EP2675938A1 - Method for producing a photocatalytic material - Google Patents

Method for producing a photocatalytic material

Info

Publication number
EP2675938A1
EP2675938A1 EP12709913.3A EP12709913A EP2675938A1 EP 2675938 A1 EP2675938 A1 EP 2675938A1 EP 12709913 A EP12709913 A EP 12709913A EP 2675938 A1 EP2675938 A1 EP 2675938A1
Authority
EP
European Patent Office
Prior art keywords
substrate
glass
photocatalytic layer
titanium oxide
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12709913.3A
Other languages
German (de)
French (fr)
Inventor
Rosiana Aguiar
Bernard Nghiem
Anne Durandeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2675938A1 publication Critical patent/EP2675938A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45595Atmospheric CVD gas inlets with no enclosed reaction chamber
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface

Definitions

  • the invention relates to the field of materials comprising a substrate provided with a photocatalytic coating, in particular intended to be incorporated in photovoltaic cells.
  • Titanium oxide is first of all photocatalytic, that is to say that it is capable under suitable radiation, generally ultraviolet radiation, of catalyzing the degradation reactions of organic compounds. This photocatalytic activity is initiated within the layer by the creation of an electron-hole pair.
  • the titanium dioxide has an extremely pronounced hydrophilicity when it is irradiated by this same type of radiation. This strong hydrophilicity, sometimes called “super-hydrophilic", allows the evacuation of mineral soils under water runoff, for example rainwater.
  • Such materials, in particular used to form glazings are described, for example, in application EP-A-0 850 204.
  • Titanium dioxide has a high refractive index, which results in important light reflection factors for substrates with photocatalytic coatings. This is a disadvantage in the field of glazing for the building, and especially in the field of photovoltaic cells, for which it is necessary to maximize the transmission to the photovoltaic material, and thus minimize any absorption and reflection of solar radiation.
  • photovoltaic cells with a photocatalytic coating, because the deposition of dirt is able to reduce the efficiency of photovoltaic cells of ⁇ 6 "6 per year.This figure is obviously dependent on the geographical location cells.
  • the aim of the invention is to propose a process for obtaining photocatalytic materials based on titanium oxide having low light reflection factors that can be used in photovoltaic cells.
  • the object of the invention is a process for obtaining a material comprising a substrate coated on at least a part of at least one of its faces with a titanium oxide-based photocatalytic layer, said method comprising depositing said photocatalytic layer by a chemical vapor deposition process wherein a gaseous mixture comprising at least one titanium alkoxide and at least one compound comprising at least one carboxyl or ester group is contacted with said substrate.
  • the substrate is typically a glass sheet, especially extra-clear glass, as described in more detail in the following text.
  • the photocatalytic layer generally has an index of refraction of at most 1.9 for a wavelength of 550 nm.
  • the refractive index can be measured by variable angle spectroscopic ellipsometry (VASE).
  • the subject of the invention is also a process for obtaining a photovoltaic cell comprising a front-face substrate which is a substrate coated on at least a part of at least one of its faces with a photocatalytic layer based on titanium oxide, said process comprising a step of depositing said photocatalytic layer by a chemical vapor deposition process in which a gaseous mixture comprising at least one titanium alkoxide and at least one compound comprising at least one carboxyl or ester group is contacted with said substrate.
  • the substrate is typically a glass sheet, especially extra-clear glass, as described in more detail in the following text.
  • Front face substrate means the substrate which is the first crossed by solar radiation.
  • the photocatalytic coating is then generally positioned outward, so that the self-cleaning effect can be usefully demonstrated.
  • the subject of the invention is also a material that can be obtained by the process according to the invention.
  • the various preferred features described below are therefore characteristics applicable both to the processes according to the invention and to the material according to the invention.
  • Chemical vapor deposition is a pyrolysis process in which a gaseous mixture comprising a carrier gas and diluted precursors is contacted with a hot substrate, the precursors decomposing and / or chemically reacting under the effect of the heat of the substrate.
  • the carrier gas is generally nitrogen.
  • a carboxyl group is a -CO 2 H group, especially present in carboxylic acids.
  • An ester group is a -CO 2 R group, where R is a carbon group.
  • the inventors have been able to demonstrate that the addition of a compound comprising at least one carboxyl or ester group, in particular a carboxylic acid, made it possible to obtain layers having reduced light reflection factors, in certain cases of the order those of the uncoated substrate, or even lower thereto, without appreciable loss of photocatalytic activity. It is thus possible to obtain, by a CVD process, titanium oxide layers having both a satisfactory photocatalytic activity and a low reflection.
  • the substrate is a glass or glass-ceramic sheet.
  • the sheet may be flat or curved, and have any type of dimensions, especially greater than 1 meter.
  • the glass is preferably of the silico-soda-lime type, but other types of glasses, such as borosilicate glasses or aluminosilicates can also be used.
  • the glass may be clear or extra-clear, or tinted, for example blue, green, amber, bronze or gray.
  • the thickness of the glass sheet is typically between 0.5 and 19 mm, especially between 2 and 12 mm, or even between 4 and 8 mm.
  • the glass is preferably extra-clear; it preferably comprises a total weight content of iron oxide of at most 150 ppm, or even 100 ppm and even 90 ppm, or even a redox of at most 0.2, especially 0.1 and even a zero redox.
  • Redox means the ratio of the ferrous iron oxide content by weight (expressed as form FeO) and the total weight content of iron oxide (expressed as Fe 2 O 3 ).
  • Chemical vapor deposition is achieved by contacting the gas mixture with the generally hot substrate.
  • the carrier gas, the or each titanium alkoxide and the or each compound comprising at least one carboxyl or ester group are mixed to form the gaseous mixture, which is passed through a nozzle in the deposition chamber. , close to the substrate, generally at a distance from the substrate ranging from 1 to 10 mm, in particular from 3 to 6 mm.
  • the carrier gas and the titanium alkoxide are mixed to form a first gaseous mixture
  • the carrier gas and the compound comprising at least one carboxyl or ester group are mixed to form a second gaseous mixture
  • the first and second gaseous mixtures are each separately passed through a different nozzle in the deposition chamber, thus obtaining the final mixture in the deposition chamber.
  • the second embodiment has the advantage of avoiding any premature reaction between the titanium alkoxide and the compound comprising at least one carboxyl or ester group, which could lead to plugging of the nozzle.
  • the mixture of the carrier gas with the precursor is generally carried out by passing the carrier gas through the liquid precursor at a suitable temperature for driving the precursor in gaseous form.
  • the or each nozzle is fixed and located above the moving substrate.
  • the chemical vapor deposition is preferably carried out at atmospheric pressure on a heated substrate at a temperature ranging from 400 to 700 ° C., preferably from 500 to 600 ° C., or even from 500 to 560 ° C. . Temperatures ranging from 500 to 560 ° C make it possible to maximize the crystallization in anatase form of the titanium oxide and therefore the photocatalytic activity.
  • the chemical vapor deposition is advantageously implemented on a flat glass production line, in particular on a glass floating line, when the glass substrate is within the floating device (that is to say in the enclosure where the glass ribbon is poured onto the molten tin), or when the glass substrate is between said float device and the lehr, or when the glass substrate is within the lehr.
  • the deposition is implemented when the glass substrate is between the float device and the lehr, this zone corresponding to the preferred deposition temperature ranges.
  • the lehr is the enclosure in which the glass is annealed in order to evacuate any mechanical stresses within it.
  • the deposit can also be implemented on a flat glass manufacturing line by rolling between metal or ceramic rolls, a method used to form textured glass sheets in particular.
  • the chemical vapor deposition can be implemented in recovery, that is to say in a dedicated and decoupled installation of the flat glass manufacturing line.
  • the titanium alkoxide is preferably chosen from the compounds of formula Ti (OR 1 ) (OR 2 ) (OR 3 ) (OR 4 ), each radical R 1 being a linear or branched alkyl radical, identical or different, in C 1 C12.
  • R 1 radicals are identical and are linear or branched C 2 -C 5 alkyls.
  • a particularly preferred titanium alkoxide is titanium tetraisopropoxide.
  • Other interesting alkoxides are tetraethoxytitanium and tetrabutoxytitanium.
  • the compound comprising at least one carboxyl or ester group is preferably a carboxylic acid or an ester.
  • the carboxylic acid is preferably chosen from the compounds of formula X 1 X 2 X 3 C-CO 2 H, where X 1 , X 2 , X 3 , which are identical or different, are chosen from the hydrogen atom, the carbon atoms and halogen, especially fluorine, chlorine or bromine, or straight or branched carbon chains, saturated or unsaturated, optionally hydroxylated, in particular alkyl radicals C 1 -C 6, particularly C 1 -C 3.
  • the carboxylic acid can be weak or strong, preferably low.
  • the constancy of acidity Ka at 25 ° C. of the carboxylic acid is preferably less than or equal to 5.10 -5 , especially 2.10 -5 .
  • the fluorine is probably evacuated with the carrier gas, without being incorporated in the layer.
  • the titanium alkoxide and the compound comprising at least one carboxyl or ester group are preferably the only precursors used for CVD deposition. Good results have been obtained when the alkoxide is titanium tetraisopropoxide and the compound comprising at least one carboxyl or ester group is ethanoic acid or trifluoroacetic acid.
  • the ratio R between the molar flow rate of compound comprising at least one carboxyl or ester group and the molar flow rate of titanium alkoxide is preferably at least 0.1%, in particular 0.2% or even 0.3%, or even 0.5%.
  • the ratio R is preferably at most 80%, especially 70% or 60%. In some embodiments, this ratio R is at most 5%, especially 3%, or even 2%.
  • Low R ratios do not sufficiently reduce the refractive index of the photocatalytic layer and therefore the light reflection factor. R ratios too high are accompanied by a decrease in photocatalytic activity and degradation of crystallization of titanium oxide.
  • the substrate is coated on all of one of its faces of the photocatalytic layer based on titanium oxide.
  • the photocatalytic layer based on titanium oxide is preferably composed of titanium oxide, in particular crystallized in anatase form, which is the most active form. A mixture of anatase and rutile phases is also conceivable.
  • the titanium oxide may be pure or doped, for example by transition metals (especially W, Mo, V, Nb), lanthanide ions or noble metals (such as, for example, platinum or palladium), or by nitrogen, carbon or fluorine atoms. These different forms of doping make it possible to increase the activity photocatalytic material, either to shift the gap of titanium oxide to wavelengths near the visible range or included in this area.
