clamping, bonding by means of an electrically conductive adhesive or ultrasonic bonding.
  • the connecting strips are each electrically connected by an electrical bus conductor with the associated collecting electrode, which allows a simple and cost-effective contacting at a convenient location, for example, adjacent to the module edge.
  • the bus bar is preferably in the form of a ribbon or strip and printed, for example, in the (screen) printing method on the electrode area forming the collecting electrode.
  • the bus bar it is also conceivable to design the bus bar as a foil conductor.
  • a connection between the bus bar and the connection strip is effected, for example, by welding, bonding, soldering, clamping, bonding by means of an electrically conductive adhesive or ultrasonic bonding.
  • connection band between the two substrates is laterally out of the composite led out, wherein the connecting band is guided around the inwardly recessed substrate edge around on the substrate outer surface, which allows easy production and contacting by the connection component in the connection housing. Due to the protruding edge of the substrate, the connection tape is protected against mechanical forces.
  • the terminal housing is made, for example, of an electrically insulating material, which offers thermoplastic materials and elastomers for industrial production, which can be processed by injection molding.
  • thermoplastics and elastomers for example, polyamide, polyoxymethylene, polybutylene terephthalate or ethylene-propylene-diene rubber is used.
  • potting materials such as acrylate or epoxy resin systems can be used.
  • connection housing from metal or another electrically conductive material with electrically insulating inserts.
  • the connection housing can accommodate further functional elements such as diodes or a control electrics.
  • connection housing on the composite is advantageously carried out by gluing, which can be hermetically sealed by the bonding, the interior of the connection housing against gases, water or moisture.
  • the electrical contact points are protected against corrosion.
  • an adhesive strand or an adhesive tape with an acrylic, polyurethane or polyisobutylene-based adhesive can be used for bonding.
  • the adhesive is applied to a bottom surface of the terminal housing and / or on the composite and the connection housing mounted on the composite.
  • the connection housing is arranged at least in sections in the module edge zone, whereby a protection of the laterally led out of the composite connection band from external influences can be achieved in a simple manner.
  • connection housing has a sealing compound chamber with a cavity which serves to receive a connection band section guided around the substrate edge.
  • a sealing compound is introduced, which abuts the around the substrate edge guided around the connecting band section and seals to the outside.
  • the sealing compound chamber has a wall section delimiting the cavity, which is formed tapering towards the protruding substrate edge region.
  • the tapered wall section allows the sealing compound, for example in the form of a sealing compound bead or sealing compound strand, to be applied to the projecting substrate edge region, in particular selectively onto the connecting band section guided around the substrate edge, and then the connection housing can be placed on the composite.
  • the tapered wall portion not only a shearing of the sealant can be avoided by the around the substrate edge around the connecting band portion, but the sealing compound is also pressed to the connecting band section, so that a gas- and watertight sealing of the guided around the edge of the substrate connecting band is ensured. It is thus not necessary for the sealant to be introduced into the sealant chamber before the connection housing is fastened becomes.
  • the solar module thus enables in a particularly advantageous manner, an automated cost-effective production in industrial series production with a reliable gas and waterproof sealing of the connection tape.
  • the wall section of the sealing mass chamber tapering towards the protruding substrate edge region can be formed in a simple manner by virtue of the fact that the wall section has a chamfered bottom surface fitting in sections over the projecting substrate edge region.
  • This also allows sealing compound to be located between the beveled bottom surface and the protruding substrate edge region, whereby an adhesive attachment of the connection housing to the projecting substrate edge region can advantageously be achieved when using an adhesive sealant.
  • the sticking of the connection housing to the composite can thus be carried out fully automatically in a simple manner.
  • the terminal housing is glued to the back of the module.
  • connection tape is provided with an adhesive, for example a double-sided adhesive tape, which allows a simple and cost-effective attachment of the connection tape to the substrate, as well as its positional fixation.
  • connection band has a tinned end portion for connection to the connection component. This allows a simple electrical connection between connecting band and connecting component.
  • connection housing has a removable insert part inserted into a housing opening, wherein access to a contact chamber for connecting the connection strip to the connection component is created by the housing opening.
  • the thin-film solar module 1 comprises a plurality of thin-film solar cells 2 connected in series with each other in integrated form, of which in Fig. 1 two are shown by way of example. It is understood that in thin-film solar modules typically more than 100 thin film solar cells 2 are connected in series with each other.
  • the thin-film solar module 1 is formed in a composite disk structure and comprises a back-side carrier substrate 7 and a front-side cover substrate 16, each made of an electrically insulating material, such as glass or plastic, equally other electrically insulating materials with sufficient strength and inert behavior compared to the process steps performed can be used.
  • the substrates 7, 16 can be designed as rigid plates or flexible films.
  • the backside support substrate 7 is a rigid low-transmittance glass plate
  • the front-side cover substrate 16 is a rigid glass plate of tempered extra-white low-iron glass which is transparent to sunlight, so that the thin-film solar cells 2 are on the front side (Side I) of the cover substrate 16 incident light can be irradiated.
  • the cover substrate 16 serves to seal and mechanically protect the thin film solar cells 2.
  • the layer structure 6 comprises a back electrode layer 9, for example of an opaque metal such as molybdenum, which is applied to the carrier substrate 7 by sputtering.
  • the back electrode layer 9 has, for example, a layer thickness of about 1 ⁇ m.
  • the back electrode layer 9 can equally consist of a layer stack with different individual layers.
  • the layer structure 6 comprises an absorber layer 8 applied to the back electrode layer 9, which in turn is composed of several layers.
  • the absorber layer 8 comprises a p-doped semiconductor layer 10, for example of a p-type chalcopyrite semiconductor.
  • the semiconductor layer 10 has, for example, a layer thickness of 500 nm to 5 ⁇ m, which is in particular approximately 2 ⁇ m.
  • a buffer layer 11 is deposited, which consists for example of cadmium sulfide (CdS) and intrinsic zinc oxide (i-ZnO).
  • a front electrode layer 12 is applied, for example, by vapor deposition.
  • the front electrode layer 12 is transparent to radiation in a spectral region that is sensitive to the semiconductor layer 10 ("window layer") and is based, for example, on a doped metal oxide, in particular n-conducting, aluminum-doped zinc oxide.
  • the layer thickness of the front electrode layer 12 is for example 300 nm.
  • the layer structure 6 is in a plurality of photovoltaically active regions divided. The subdivision is carried out by incisions 13, which were introduced by a suitable structuring technology such as laser writing and mechanical ablation in the layer structure 6.
  • adjacent thin-film solar cells 2 are each connected in series with each other via a first electrode region 14 of the back electrode layer 9, collecting electrodes 5 of opposing polarity of the thin-film solar cells interconnected by the two marginal second electrode regions 14 'of the back electrode layer 9 being formed.
  • the total voltage generated by the serially connected thin-film solar cells 2 which results as the sum of the cell voltages generated by the individual thin-film solar cells 2, can be tapped.
  • the two collecting electrodes 5 are each electrically connected to a band-shaped bus bar 17, which in Fig. 2 is shown.
  • the bus bars 17 are printed on the associated second electrode area 14 ', for example by screen printing.
  • the bus bars 17 advantageously allow contacting at a suitable location, for example in the vicinity of a module edge 19.
  • thermoplastic intermediate layer 15 which consists for example of polyvinyl butyral (PVB) or ethylene vinyl acetate (EVA).
  • PVB polyvinyl butyral
  • EVA ethylene vinyl acetate
  • connection arrangement 100 which contains a connection housing 3 for an external electrical connection of a resulting collecting electrode 5
  • Fig. 2 shows a perspective view of the terminal assembly 100 with a sectional view of the terminal housing 3, wherein the cutting line along a shorter transverse direction of the cuboid or rectangular thin-film solar module 1 is guided.
  • Fig. 3A the connection housing 3 with connection cable 4 is shown in a perspective view.
  • Fig. 3B shows the connection housing 3 in a sectional view, wherein the cutting line is guided in the longitudinal direction or perpendicular to the transverse direction of the thin-film solar module 1.
  • a carrier substrate edge 20 of the carrier substrate 7 is set back inwards (transversely) relative to an opposite cover substrate edge 21 of the cover substrate 16, so that there is a (spatial) module edge zone 18 with a projecting substrate edge region 40 results.
  • the width of the projecting substrate edge region 40 along the shorter transverse direction of the thin-film solar module 1 is approximately 2 to 3 mm.
  • module edge zone 18 is here and further understood the space zone, which is bounded by the module edge 19 and an aligned extension of the protruding deck substrate 21 and an aligned extension of the outer surface (side IV) of the support substrate 7.
  • the module edge 19 results from the carrier substrate edge 20 and the cover substrate edge 21, and by a lateral edge surface 41 of the layer structure 6 and the intermediate layer 15th
  • the thin-film solar module 1 has two identically constructed connection arrangements 100, each of which comprises a connection housing 3 arranged at the rear. Each terminal assembly 100 is associated with a collecting electrode 5. In Fig. 2 For simplicity of illustration, only one terminal assembly 100 is shown. Through the two terminal housing 3, the thin-film solar module 1 can be connected to other thin-film solar modules to form a module string or connected to an electrical load, such as an inverter. Each terminal housing 3 has for this purpose via a connection cable 4, wherein a plug component can be provided equally.
  • the connection housing 3 is made, for example, as a cuboid injection molded part made of plastic and has for example a length of 50 mm, a width of 20 mm and a height of 10 mm.
  • the connection housing 3 can be at least mentally divided into different housing sections. It comprises a base section 22 and side wall sections 23, 23 'which, together with the thin-film solar module 1, surround a cavity 24.
  • the cavity 24 is divided by a support strut 25 into a contact chamber 26 and a sealant chamber 27, the function of which will be explained below.
  • the terminal housing 3 sits on one of three first side wall portions 23 and the support strut 25 formed bottom surface 31 of the outer surface (side IV) of the support substrate 7 and is fixedly connected by an adhesive layer 28 to the support substrate 7.
  • the adhesive layer 28 is made for example, from an acrylate or polyurethane adhesive. In addition to a simple and durable connection, these adhesives fulfill a sealing function against water and air and protect the electrical components contained in the connection housing 3 from corrosion.
  • a parallel to the module edge 19 extending second side wall portion 23 'of the terminal housing 3 has a beveled bottom surface 31', which is seated with a contact edge 44 of the inner surface (side II) of the cover substrate 16 in the projecting substrate edge region 40.
  • sealant 29 is also between the bottom surface 31 'and the protruding substrate edge region 40, so that in an adhesive sealant attachment of the terminal housing 3 on the composite and excellent sealing of the sealing chamber 27 is achieved to the outside.
  • the sealing compound 29 penetration of water and air into the connection housing 3 in the region of the second side wall section 23 'can be reliably and reliably prevented.
  • a sealing compound 29 made of polyisobutylene can be used for this purpose.
  • connection housing 3 in which the seal mass chamber 27 limiting second side wall portion 23 'of the terminal housing 3 tapers to the contact edge 44, ie tapered.
  • the bus bar 17 electrically connected to the associated collecting electrode 5 and the connecting cable 4 are electrically connected to one another by a connection strip 32.
  • the connecting band 32 is in Fig. 4A shown in the uninstalled state. It comprises a foil conductor 33 made of a metallic material, for example aluminum or copper, on which on one side a double-sided adhesive tape 34 with an adhesive based on acrylic, polyurethane or polyisobutylene is applied.
  • the connecting band 32 has two adhesive tape-free end portions 35, 35 ', wherein an end portion 35' is provided with a tin layer 36.
  • the connecting band 32 has a length in the range of 30 to 50 mm and a width of about 10 mm.
  • the connecting band 32 is laid around the inwardly recessed carrier sub-strand 20 in the installed state, wherein the non-tinned end portion 35 on the inside of the carrier substrate 7 is electrically connected to the bus bar 17 and the tinned end portion 35 'on the outer surface (page IV). of the carrier substrate 7 comes to rest.
  • the adhesive tape 34 By means of the adhesive tape 34, the connecting band 32 is fastened to the carrier substrate 7 and fixed in its position. A permanent electrical connection between the non-tinned end portion 35 and the bus bar 17, for example, by Ultraschallverlötung.
  • a connection band section 43 guided around the carrier substrate edge 20 is sealed in a water-tight and airtight manner by the (adjacent) sealing compound 29 toward the outside environment.
  • the sealing compound 29 is applied in a targeted manner to the connecting band section 43 before the connecting housing 3 is put on.
  • the bevelled bottom surface 31 'or the projecting substrate edge region 40 towards the tapered second side wall portion 23' a shearing of the sealant 29 can be avoided by the connecting band portion 43.
  • the sealant 29 is pressed to the connecting band portion 43, whereby the seal is improved. This is especially true for the in Fig. 3C shown variant.
  • the terminal housing 3 On the outside of the carrier substrate 7, the terminal housing 3 is placed so that the tinned end portion 35 'is located within the contact chamber 26. As in the sectional view of Fig. 3B can be seen, an exposed end portion 38 of an inner cable conductor 37 of the connecting cable 4 to the tinned end portion 35 'is electrically connected, for example by a solder joint, which in Fig. 3B not shown in detail.
  • the terminal housing 3 has for this purpose a inserted into a housing opening 42, removable insert 39, wherein through the housing opening 42 a free access to the contact chamber 26 for connecting end portion 38 and end portion 35 'is provided after fixing the terminal housing 3 on thin-film solar module 1.
  • connection arrangements 100 for the voltage connections 5 can be produced fully automatically in a simple and cost-effective manner.
  • the connecting strips 32 are fastened on the inside (side III) of the carrier substrate 7 and guided around the carrier substrate edge 20 to the outside of the carrier substrate 7.
  • the end portions 35 of the connecting bands 32 are firmly connected to the respectively associated bus bar 17, for example by ultrasonic welding.
  • the sealing compound 29 has been applied to the protruding substrate edge region 40, in particular to the two connecting strip sections 43
  • the two connection housings 3 are placed on the outside of the carrier substrate 7 and respectively through the adhesive layer 28 attached.
  • the two connection arrangements 100 can be arranged on only one module edge 19 or, for example, also distributed on two opposite module edges 19, which each have a module edge zone 18. Equally, it would also be possible that only a single connection housing 3 is provided for an external electrical connection of the two collecting electrodes 5. In this case, care should be taken that an electrical flashover between the two connection strips 32 is avoided, which can be achieved for example by an insulating partition.

