EP2650527B1 - Device for injecting fuel into a combustion chamber - Google Patents

Device for injecting fuel into a combustion chamber Download PDF

Info

Publication number
EP2650527B1
EP2650527B1 EP13003438.2A EP13003438A EP2650527B1 EP 2650527 B1 EP2650527 B1 EP 2650527B1 EP 13003438 A EP13003438 A EP 13003438A EP 2650527 B1 EP2650527 B1 EP 2650527B1
Authority
EP
European Patent Office
Prior art keywords
jet
nozzle
channels
fan
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13003438.2A
Other languages
German (de)
French (fr)
Other versions
EP2650527A1 (en
Inventor
Arthur Handtmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KW Technologie GmbH and Co KG
Original Assignee
KW Technologie GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KW Technologie GmbH and Co KG filed Critical KW Technologie GmbH and Co KG
Publication of EP2650527A1 publication Critical patent/EP2650527A1/en
Application granted granted Critical
Publication of EP2650527B1 publication Critical patent/EP2650527B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices

Definitions

  • the invention relates to a device for injecting fuel into a combustion chamber, in particular for injecting fuel into a cylinder of an internal combustion engine according to the preamble of claim 1.
  • Injection devices in internal combustion engines have been known for a long time. So be in the pamphlets DE 369 670 or DE 10 2006 041 476 A1 Injectors are described in which two or more jets are generated in an injection nozzle, which intersect in the combustion chamber. The purpose of this arrangement is that the high velocity fuel jets collide in the combustion chamber, causing extremely intense atomization of the fuel.
  • This type of injector was, as from the document DE 44 07 360 A1 emerges, later evolved.
  • a corresponding injection nozzle with fan-shaped jet is further developed in that the jet can be rotated in the combustion chamber, so that the injected fuel quantity can be distributed to the desired amount of air.
  • a better distribution of the fuel is possible by twisting a fan beam, but this is a corresponding time required.
  • For optimal engine operation is a short and complete Combustion advantageous to use the resulting increase in pressure as efficiently as possible.
  • the object of the invention is therefore to propose a device for injecting fuel, by means of which an improved droplet size distribution and / or fuel distribution in the combustion chamber is possible.
  • a device is characterized in that the jet channels are arranged distributed over the peripheral surface of a nozzle body, and that the fan levels of the multi-jet nozzles are aligned transversely and / or inclined to the geometric axis of the nozzle body, wherein the leadership of the jet channels is such that these are at an angle relative to the main axis of the injection device, so that the spray zone generated by fan nozzles is designed pyramidal.
  • a baffle zone according to the invention is already present when two or more fuel jets only touch or overlap in some regions, which already partly causes the inventive effect.
  • a fine atomization causes a rapid evaporation of the fuel with a largely homogeneous fuel-air mixture ratio.
  • the fine atomization provides a large surface area of the liquid fuel which is advantageous for such evaporation.
  • the large surface area is also advantageous when the ignition has already taken place, since even with any existing liquid surface of fuel droplets, the combustion proceeds considerably more effectively with a correspondingly large surface area.
  • the combustion chamber can be spatially defined and sprayed in a short time, so that in a correspondingly small time interval, a good fuel air distribution in the combustion chamber is achieved.
  • multi-jet nozzles form a fan beam which spans substantially at the angle at which the partial beams impinge on one another.
  • colliding occurs a fine atomization, wherein the propagation direction of the fuel droplets almost completely away from the nozzle, which in turn is advantageous for a combustion process, since thus a load on the nozzles by soot or the like particles that may arise during combustion, is avoided .
  • a very flat fan beam can be formed by a multi-jet nozzle, whose extension, e.g. as angular expansion, in the fan plane defined by the two fuel jets is significantly larger than in the transverse direction to this fan level.
  • This circumstance can be advantageously used to selectively fill a shallow combustion chamber with a fuel mist.