  • the photocatalytic layer based on titanium oxide does not contain nitrogen atoms, as this contributes to reducing the optical transmission of the layer.
  • the titanium oxide layer is normally the last layer of the stack deposited on the substrate, ie the layer of the stack farthest from the substrate. It is important that the photocatalytic layer is in contact with the atmosphere and its pollutants. It is however possible to deposit on the photocatalytic layer a very thin layer, generally discontinuous or porous. For example, it may be a layer based on noble metals intended to increase the photocatalytic activity of the material. It may also be thin hydrophilic layers, for example silica, as taught in applications WO 2005/040058 or WO 2007/045805.
  • One or more layers acting as a barrier to the migration of alkaline ions from the substrate can be deposited by CVD before the photocatalytic layer. They are preferably based on or consisting of an oxide, a nitride, an oxynitride or an oxycarbide of at least one of the following elements: Si, Al, Sn, Zn, Zr. Of these materials, silica or silicon oxycarbide are preferred because of their ease of deposition by the CVD technique.
  • One or more low emissivity layers such as fluorine or antimony doped tin oxide layers.
  • Such layers make it possible to limit the condensation (fog and / or frost) on the surface of the multiple glazings, in particular when they are inclined (for example when they are integrated with roofs or verandas).
  • the presence of a low-emissivity layer in face 1 makes it possible to limit heat exchanges with the outside during the night, and thus to maintain a surface temperature of the glass greater than the dew point. The appearance of mist or frost is therefore strongly reduced or completely eliminated.
  • the photocatalytic layer can be deposited directly on the doped tin oxide layer. The latter usually imposes the less active rutile form, but the crystallization in the gas phase obtained by the process according to the invention overcomes this disadvantage.
  • An additional advantage of the process according to the invention in this case is therefore to allow the deposition of layers in which the titanium oxide is crystallized in the anatase form (the most active) and deposited directly on a tin oxide layer dope.
  • the thickness of the photocatalytic layer is preferably between 2 and 1000 nanometers, in particular between 5 and 150 nm, or even between 8 and 50 nm. A high thickness makes it possible to increase the photocatalytic activity of the layer but increases the luminous reflection.
  • the material (obtained) according to the invention preferably has a light transmittance (within the meaning of ISO 9050: 2003) of at least 80%, even 85% and even 90%.
  • the material (obtained) according to the invention preferably has a light reflection factor (within the meaning of ISO 9050: 2003) of at most 15%, preferably 10%, in particular 8%.
  • the light reflection factor of the material may therefore be less than or equal to that of the uncoated substrate.
  • the invention also relates to a glazing unit or a photovoltaic cell comprising at least one material according to the invention.
  • the glazing may be single or multiple (in particular double or triple), in the sense that it may comprise several glass sheets leaving a space filled with gas.
  • the glazing can also be laminated and / or tempered and / or hardened and / or curved.
  • the other face of the material according to the invention may be coated with another functional layer or a stack of functional layers. It may especially be another photocatalytic layer. It may also be layers or stacks with thermal function, in particular antisolar or low-emissive, for example stacks comprising a silver layer protected by dielectric layers. It may still be a mirror layer, in particular based on silver. It can finally be a lacquer or an enamel intended to opacify the glazing to make a facade facing panel called lighter. The lighter is arranged on the facade alongside the non - opaque glazings and allows to obtain facades entirely glazed and homogeneous from the aesthetic point of view.
  • the material according to the invention is preferably the front face substrate of the cell, that is to say the one which is the first crossed by solar radiation.
  • the photocatalytic coating is then positioned outwards, so that the self-cleaning effect can be useful.
  • the glass sheet may advantageously be coated, on the face opposite to the face provided with the coating according to the invention, with at least one transparent and electroconductive thin layer, for example based on Sn0 2 : F, Sn0 2 : Sb, ZnO: Al, ZnO: Ga.
  • These layers may be deposited on the substrate by various deposition methods, such as chemical vapor deposition (CVD) or sputtering deposition, in particular assisted by magnetic field (magnetron process).
  • CVD chemical vapor deposition
  • sputtering deposition in particular assisted by magnetic field (magnetron process).
  • magnetic field magnetic field
  • halide or organometallic precursors are vaporized and transported by a carrier gas to the surface of the hot glass, where they decompose under the effect of heat to form the thin layer.
  • the advantage of the CVD process is that it is possible to implement it in the glass sheet forming process, especially when it is a floating process. It is thus possible to deposit the layer when the glass sheet is on the tin bath, at the exit of the tin bath, or in the lehr, that is to say when the glass sheet is annealed to eliminate mechanical stress.
  • the glass sheet coated with a transparent and electroconductive layer may in turn be coated with an amorphous or polycrystalline silicon semiconductor, with chalcopyrites (in particular of the CIS-CuInSe2 or CIGS-CuInGaSe2 type) or with CdTe for to form a photovoltaic cell.
  • chalcopyrites in particular of the CIS-CuInSe2 or CIGS-CuInGaSe2 type
  • CdTe for to form a photovoltaic cell.
  • Another advantage of the CVD process resides in obtaining a rougher roughness, which generates a phenomenon of trapping of light, which increases the amount of photons absorbed by the semiconductor.
  • the surface of the glass sheet may be textured, for example have patterns (especially pyramid), as described in WO 03/046617, WO 2006/134300, WO 2006/134301 or WO 2007/015017. These textures are generally obtained using a glass forming by rolling.
  • the photovoltaic cell is typically formed by joining the front-face substrate (obtained according to the invention) and a back-face substrate, for example by means of a lamination interlayer made of thermosetting plastics material, in particular PVB, PU or EVA. Between the front and rear face substrates are arranged electrodes, generally in the form of thin layers, surrounding a material with photovoltaic properties.
  • the backside substrate is typically a glass sheet.
  • the material with photovoltaic properties may be solid or in thin film form, depending on the technology, on the front-face substrate or on the back-face substrate.
  • the material with photovoltaic properties is amorphous or polycrystalline silicon or CdTe, it is generally deposited on the front face substrate, framed by electroconductive thin layers and transparent, typically based on tin oxide (doped with fluorine or with antimony), zinc oxide (doped with aluminum or gallium), or with tin oxide and indium (ITO).
  • the material with photovoltaic properties is based on Cu (In, Ga) Se2 (CIGS), it is generally deposited on a layer molybdenum conductor, itself deposited on the back-face substrate.
  • (In, Ga) we mean that the material can comprise In and / or Ga, according to any possible combinations of contents: Ini_ x Ga x , x being able to take any value of 0 to 1. In particular, x can be zero (material of type CIS).
  • Figures 1 to 3 are scanning electron micrographs.
  • TiPT titanium tetraisopropoxide
  • TFA carboxyl group or ester trifluoroacetic acid
  • the ratio R between the flow rate of TFA and the flow rate of TiPT varies from 0 (Comparative Example C1 without the use of a carboxylic acid) to 3%.
  • the gas mixture is carried out by passing nitrogen (carrier gas) in TiPT heated to 70-80 ° C, and in TFA at 5 ° C.
  • the temperature of the substrate is 570 ° C during deposition.
  • the deposit is carried out at atmospheric pressure.
  • Table 1 summarizes the results obtained, indicating for each example: the ratio R between the flow rate of TFA and the TiPT flow rate, expressed in%, the photocatalytic activity, denoted Kb, measured in the following manner: an aqueous solution of methylene blue is placed in contact in a sealed cell with the substrate coated (the latter forming the bottom of the cell). After exposure to ultraviolet radiation for 30 minutes, the concentration of methylene blue is evaluated by a light transmission measurement.
  • the value of photocatalytic activity expressed in gl -1 ⁇ min -1, corresponding to the decrease in the concentration of methylene blue per unit of time of exposure, the light reflection in the sense of ISO 9050: 2003, and rated RL expressed in%, the refractive index at 550 nm, denoted n, measured by variable angle spectroscopic ellipsometry, the mass quantity of T1O 2 in the layer, denoted "q T1O 2 ", evaluated by means of a microprobe, expressed in ⁇ g / cm 2 , the mean size of the anatase grains, evaluated by atomic force microscopy (AFM), the roughness Ra, also evaluated by atomic force microscopy (AFM) on a surface of 1 * 1 ⁇ 2 .
  • AFM atomic force microscopy
  • Ra atomic force microscopy
  • Figures 1, 2 and 3 are scanning electron micrographs illustrating the morphology of the layers of the respective examples Cl, 3 and 5.
  • a layer of silica with a thickness of 80 nm is deposited on extra-clear silico-soda-lime glass substrates 3 mm thick sold by the applicant under the name SGG Diamant Solar®. thickness, layer acting as a barrier to the migration of alkali.
  • titanium oxide precursor titanium tetraisopropoxide TiPT
  • acetic acid carboxyl group ethanoic acid
  • the ratio R between the molar flow rates of acetic acid and TiPT varies from 0 (Comparative Example C2) to 80%.
  • the gas mixture is made by passing nitrogen (carrier gas) in TiPT heated to 85 ° C, and in ethanoic acid at 25 ° C.
  • the temperature of the substrate is 520 ° C during the deposition.
  • the deposit is carried out at atmospheric pressure.
  • the substrates obtained are particularly suitable for serving as substrates for the front face of a photovoltaic cell.
  • Their transmission TSQE (corresponding to the convolution of the transmission spectrum, the solar emission spectrum, and the quantum efficiency of the photovoltaic material) for an amorphous silicon photovoltaic material thus passes from 83.9% for Example C2 to 88.2% for Example 9.
  • a layer of silica with a thickness of 80 nm is deposited on 3 mm thick extra-clear silico-soda-lime glass substrates marketed by the applicant under the name "SGG Diamant Solar®". thickness, layer acting as a barrier to the migration of alkali.
  • a layer of titanium oxide is deposited on each substrate, using as titanium oxide precursor titanium tetraisopropoxide (TiPT) and as a compound comprising at least one carboxyl group trifluoroacetic acid (TFA) .
  • the ratio R between the molar flow rates of trifluoroacetic acid and TiPT varies from 0 (comparative example C3) to 90%.
  • the gas mixture is made by passing nitrogen (carrier gas) in TiPT heated at 85 ° C, and in TFA at 15 ° C.
  • the temperature of the substrate is 520 ° C during the deposition.
  • the deposit is carried out at atmospheric pressure.
  • the substrates obtained are particularly suitable for serving as substrates for the front face of a photovoltaic cell.
  • Their transmission TSQE (corresponding to the convolution of the transmission spectrum, the solar emission spectrum, and the quantum efficiency of the photovoltaic material) for an amorphous silicon photovoltaic material thus passes from 83.9% for the example C3 to 88.6% for Example 12.