Description

  • Photovoltaische Schichtensysteme zur Umwandlung von Sonnenlicht in elektrische Energie sind hinlänglich bekannt. Gemeinhin werden diese als "Solarzellen" bezeichnet, wobei sich der Begriff "Dünnschichtsolarzellen" auf Schichtensysteme mit Dicken von nur wenigen Mikrometern bezieht, die ein Trägersubstrat für eine ausreichende mechanische Festigkeit benötigen. Da mit einzelnen Solarzellen in der Regel nur Spannungspegel von weniger als 1 Volt erreicht werden, ist es üblich, eine Vielzahl Solarzellen in einem Solarmodul seriell zu verschalten. Hierbei bieten Dünnschichtsolarmodule den besonderen Vorteil, dass die Solarzellen schon während der Schichtenherstellung in integrierter Form verschaltet werden können. Dünnschichtsolarmodule sind in der Regel in Verbundscheibenstruktur ausgebildet, bei der sich die Solarzellen zwischen zwei fest miteinander verbundenen Einzelscheiben befinden. In der Patentliteratur wurden Dünnschichtsolarmodule bereits vielfach beschrieben. Lediglich beispielhaft sei in diesem Zusammenhang auf die Druckschriften DE 4324318 C1 und EP 2200097 A1 verwiesen. Generell verfügen seriell verschaltete Solarzellen über zwei Sammelelektroden gegensätzlicher Polarität zum Abgreifen der erzeugten Gesamtspannung. Typischer Weise sind auf die Sammelelektroden streifenförmige Sammelleiter (Busbars) aufgebracht, wodurch ein einfacherer elektrischer Außenanschluss beispielsweise im Randbereich des Solarmoduls ermöglicht ist. Siehe auch das Dokument WO 2008/150558 A1 .
  • In der industriellen Serienfertigung von Solarmodulen ist es üblich, die Sammelleiter an Folien- bzw. Flachbandleiter anzuschließen, die durch Bohrlöcher der hinteren Modulscheibe auf die Modulrückseite geführt werden. Auf der Modulrückseite werden die Folienleiter an Anschlussgehäuse angeschlossen, die eine Basis für elektrische Anschlussbauteile wie Anschlussleiter oder Anschlussstecker darstellen und einen elektrischen Außenanschluss ermöglichen. Ein solches Anschlussgehäuse ist beispielsweise aus der deutschen Patentanmeldung Nr. 102005025632 A1 bekannt.
  • Eine automatisierte Fertigung solcher Solarmodule ist in der Praxis nur schwierig zu bewerkstelligen, da die dünnen Folienleiter für die Handhabung durch Roboter nicht geeignet sind. Bei einer aus der Praxis bekannten alternativen Vorgehensweise wird ein Sammelleiter deshalb nicht von einem Folienleiter sondern von einer Kontaktfeder kontaktiert, die ein Bohrloch der hinteren Modulscheibe durchsetzt und dabei zur Anlage gegen den Sammelleiter gelangt. Dies hat den Vorteil, dass die Kontaktfeder bereits mit dem Aufsetzen des Anschlussgehäuses auf die Modulrückseite in Kontakt mit dem Sammelleiter gebracht werden kann, was wesentlich einfacher automatisierbar ist.
  • Jedoch müssen bei den geschilderten Vorgehensweisen stets Bohrlöcher in die hintere Modulscheibe einbracht werden, wodurch in nachteiliger Weise eine lokale Schwächung der Modulscheibe erzeugt wird. Zudem erfordert das Ausbilden der Bohrlöcher einen zusätzlichen Verfahrensschritt, der mit Zeit und Kosten verbunden ist und zwangsläufig die Ausschussquote bei der Herstellung von Solarmodulen erhöht.
  • Die internationale Patentanmeldung WO 2012/055808 A2 offenbart eine alternative Vorgehensweise, bei der die Sammelelektrode bzw. Sammelleiter mit einem Folienleiter elektrisch verbunden wird, der zwischen den beiden Substraten aus dem Verbund herausgeführt wird.
  • Demgegenüber besteht die Aufgabe der vorliegenden Erfindung darin, herkömmliche Solarmodule so weiterzubilden, dass eine automatisierte Herstellung noch einfacher und kostengünstiger durchführbar ist. Diese und weitere Aufgaben werden nach dem Vorschlag der Erfindung durch ein Solarmodul und ein Verfahren zur Herstellung eines Solarmoduls mit den Merkmalen der nebengeordneten Patentansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind durch die Merkmale der Unteransprüche angegeben.
  • Erfindungsgemäß ist ein Solarmodul, insbesondere Dünnschichtsolarmodul, mit einem laminierten Verbund aus zwei flächigen Substraten gezeigt. In dem Verbund sind die beiden Substrate so ausgebildet, dass wenigstens ein Substratrand des einen Substrats relativ zu einem gegenüberliegenden Substrandrand des anderen Substrats nach innen rückversetzt ist, so dass eine Modulrandzone mit einem überstehenden Substratrandbereich (des anderen Substrats) gebildet wird. Hierbei kann es vorgesehen sein, dass die Modulrandzone nur auf einer Modulseite (bzw. Modulrand) des in der Regel rechteck- bzw. quaderförmigen Solarmoduls ausgebildet ist, wobei gleichermaßen denkbar ist, eine solche Modulrandzone jeweils an einander gegenüberliegenden oder aneinander angrenzenden Modulseiten (bzw. Modulränder) vorzusehen, so dass das Solarmodul zwei oder mehr Modulrandzonen aufweist. Die beiden Substrate können beispielsweise anorganisches Glas, Polymere oder Metalllegierungen enthalten und können in Abhängigkeit von Schichtdicke und Materialeigenschaften als starre Platten oder biegsame Folien ausgestaltet sein.
  • Zwischen den beiden Substraten befinden sich seriell verschaltete Solarzellen. Diese werden durch einen Schichtenaufbau gebildet, der wie üblich über eine Frontelektrodenschicht, eine Rückelektrodenschicht und eine zwischen den beiden Elektrodenschichten befindliche Halbleiterschicht verfügt. Bei dem Solarmodul handelt es sich vorzugsweise um ein Dünnschichtsolarmodul mit in integrierter Form seriell verschalteten Dünnschichtsolarzellen. Beispielsweise besteht die Halbleiterschicht aus einer Chalkopyrit-Verbindung, bei der es sich insbesondere um einen I-III-VI-Halbleiter aus der Gruppe Kupfer-Indium/Gallium-Dischwefel/Diselenid (Cu(In/Ga)(S/SE)2), beispielsweise Kupfer-Indium-Diselenid (CuInSe2 bzw. CIS) oder verwandte Verbindungen, handeln kann.
  • An zwei Sammelelektroden gegensätzlicher Polarität kann die durch die seriell verschalteten Solarzellen erzeugte Gesamtspannung abgegriffen werden. Für einen Außenanschluss umfasst das Solarmodul zwei Anschlussanordnungen, die jeweils einer Sammelelektrode zugeordnet sind. Die Anschlussanordnungen verfügen jeweils über ein mit der zugeordneten Sammelelektrode elektrisch leitend verbundenes Anschlussband und ein am Verbund befestigtes Anschlussgehäuse mit einem mit dem Anschlussband elektrisch leitend verbundenen Anschlussbauteil, beispielsweise eine Anschlussleitung oder ein Anschlussstecker, das für einen elektrischen Außenanschluss dient. Die beiden Anschlussanordnungen können ein gemeinsames Anschlussgehäuse oder jeweils ein separates Anschlussgehäuse aufweisen.