  • With appropriate arrangement of the multi-jet nozzles can be achieved in a sense a nearly disc-shaped fuel distribution with very fine atomization. This is particularly advantageous in reciprocating engines, which have such a disc-shaped combustion chamber at the top dead center of the lifting movement.
  • any other fuel distribution can also be achieved by appropriate arrangement of the fan levels.
  • a fan level may also be parallel to the cylinder axis or to a Be aligned center axis of an injector. Even inclined fan levels in oblique angle arrangements are possible.
  • different nozzle openings and the penetration depth of the fuel can be influenced in the combustion chamber.
  • different multi-jet nozzles with different nozzle openings can also be used, as are multiple jet nozzles which have jet-dependent different nozzle openings.
  • an injection device is provided with a nozzle chamber common to three or more multiple jet nozzles, from which the jet channels of the three or more multiple jet nozzles emanate.
  • a nozzle chamber common to three or more multiple jet nozzles, from which the jet channels of the three or more multiple jet nozzles emanate.
  • a closure for the separation of the jet channels of the fuel supply is provided. This allows clocked operation of the injector in a compact design.
  • the nozzle chamber is formed with a closure element as a closable blind hole, wherein the jet channels in the flow direction behind the closure element pass through the wall of the nozzle chamber.
  • the jet channels are distributed over the peripheral surface of the nozzle chamber in order to achieve a corresponding good spatial distribution of the spray region of the fuel.
  • slit-shaped jet channels are also conceivable which produce a rather three-dimensional spray pattern, for the production of a flat spray pattern, however, the use of round beams, which are to be produced by beam channels with a round cross section, is recommended.
  • the multiple jet nozzles are arranged so that they are distributed substantially uniformly over an angle of 360 °.
  • a flat cylindrical combustion chamber can be sprayed out well.
  • predetermined free spaces are recessed from the spray area of the multi-jet nozzles.
  • This can be advantageous, for example, in the area of inlet or outlet valves or also in the region of a spark plug in order to protect these components against contamination, in particular against coking or sooting.
  • the recess from the spray area can by appropriate spatial arrangement of the Multiple jet nozzles are achieved. Also by different angles of the jet channels of a multi-jet nozzles, a certain area can be excluded from the spray area.
  • the angle between the flow channels of a multi-jet nozzle which at the same time forms the impact angle (for example as an angle between two jets) under which the fuel jets produced thereby collide, is preferably chosen to be greater than 10 ° or 20 °.
  • a particularly good spray pattern has at impact angles between 30 ° and 50 °, z. B. 40 °.
  • the impact angle can be adapted to the desired fuel distribution. If, for example, a greater penetration depth is desired in the combustion chamber, smaller impact angles can be selected. On the other hand, a larger impact angle gives a wider fan beam.
  • the distance between the beams to each other and the impact angle, the distance of the baffle zone, d. H. of the place where the rays collide at the impact angle are set to the nozzle body.
  • the injection device according to the invention is well suited for operating pressure differences between the high-pressure side in the interior of the nozzle chamber and the low-pressure side outside greater than 100 bar, preferably greater than 150 bar.
  • the desired spray range is formed with a dynamics and atomization that is well suited for operation in an internal combustion engine.
  • the distribution and the fineness of the fuel atomization of a device according to the invention can be used even with smaller pressure differences.
  • the injection device according to the invention is integrated in an advantageous manner in a so-called injector, which can be mounted as a unit to combustion devices.
  • injectors can be mounted, for example, in the cylinder head of Hübkolbenmotoren. They are preferably electronically controllable in order to carry out the fuel metering in the desired amount in the required time sequence.
  • such injectors are connected to a common pressure line (common rail). In principle, however, they can also be provided individually with a corresponding pressure generator (pump / nozzle).
  • the invention is basically usable in a variety of combustion processes. These may require continuous or discontinuous combustion. Continuous combustion would be conceivable, for example, when used in turbines or heating burners.