Abstract

The invention relates to a method for producing a material including a substrate, at least one of the surfaces of which is coated with a titanium-oxide photocatalytic layer, said method including depositing said photocatalytic layer by a chemical vapour deposition method in which a gaseous mixture, including at least one titanium alkoxide and at least one compound including at least one carboxyl or ester group, is placed in contact with said substrate.

Description

PROCEDE D ' OBTENTION D ' UN MATERIAU PHOTOCATALYTIQUE  METHOD FOR OBTAINING PHOTOCATALYTIC MATERIAL
L' invention se rapporte au domaine des matériaux comprenant un substrat muni d'un revêtement photocatalytique, en particulier destinés à être incorporés dans des cellules photovoltaïques . The invention relates to the field of materials comprising a substrate provided with a photocatalytic coating, in particular intended to be incorporated in photovoltaic cells.
Les revêtements photocatalytiques, notamment ceux à base de dioxyde de titane, sont connus pour conférer des propriétés autonettoyantes et antisalissure aux substrats qui en sont munis. Deux propriétés sont à l'origine de ces caractéristiques avantageuses. L'oxyde de titane est tout d'abord photocatalytique, c'est-à-dire qu'il est capable sous un rayonnement adéquat, généralement un rayonnement ultraviolet, de catalyser les réactions de dégradation de composés organiques. Cette activité photocatalytique est initiée au sein de la couche par la création d'une paire électron-trou. En outre, le dioxyde de titane présente une hydrophilie extrêmement prononcée lorsqu' il est irradié par ce même type de rayonnement. Cette forte hydrophilie, parfois qualifiée de « super-hydrophilie », permet l'évacuation des salissures minérales sous ruissellement d'eau, par exemple d'eau de pluie. De tels matériaux, en particulier utilisés pour former des vitrages, sont décrits par exemple dans la demande EP-A-0 850 204.  Photocatalytic coatings, in particular those based on titanium dioxide, are known to impart self-cleaning and anti-fouling properties to the substrates which are provided with them. Two properties are at the origin of these advantageous characteristics. Titanium oxide is first of all photocatalytic, that is to say that it is capable under suitable radiation, generally ultraviolet radiation, of catalyzing the degradation reactions of organic compounds. This photocatalytic activity is initiated within the layer by the creation of an electron-hole pair. In addition, the titanium dioxide has an extremely pronounced hydrophilicity when it is irradiated by this same type of radiation. This strong hydrophilicity, sometimes called "super-hydrophilic", allows the evacuation of mineral soils under water runoff, for example rainwater. Such materials, in particular used to form glazings, are described, for example, in application EP-A-0 850 204.
Le dioxyde de titane possède un fort indice de réfraction, qui entraîne des facteurs de réflexion lumineuse importants pour les substrats munis de revêtements photocatalytiques. Cela constitue un inconvénient dans le domaine des vitrages pour le bâtiment, et surtout dans le domaine des cellules photovoltaïques, pour lesquelles il est nécessaire de maximiser la transmission vers le matériau photovoltaïque, et donc de minimiser toute absorption et réflexion du rayonnement solaire. Il existe pourtant un besoin de munir les cellules photovoltaïques d'un revêtement photocatalytique, car le dépôt de salissures est capable de réduire l'efficacité des cellules photovoltaïques d' ΘΠνΐΓΟΠ 6"6 par an. Ce chiffre est bien évidemment dépendant de la localisation géographique des cellules. Titanium dioxide has a high refractive index, which results in important light reflection factors for substrates with photocatalytic coatings. This is a disadvantage in the field of glazing for the building, and especially in the field of photovoltaic cells, for which it is necessary to maximize the transmission to the photovoltaic material, and thus minimize any absorption and reflection of solar radiation. However, there is a need to provide photovoltaic cells with a photocatalytic coating, because the deposition of dirt is able to reduce the efficiency of photovoltaic cells of ΘΠνΐΓΟΠ 6 "6 per year.This figure is obviously dependent on the geographical location cells.
Pour diminuer le facteur de réflexion lumineuse, il est possible de réduire l'épaisseur des revêtements photocatalytiques, mais cela se fait au détriment de leur activité photocatalytique.  To reduce the light reflection factor, it is possible to reduce the thickness of the photocatalytic coatings, but this is done to the detriment of their photocatalytic activity.
L' invention a pour but de proposer un procédé permettant d'obtenir des matériaux photocatalytiques à base d'oxyde de titane possédant de faibles facteurs de réflexion lumineuse, utilisables dans des cellules photovoltaïques .  The aim of the invention is to propose a process for obtaining photocatalytic materials based on titanium oxide having low light reflection factors that can be used in photovoltaic cells.
A cet effet, l'invention a pour objet un procédé d'obtention d'un matériau comprenant un substrat revêtu sur au moins une partie d'au moins une de ses faces d'une couche photocatalytique à base d'oxyde de titane, ledit procédé comprenant le dépôt de ladite couche photocatalytique par un procédé de dépôt chimique en phase vapeur dans lequel un mélange gazeux comprenant au moins un alcoxyde de titane et au moins un composé comprenant au moins un groupe carboxyle ou ester est mis en contact avec ledit substrat.  For this purpose, the object of the invention is a process for obtaining a material comprising a substrate coated on at least a part of at least one of its faces with a titanium oxide-based photocatalytic layer, said method comprising depositing said photocatalytic layer by a chemical vapor deposition process wherein a gaseous mixture comprising at least one titanium alkoxide and at least one compound comprising at least one carboxyl or ester group is contacted with said substrate.
Le substrat est typiquement une feuille de verre, notamment de verre extra-clair, tel que décrit plus en détail dans la suite du texte.  The substrate is typically a glass sheet, especially extra-clear glass, as described in more detail in the following text.
Grâce à l'utilisation de ce procédé, la couche photocatalytique présente généralement un indice de réfraction d'au plus 1,9 pour une longueur d'onde de 550 nm. L'indice de réfraction peut être mesuré par ellipsométrie spectroscopique à angle variable (VASE) . Through the use of this method, the photocatalytic layer generally has an index of refraction of at most 1.9 for a wavelength of 550 nm. The refractive index can be measured by variable angle spectroscopic ellipsometry (VASE).
L'invention a aussi pour objet un procédé d'obtention d'une cellule photovoltaïque comprenant un substrat de face avant qui est un substrat revêtu sur au moins une partie d'au moins une de ses faces d'une couche photocatalytique à base d'oxyde de titane, ledit procédé comprenant une étape de dépôt de ladite couche photocatalytique par un procédé de dépôt chimique en phase vapeur dans lequel un mélange gazeux comprenant au moins un alcoxyde de titane et au moins un composé comprenant au moins un groupe carboxyle ou ester est mis en contact avec ledit substrat.  The subject of the invention is also a process for obtaining a photovoltaic cell comprising a front-face substrate which is a substrate coated on at least a part of at least one of its faces with a photocatalytic layer based on titanium oxide, said process comprising a step of depositing said photocatalytic layer by a chemical vapor deposition process in which a gaseous mixture comprising at least one titanium alkoxide and at least one compound comprising at least one carboxyl or ester group is contacted with said substrate.
Le substrat est typiquement une feuille de verre, notamment de verre extra-clair, tel que décrit plus en détail dans la suite du texte.  The substrate is typically a glass sheet, especially extra-clear glass, as described in more detail in the following text.
Par « substrat de face avant », on entend le substrat qui est le premier traversé par le rayonnement solaire. Le revêtement photocatalytique est alors généralement positionné vers l'extérieur, afin que l'effet autonettoyant puisse se manifester utilement.  "Front face substrate" means the substrate which is the first crossed by solar radiation. The photocatalytic coating is then generally positioned outward, so that the self-cleaning effect can be usefully demonstrated.
L'invention a également pour objet un matériau susceptible d'être obtenu par le procédé selon l'invention. Les différentes caractéristiques préférées décrites ci- après sont donc des caractéristiques applicables tant aux procédés selon l'invention qu'au matériau selon 1 ' invention .  The subject of the invention is also a material that can be obtained by the process according to the invention. The various preferred features described below are therefore characteristics applicable both to the processes according to the invention and to the material according to the invention.
Le dépôt chimique en phase vapeur, généralement désigné sous son acronyme anglais CVD, est un procédé de pyrolyse dans lequel un mélange gazeux comprenant un gaz porteur et des précurseurs dilués est mis en contact avec un substrat chaud, les précurseurs se décomposant et/ou réagissant chimiquement sous l'effet de la chaleur du substrat. Le gaz porteur est généralement de l'azote. Chemical vapor deposition, generally referred to by its acronym CVD, is a pyrolysis process in which a gaseous mixture comprising a carrier gas and diluted precursors is contacted with a hot substrate, the precursors decomposing and / or chemically reacting under the effect of the heat of the substrate. The carrier gas is generally nitrogen.
Un groupe carboxyle est un groupe -CO2H, présent notamment dans les acides carboxyliques . Un groupe ester est un groupe -CO2R, où R est un groupe carboné. A carboxyl group is a -CO 2 H group, especially present in carboxylic acids. An ester group is a -CO 2 R group, where R is a carbon group.
Les inventeurs ont pu mettre en évidence que l'ajout d'un composé comprenant au moins un groupe carboxyle ou ester, notamment un acide carboxylique, permettait l'obtention de couches possédant des facteurs de réflexion lumineuse réduits, dans certains cas de l'ordre de ceux du substrat non revêtu, voire inférieurs à ceux-ci, sans perte appréciable d'activité photocatalytique . Il est ainsi possible d'obtenir par un procédé de CVD des couches d'oxyde de titane présentant à la fois une activité photocatalytique satisfaisante et une faible réflexion.  The inventors have been able to demonstrate that the addition of a compound comprising at least one carboxyl or ester group, in particular a carboxylic acid, made it possible to obtain layers having reduced light reflection factors, in certain cases of the order those of the uncoated substrate, or even lower thereto, without appreciable loss of photocatalytic activity. It is thus possible to obtain, by a CVD process, titanium oxide layers having both a satisfactory photocatalytic activity and a low reflection.