  • Die Anschlussbänder umfassen jeweils einen Folienleiter, welcher beispielsweise aus einem Metall wie Aluminium oder verzinntem Kupfer besteht, wobei aber auch andere elektrisch leitende Materialien verwendet werden können, die sich zu Folien verarbeiten lassen. Beispiele hierfür sind Aluminium, Gold, Silber oder Zinn und Legierungen hiervon. Der Folienleiter kann beispielsweise eine Dicke im Bereich von 0,03 mm bis 0,3 mm, eine Länge im Bereich von 30 bis 50 mm und eine Breite im Bereich von 5 bis 15 mm haben. Eine Verbindung zwischen Sammelelektrode und Anschlussband erfolgt beispielsweise durch Schweißen, Bonden, Löten, Klemmen, Kleben mittels eines elektrisch leitfähigen Klebers oder Ultraschallverbinden.
  • Vorteilhaft sind die Anschlussbänder jeweils durch einen elektrischen Sammelleiter mit der zugehörigen Sammelelektrode elektrisch leitend verbunden, was eine einfache und kostengünstige Kontaktierung an einer günstigen Stelle, beispielsweise angrenzend zum Modulrand ermöglicht. Der Sammelleiter ist vorzugsweise band- bzw. streifenförmig ausgebildet und beispielsweise im (Sieb-)Druckverfahren auf den die Sammelelektrode bildenden Elektrodenbereich aufgedruckt. Denkbar ist jedoch auch, den Sammelleiter als Folienleiter auszubilden. Eine Verbindung zwischen Sammelleiter und Anschlussband erfolgt beispielsweise durch Schweißen, Bonden, Löten, Klemmen, Kleben mittels eines elektrisch leitfähigen Klebers oder Ultraschallverbinden.
  • In einer jeweiligen Anschlussanordnung ist das Anschlussband zwischen den beiden Substraten seitlich aus dem Verbund herausgeführt, wobei das Anschlussband um den nach innen rückversetzten Substratrand herum auf die Substrataußenfläche geführt ist, was eine einfache Fertigung und Kontaktierung durch das Anschlussbauteil im Anschlussgehäuse ermöglicht. Durch den überstehenden Substratrandbereich wird das Anschlussband vor mechanischen Krafteinwirkungen geschützt.
  • Das Anschlussgehäuse wird beispielsweise aus einem elektrisch isolierenden Werkstoff hergestellt, wobei sich für eine industrielle Fertigung thermoplastische Kunststoffe und Elastomere anbieten, die im Spritzgussverfahren verarbeitet werden können. Als thermoplastische Kunststoffe und Elastomere werden beispielsweise Polyamid, Polyoxymethylen, Polybutylenterephthalat oder Ethylen-Propylen-Dien-Kautschuk verwendet. Alternativ können auch Vergusswerkstoffe wie Acrylat- oder Epoxidharzsysteme verwendet werden. Denkbar ist jedoch auch, das Anschlussgehäuse aus Metall oder einem anderen elektrisch leitenden Werkstoff mit elektrisch isolierenden Einsätzen herzustellen. Das Anschlussgehäuse kann weitere Funktionselemente wie Dioden oder eine Steuerungselektrik aufnehmen.
  • Eine Befestigung des Anschlussgehäuses am Verbund erfolgt vorteilhaft durch Ankleben, wobei durch die Verklebung das Innere des Anschlussgehäuses gegen Gase, Wasser oder Feuchtigkeit hermetisch abgedichtet werden kann. Insbesondere sind die elektrischen Kontaktstellen vor Korrosion geschützt. Für eine Verklebung kann beispielsweise ein Klebestrang oder ein Klebeband mit einem Kleber auf Acryl-, Polyurethan- oder Polyisobutylenbasis verwendet werden. Zu diesem Zweck wird der Klebstoff auf eine Bodenfläche des Anschlussgehäuses und/oder auf den Verbund aufgebracht und das Anschlussgehäuse auf den Verbund aufgesetzt. Das Anschlussgehäuse ist zumindest abschnittsweise in der Modulrandzone angeordnet, wodurch in einfacher Weise ein Schutz des seitlich aus dem Verbund herausgeführten Anschlussbands vor äußeren Einflüssen erreicht werden kann.
  • Weiterhin verfügt das Anschlussgehäuse über eine Dichtmassenkammer mit einem Hohlraum, der zur Aufnahme eines um den Substratrand herumgeführten Anschlussbandabschnitts dient. In den Hohlraum ist eine Dichtmasse eingebracht, welche dem um den Substratrand herumgeführten Anschlussbandabschnitt anliegt und nach außen hin abdichtet. Durch diese Maßnahme kann eine einfache und zuverlässige Versiegelung des Anschlussbands erreicht werden.
  • Zudem weist die Dichtmassenkammer einen den Hohlraum begrenzenden Wandabschnitt auf, der zum überstehenden Substratrandbereich hin spitz zulaufend ausgebildet ist. Der spitz zulaufende Wandabschnitt ermöglicht, dass die Dichtmasse beispielsweise in Form einer Dichtmassenraupe bzw. Dichtmassenstrang auf den überstehenden Substratrandbereich, insbesondere gezielt auf den um den Substratrand herumgeführten Anschlussbandabschnitt, aufgebracht und anschließend das Anschlussgehäuse auf den Verbund aufgesetzt werden kann. Durch den spitz zulaufenden Wandabschnitt kann nicht nur ein Abscheren der Dichtmasse von dem um den Substratrand herumgeführten Anschlussbandabschnitt vermieden werden, vielmehr wird die Dichtmasse auch zum Anschlussbandabschnitt hin gedrückt, so dass eine gas- und wasserdichte Versiegelung des um den Substratrand herumgeführten Anschlussbandabschnitts sichergestellt ist. Es ist somit nicht erforderlich, dass die Dichtmasse vor dem Befestigen des Anschlussgehäuses in die Dichtmassenkammer eingebracht wird. Das Solarmodul ermöglicht somit in besonders vorteilhafter Weise eine automatisierte kostengünstige Herstellung in der industriellen Serienfertigung mit einer zuverlässigen gas- und wasserdichten Versiegelung des Anschlussbands.
  • Der zum überstehenden Substratrandbereich hin spitz zulaufende Wandabschnitt der Dichtmassenkammer kann in einfacher Weise dadurch ausgebildet sein, dass der Wandabschnitt über eine dem überstehenden Substratrandbereich abschnittsweise anliegende, abgeschrägte Bodenfläche verfügt. Dies ermöglicht auch, dass sich Dichtmasse zwischen dem der abgeschrägten Bodenfläche und dem überstehenden Substratrandbereich befindet, wodurch bei Verwendung einer klebenden Dichtmasse in vorteilhafter Weise eine klebende Befestigung des Anschlussgehäuses am überstehenden Substratrandbereich erreicht werden kann. Das Ankleben des Anschlussgehäuses am Verbund kann somit in einfacher Weise vollautomatisiert durchgeführt werden. Vorzugsweise wird das Anschlussgehäuse auf die Modulrückseite geklebt.
  • Bei einer weiteren Ausgestaltung des Solarmoduls ist das Anschlussband mit einem Klebemittel, beispielsweise eine doppelseitiges Klebeband, versehen, was eine einfache und kostengünstige Befestigung des Anschlussbands am Substrat, sowie dessen Lagefixierung ermöglicht.
  • Bei einer weiteren vorteilhaften Ausgestaltung des Solarmoduls verfügt das Anschlussband über einen verzinnten Endabschnitt zur Verbindung mit dem Anschlussbauteil. Dies ermöglicht eine einfache elektrische Verbindung zwischen Anschlussband und Anschlussbauteil.