  • the arrangement and orientation of the multi-jet nozzles can vary.
  • the fan levels of three or more multiple jet nozzles can also be aligned with each other inclined.
  • the invention is used in clocked combustion devices, in which the good, spatially defined and quickly established fuel distribution at a high Zerstäubungsgrad is of particular use.
  • a disc-shaped fuel distribution in the flat combustion chamber at top dead center of the reciprocating desirable is usually a disc-shaped fuel distribution in the flat combustion chamber at top dead center of the reciprocating desirable.
  • a plurality of multi-jet nozzles are advantageously arranged so that they spray parallel to the main plane of the combustion chamber in the assembled state of the injectors.
  • the jet channels relative to the axis of the injector or the fuel pressure chamber can also be inclined, so that the emission in the combustion chamber again takes place largely parallel to the main plane of the combustion chamber.
  • the injection device 1 according to Fig. 1 comprises a substantially cylindrical injector head 2 with a truncated cone 3 for cross-sectional tapering at the outlet end of the injection device 1, to which a dome-shaped nozzle body 4 connects, which forms a nozzle chamber in its interior.
  • the nozzle body 4 is hollow for this purpose and comprises jet channels, which are described in more detail below.
  • the injection device 1 is also formed round and centric of a major axis H.
  • angular recesses 5 in the nozzle body 4 can be seen in which jet channels 6 open.
  • the angular recesses 5 serve to provide a surface arranged at right angles to the respective exit surface for drilling round beam channels 6, 7. This is particularly advantageous when the beam channels 6, 7 are mechanically drilled.
  • the diameters of the bores for the jet channels 6, 7 are preferably selected to be clearly ⁇ 500 ⁇ m, for example ⁇ 150 ⁇ m, preferably in the range of 100 ⁇ m.
  • Such jet channels offer among those in internal combustion engines Ruling operating conditions a good distribution and atomization of the fuel.
  • two beam channels 6, 7 are arranged at an angle ⁇ to each other.
  • the vertex S of this angle ⁇ defines the impingement zone of a multiple jet nozzle 8 formed from two jet channels 6, 7.
  • Such a configuration of jet channels 6, 7 results in a fan jet 9, the geometry thereof, behind the vertex S or behind the impingement zone S in the jet direction is essentially given by the rectilinear extension of the beam channels 6, 7.
  • a nozzle with more than two jets for example a triple-jet nozzle, could be used in which three or more jets converge in a common vertex S.
  • a third ray could be directed to the vertex S.
  • the cross sections of the jet channels (6, 7) are chosen equal in the illustrated embodiment for all multi-jet nozzles 8. However, this can also be varied.
  • the cross sections of various flow channels 6, 7 of a multi-jet nozzle 8 can also be chosen differently, as are the cross sections of jet channels 6, 7 of different multi-jet nozzles 8.
  • the impact angle ⁇ which at the same time forms the angle between the two beams 6, 7 of a double-jet nozzle and defines the plane of the fan beam 9, should not be too great be chosen small. Experiments have yielded good results with angles> 10 ° or> 20 °, preferably> 30 ° and ideally around 40 °.
  • Fig. 5 For example, four double jet nozzles 8 lie in a plane corresponding to the sectional plane V Fig. 4 equivalent. Another four double-jet nozzles 8 are arranged in a plane corresponding to the sectional plane VI in Fig. 4 equivalent.
  • the fan levels are also at an angle ⁇ (see Fig. 4 ) is arranged to the main axis H with injection device 1, so that the fan plane or the flat spray pattern, which is generated by the double jet nozzles 8, is also inclined to the main axis H.
  • see Fig. 4
  • the exact geometric configuration depends, inter alia, on the installation position of an injector head 2 in the respective combustion chamber.
  • the use of different ⁇ -angle is conceivable, as for example, based on the angle ⁇ 1 and ⁇ 2 in FIG. 8a is shown.
  • double jet nozzles 8 in two different, offset by the offset or distance A planes V, VI mounted, ie they are arranged transversely to the fan plane of the fan beams 9.
  • a larger number of double-jet nozzles can be circumferentially distributed without the jet channels 6, 7 meet in the wall of the nozzle body 4.
  • a substantially flat spray pattern is generated by the totality of all double-jet nozzles 8. If necessary, but by a plurality of such levels and / or by a larger offset A and a more extensive in the axial direction, z. B. columnar spray pattern can be generated.