De préférence, le substrat est une feuille de verre ou de vitrocéramique . La feuille peut être plane ou bombée, et présenter tout type de dimensions, notamment supérieures à 1 mètre. Le verre est de préférence de type silico-sodo- calcique, mais d'autres types de verres, comme les verres borosilicatés ou les aluminosilicates peuvent aussi être utilisés. Le verre peut être clair ou extra-clair, ou encore teinté, par exemple en bleu, vert, ambre, bronze ou gris. L'épaisseur de la feuille de verre est typiquement comprise entre 0,5 et 19 mm, notamment entre 2 et 12 mm, voire entre 4 et 8 mm. Dans le domaine des cellules photovoltaïques , le verre est de préférence extra-clair ; il comprend de préférence une teneur pondérale totale en oxyde de fer d'au plus 150 ppm, voire 100 ppm et même 90 ppm, voire un rédox d'au plus 0,2, notamment 0,1 et même un rédox nul. On entend par « rédox » le rapport entre la teneur pondérale en oxyde de fer ferreux (exprimé sous la forme FeO) et la teneur pondérale totale en oxyde de fer (exprimé sous la forme Fe2Û3) . Preferably, the substrate is a glass or glass-ceramic sheet. The sheet may be flat or curved, and have any type of dimensions, especially greater than 1 meter. The glass is preferably of the silico-soda-lime type, but other types of glasses, such as borosilicate glasses or aluminosilicates can also be used. The glass may be clear or extra-clear, or tinted, for example blue, green, amber, bronze or gray. The thickness of the glass sheet is typically between 0.5 and 19 mm, especially between 2 and 12 mm, or even between 4 and 8 mm. In the field of photovoltaic cells, the glass is preferably extra-clear; it preferably comprises a total weight content of iron oxide of at most 150 ppm, or even 100 ppm and even 90 ppm, or even a redox of at most 0.2, especially 0.1 and even a zero redox. "Redox" means the ratio of the ferrous iron oxide content by weight (expressed as form FeO) and the total weight content of iron oxide (expressed as Fe 2 O 3 ).
Le dépôt chimique en phase vapeur est réalisé en mettant en contact le mélange gazeux avec le substrat, généralement chaud. Selon un premier mode de réalisation, le gaz porteur, le ou chaque alcoxyde de titane et le ou chaque composé comprenant au moins un groupe carboxyle ou ester sont mélangés pour former le mélange gazeux, lequel est conduit à travers une buse dans la chambre de dépôt, à proximité du substrat, généralement à une distance du substrat allant de 1 à 10 mm, notamment de 3 à 6 mm. Selon un deuxième mode de réalisation, le gaz porteur et 1' alcoxyde de titane sont mélangés pour former un premier mélange gazeux, le gaz porteur et le composé comprenant au moins un groupe carboxyle ou ester sont mélangés pour former un deuxième mélange gazeux, puis le premier et le deuxième mélange gazeux sont chacun conduits séparément à travers une buse différente dans la chambre de dépôt, le mélange final étant donc obtenu dans la chambre de dépôt. Le deuxième mode de réalisation présente l'avantage d'éviter toute réaction prématurée entre l' alcoxyde de titane et le composé comprenant au moins un groupe carboxyle ou ester, qui pourrait entraîner une obturation de la buse.  Chemical vapor deposition is achieved by contacting the gas mixture with the generally hot substrate. According to a first embodiment, the carrier gas, the or each titanium alkoxide and the or each compound comprising at least one carboxyl or ester group are mixed to form the gaseous mixture, which is passed through a nozzle in the deposition chamber. , close to the substrate, generally at a distance from the substrate ranging from 1 to 10 mm, in particular from 3 to 6 mm. According to a second embodiment, the carrier gas and the titanium alkoxide are mixed to form a first gaseous mixture, the carrier gas and the compound comprising at least one carboxyl or ester group are mixed to form a second gaseous mixture, then the first and second gaseous mixtures are each separately passed through a different nozzle in the deposition chamber, thus obtaining the final mixture in the deposition chamber. The second embodiment has the advantage of avoiding any premature reaction between the titanium alkoxide and the compound comprising at least one carboxyl or ester group, which could lead to plugging of the nozzle.
Le mélange du gaz porteur avec le précurseur (le composé comprenant au moins un groupe carboxyle ou ester ou 1' alcoxyde de titane) se fait généralement en faisant passer le gaz porteur au travers du précurseur liquide à une température adéquate permettant l'entraînement du précurseur sous forme gazeuse.  The mixture of the carrier gas with the precursor (the compound comprising at least one carboxyl or ester group or the titanium alkoxide) is generally carried out by passing the carrier gas through the liquid precursor at a suitable temperature for driving the precursor in gaseous form.
En règle générale, la ou chaque buse est fixe et située au-dessus du substrat en mouvement. Le dépôt chimique en phase vapeur est de préférence mis en œuvre à pression atmosphérique sur un substrat chauffé à une température comprise dans une gamme allant de 400 à 700°C, de préférence de 500 à 600°C, voire de 500 à 560 °C. Des températures comprises dans une gamme allant de 500 à 560°C permettent de maximiser la cristallisation sous forme anatase de l'oxyde de titane et donc l'activité photocatalytique . Generally, the or each nozzle is fixed and located above the moving substrate. The chemical vapor deposition is preferably carried out at atmospheric pressure on a heated substrate at a temperature ranging from 400 to 700 ° C., preferably from 500 to 600 ° C., or even from 500 to 560 ° C. . Temperatures ranging from 500 to 560 ° C make it possible to maximize the crystallization in anatase form of the titanium oxide and therefore the photocatalytic activity.
Le dépôt chimique en phase vapeur est avantageusement mis en œuvre sur une ligne de fabrication de verre plat, notamment sur une ligne de flottage de verre, lorsque le substrat de verre est au sein du dispositif de flottage (c'est-à-dire dans l'enceinte où le ruban de verre est déversé sur l'étain fondu), ou lorsque le substrat de verre est entre ledit dispositif de flottage et l'étenderie, ou lorsque le substrat de verre est au sein de l'étenderie. De préférence, le dépôt est mis en œuvre lorsque le substrat de verre est entre le dispositif de flottage et l'étenderie, cette zone correspondant aux gammes de températures de dépôt préférées. L'étenderie est l'enceinte dans lequel le verre est recuit afin d'évacuer toutes contraintes mécaniques en son sein. Le dépôt peut aussi être mis en œuvre sur une ligne de fabrication de verre plat par laminage, entre des rouleaux métalliques ou céramiques, procédé utilisé pour former notamment des feuilles de verre texturé . Alternativement, le dépôt chimique en phase vapeur peut être mis en œuvre en reprise, c'est-à-dire dans une installation dédiée et découplée de la ligne de fabrication du verre plat.  The chemical vapor deposition is advantageously implemented on a flat glass production line, in particular on a glass floating line, when the glass substrate is within the floating device (that is to say in the enclosure where the glass ribbon is poured onto the molten tin), or when the glass substrate is between said float device and the lehr, or when the glass substrate is within the lehr. Preferably, the deposition is implemented when the glass substrate is between the float device and the lehr, this zone corresponding to the preferred deposition temperature ranges. The lehr is the enclosure in which the glass is annealed in order to evacuate any mechanical stresses within it. The deposit can also be implemented on a flat glass manufacturing line by rolling between metal or ceramic rolls, a method used to form textured glass sheets in particular. Alternatively, the chemical vapor deposition can be implemented in recovery, that is to say in a dedicated and decoupled installation of the flat glass manufacturing line.
L'alcoxyde de titane est de préférence choisi parmi les composés de formule Ti (ORi) (OR2) (OR3) (OR4) , chaque radical R± étant un radical alkyle, linéaire ou ramifié, identique ou différent, en C1-C12. De préférence, les radicaux R± sont identiques et sont des alkyles linéaires ou ramifiés en C2-C5. Un alcoxyde de titane particulièrement préféré est le tétraisopropoxyde de titane. D'autres alcoxydes intéressants sont le tétraéthoxytitane et le tétrabutoxytitane . The titanium alkoxide is preferably chosen from the compounds of formula Ti (OR 1 ) (OR 2 ) (OR 3 ) (OR 4 ), each radical R 1 being a linear or branched alkyl radical, identical or different, in C 1 C12. Preferably, R 1 radicals are identical and are linear or branched C 2 -C 5 alkyls. A particularly preferred titanium alkoxide is titanium tetraisopropoxide. Other interesting alkoxides are tetraethoxytitanium and tetrabutoxytitanium.
Le composé comprenant au moins un groupe carboxyle ou ester est de préférence un acide carboxylique ou un ester. L'acide carboxylique est de préférence choisi parmi les composés de formule X1X2X3C-CO2H, où Xi, X2, X3, identiques ou différents, sont choisis parmi l'atome d'hydrogène, les atomes d'halogènes, notamment le fluor, le chlore ou le brome, ou les chaînes carbonées linéaires ou ramifiées, saturées ou insaturées, éventuellement hydroxylées, notamment des radicaux alkyles en C1-C6, notamment en C1-C3. L'acide carboxylique peut être faible ou fort, de préférence faible. La constance d'acidité Ka à 25°C de l'acide carboxylique est de préférence inférieure ou égale à 5.10-5, notamment 2.10-5. The compound comprising at least one carboxyl or ester group is preferably a carboxylic acid or an ester. The carboxylic acid is preferably chosen from the compounds of formula X 1 X 2 X 3 C-CO 2 H, where X 1 , X 2 , X 3 , which are identical or different, are chosen from the hydrogen atom, the carbon atoms and halogen, especially fluorine, chlorine or bromine, or straight or branched carbon chains, saturated or unsaturated, optionally hydroxylated, in particular alkyl radicals C 1 -C 6, particularly C 1 -C 3. The carboxylic acid can be weak or strong, preferably low. The constancy of acidity Ka at 25 ° C. of the carboxylic acid is preferably less than or equal to 5.10 -5 , especially 2.10 -5 .