  • Bei einer weiteren vorteilhaften Ausgestaltung des Solarmoduls weist das Anschlussgehäuse ein in eine Gehäuseöffnung eingesetztes, herausnehmbares Einsatzteil auf, wobei durch die Gehäuseöffnung ein Zugang zu einer Kontaktkammer zum Verbinden des Anschlussbands mit dem Anschlussbauteil geschaffen wird. Somit kann das Anschlussgehäuse bereits vor dem elektrischen Verbinden von Anschlussband und Anschlussbauteil am Verbund befestigt werden, wodurch der Fertigungsprozess noch weiter vereinfacht ist.
  • Die Erfindung erstreckt sich weiterhin auf ein Verfahren zur Herstellung eines Solarmoduls, insbesondere Dünnschichtsolarmoduls, welches die folgenden Schritte umfasst:
    • Ausbilden einer Serienschaltung aus einer Mehrzahl Solarzellen auf einem ersten Substrat, wobei die Serienschaltung über zwei Sammelelektroden zum Abgreifen der durch die Solarzellen erzeugten Gesamtspannung verfügt;
    • Elektrisches Verbinden der Sammelelektroden mit Anschlussbändern;
    • Herstellen eines Verbunds aus dem ersten Substrat mit einem zweiten Substrat, wobei wenigstens ein Substratrand des einen Substrats relativ zu einem gegenüberliegenden Substratrand des anderen Substrats nach innen rückversetzt ist, so dass eine Modulrandzone mit einem überstehenden Substratrandbereich gebildet wird, wobei die Anschlussbänder in der Modulrandzone zwischen den beiden Substraten um den nach innen rückversetzten Substratrand herum auf eine Substrataußenfläche geführt werden;
    • Aufbringen einer Dichtmasse auf das andere Substrat wenigstens in einem um den Substratrand herumgeführten Anschlussbandabschnitt;
    • Aufsetzen eines Anschlussgehäuses mit einem oder mehreren Anschlussbauteilen für einen elektrischen Außenanschluss auf den Verbund, wobei das Anschlussgehäuse eine Dichtmassenkammer zum Aufnehmen der Dichtmasse mit einem spitz zulaufend ausgebildeten Wandabschnitt aufweist, der auf den überstehenden Substratrandbereich aufgesetzt wird;
    • Elektrisches Verbinden der mit den Sammelelektroden verbundenen Anschlussbänder mit den Anschlussbauteilen.
    Kurze Beschreibung der Zeichnungen
  • Die Erfindung wird nun anhand von Ausführungsbeispielen näher erläutert, wobei Bezug auf die beigefügten Figuren genommen wird. Es zeigen:
  • Fig. 1
    eine schematische Schnittansicht eines Dünnschichtsolarmoduls;
    Fig. 2
    eine perspektivische Ansicht des Dünnschichtsolarmoduls von Fig. 1 zur Veranschaulichung einer Anschlussanordnung;
    Fig. 3A-3C
    eine perspektivische Ansicht (Fig. 3A) und eine Schnittansicht (Fig. 3B) der Anschlussanordnung von Fig. 2, sowie eine Variante des Anschlussgehäuses (Fig. 3C);
    Fig. 4A-4B
    eine perspektivische Ansicht des Anschlussbands im unverbauten Zustand (Fig. 4A) und verbauten Zustand (Fig. 4B).
    Ausführliche Beschreibung der Zeichnungen
  • Sei zunächst Figur 1 betrachtet, worin der Aufbau eines insgesamt mit der Bezugszahl 1 bezeichneten Dünnschichtsolarmoduls veranschaulicht ist. Demnach umfasst das Dünnschichtsolarmodul 1 eine Vielzahl in integrierter Form seriell miteinander verschaltete Dünnschichtsolarzellen 2, von denen in Fig. 1 beispielhaft zwei gezeigt sind. Es versteht sich, dass in Dünnschichtsolarmodulen typischer Weise mehr als 100 Dünnschichtsolarzellen 2 seriell miteinander verschaltet sind. Das Dünnschichtsolarmodul 1 ist in Verbundscheibenstruktur ausgebildet und umfasst ein rückseitiges Trägersubstrat 7 und ein vorderseitiges Decksubstrat 16, die jeweils aus einem elektrisch isolierenden Material, beispielsweise Glas oder Kunststoff, bestehen, wobei gleichermaßen andere elektrisch isolierende Materialien mit genügender Festigkeit und inertem Verhalten gegenüber den durchgeführten Prozessschritten eingesetzt werden können. In Abhängigkeit von der jeweiligen Schichtdicke und den spezifischen Materialeigenschaften können die Substrate 7, 16 als starre Platten oder biegsame Folien ausgestaltet sein. Beispielsweise handelt es sich bei dem rückseitigen Trägersubstrat 7 um eine starre Glasplatte mit geringer Lichtdurchlässigkeit und bei dem vorderseitigen Decksubstrat 16 um eine starre Glasplatte aus gehärtetem, extraweißem Glas mit geringem Eisengehalt, welches für Sonnenlicht transparent ist, so dass die Dünnschichtsolarzellen 2 durch auf der Vorderseite (Seite I) des Decksubstrats 16 einfallendes Licht bestrahlt werden können. Allgemein dient das Decksubstrat 16 zur Versiegelung und zum mechanischen Schutz der Dünnschichtsolarzellen 2.
  • Auf der lichteintrittseitigen Vorderseite (Seite III) des Trägersubstrats 7 ist ein die Dünnschichtsolarzellen 2 bildender Schichtenaufbau 6 aufgebracht, dessen Schichten mittels chemischer Gasphasenabscheidung (CVD), physikalischer Gasphasenabscheidung (PVD) oder Sputtern (magnefeldunterstützte Kathodenzerstäubung) abgeschieden sind. Wie in Fig. 1 erkennbar, umfasst der Schichtenaufbau 6 eine Rückelektrodenschicht 9, beispielsweise aus einem lichtundurchlässigen Metall wie Molybdän, die durch Kathodenzerstäuben auf das Trägersubstrat 7 aufgebracht ist. Die Rückelektrodenschicht 9 hat beispielsweise eine Schichtdicke von etwa 1 µm. Die Rückelektrodenschicht 9 kann gleichermaßen aus einem Schichtstapel mit verschiedenen Einzelschichten bestehen. Des Weiteren umfasst der Schichtenaufbau 6 eine auf die Rückelektrodenschicht 9 aufgebrachte Absorberschicht 8, welche ihrerseits aus mehreren Schichten zusammengesetzt ist. So umfasst die Absorberschicht 8 eine p-dotierte Halbleiterschicht 10, beispielsweise aus einem p-leitenden Chalkopyrithalbleiter. Die Halbleiterschicht 10 hat beispielsweise eine Schichtdicke von 500 nm bis 5 µm, welche insbesondere ca. 2 µm beträgt. Auf die Halbleiterschicht 10 ist eine Pufferschicht 11 abgeschieden, welche beispielsweise aus Cadmiumsulfid (CdS) und intrinsischem Zinkoxid (i-ZnO) besteht. Auf die Pufferschicht 11 ist eine Frontelektrodenschicht 12 beispielsweise durch Aufdampfen aufgebracht. Die Frontelektrodenschicht 12 ist für Strahlung in einem für die Halbleiterschicht 10 empfindlichen Spektralbereich transparent ("Fensterschicht") und basiert beispielsweise auf einem dotierten Metalloxid, insbesondere n-leitendes, Aluminium-dotiertes Zinkoxid. Die Schichtdicke der Frontelektrodenschicht 12 beträgt beispielsweise 300 nm. Durch die Frontelektrodenschicht 12, die Pufferschicht 11 und die Halbleiterschicht 10 wird ein pn-Heteroübergang gebildet, das heißt eine Abfolge von Schichten vom entgegen gesetzten Leitungstyp.