  • Fig. 7 shows one of the Fig. 3 corresponding representation of the device 1, wherein additionally an injector needle 10 is provided as a closure element.
  • the Injektornadel 10 sits on a valve seat 11 which is mounted in the transition of the nozzle body 4 to the truncated cone 3.
  • the injector needle 10 thus seals the nozzle body 4 with respect to the injector head 2.
  • a blind hole in this embodiment, one speaks of a so-called blind hole nozzle, as in other expression in Fig. 8a is shown.
  • a blind hole In a blind hole, a blind hole is closed by a closure element 12, wherein the jet channels 13 remain open with respect to the interior 14 of the nozzle body.
  • the interior 14 of the nozzle body forms a certain dead volume.
  • an injection device 1 according to the invention can also be designed as a so-called seat hole nozzle, as in Fig. 8b shown.
  • the closure element 12 closes immediately the jet channels 13, which accordingly open in the region of the valve seat 15.
  • a more uniform injection behavior can be realized in the embodiment as a blind-hole nozzle, which is particularly important for the micro-quantity metering in the pre- and post-injections of internal combustion engines.
  • a seat-hole nozzle an uneven spray pattern can occur with small strokes, which is due to production-related tolerances.
  • a seat hole nozzle can also provide good results.
  • the seat hole nozzle offers the advantage over the blind hole nozzle of a smaller dead volume.
  • the dead volume by the arrangement and shape of the closure element, for. B. the Injektornadel 10 can be influenced.
  • the injector needle 10 is designed so that it minimizes the dead volume in the region of the nozzle body in the closed state.
  • the leadership of the beam channels 13 is such that they are slightly opposite to the main axis H at an angle. This has the consequence that the spray zone generated by fan nozzles is not flat, but slightly pyramid-shaped. This is intended according to the invention.
  • each narrow narrow zones 15 limit in which no or little fuel is sprayed.
  • the geometry of the spray pattern can be designed defined by arrangement and design of the double jet nozzles 8.
  • a smaller impact angle in a double jet nozzle for example, a certain free zone 15 can be increased.
  • the free zone 15 can also be designed.
  • an entire fan jet 9 can be recessed to save at this point, for example, an inlet or outlet valve or a spark plug from the spray area.
  • FIG. 9 spray pattern shown is particularly suitable for use in a reciprocating engine.
  • a cylinder 16 and the associated piston 17 of a reciprocating engine shown schematically.
  • the piston 17 is at top dead center.
  • the cylinder head is not shown to release the view into the cut cylinder 16.
  • the cylinder head would close the combustion chamber 18 at the level of the sealing surface 19, so that the injector 20 projects through the cylinder head into the combustion chamber 18.
  • FIG. 10 spray pattern shown corresponds to the spray pattern according to Fig. 9 , as for example, by an injection device according to the Fig. 1 to 6 is achievable.
  • the injector 20 projects centrally into the cylinder 16 in parallel and concentric manner.
  • the injector 20 may be inclined to the main axis of the cylinder 16 are introduced into the combustion chamber, wherein a corresponding inclination of the fan planes of the double jet nozzles 8 is possible to produce a transverse to the main axis of the cylinder 16 spray pattern.
  • the angle would be ⁇ , as in Fig. 4 is drawn, deviating from the right angle to choose.
  • the spray pattern can be adapted to the respective combustion chamber of the combustion device.
  • Essential for the invention is the fact that with multiple, simultaneously acted multi-jet nozzles, in particular double jet nozzles on the one hand excellent atomization with the smallest droplets and the associated large surface area of the fuel can be achieved, at the same time an excellent adaptation to the geometry of the combustion chamber and thus a very uniform and fast distribution of the fuel in the combustion chamber is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zum Einspritzen von Brennstoff in einen Brennraum, insbesondere zum Einspritzen von Kraftstoff in einen Zylinder eines Verbrennungsmotors nach dem Oberbegriff des Anspruchs 1.The invention relates to a device for injecting fuel into a combustion chamber, in particular for injecting fuel into a cylinder of an internal combustion engine according to the preamble of claim 1.