L'acide carboxylique est de préférence choisi parmi l'acide éthanoïque (Ka = 1,73.10~5), l'acide propanoïque (Ka = 1,38.10"5), l'acide butanoïque (Ka = 1,48.10"5) et l'acide pentanoïque (Ka = 1,44.10~5). The carboxylic acid is preferably chosen from ethanoic acid (Ka = 1.73 × 10 -5 ), propanoic acid (Ka = 1.38 × 10 -5 ) and butanoic acid (Ka = 1.48 × 10 -5 ). and pentanoic acid (Ka = 1.44 × 10 -5 ).
L'acide carboxylique peut également être choisi parmi l'acide hydroxyacétique (Ka = 1,5.10~4), l'acide trifluoroacétique (Ka = 1,0), l'acide monofluoroacétique (Ka = 2, 5.10~3), l'acide difluoroacétique . The carboxylic acid may also be chosen from hydroxyacetic acid (Ka = 1.5 × 10 -4 ), trifluoroacetic acid (Ka = 1.0) and monofluoroacetic acid (Ka = 2.10 × 3 ). difluoroacetic acid.
Malgré la présence de fluor dans ces derniers acides, aucune trace de fluor n'est détectée au sein de la couche par spectrométrie photoélectronique X (XPS) . Le fluor est donc probablement évacué avec le gaz porteur, sans être incorporé dans la couche. L'alcoxyde de titane et le composé comprenant au moins un groupe carboxyle ou ester sont de préférence les seuls précurseurs utilisés pour le dépôt CVD. De bons résultats ont été obtenus lorsque l'alcoxyde est le tétraisopropoxyde de titane et le composé comprenant au moins un groupe carboxyle ou ester est l'acide éthanoïque ou l'acide trifluoroacétique . Despite the presence of fluorine in these latter acids, no trace of fluorine is detected within the layer by X-ray photoelectron spectrometry (XPS). The fluorine is probably evacuated with the carrier gas, without being incorporated in the layer. The titanium alkoxide and the compound comprising at least one carboxyl or ester group are preferably the only precursors used for CVD deposition. Good results have been obtained when the alkoxide is titanium tetraisopropoxide and the compound comprising at least one carboxyl or ester group is ethanoic acid or trifluoroacetic acid.
Le rapport R entre le débit molaire de composé comprenant au moins un groupe carboxyle ou ester et le débit molaire d' alcoxyde de titane est de préférence d' au moins 0,1%, notamment 0,2%, voire 0,3% ou même 0,5%. Le rapport R est de préférence d'au plus 80%, notamment 70% ou 60%. Dans certains modes de réalisation, ce rapport R est d' au plus 5% notamment 3%, voire 2%. De faibles rapports R ne permettent pas de diminuer suffisamment l'indice de réfraction de la couche photocatalytique et donc le facteur de réflexion lumineuse. Des rapports R trop élevés s'accompagnent quant à eux d'une baisse de l'activité photocatalytique et d'une dégradation de la cristallisation de l'oxyde de titane.  The ratio R between the molar flow rate of compound comprising at least one carboxyl or ester group and the molar flow rate of titanium alkoxide is preferably at least 0.1%, in particular 0.2% or even 0.3%, or even 0.5%. The ratio R is preferably at most 80%, especially 70% or 60%. In some embodiments, this ratio R is at most 5%, especially 3%, or even 2%. Low R ratios do not sufficiently reduce the refractive index of the photocatalytic layer and therefore the light reflection factor. R ratios too high are accompanied by a decrease in photocatalytic activity and degradation of crystallization of titanium oxide.
De préférence, le substrat est revêtu sur la totalité d'une de ses faces de la couche photocatalytique à base d'oxyde de titane.  Preferably, the substrate is coated on all of one of its faces of the photocatalytic layer based on titanium oxide.
La couche photocatalytique à base d' oxyde de titane est de préférence constituée d'oxyde de titane, notamment cristallisé sous forme anatase, qui est la forme la plus active. Un mélange de phases anatase et rutile est également concevable. L'oxyde de titane peut être pur ou dopé, par exemple par des métaux de transition (notamment W, Mo, V, Nb) , des ions lanthanides ou des métaux nobles (tels que par exemple platine, palladium) , ou encore par des atomes d'azote, de carbone ou de fluor. Ces différentes formes de dopage permettent soit d'augmenter l'activité photocatalytique du matériau, soit de décaler le gap de l'oxyde de titane vers des longueurs d'onde proches du domaine du visible ou comprises dans ce domaine. De préférence, la couche photocatalytique à base d'oxyde de titane ne contient pas d'atomes d'azote, car cela contribue à diminuer la transmission optique de la couche. The photocatalytic layer based on titanium oxide is preferably composed of titanium oxide, in particular crystallized in anatase form, which is the most active form. A mixture of anatase and rutile phases is also conceivable. The titanium oxide may be pure or doped, for example by transition metals (especially W, Mo, V, Nb), lanthanide ions or noble metals (such as, for example, platinum or palladium), or by nitrogen, carbon or fluorine atoms. These different forms of doping make it possible to increase the activity photocatalytic material, either to shift the gap of titanium oxide to wavelengths near the visible range or included in this area. Preferably, the photocatalytic layer based on titanium oxide does not contain nitrogen atoms, as this contributes to reducing the optical transmission of the layer.
La couche à base d' oxyde de titane est normalement la dernière couche de l'empilement déposé sur le substrat, autrement dit la couche de l'empilement la plus éloignée du substrat. Il importe en effet que la couche photocatalytique soit en contact avec l'atmosphère et ses polluants. Il est toutefois possible de déposer sur la couche photocatalytique une très fine couche, généralement discontinue ou poreuse. Il peut par exemple s'agir d'une couche à base de métaux nobles destinée à accroître l'activité photocatalytique du matériau. Il peut encore s'agir de fines couches hydrophiles, par exemple en silice, tel qu'enseigné dans les demandes WO 2005/040058 ou WO 2007/045805.  The titanium oxide layer is normally the last layer of the stack deposited on the substrate, ie the layer of the stack farthest from the substrate. It is important that the photocatalytic layer is in contact with the atmosphere and its pollutants. It is however possible to deposit on the photocatalytic layer a very thin layer, generally discontinuous or porous. For example, it may be a layer based on noble metals intended to increase the photocatalytic activity of the material. It may also be thin hydrophilic layers, for example silica, as taught in applications WO 2005/040058 or WO 2007/045805.
Différentes couches peuvent être déposées, cumulativement ou alternativement, sous la couche à base d' oxyde de titane :  Different layers can be deposited, cumulatively or alternatively, under the titanium oxide layer:
Une ou plusieurs couches faisant office de barrière à la migration des ions alcalins provenant du substrat. De telles couches peuvent être déposées par CVD avant la couche photocatalytique. Elles sont de préférence à base de ou constituées par un oxyde, un nitrure, un oxynitrure ou un oxycarbure de l'un au moins des éléments suivants : Si, Al, Sn, Zn, Zr. Parmi ces matériaux, la silice ou 1' oxycarbure de silicium sont préférés de par leur facilité de dépôt par la technique CVD. Une ou plusieurs couches à faible émissivité, telles que des couches en oxyde d' étain dopé au fluor ou à l'antimoine. De telles couches permettent de limiter la condensation (buée et/ou givre) sur la surface des vitrages multiples, en particulier lorsqu'ils sont inclinés (par exemple lorsqu' ils sont intégrés à des toitures ou des vérandas) . La présence d'une couche bas-émissive en face 1 permet de limiter les échanges de chaleur avec l'extérieur pendant la nuit, et donc de maintenir une température de surface du verre supérieure au point de rosée. L'apparition de buée ou de givre est donc fortement atténuée voire totalement supprimée. La couche photocatalytique peut être déposée directement sur la couche d'oxyde d' étain dopé. Ce dernier impose d'habitude la forme rutile, moins active, mais la cristallisation en phase gazeuse obtenue par le procédé selon l'invention permet de pallier cet inconvénient. Un avantage supplémentaire du procédé selon l'invention dans ce cas est donc de permettre le dépôt de couches dans lesquelles l'oxyde de titane est cristallisé sous la forme anatase (la plus active) et déposé directement sur une couche d'oxyde d' étain dopé. One or more layers acting as a barrier to the migration of alkaline ions from the substrate. Such layers can be deposited by CVD before the photocatalytic layer. They are preferably based on or consisting of an oxide, a nitride, an oxynitride or an oxycarbide of at least one of the following elements: Si, Al, Sn, Zn, Zr. Of these materials, silica or silicon oxycarbide are preferred because of their ease of deposition by the CVD technique. One or more low emissivity layers, such as fluorine or antimony doped tin oxide layers. Such layers make it possible to limit the condensation (fog and / or frost) on the surface of the multiple glazings, in particular when they are inclined (for example when they are integrated with roofs or verandas). The presence of a low-emissivity layer in face 1 makes it possible to limit heat exchanges with the outside during the night, and thus to maintain a surface temperature of the glass greater than the dew point. The appearance of mist or frost is therefore strongly reduced or completely eliminated. The photocatalytic layer can be deposited directly on the doped tin oxide layer. The latter usually imposes the less active rutile form, but the crystallization in the gas phase obtained by the process according to the invention overcomes this disadvantage. An additional advantage of the process according to the invention in this case is therefore to allow the deposition of layers in which the titanium oxide is crystallized in the anatase form (the most active) and deposited directly on a tin oxide layer dope.
L'épaisseur de la couche photocatalytique est de préférence comprise entre 2 et 1000 nanomètres, notamment entre 5 et 150 nm, voire entre 8 et 50 nm. Une épaisseur élevée permet d'accroître l'activité photocatalytique de la couche mais augmente la réflexion lumineuse.  The thickness of the photocatalytic layer is preferably between 2 and 1000 nanometers, in particular between 5 and 150 nm, or even between 8 and 50 nm. A high thickness makes it possible to increase the photocatalytic activity of the layer but increases the luminous reflection.
Le matériau (obtenu) selon l'invention présente de préférence un facteur de transmission lumineuse (au sens de la norme ISO 9050 :2003) d'au moins 80%, voire 85% et même 90%.  The material (obtained) according to the invention preferably has a light transmittance (within the meaning of ISO 9050: 2003) of at least 80%, even 85% and even 90%.
Le matériau (obtenu) selon l'invention présente de préférence un facteur de réflexion lumineuse (au sens de la norme ISO 9050 :2003) d'au plus 15%, de préférence 10%, notamment 8%. Le facteur de réflexion lumineuse du matériau peut donc être inférieur ou égal à celui du substrat non revêtu . The material (obtained) according to the invention preferably has a light reflection factor (within the meaning of ISO 9050: 2003) of at most 15%, preferably 10%, in particular 8%. The light reflection factor of the material may therefore be less than or equal to that of the uncoated substrate.