  • Zur Formung der Dünnschichtsolarzellen 2 ist der Schichtenaufbau 6 in eine Mehrzahl photovoltaisch aktiver Bereiche unterteilt. Die Unterteilung erfolgt durch Einschnitte 13, welche durch eine geeignete Strukturierungstechnologie wie Laserschreiben und mechanisches Abtragen in den Schichtenaufbau 6 eingebracht wurden. Hierbei sind benachbarte Dünnschichtsolarzellen 2 jeweils über einen ersten Elektrodenbereich 14 der Rückelektrodenschicht 9 seriell miteinander verschaltet, wobei durch die beiden randständigen zweiten Elektrodenbereiche 14' der Rückelektrodenschicht 9 Sammelelektroden 5 gegensätzlicher Polarität der miteinander verschalteten Dünnschichtsolarzellen gebildet werden. An den Sammelelektroden 5 kann die von den seriell verschalteten Dünnschichtsolarzellen 2 erzeugte Gesamtspannung, welche sich als Summe der von den einzelnen Dünnschichtsolarzellen 2 erzeugten Zellspannungen ergibt, abgegriffen werden.
  • Die beiden Sammelelektroden 5 sind jeweils mit einem bandförmigen Sammelleiter 17 elektrisch verbunden, welcher in Fig. 2 dargestellt ist. Die Sammelleiter 17 sind beispielsweise im Siebdruckverfahren auf den zugehörigen zweiten Elektrodenbereich 14' aufgedruckt. Die Sammelleiter 17 ermöglichen in vorteilhafter Weise eine Kontaktierung an geeigneter Stelle, beispielsweise in der Nähe eines Modulrands 19.
  • Auf die Frontelektrodenschicht 12 ist eine thermoplastische Zwischenschicht 15 aufgebracht, welche beispielsweise aus Polyvinylbutyral (PVB) oder Ethylenvinylacetat (EVA) besteht. Durch die Zwischenschicht 15 ist das Trägersubstrat 7 mit der Rückseite (Seite II) des Decksubstrats 16 zu einem bewitterungsstabilen Verbund verklebt. Die Zwischenschicht 15 wird durch Erwärmen plastisch verformbar und verbindet beim Abkühlen die beiden Substrate 7, 16 fest miteinander.
  • Für eine Erläuterung der erfindungsgemäßen Anschlussanordnung 100, die ein Anschlussgehäuse 3 für einen elektrischen Außenanschluss einer resultierenden Sammelelektrode 5 enthält, seien nun ergänzend die weiteren Figuren betrachtet. Fig. 2 zeigt eine perspektivische Ansicht der Anschlussanordnung 100 mit einer Schnittansicht des Anschlussgehäuses 3, wobei die Schnittlinie entlang einer kürzeren Querrichtung des quader- bzw. rechteckförmigen Dünnschichtsolarmoduls 1 geführt ist. In Fig. 3A ist das Anschlussgehäuse 3 mit Anschlusskabel 4 in einer perspektivischen Ansicht gezeigt. Fig. 3B zeigt das Anschlussgehäuse 3 in einer Schnittansicht, wobei die Schnittlinie in Längsrichtung bzw. senkrecht zur Querrichtung des Dünnschichtsolarmoduls 1 geführt ist.
  • Wie in Fig. 2 erkennbar, ist an dem in Längsrichtung des Dünnschichtsolarmoduls 1 sich erstreckenden Modulrand 19 ein Trägersubstratrand 20 des Trägersubstrats 7 relativ zu einem gegenüberliegenden Decksubstratrand 21 des Decksubstrats 16 nach innen (in Querrichtung) rückversetzt, so dass sich eine (räumliche) Modulrandzone 18 mit einem überstehenden Substratrandbereich 40 ergibt. Im vorliegenden Beispiel beträgt die entlang der kürzeren Querrichtung des Dünnschichtsolarmoduls 1 sich bemessende Breite des überstehenden Substratrandbereichs 40 ca. 2 bis 3 mm. Als Modulrandzone 18 wird hier und im Weiteren die Raumzone verstanden, die durch den Modulrand 19 und einer fluchtenden Verlängerung des überstehenden Decksubstratrands 21 und einer fluchtenden Verlängerung der Außenfläche (Seite IV) des Trägersubstrats 7 begrenzt wird. Der Modulrand 19 ergibt sich durch den Trägersubstratrand 20 und den Decksubstratrand 21, sowie durch eine seitliche Randfläche 41 des Schichtenaufbaus 6 und der Zwischenschicht 15.
  • Für einen elektrischen Außenanschluss verfügt das Dünnschichtsolarmodul 1 über zwei gleich aufgebaute Anschlussanordnungen 100, die jeweils ein rückseitig angeordnetes Anschlussgehäuse 3 umfassen. Jede Anschlussanordnung 100 ist einer Sammelelektrode 5 zugeordnet. In Fig. 2 ist zum Zwecke einer einfacheren Darstellung lediglich eine Anschlussanordnung 100 dargestellt. Durch die beiden Anschlussgehäuse 3 kann das Dünnschichtsolarmodul 1 mit weiteren Dünnschichtsolarmodulen zu einem Modulstrang verschaltet oder mit einer elektrischen Last, beispielsweise ein Wechselrichter, verbunden werden. Jedes Anschlussgehäuse 3 verfügt zu diesem Zweck über ein Anschlusskabel 4, wobei gleichermaßen ein Steckerbauteil vorgesehen sein kann. Das Anschlussgehäuse 3 ist beispielsweise als quaderförmiges Spritzgussteil aus Kunststoff gefertigt und hat beispielsweise eine Länge von 50 mm, eine Breite von 20 mm und eine Höhe von 10 mm.
  • Das Anschlussgehäuse 3 kann zumindest gedanklich in verschiedene Gehäuseabschnitte unterteilt werden. Es umfasst einen Basisabschnitt 22 und Seitenwandabschnitte 23, 23' die gemeinsam mit dem Dünnschichtsolarmodul 1 einen Hohlraum 24 umgrenzen. Der Hohlraum 24 wird durch eine Stützstrebe 25 in eine Kontaktkammer 26 und eine Dichtmassenkammer 27 unterteilt, deren Funktion weiter unten erläutert wird. Das Anschlussgehäuse 3 sitzt auf einer von drei ersten Seitenwandabschnitten 23 und der Stützstrebe 25 gebildeten Bodenfläche 31 der Außenfläche (Seite IV) des Trägersubstrats 7 auf und ist durch eine Klebeschicht 28 mit dem Trägersubstrat 7 fest verbunden. Die Klebeschicht 28 besteht beispielsweise aus einem Acrylat- oder Polyurethankleber. Neben einer einfachen und dauerhaften Verbindung erfüllen diese Kleber eine Dichtfunktion gegenüber Wasser und Luft und schützen die im Anschlussgehäuse 3 enthaltenen elektrischen Komponenten vor Korrosion.
  • Ein parallel zum Modulrand 19 sich erstreckender zweiter Seitenwandabschnitt 23' des Anschlussgehäuses 3 verfügt über einen abgeschrägte Bodenfläche 31', die mit einer Kontaktkante 44 der Innenfläche (Seite II) des Decksubstrats 16 im überstehenden Substratrandbereich 40 aufsitzt. Eine Abdichtung des Anschlussgehäuses 3 nach außen erfolgt durch eine in der Dichtmassenkammer 27 verteilt angeordnete Dichtmasse 29. Durch die abgeschrägte Bodenfläche 31' ist der zweite Seitenwandabschnitt 23' zum überstehenden Substratrandbereich 40 hin spitz zulaufend ausgebildet. Dies ermöglicht das Aufbringen der Dichtmasse 29 auf den überstehenden Substratrandbereich 40 noch vor dem Befestigen Anschlussgehäuses 3 am Verbund. Zudem befindet sich Dichtmasse 29 auch zwischen der Bodenfläche 31' und dem überstehenden Substratrandbereich 40, so dass bei einer klebenden Dichtmasse eine Befestigung des Anschlussgehäuses 3 am Verbund und eine hervorragende Abdichtung der Dichtkammer 27 nach außen erreicht wird. Durch die Dichtmasse 29 kann ein Eindringen von Wasser und Luft in das Anschlussgehäuse 3 im Bereich des zweiten Seitenwandabschnitts 23' zuverlässig und sicher verhindert werden. Beispielsweise kann zu diesem Zweck eine Dichtmasse 29 aus Polyisobutylen eingesetzt werden.