Einspritzvorrichtungen in Verbrennungskraftmaschinen sind seit langer Zeit bekannt. So werden in den Druckschriften DE 369 670 oder DE 10 2006 041 476 A1 Einspritzvorrichtungen beschrieben, bei denen in einer Einspritzdüse zwei oder mehrere Strahlen erzeugt werden, die sich im Verbrennungsraum kreuzen. Der Sinn dieser Anordnung liegt darin, dass die mit hoher Geschwindigkeit austretenden Brennstoffstrahlen im Verbrennungsraum aufeinanderprallen, wodurch eine äußerst innige Zerstäubung des Brennstoffs herbeigeführt wird.Injection devices in internal combustion engines have been known for a long time. So be in the pamphlets DE 369 670 or DE 10 2006 041 476 A1 Injectors are described in which two or more jets are generated in an injection nozzle, which intersect in the combustion chamber. The purpose of this arrangement is that the high velocity fuel jets collide in the combustion chamber, causing extremely intense atomization of the fuel.

Diese Art der Einspritzdüse wurde, wie aus der Druckschrift DE 44 07 360 A1 hervorgeht, später weiterentwickelt. In dieser Druckschrift wird eine entsprechende Einspritzdüse mit fächerförmigem Strahl dadurch weitergebildet, dass der Strahl im Brennraum gedreht werden kann, so dass sich die eingespritzte Kraftstoffmenge auf die gewünschte Luftmenge verteilen kann. Zwar ist durch das Verdrehen eines Fächerstrahls eine bessere Verteilung des Kraftstoffs möglich, hierzu wird jedoch eine entsprechende Zeit benötigt. Für einen optimalen Motorbetrieb ist jedoch eine kurze und vollständige Verbrennung von Vorteil, um den dadurch bedingten Druckanstieg möglichst effizient nutzen zu können.This type of injector was, as from the document DE 44 07 360 A1 emerges, later evolved. In this document, a corresponding injection nozzle with fan-shaped jet is further developed in that the jet can be rotated in the combustion chamber, so that the injected fuel quantity can be distributed to the desired amount of air. Although a better distribution of the fuel is possible by twisting a fan beam, but this is a corresponding time required. For optimal engine operation, however, is a short and complete Combustion advantageous to use the resulting increase in pressure as efficiently as possible.

Aufgabe der Erfindung ist es daher, eine Vorrichtung zum Einspritzen von Brennstoff vorzuschlagen, mittels der eine verbesserte Tropfengrößenverteilung und/oder Brennstoffverteilung im Brennraum möglich ist.The object of the invention is therefore to propose a device for injecting fuel, by means of which an improved droplet size distribution and / or fuel distribution in the combustion chamber is possible.

Diese Aufgabe wird durch eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 durch dessen kennzeichnende Merkmale gelöst.This object is achieved by a device according to the preamble of claim 1 by its characterizing features.