L'invention a également pour objet un vitrage ou une cellule photovoltaïque comprenant au moins un matériau selon l'invention.  The invention also relates to a glazing unit or a photovoltaic cell comprising at least one material according to the invention.
Le vitrage peut être simple ou multiple (notamment double ou triple) , au sens où il peut comprendre plusieurs feuilles de verre ménageant un espace rempli de gaz. Le vitrage peut également être feuilleté et/ou trempé et/ou durci et/ou bombé.  The glazing may be single or multiple (in particular double or triple), in the sense that it may comprise several glass sheets leaving a space filled with gas. The glazing can also be laminated and / or tempered and / or hardened and / or curved.
L'autre face du matériau selon l'invention, ou le cas échéant une face d'un autre substrat du vitrage multiple, peut être revêtue d'une autre couche fonctionnelle ou d'un empilement de couches fonctionnelles. Il peut notamment s'agir d'une autre couche photocatalytique . Il peut aussi s'agir de couches ou d'empilements à fonction thermique, notamment antisolaires ou bas-émissifs , par exemple des empilements comprenant une couche d'argent protégée par des couches diélectriques. Il peut encore s'agir d'une couche miroir, notamment à base d'argent. Il peut enfin s'agir d'une laque ou d'un émail destinée à opacifier le vitrage pour en faire un panneau de parement de façade appelé allège. L'allège est disposée sur la façade aux côtés des vitrages non opacifiés et permet d' obtenir des façades entièrement vitrées et homogènes du point de vue esthétique.  The other face of the material according to the invention, or possibly a face of another substrate of the multiple glazing, may be coated with another functional layer or a stack of functional layers. It may especially be another photocatalytic layer. It may also be layers or stacks with thermal function, in particular antisolar or low-emissive, for example stacks comprising a silver layer protected by dielectric layers. It may still be a mirror layer, in particular based on silver. It can finally be a lacquer or an enamel intended to opacify the glazing to make a facade facing panel called lighter. The lighter is arranged on the facade alongside the non - opaque glazings and allows to obtain facades entirely glazed and homogeneous from the aesthetic point of view.
Dans la cellule photovoltaïque selon l'invention, le matériau selon l'invention est de préférence le substrat de face avant de la cellule, c'est-à-dire celui qui est le premier traversé par le rayonnement solaire. Le revêtement photocatalytique est alors positionné vers l'extérieur, afin que l'effet autonettoyant puisse se manifester utilement . In the photovoltaic cell according to the invention, the material according to the invention is preferably the front face substrate of the cell, that is to say the one which is the first crossed by solar radiation. The photocatalytic coating is then positioned outwards, so that the self-cleaning effect can be useful.
Pour les applications en tant que cellules photovoltaïques , et afin de maximiser le rendement énergétique de la cellule, plusieurs améliorations peuvent être apportées, cumulativement ou alternativement :  For applications as photovoltaic cells, and in order to maximize the energy efficiency of the cell, several improvements can be made, cumulatively or alternatively:
La feuille de verre peut avantageusement être revêtue, sur la face opposée à la face munie du revêtement selon l'invention, d'au moins une couche mince transparente et électroconductrice, par exemple à base de Sn02:F, Sn02:Sb, ZnO:Al, ZnO:Ga. Ces couches peuvent être déposées sur le substrat par différents procédés de dépôt, tels que le dépôt chimique en phase vapeur (CVD) ou le dépôt par pulvérisation cathodique, notamment assisté par champ magnétique (procédé magnétron) . Dans le procédé CVD, des précurseurs halogénures ou organométalliques sont vaporisés et transportés par un gaz vecteur jusqu'à la surface du verre chaud, où ils se décomposent sous l'effet de la chaleur pour former la couche mince. L'avantage du procédé CVD est qu' il est possible de le mettre en œuvre au sein du procédé de formage de la feuille de verre, notamment lorsqu'il s'agit d'un procédé de flottage. Il est ainsi possible de déposer la couche au moment où la feuille de verre est sur le bain d'étain, à la sortie du bain d'étain, ou encore dans l'étenderie, c'est-à-dire au moment où la feuille de verre est recuite afin d'éliminer les contraintes mécaniques. The glass sheet may advantageously be coated, on the face opposite to the face provided with the coating according to the invention, with at least one transparent and electroconductive thin layer, for example based on Sn0 2 : F, Sn0 2 : Sb, ZnO: Al, ZnO: Ga. These layers may be deposited on the substrate by various deposition methods, such as chemical vapor deposition (CVD) or sputtering deposition, in particular assisted by magnetic field (magnetron process). In the CVD process, halide or organometallic precursors are vaporized and transported by a carrier gas to the surface of the hot glass, where they decompose under the effect of heat to form the thin layer. The advantage of the CVD process is that it is possible to implement it in the glass sheet forming process, especially when it is a floating process. It is thus possible to deposit the layer when the glass sheet is on the tin bath, at the exit of the tin bath, or in the lehr, that is to say when the glass sheet is annealed to eliminate mechanical stress.
La feuille de verre revêtue d'une couche transparente et électroconductrice peut être à son tour revêtue d'un semi-conducteur à base de silicium amorphe ou polycristallin, de chalcopyrites (notamment du type CIS - CuInSe2 ou CIGS - CuInGaSe2) ou de CdTe pour former une cellule photovoltaïque . Dans ce cas, un autre avantage du procédé CVD réside en l'obtention d'une rugosité plus forte, qui génère un phénomène de piégeage de la lumière, lequel augmente la quantité de photons absorbée par le semi-conducteur . - la surface de la feuille de verre peut être texturée, par exemple présenter des motifs (notamment en pyramide), tel que décrit dans les demandes WO 03/046617, WO 2006/134300, WO 2006/134301 ou encore WO 2007/015017. Ces texturations sont en général obtenues à l'aide d'un formage du verre par laminage. The glass sheet coated with a transparent and electroconductive layer may in turn be coated with an amorphous or polycrystalline silicon semiconductor, with chalcopyrites (in particular of the CIS-CuInSe2 or CIGS-CuInGaSe2 type) or with CdTe for to form a photovoltaic cell. In this case, another advantage of the CVD process resides in obtaining a rougher roughness, which generates a phenomenon of trapping of light, which increases the amount of photons absorbed by the semiconductor. - The surface of the glass sheet may be textured, for example have patterns (especially pyramid), as described in WO 03/046617, WO 2006/134300, WO 2006/134301 or WO 2007/015017. These textures are generally obtained using a glass forming by rolling.
La cellule photovoltaïque est typiquement formée en réunissant le substrat de face avant (obtenu selon l'invention) et un substrat de face arrière, par exemple au moyen d'un intercalaire de feuilletage en matière plastique thermodurcissable, notamment en PVB, PU ou EVA. Entre les substrats de face avant et arrière, sont disposées des électrodes, généralement sous forme de couches minces, encadrant un matériau à propriétés photovoltaïques . Le substrat de face arrière est typiquement une feuille de verre.  The photovoltaic cell is typically formed by joining the front-face substrate (obtained according to the invention) and a back-face substrate, for example by means of a lamination interlayer made of thermosetting plastics material, in particular PVB, PU or EVA. Between the front and rear face substrates are arranged electrodes, generally in the form of thin layers, surrounding a material with photovoltaic properties. The backside substrate is typically a glass sheet.
Le matériau à propriétés photovoltaïques peut être massif ou sous forme de couche mince déposée, selon la technologie, sur le substrat de face avant ou sur le substrat de face arrière. Lorsque le matériau à propriétés photovoltaïques est en silicium amorphe ou polycristallin ou en CdTe, il est généralement déposé sur le substrat de face avant, encadré par des couches minces électroconductrices et transparentes, typiquement à base d'oxyde d'étain (dopé au fluor ou à l'antimoine), d'oxyde de zinc (dopé à l'aluminium ou au gallium), ou à base d'oxyde d'étain et d' indium (ITO) . Lorsque le matériau à propriétés photovoltaïques est à base de Cu(In,Ga)Se2 (CIGS) , il est généralement déposé sur une couche conductrice en molybdène, elle-même déposée sur le substrat de face arrière. Par (In, Ga) on entend que le matériau peut comprendre In et/ou Ga, selon toutes combinaisons de teneurs possibles : Ini_xGax, x pouvant prendre toute valeur de 0 à 1. Notamment, x peut être nul (matériau de type CIS) . The material with photovoltaic properties may be solid or in thin film form, depending on the technology, on the front-face substrate or on the back-face substrate. When the material with photovoltaic properties is amorphous or polycrystalline silicon or CdTe, it is generally deposited on the front face substrate, framed by electroconductive thin layers and transparent, typically based on tin oxide (doped with fluorine or with antimony), zinc oxide (doped with aluminum or gallium), or with tin oxide and indium (ITO). When the material with photovoltaic properties is based on Cu (In, Ga) Se2 (CIGS), it is generally deposited on a layer molybdenum conductor, itself deposited on the back-face substrate. By (In, Ga) we mean that the material can comprise In and / or Ga, according to any possible combinations of contents: Ini_ x Ga x , x being able to take any value of 0 to 1. In particular, x can be zero (material of type CIS).
L' invention sera mieux comprise à la lumière des exemples non limitatifs qui suivent, illustrés par les Figure 1 à 3.  The invention will be better understood in the light of the nonlimiting examples which follow, illustrated by FIGS. 1 to 3.
Les Figures 1 à 3 sont des clichés de microscopie électronique à balayage.  Figures 1 to 3 are scanning electron micrographs.
Sur des substrats de verre silico-sodo-calcique extra-clair de 3 mm d'épaisseur commercialisés par la demanderesse sous la dénomination « SGG Diamant® » est déposée une couche de silice de 80 nm d'épaisseur, couche faisant office de barrière à la migration des alcalins.  On 3 mm thick extra-clear silico-soda-lime glass substrates marketed by the Applicant under the name "SGG Diamant®" is deposited a layer of silica 80 nm thick, a layer acting as a barrier to alkaline migration.