  • In Fig. 3C ist eine Variante des Anschlussgehäuses 3 gezeigt, bei der sich der die Dichtmassenkammer 27 begrenzende zweite Seitenwandabschnitt 23' des Anschlussgehäuses 3 bis zur Kontaktkante 44 verjüngt, d.h. spitz zuläuft.
  • Der mit der zugehörigen Sammelelektrode 5 elektrisch verbundene Sammelleiter 17 und das Anschlusskabel 4 sind durch ein Anschlussband 32 elektrisch miteinander verbunden. Das Anschlussband 32 ist in Fig. 4A im unverbauten Zustand gezeigt. Es umfasst einen Folienleiter 33 aus einem metallischen Material, beispielsweise Aluminium oder Kupfer, auf dem einseitig ein beidseitig klebendes Klebeband 34 mit einem Kleber auf Acryl-, Polyurethan- oder Polyisobutylenbasis aufgebracht ist. Das Anschlussband 32 verfügt über zwei klebbandfreie Endabschnitte 35, 35', wobei ein Endabschnitt 35' mit einer Zinnschicht 36 versehen ist. Im vorliegenden Ausführungsbeispiel hat das Anschlussband 32 eine Länge im Bereich von 30 bis 50 mm und eine Breite von ca. 10 mm.
  • Wie in Fig. 4B erkennbar, ist das Anschlussband 32 im verbauten Zustand um den nach innen rückversetzten Trägersubstrand 20 herum gelegt, wobei der nichtverzinnte Endabschnitt 35 auf der Innenseite des Trägersubstrats 7 mit dem Sammelleiter 17 elektrisch verbunden ist und der verzinnte Endabschnitt 35' auf der Außenfläche (Seite IV) des Trägersubstrats 7 zu liegen kommt. Durch das Klebeband 34 wird das Anschlussband 32 am Trägersubstrat 7 befestigt und in seiner Lage fixiert. Eine dauerhafte elektrische Verbindung zwischen dem nichtverzinnten Endabschnitt 35 und dem Sammelleiter 17 erfolgt beispielsweise durch Ultraschallverlötung.
  • Wie in Fig. 1 gezeigt, ist das Anschlussband 32 am Modulrand 19 in der Modulrandzone 18 zwischen den beiden Substraten 7, 16 herausgeführt. Durch den überstehenden Substratrandbereich 40 ist das Anschlussband 32 vor mechanischen Einwirkungen geschützt. Zudem ist ein um den Trägersubstratrand 20 herum geführter Anschlussbandabschnitt 43 durch die (anliegende) Dichtmasse 29 zur äußeren Umgebung hin wasser- und luftdicht versiegelt. Die Dichtmasse 29 wird zu diesem Zweck noch vor dem Aufsetzen des Anschlussgehäuses 3 gezielt auf den Anschlussbandabschnitt 43 aufgebracht. Durch die abgeschrägte Bodenfläche 31' bzw. zum überstehenden Substratrandbereich 40 hin spitz zulaufenden zweiten Seitenwandabschnitt 23' kann ein Abscheren der Dichtmasse 29 vom Anschlussbandabschnitt 43 vermieden werden. Zudem wird die Dichtmasse 29 zum Anschlussbandabschnitt 43 gedrückt, wodurch die Versiegelung verbessert wird. Dies gilt insbesondere für die in Fig. 3C gezeigte Variante.
  • Auf der Außenseite des Trägersubstrats 7 ist das Anschlussgehäuse 3 so platziert, dass sich der verzinnte Endabschnitt 35' innerhalb der Kontaktkammer 26 befindet. Wie in der Schnittansicht von Fig. 3B erkennbar, ist ein frei liegender Endbereich 38 eines inneren Kabelleiters 37 des Anschlusskabels 4 an den verzinnten Endabschnitt 35' elektrisch angeschlossen, beispielsweise durch eine Lötverbindung, was in Fig. 3B nicht näher dargestellt ist. Das Anschlussgehäuse 3 weist zu diesem Zweck ein in eine Gehäuseöffnung 42 eingesetztes, herausnehmbares Einsatzteil 39 auf, wobei durch die Gehäuseöffnung 42 ein freier Zugang zur Kontaktkammer 26 zum Verbinden von Endbereich 38 und Endabschnitt 35' nach Fixieren des Anschlussgehäuses 3 am Dünnschichtsolarmodul 1 geschaffen wird.
  • Die beiden Anschlussanordnungen 100 für die Spannungsanschlüsse 5 können in einfacher und kostengünstiger Weise vollautomatisiert hergestellt werden. Zu diesem Zweck werden nach Strukturieren der Dünnschichtsolarzellen 2 die Anschlussbänder 32 auf der Innenseite (Seite III) des Trägersubstrats 7 befestigt und um den Trägersubstratrand 20 herum bis zur Außenseite des Trägersubstrats 7 geführt. Zudem werden die Endabschnitte 35 der Anschlussbänder 32 mit dem jeweils zugehörigen Sammelleiter 17 beispielsweise durch Ultraschallverschweißen fest verbunden. Anschließend erfolgt eine Verklebung der beiden Substrate 7, 16 durch die Zwischenschicht 15. Nach Aufbringen der Dichtmasse 29 auf den überstehenden Substratrandbereich 40, insbesondere auf die beiden Anschlussbandabschnitte 43, werden die beiden Anschlussgehäuse 3 auf die Außenseite des Trägersubstrats 7 aufgesetzt und jeweils durch die Klebeschicht 28 befestigt. Schließlich erfolgt die elektrische Verbindung des jeweiligen Anschlussbands 32 mit dem frei liegenden Endbereich 38 des zugehörigen Anschlusskabels 4, zu welchem Zweck das Einsatzteil 39 aus seiner Gehäuseöffnung 42 entfernt und anschließend wieder eingesetzt wird. Die beiden Anschlussanordnungen 100 können an nur einem Modulrand 19 oder beispielsweise auch verteilt an zwei gegenüberliegenden Modulrändern 19, die jeweils über eine Modulrandzone 18 verfügen, angeordnet sein. Gleichermaßen wäre es auch möglich, dass nur ein einziges Anschlussgehäuse 3 für einen elektrischen Außenanschluss der beiden Sammelelektroden 5 vorgesehen ist. In diesem Fall wäre dafür Sorge zu tragen, dass ein elektrischer Überschlag zwischen den beiden Anschlussbändern 32 vermieden wird, was beispielsweise durch eine isolierende Trennwand erreicht werden kann.
  • Bezugszeichenliste
  • 1
    Dünnschichtsolarmodul
    2
    Dünnschichtsolarzelle
    3
    Anschlussgehäuse
    4
    Anschlusskabel
    5
    Sammelelektrode
    6
    Schichtenaufbau
    7
    Trägersubstrat
    8
    Absorberschicht
    9
    Rückelektrodenschicht
    10
    Halbleiterschicht
    11
    Pufferschicht
    12
    Frontelektrodenschicht
    13
    Einschnitt
    14, 14'
    Elektrodenbereich
    15
    Zwischenschicht
    16
    Decksubstrat
    17
    Sammelleiter
    18
    Modulrandzone
    19
    Modulrand
    20
    Trägersubstratrand
    21
    Decksubstratrand
    22
    Basisabschnitt
    23, 23'
    Seitenwandabschnitt
    24
    Hohlraum
    25
    Stützstrebe
    26
    Kontaktkammer
    27
    Dichtmassenkammer
    28
    Klebeschicht
    29
    Dichtmasse
    30
    Innenwand
    31, 31'
    Bodenfläche
    32
    Anschlussband
    33
    Folienleiter
    34
    Klebeband
    35, 35'
    Endabschnitt
    36
    Zinnschicht
    37
    Kabelleiter
    38
    Endbereich
    39
    Einsatzteil
    40
    Substratrandbereich
    41
    Randfläche
    42
    Gehäuseöffnung
    43
    Anschlussbandabschnitt
    44
    Bodenkante
    100
    Anschlussanordnung