Dementsprechend zeichnet sich eine erfindungsgemäße Vorrichtung dadurch aus, dass die Strahlkanäle über die Umfangsfläche eines Düsenkörpers verteilt angeordnet sind, und dass die Fächerebenen der Mehrfachstrahldüsen quer und/oder geneigt zur geometrischen Achse des Düsenkörpers ausgerichtet sind, wobei die Führung der Strahlkanäle derart ist, dass diese gegenüber der Hauptachse der Einspritzvorrichtung unter einem Winkel stehen, sodass die durch Fächerdüsen erzeugte Sprühzone pyramidenförmig ausgestaltet ist.Accordingly, a device according to the invention is characterized in that the jet channels are arranged distributed over the peripheral surface of a nozzle body, and that the fan levels of the multi-jet nozzles are aligned transversely and / or inclined to the geometric axis of the nozzle body, wherein the leadership of the jet channels is such that these are at an angle relative to the main axis of the injection device, so that the spray zone generated by fan nozzles is designed pyramidal.

Eine erfindungsgemäße Prallzone liegt dabei bereits dann vor, wenn sich zwei oder mehrere Brennstoffstrahlen nur bereichsweise berühren oder überschneiden, wodurch bereits teilweise der erfinderische Effekt verursacht wird.A baffle zone according to the invention is already present when two or more fuel jets only touch or overlap in some regions, which already partly causes the inventive effect.

Durch die Verwendung einer Multistrahldüse wird der Vorteil der feinen Zerstäubung derartiger Düsen genutzt. Eine feine Zerstäubung bewirkt eine schnelle Verdampfung des Brennstoffs bei weitgehend homogenem Brennstoff-Luft-Mischungsverhältnis. Die feine Zerstäubung bietet eine große Oberfläche des flüssigen Brennstoffs, die für eine solche Verdampfung vorteilhaft ist. Die große Oberfläche ist auch bei bereits erfolgter Zündung von Vorteil, da auch bei etwaiger noch vorhandener flüssiger Oberfläche von Brennstofftröpfchen die Verbrennung bei einer entsprechend großen Oberfläche erheblich wirkungsvoller abläuft.By using a multi-jet nozzle, the advantage of the fine atomization of such nozzles is utilized. A fine atomization causes a rapid evaporation of the fuel with a largely homogeneous fuel-air mixture ratio. The fine atomization provides a large surface area of the liquid fuel which is advantageous for such evaporation. The large surface area is also advantageous when the ignition has already taken place, since even with any existing liquid surface of fuel droplets, the combustion proceeds considerably more effectively with a correspondingly large surface area.

Durch die Verwendung mehrerer derartiger Mehrfachstrahldüsen kann der Brennraum räumlich definiert und in kurzer Zeit ausgesprüht werden, so dass in einem entsprechend kleinen Zeitintervall eine gute Brennstoffluftverteilung im Brennraum erreicht wird.By using a plurality of such multiple jet nozzles, the combustion chamber can be spatially defined and sprayed in a short time, so that in a correspondingly small time interval, a good fuel air distribution in the combustion chamber is achieved.

Es hat sich gezeigt, dass derartige Mehrfachstrahldüsen einen Fächerstrahl ausbilden, der sich im Wesentlichen unter dem Winkel aufspannt, in dem die Teilstrahlen aufeinander prallen. Beim Aufeinanderprallen erfolgt eine feine Zerstäubung, wobei die Ausbreitungsrichtung der Brennstofftröpfchen nahezu vollständig von der Düse weg weist, was für einen Verbrennungsvorgang wiederum von Vorteil ist, da somit eine Belastung der Düsen durch Ruß oder dergleichen Partikel, die bei der Verbrennung entstehen können, vermieden wird. Es hat sich weiterhin gezeigt, dass durch eine Mehrfachstrahldüse ein sehr flacher Fächerstrahl ausgeprägt werden kann, dessen Ausdehnung, z.B. als winkelförmige Ausdehnung, in der durch die beiden Brennstoffstrahlen definierten Fächerebene deutlich größer ist als in Querrichtung zu dieser Fächerebene.It has been found that such multi-jet nozzles form a fan beam which spans substantially at the angle at which the partial beams impinge on one another. When colliding occurs a fine atomization, wherein the propagation direction of the fuel droplets almost completely away from the nozzle, which in turn is advantageous for a combustion process, since thus a load on the nozzles by soot or the like particles that may arise during combustion, is avoided , It has also been found that a very flat fan beam can be formed by a multi-jet nozzle, whose extension, e.g. as angular expansion, in the fan plane defined by the two fuel jets is significantly larger than in the transverse direction to this fan level.