Sur chaque substrat est déposée une couche d' oxyde de titane par la technique CVD, en utilisant comme précurseur de l'oxyde de titane le tétraisopropoxyde de titane (TiPT) et comme composé comprenant au moins un groupe carboxyle ou ester l'acide trifluoroacétique (TFA) .  On each substrate is deposited a layer of titanium oxide by the CVD technique, using as titanium oxide precursor titanium tetraisopropoxide (TiPT) and as a compound comprising at least one carboxyl group or ester trifluoroacetic acid ( TFA).
Selon les exemples, le rapport R entre le débit de TFA et le débit de TiPT varie de 0 (exemple comparatif Cl sans utilisation d'acide carboxylique) à 3%.  According to the examples, the ratio R between the flow rate of TFA and the flow rate of TiPT varies from 0 (Comparative Example C1 without the use of a carboxylic acid) to 3%.
Le mélange gazeux est effectué en faisant passer de l'azote (gaz porteur) dans du TiPT chauffé à 70-80°C, et dans du TFA à 5°C.  The gas mixture is carried out by passing nitrogen (carrier gas) in TiPT heated to 70-80 ° C, and in TFA at 5 ° C.
La température du substrat est de 570 °C pendant le dépôt. Le dépôt est réalisé à pression atmosphérique.  The temperature of the substrate is 570 ° C during deposition. The deposit is carried out at atmospheric pressure.
Le tableau 1 ci-après récapitule les résultats obtenus, en indiquant pour chaque exemple : le rapport R entre le débit de TFA et le débit de TiPT, exprimé en %, l'activité photocatalytique, notée Kb, mesurée de la manière suivante : une solution aqueuse de bleu de méthylène est placée en contact dans une cellule étanche avec le substrat revêtu (ce dernier formant le fond de la cellule) . Après exposition à un rayonnement ultraviolet pendant 30 minutes, la concentration de bleu de méthylène est évaluée par une mesure de transmission lumineuse. La valeur d'activité photocatalytique, exprimée en g.l_1.min_1, correspond à la diminution de la concentration en bleu de méthylène par unité de temps d'exposition, la réflexion lumineuse au sens de la norme ISO 9050 :2003, notée RL et exprimée en %, - l'indice de réfraction à 550 nm, noté n, mesuré par ellipsométrie spectroscopique à angle variable, la quantité massique de T1O2 dans la couche, notée « q T1O2 », évaluée au moyen d'une microsonde, exprimée en μg/cm2 , - la taille moyenne des grains d'anatase, évaluée par microscopie à force atomique (AFM) , la rugosité Ra, évaluée également par microscopie à force atomique (AFM) sur une surface de 1*1μη2. Table 1 below summarizes the results obtained, indicating for each example: the ratio R between the flow rate of TFA and the TiPT flow rate, expressed in%, the photocatalytic activity, denoted Kb, measured in the following manner: an aqueous solution of methylene blue is placed in contact in a sealed cell with the substrate coated (the latter forming the bottom of the cell). After exposure to ultraviolet radiation for 30 minutes, the concentration of methylene blue is evaluated by a light transmission measurement. The value of photocatalytic activity, expressed in gl -1 · min -1, corresponding to the decrease in the concentration of methylene blue per unit of time of exposure, the light reflection in the sense of ISO 9050: 2003, and rated RL expressed in%, the refractive index at 550 nm, denoted n, measured by variable angle spectroscopic ellipsometry, the mass quantity of T1O 2 in the layer, denoted "q T1O 2 ", evaluated by means of a microprobe, expressed in μg / cm 2 , the mean size of the anatase grains, evaluated by atomic force microscopy (AFM), the roughness Ra, also evaluated by atomic force microscopy (AFM) on a surface of 1 * 1μη 2 .
Cl 1 2 3 4 5 6Cl 1 2 3 4 5 6
R 0 0.3% 0.7% 1.3% 1.7% 2% 2.7% R 0 0.3% 0.7% 1.3% 1.7% 2% 2.7%
Kb 40 40 40 40 39 40 34Kb 40 40 40 40 39 40 34
RL (%) 11 9,3 8,3 7,8 7,8 7,8 7,5 indice de 2,4 2,1 1, 9 1,4 RL (%) 11 9.3 8.3 7.8 7.8 7.8 7.5 Index 2.4 2.1 2.1 9 1.4
réfraction q Ti02 4,3 2, 6 2,0 2,7 1,2 ^g/cm2 ) taille de 17 20 24 25 refraction q Ti0 2 4.3 2, 6 2.0 2.7 1.2 g / cm 2 ) size 17 20 24 25
grains (nm) grains (nm)
Ra (nm) 0,8 0, 9 1, 6 2,2  Ra (nm) 0.8 0, 9 1, 6 2.2
Tableau 1 Table 1
Les Figures 1, 2 et 3 sont des clichés de microscopie électronique à balayage illustrant la morphologie des couches des exemples respectifs Cl, 3 et 5. Figures 1, 2 and 3 are scanning electron micrographs illustrating the morphology of the layers of the respective examples Cl, 3 and 5.
Dans une deuxième série d'exemples, on dépose sur des substrats de verre silico-sodo-calcique extra-clair de 3 mm d'épaisseur commercialisés par la demanderesse sous la dénomination « SGG Diamant Solar® » une couche de silice de 80 nm d'épaisseur, couche faisant office de barrière à la migration des alcalins.  In a second series of examples, a layer of silica with a thickness of 80 nm is deposited on extra-clear silico-soda-lime glass substrates 3 mm thick sold by the applicant under the name SGG Diamant Solar®. thickness, layer acting as a barrier to the migration of alkali.
Sur chaque substrat est déposée une couche d' oxyde de titane par la technique CVD, en utilisant comme précurseur de l'oxyde de titane le tétraisopropoxyde de titane (TiPT) et comme composé comprenant au moins un groupe carboxyle l'acide éthanoïque (aussi appelé acide acétique) . Selon les exemples, le rapport R entre les débits molaires d'acide acétique et de TiPT varie de 0 (exemple comparatif C2) à 80%. On each substrate is deposited a layer of titanium oxide by the CVD technique, using as titanium oxide precursor titanium tetraisopropoxide (TiPT) and as a compound comprising at least one carboxyl group ethanoic acid (also called acetic acid) . According to the examples, the ratio R between the molar flow rates of acetic acid and TiPT varies from 0 (Comparative Example C2) to 80%.
Le mélange gazeux est effectué en faisant passer de l'azote (gaz porteur) dans du TiPT chauffé à 85°C, et dans l'acide éthanoïque à 25°C.  The gas mixture is made by passing nitrogen (carrier gas) in TiPT heated to 85 ° C, and in ethanoic acid at 25 ° C.
La température du substrat est de 520 °C pendant le dépôt. Le dépôt est réalisé à pression atmosphérique.  The temperature of the substrate is 520 ° C during the deposition. The deposit is carried out at atmospheric pressure.
Le tableau 2 ci-après récapitule les résultats obtenus en termes de réflexion lumineuse.  Table 2 below summarizes the results obtained in terms of light reflection.
Tableau 2  Table 2
Les substrats obtenus sont particulièrement aptes à servir de substrats de face avant d'une cellule photovoltaïque. Leur transmission TSQE (correspondant à la convolution du spectre en transmission, du spectre d'émission solaire, et de l'efficacité quantique du matériau photovoltaïque) pour un matériau photovoltaïque en silicium amorphe passe ainsi de 83,9% pour l'exemple C2 à 88,2% pour l'exemple 9. The substrates obtained are particularly suitable for serving as substrates for the front face of a photovoltaic cell. Their transmission TSQE (corresponding to the convolution of the transmission spectrum, the solar emission spectrum, and the quantum efficiency of the photovoltaic material) for an amorphous silicon photovoltaic material thus passes from 83.9% for Example C2 to 88.2% for Example 9.
Dans une troisième série d'exemples, on dépose sur des substrats de verre silico-sodo-calcique extra-clair de 3 mm d'épaisseur commercialisés par la demanderesse sous la dénomination « SGG Diamant Solar® » une couche de silice de 80 nm d'épaisseur, couche faisant office de barrière à la migration des alcalins. Sur chaque substrat est déposée une couche d' oxyde de titane par la technique CVD, en utilisant comme précurseur de l'oxyde de titane le tétraisopropoxyde de titane (TiPT) et comme composé comprenant au moins un groupe carboxyle l'acide trifluoroacétique (TFA) . In a third series of examples, a layer of silica with a thickness of 80 nm is deposited on 3 mm thick extra-clear silico-soda-lime glass substrates marketed by the applicant under the name "SGG Diamant Solar®". thickness, layer acting as a barrier to the migration of alkali. On each substrate is deposited a layer of titanium oxide by the CVD technique, using as titanium oxide precursor titanium tetraisopropoxide (TiPT) and as a compound comprising at least one carboxyl group trifluoroacetic acid (TFA) .
Selon les exemples, le rapport R entre les débits molaires d'acide trifluoroacétique et de TiPT varie de 0 (exemple comparatif C3) à 90%.  According to the examples, the ratio R between the molar flow rates of trifluoroacetic acid and TiPT varies from 0 (comparative example C3) to 90%.
Le mélange gazeux est effectué en faisant passer de l'azote (gaz porteur) dans du TiPT chauffé à 85°C, et dans le TFA à 15°C.  The gas mixture is made by passing nitrogen (carrier gas) in TiPT heated at 85 ° C, and in TFA at 15 ° C.
La température du substrat est de 520 °C pendant le dépôt. Le dépôt est réalisé à pression atmosphérique.  The temperature of the substrate is 520 ° C during the deposition. The deposit is carried out at atmospheric pressure.
Le tableau 3 ci-après récapitule les résultats obtenus en termes de réflexion lumineuse.  Table 3 below summarizes the results obtained in terms of light reflection.
Tableau 3  Table 3
Les substrats obtenus sont particulièrement aptes à servir de substrats de face avant d'une cellule photovoltaïque . Leur transmission TSQE (correspondant à la convolution du spectre en transmission, du spectre d'émission solaire, et de l'efficacité quantique du matériau photovoltaïque) pour un matériau photovoltaïque en silicium amorphe passe ainsi de 83,9% pour l'exemple C3 à 88,6% pour l'exemple 12. Ces différents résultats montrent que l'ajout d'un composé comprenant au moins un groupe carboxyle ou ester permet de diminuer très significativement la réflexion lumineuse du matériau, jusqu'à atteindre une réflexion inférieure à celle du substrat de verre nu, sans baisse significative de l'activité photocatalytique. The substrates obtained are particularly suitable for serving as substrates for the front face of a photovoltaic cell. Their transmission TSQE (corresponding to the convolution of the transmission spectrum, the solar emission spectrum, and the quantum efficiency of the photovoltaic material) for an amorphous silicon photovoltaic material thus passes from 83.9% for the example C3 to 88.6% for Example 12. These various results show that the addition of a compound comprising at least one carboxyl or ester group makes it possible to very significantly reduce the luminous reflection of the material, until it reaches a reflection lower than that of the bare glass substrate, without a significant decrease in photocatalytic activity.