Claims (10)

  1. Solarmodul (1), insbesondere Dünnschichtsolarmodul, welches umfasst:
    einen laminierten Verbund aus zwei Substraten (7, 16), wobei wenigstens ein Substratrand (20) des einen Substrats (7) relativ zu einem gegenüberliegenden Substratrand (21) des anderen Substrats (16) nach innen rückversetzt ist, so dass eine Modulrandzone (18) mit einem überstehenden Substratrandbereich (40) gebildet wird,
    eine zwischen den beiden Substraten (7, 16) befindliche Serienschaltung aus einer Mehrzahl Solarzellen (2), die über zwei Sammelelektroden (5) zum Abgreifen einer durch die Solarzellen (2) erzeugten Gesamtspannung verfügt,
    zwei Anschlussanordnungen (100), welche jeweils einer Sammelelektrode (5) zugeordnet sind, wobei jede Anschlussanordnung (100) aufweist:
    - ein mit der zugeordneten Sammelelektrode (5) elektrisch leitend verbundenes Anschlussband (32), das in der Modulrandzone (18) zwischen den beiden Substraten (7, 16) um den nach innen rückversetzten Substratrand (20) herum auf eine Substrataußenfläche geführt ist,
    - ein am Verbund befestigtes Anschlussgehäuse (3) mit einem mit dem Anschlussband (32) elektrisch leitend verbundenen Anschlussbauteil (4), wobei das Anschlussgehäuse (3) eine Dichtmassenkammer (27) aufweist, die eine Dichtmasse (29) enthält, welche das Anschlussband (32) in einem um den Substratrand (20) herumgeführten Anschlussbandabschnitt (43) abdichtet, wobei ein die Dichtmassenkammer (27) begrenzender Wandabschnitt (23') des Anschlussgehäuses (3) zum überstehenden Substratrandbereich (40) hin spitz zulaufend ausgebildet ist.
  2. Solarmodul (1) nach Anspruch 1, bei welchem der die Dichtmassenkammer (27) begrenzende Wandabschnitt (23') des Anschlussgehäuses (3) eine dem überstehenden Substratrandbereich (40) abschnittsweise anliegende, abgeschrägte Bodenfläche (31') aufweist.
  3. Solarmodul (1) nach Anspruch 2, bei welchem das Anschlussgehäuse (3) durch Dichtmasse (29) zwischen der abgeschrägten Bodenfläche (31') und dem überstehenden Substratrandbereich (40) befestigt ist.
  4. Solarmodul (1) nach einem der Ansprüche 1 bis 3, bei welchem das Anschlussband (32) einer jeweiligen Anschlussanordnung (100) mit einem Klebemittel (34), beispielsweise ein doppelseitiges Klebeband, zum Befestigen an einem Substrat (7) versehen ist.
  5. Solarmodul (1) nach einem der Ansprüche 1 bis 8, bei welchem das Anschlussband (32) einer jeweiligen Anschlussanordnung (100) durch einen streifenförmigen Sammelleiter (17) mit der zugehörigen Sammelelektrode (5) elektrisch leitend verbunden ist.
  6. Solarmodul (1) nach Anspruch 5, bei welchem das Anschlussband (32) mit dem Sammelleiter (17), beispielsweise durch Ultraschallverbinden, fest verbunden ist.
  7. Solarmodul (1) nach einem der Ansprüche 1 bis 6, bei welchem das Anschlussband (32) einer jeweiligen Anschlussanordnung (100) über einen verzinnten Endabschnitt (35') zur Verbindung mit dem Anschlussbauteil (4) verfügt.
  8. Solarmodul (1) nach einem der Ansprüche 1 bis 7, bei welchem das Anschlussgehäuse (3) einer jeweiligen Anschlussanordnung (100) ein in eine Gehäuseöffnung (42) eingesetztes, herausnehmbares Einsatzteil (39) aufweist, wobei durch die Gehäuseöffnung (39) Zugang zu einer Kontaktkammer (26) zum elektrischen Verbinden von Anschlussband (32) und Anschlussbauteil (4) geschaffen wird.
  9. Solarmodul (1) nach einem der Ansprüche 1 bis 8, bei welchem die beiden Anschlussanordnungen (100) über ein gemeinsames Anschlussgehäuse (3) verfügen.
  10. Verfahren zur Herstellung eines Solarmoduls, insbesondere Dünnschichtsolarmoduls (1), mit den folgenden Schritten:
    - Ausbilden einer Serienschaltung aus einer Mehrzahl Solarzellen (2) auf einem ersten Substrat (7), wobei die Serienschaltung über zwei Sammelelektroden (5) zum Abgreifen der durch die Solarzellen (2) erzeugten Gesamtspannung verfügt;
    - Elektrisches Verbinden der Sammelelektroden (5) mit Anschlussbändern (32);
    - Herstellen eines Verbunds aus dem ersten Substrat (7) mit einem zweiten Substrat (16), wobei wenigstens ein Substratrand (20) des einen Substrats (7) relativ zu einem gegenüberliegenden Substratrand (21) des anderen Substrats (16) nach innen rückversetzt ist, so dass eine Modulrandzone (18) mit einem überstehenden Substratrandbereich (40) gebildet wird, wobei die Anschlussbänder (32) in der Modulrandzone (18) zwischen den beiden Substraten (7, 16) um den nach innen rückversetzten Substratrand (20) herum auf eine Substrataußenfläche geführt werden;
    - Aufbringen einer Dichtmasse (29) auf das andere Substrat (16) wenigstens in einem um den Substratrand (20) herumgeführten Anschlussbandabschnitt (43);
    - Aufsetzen eines Anschlussgehäuses (3) mit einem oder mehreren Anschlussbauteilen (4) für einen elektrischen Außenanschluss auf den Verbund, wobei das Anschlussgehäuse eine Dichtmassenkammer (27) zum Aufnehmen der Dichtmasse (29) mit einem spitz zulaufend ausgebildeten Wandabschnitt (23') aufweist, der auf den überstehenden Substratrandbereich (40) aufgesetzt wird;
    - Elektrisches Verbinden der mit den Sammelelektroden (5) verbundenen Anschlussbänder (32) mit den Anschlussbauteilen (4).
EP12175486.5A 2012-07-09 2012-07-09 Solarmodul mit Anschlussanordnungen für elektrischen Außenanschluss Active EP2685507B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12175486.5A EP2685507B1 (de) 2012-07-09 2012-07-09 Solarmodul mit Anschlussanordnungen für elektrischen Außenanschluss
ES12175486T ES2772201T3 (es) 2012-07-09 2012-07-09 Módulo solar con conjuntos de conexión para conexión eléctrica externa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12175486.5A EP2685507B1 (de) 2012-07-09 2012-07-09 Solarmodul mit Anschlussanordnungen für elektrischen Außenanschluss

Publications (2)

Publication Number Publication Date
EP2685507A1 EP2685507A1 (de) 2014-01-15
EP2685507B1 true EP2685507B1 (de) 2019-11-13

Family

ID=46507904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12175486.5A Active EP2685507B1 (de) 2012-07-09 2012-07-09 Solarmodul mit Anschlussanordnungen für elektrischen Außenanschluss

Country Status (2)

Country Link
EP (1) EP2685507B1 (de)
ES (1) ES2772201T3 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324318C1 (de) 1993-07-20 1995-01-12 Siemens Ag Verfahren zur Serienverschaltung einer integrierten Dünnfilmsolarzellenanordnung
US7534956B2 (en) * 2003-04-10 2009-05-19 Canon Kabushiki Kaisha Solar cell module having an electric device
DE102005025632B4 (de) 2005-06-03 2015-09-17 Te Connectivity Germany Gmbh Verbindungsvorrichtung für den Anschluss elektrischer Folienleiter
WO2008148524A2 (en) * 2007-06-04 2008-12-11 Tyco Electronics Amp Gmbh Solar module with an electrical connector element
EP2165122A1 (de) * 2007-06-08 2010-03-24 Robert Stancel Am rand anbringbare elektrische verbindungsbaugruppe
EP2200097A1 (de) 2008-12-16 2010-06-23 Saint-Gobain Glass France S.A. Verfahren zur Herstellung einer Photovoltaikvorrichtung und System zur Strukturierung eines Objekts
WO2012055808A2 (de) 2010-10-25 2012-05-03 Saint-Gobain Glass France Solarmodul mit anschlusselement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2685507A1 (de) 2014-01-15
ES2772201T3 (es) 2020-07-07

Similar Documents

Publication Publication Date Title
EP2633558A2 (de) Solarmodul mit anschlusselement
EP2758993B1 (de) Dünnschichtsolarmodul mit serienverschaltung und verfahren zur serienverschaltung von dünnschichtsolarzellen
EP2855146A1 (de) Dachscheibe mit einem integrierten photovoltaik-modul
EP2855180A1 (de) Dachscheibe mit einem integrierten photovoltaik-modul
EP1886357B1 (de) Verfahren zur führung von kontaktbändern bei solarmodulen und solarmodul
DE102009026149A1 (de) Verbundsystem für Photovoltaik-Module
EP2761670B1 (de) Rahmenloses solarmodul mit montagelöchern und verfahren zur herstellung eines solchen solarmoduls
DE112009001175T5 (de) Dünnfilmsolarbatteriemodul und Verfahren zur Herstellung desselben
EP2761673B1 (de) Solarmodul mit anschlussdose, sowie verfahren zum herstellen desselben
WO2013143821A1 (de) Photovoltaik-modul mit kühlvorrichtung
DE112011102882T5 (de) Flexible gebäudeintegrierte Photovoltaikstruktur
DE112008001045T5 (de) Solarzellenmodul
DE112009002356T5 (de) Dünnschicht-Solarzellenreihe
EP2685507B1 (de) Solarmodul mit Anschlussanordnungen für elektrischen Außenanschluss
WO2013057224A1 (de) Solarmodul mit flachbandleiter, sowie verfahren zu dessen herstellung
DE102008046480A1 (de) Verfahren zur Herstellung einer lötbaren LFC-Solarzellenrückseite und aus derartigen LFC-Solarzellen verschaltetes Solarmodul
WO2014086914A1 (de) Solarmodul mit anschlussdose
DE102010013850A1 (de) Verfahren zum elektrischen Verbinden von Solarzellen für ein Solarmodul
EP2352171A1 (de) Solarzellenanordnung und Dünnschichtsolarmodul, sowie Herstellungsverfahren hierfür
EP4018492A1 (de) Verfahren zur elektrisch leitenden kontaktierung eines mindestens eine schutzschicht aufweisenden optoelektronischen bauelements und optoelektronisches bauelement mit einer solchen kontaktierung
DE102008040332A1 (de) Rückseitenkontaktierte Solarzelle
EP3573110A1 (de) Solarmodul mit vergrösserter aperturfläche
WO2014005802A1 (de) Verfahren zur abdichtung eines kontaktloches eines photovoltaik-moduls
WO2024061552A1 (de) Solarzellenmodul und verfahren zur herstellung eines solarzellenmoduls
WO2024088803A1 (de) Solarzellenmodul und verfahren zur herstellung eines solarzellenmoduls

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140715

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H02S 40/34 20140101ALI20190121BHEP

Ipc: H01L 31/046 20140101ALI20190121BHEP

Ipc: H01L 31/048 20140101ALI20190121BHEP

Ipc: H01L 31/02 20060101AFI20190121BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190527

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: (CNBM) BENGBU DESIGN & RESEARCH INSTITUTE FOR GLAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1202571

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015520

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2772201

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015520

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012015520

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200709

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1202571

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230627

Year of fee payment: 12

Ref country code: FR

Payment date: 20230619

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230619

Year of fee payment: 12

Ref country code: ES

Payment date: 20230818

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230626

Year of fee payment: 12