Claims

REVENDICATIONS
1. Procédé d'obtention d'un matériau comprenant un substrat revêtu sur au moins une partie d' au moins une de ses faces d'une couche photocatalytique à base d'oxyde de titane, ledit procédé comprenant le dépôt de ladite couche photocatalytique par un procédé de dépôt chimique en phase vapeur dans lequel un mélange gazeux comprenant au moins un alcoxyde de titane et au moins un composé comprenant au moins un groupe carboxyle ou ester est mis en contact avec ledit substrat. A method for obtaining a material comprising a substrate coated on at least a portion of at least one of its faces with a titanium oxide-based photocatalytic layer, said method comprising depositing said photocatalytic layer by a chemical vapor deposition process in which a gaseous mixture comprising at least one titanium alkoxide and at least one compound comprising at least one carboxyl or ester group is brought into contact with said substrate.
2. Procédé selon la revendication précédente, tel que le substrat est une feuille de verre ou de vitrocéramique .  2. Method according to the preceding claim, such that the substrate is a glass sheet or glass-ceramic.
3. Procédé selon la revendication précédente, tel que le dépôt chimique en phase vapeur est mis en œuvre à pression atmosphérique sur un substrat chauffé à une température comprise dans une gamme allant de 400 à 700°C, de préférence de 500 à 600°C.  3. Method according to the preceding claim, such that the chemical vapor deposition is carried out at atmospheric pressure on a heated substrate at a temperature ranging from 400 to 700 ° C, preferably from 500 to 600 ° C. .
4. Procédé selon la revendication précédente, tel que le dépôt chimique en phase vapeur est mis en œuvre sur une ligne de flottage de verre, lorsque le substrat de verre est au sein du dispositif de flottage, ou lorsque le substrat de verre est entre ledit dispositif de flottage et l'étenderie, ou lorsque le substrat de verre est au sein de 1 ' étenderie .  4. Method according to the preceding claim, such that the chemical vapor deposition is implemented on a glass floating line, when the glass substrate is within the float device, or when the glass substrate is between said float device and the lehr, or where the glass substrate is within the lehr.
5. Procédé selon l'une des revendications précédentes, tel que l' alcoxyde de titane est choisi parmi les composés de formule Ti (ORi) (OR2) (OR3) (OR4) , chaque radical R± étant un radical alkyle, linéaire ou ramifié, identique ou différent, en C1-C12. 5. Method according to one of the preceding claims, such that the titanium alkoxide is chosen from compounds of formula Ti (ORi) (OR 2 ) (OR 3 ) (OR 4 ), each radical R ± is an alkyl radical, linear or branched, identical or different, C 1 -C 1 2.
6. Procédé selon la revendication précédente, tel que l'alcoxyde de titane est 1 ' isopropoxyde de titane.  6. Process according to the preceding claim, such that the titanium alkoxide is titanium isopropoxide.
7. Procédé selon l'une des revendications précédentes, tel que le composé comprenant au moins un groupe carboxyle est choisi parmi les composés de formule X1X2X3C-CO2H, où Xi, X2, X3, identiques ou différents, sont choisis parmi l'atome d'hydrogène, les atomes d'halogènes, notamment le fluor, le chlore ou le brome, ou les chaînes carbonées linéaires ou ramifiées, saturées ou insaturées, éventuellement hydroxylées, notamment des radicaux alkyles en C1-C6, notamment en C1-C3. 7. Method according to one of the preceding claims, such that the compound comprising at least one carboxyl group is chosen from compounds of formula X 1 X 2 X 3 C-CO2H, where X 1 , X 2 , X 3 , which are identical or different, are chosen. among the hydrogen atom, the halogen atoms, in particular fluorine, chlorine or bromine, or the linear or branched, saturated or unsaturated, optionally hydroxylated carbon chains, in particular C 1 -C 6 alkyl radicals, in particular in C 1 -C 3 .
8. Procédé selon la revendication précédente, tel que le composé comprenant au moins un groupe carboxyle est l'acide trifluoroacétique .  8. Method according to the preceding claim, such that the compound comprising at least one carboxyl group is trifluoroacetic acid.
9. Procédé selon la revendication 7, tel que le composé comprenant au moins un groupe carboxyle est choisi parmi l'acide éthanoïque, l'acide propanoïque, l'acide butanoïque et l'acide pentanoïque.  9. The method of claim 7, wherein the compound comprising at least one carboxyl group is selected from ethanoic acid, propanoic acid, butanoic acid and pentanoic acid.
10. Procédé selon l'une des revendications précédentes, tel que la couche photocatalytique à base d'oxyde de titane est constituée d'oxyde de titane, notamment cristallisé sous forme anatase.  10. Method according to one of the preceding claims, such that the photocatalytic layer based on titanium oxide is made of titanium oxide, in particular crystallized in anatase form.
11. Procédé selon l'une des revendications précédentes, tel que la couche photocatalytique à base d'oxyde de titane ne contient pas d'atomes d'azote.  11. Method according to one of the preceding claims, such that the photocatalytic layer based on titanium oxide does not contain nitrogen atoms.
12. Procédé selon l'une des revendications précédentes, tel que la couche photocatalytique présente un indice de réfraction d'au plus 1,9 pour une longueur d'onde de 550 nm. 12. Method according to one of the preceding claims, such that the photocatalytic layer has a refractive index of at most 1.9 for a wavelength of 550 nm.
13. Procédé selon l'une des revendications précédentes, tel que le matériau présente un facteur de réflexion lumineuse, au sens de la norme ISO 9050 :2003, d'au plus 10%, notamment 8%. 13. Method according to one of the preceding claims, such that the material has a light reflection factor, within the meaning of ISO 9050: 2003, of at most 10%, especially 8%.
14. Procédé d'obtention d'une cellule photovoltaïque comprenant un substrat de face avant qui est un substrat revêtu sur au moins une partie d' au moins une de ses faces d'une couche photocatalytique à base d'oxyde de titane, ledit procédé comprenant une étape de dépôt de ladite couche photocatalytique par un procédé de dépôt chimique en phase vapeur dans lequel un mélange gazeux comprenant au moins un alcoxyde de titane et au moins un composé comprenant au moins un groupe carboxyle ou ester est mis en contact avec ledit substrat.  14. A method for obtaining a photovoltaic cell comprising a front-face substrate which is a substrate coated on at least a part of at least one of its faces with a titanium oxide-based photocatalytic layer, said method comprising a step of depositing said photocatalytic layer by a chemical vapor deposition process in which a gaseous mixture comprising at least one titanium alkoxide and at least one compound comprising at least one carboxyl or ester group is brought into contact with said substrate .
15. Matériau susceptible d'être obtenu selon le procédé de l'une des revendications 1 à 13.  15. Material obtainable by the method of one of claims 1 to 13.
16. Vitrage ou cellule photovoltaïque comprenant au moins un matériau selon la revendication précédente.  16. Glazing or photovoltaic cell comprising at least one material according to the preceding claim.
EP12709913.3A 2011-02-16 2012-02-15 Method for producing a photocatalytic material Withdrawn EP2675938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1151250A FR2971519A1 (en) 2011-02-16 2011-02-16 METHOD FOR OBTAINING PHOTOCATALYTIC MATERIAL
PCT/FR2012/050328 WO2012110746A1 (en) 2011-02-16 2012-02-15 Method for producing a photocatalytic material

Publications (1)

Publication Number Publication Date
EP2675938A1 true EP2675938A1 (en) 2013-12-25

Family

ID=45873153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12709913.3A Withdrawn EP2675938A1 (en) 2011-02-16 2012-02-15 Method for producing a photocatalytic material

Country Status (4)

Country Link
EP (1) EP2675938A1 (en)
CN (1) CN103370441B (en)
FR (1) FR2971519A1 (en)
WO (1) WO2012110746A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521405B (en) * 2013-12-18 2015-12-02 Dublin Inst Of Technology A surface coating
EP3431455A1 (en) * 2017-07-20 2019-01-23 AGC Glass Europe Glass with easy maintenance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463403A1 (en) * 2010-12-10 2012-06-13 LG Electronics Inc. Product having functional layer and method for fabricating the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738813B1 (en) 1995-09-15 1997-10-17 Saint Gobain Vitrage SUBSTRATE WITH PHOTO-CATALYTIC COATING
JP2002187719A (en) * 2000-12-19 2002-07-05 Central Glass Co Ltd Method of forming titanium dioxide coating film
FR2832811B1 (en) 2001-11-28 2004-01-30 Saint Gobain TRANSPARENT TEXTURED PLATE WITH HIGH LIGHT TRANSMISSION
GB0217553D0 (en) * 2002-07-30 2002-09-11 Sheel David W Titania coatings by CVD at atmospheric pressure
FR2861385B1 (en) 2003-10-23 2006-02-17 Saint Gobain SUBSTRATE, IN PARTICULAR GLASS SUBSTRATE, CARRYING AT LEAST ONE PHOTOCATALYTIC LAYER STACK WITH THE HETEROEPITAXIAL GROWTH LAYER OF THE LAYER
DE102005027737B4 (en) 2005-06-16 2013-03-28 Saint-Gobain Glass Deutschland Gmbh Use of a transparent disc with a three-dimensional surface structure as a cover plate for components for the use of sunlight
DE102005027799B4 (en) 2005-06-16 2007-09-27 Saint-Gobain Glass Deutschland Gmbh Method for producing a transparent pane with a surface structure and apparatus for carrying out the method
FR2889525A1 (en) 2005-08-04 2007-02-09 Palumed Sa NOVEL POLYQUINOLINE DERIVATIVES AND THEIR THERAPEUTIC USE.
US7955687B2 (en) 2005-10-21 2011-06-07 Saint-Gobain Glass France Antifouling material and production method thereof
EP2111480A2 (en) * 2006-12-29 2009-10-28 3M Innovative Properties Company Method of making inorganic or inorganic/organic hybrid films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463403A1 (en) * 2010-12-10 2012-06-13 LG Electronics Inc. Product having functional layer and method for fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012110746A1 *

Also Published As

Publication number Publication date
FR2971519A1 (en) 2012-08-17
CN103370441A (en) 2013-10-23
WO2012110746A1 (en) 2012-08-23
CN103370441B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
EP2598455B1 (en) Glazing panel
EP2438024B1 (en) Method for depositing a thin film
CA2806269C (en) Method for producing a material including a substrate provided with a coating
EP2822909B1 (en) Anti-condensation glazing
EP2961711B1 (en) Substrate coated with a low-emissivity coating
EP2475626A2 (en) Material and glazing comprising said material
EP2523919B1 (en) Photocatalytic material and glass sheet or photovoltaic cell including said material
FR3022539A1 (en) ANTICONDENSATION GLAZING
US20130025672A1 (en) Glass substrate coated with layers having improved mechanical strength
WO2011006905A1 (en) Photocatalytic material
EP2406196A1 (en) Thin film deposition method
FR2670199A1 (en) METHOD OF FORMING ALUMINUM OXIDE LAYER ON GLASS, PRODUCT OBTAINED AND USE THEREOF IN CONDUCTIVE LAYER GLAZING
WO2013038104A1 (en) Photocatalytic material and glazing or photovoltaic cell comprising said material
EP2675938A1 (en) Method for producing a photocatalytic material
WO2021123618A1 (en) Photocatalytic glazing comprising a titanium nitride-based layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170503