Dieser Umstand kann vorteilhafterweise dazu genutzt werden, um einen flachen Brennraum gezielt mit einem Brennstoffnebel zu füllen. Bei entsprechender Anordnung der Mehrfachstrahldüsen kann gewissermaßen eine nahezu scheibenförmige Brennstoffverteilung bei sehr feiner Zerstäubung erzielt werden. Dies ist insbesondere bei Hubkolbenmotoren von Vorteil, die im oberen Totpunkt der Hubbewegung einen solchen scheibenförmigen Brennraum aufweisen.This circumstance can be advantageously used to selectively fill a shallow combustion chamber with a fuel mist. With appropriate arrangement of the multi-jet nozzles can be achieved in a sense a nearly disc-shaped fuel distribution with very fine atomization. This is particularly advantageous in reciprocating engines, which have such a disc-shaped combustion chamber at the top dead center of the lifting movement.

Durch erfindungsgemäße Mehrfachstrahldüsen kann jedoch auch jede andere Brennstoffverteilung durch entsprechende Anordnung der Fächerebenen erzielt werden. So kann eine Fächerebene durchaus auch parallel zur Zylinderachse oder zu einer Mittelachse eines Injektors ausgerichtet sein. Auch geneigte Fächerebenen in schrägen Winkelanordnungen sind möglich.By means of multi-jet nozzles according to the invention, however, any other fuel distribution can also be achieved by appropriate arrangement of the fan levels. Thus, a fan level may also be parallel to the cylinder axis or to a Be aligned center axis of an injector. Even inclined fan levels in oblique angle arrangements are possible.

Durch unterschiedliche Düsenöffnungen kann auch die Eindringtiefe des Brennstoffs in den Brennraum beeinflusst werden. Dabei können verschiedene Mehrfachstrahldüsen mit unterschiedlichen Düsenöffnungen ebenso Verwendung finden, wie Mehrfachstrahldüsen, die strahlabhängig unterschiedliche Düsenöffnungen aufweisen.By different nozzle openings and the penetration depth of the fuel can be influenced in the combustion chamber. In this case, different multi-jet nozzles with different nozzle openings can also be used, as are multiple jet nozzles which have jet-dependent different nozzle openings.

Vorteilhafterweise wird eine erfindungsgemäße Einspritzvorrichtung mit einer für drei oder mehrere Mehrfachstrahldüsen gemeinsamen Düsenkammer versehen, von dem die Strahlkanäle der drei oder mehreren Mehrfachstrahldüsen ausgehen. Dies ermöglicht eine kompakte Bauform unter Beibehaltung von drei oder mehreren Mehrfachstrahldüsen oder Doppelstrahldüsen, mit den damit verbundenen Vorteilen einer verbesserten räumlichen Verteilung des Sprühbereichs.Advantageously, an injection device according to the invention is provided with a nozzle chamber common to three or more multiple jet nozzles, from which the jet channels of the three or more multiple jet nozzles emanate. This allows a compact design while maintaining three or more multiple jet nozzles or dual jet nozzles, with the associated advantages of improved spatial distribution of the spray area.

Vorzugsweise wird bei einer erfindungsgemäßen Vorrichtung ein Verschluss für die Trennung der Strahlkanäle von der Brennstoffzufuhr vorgesehen. Dies ermöglicht einen getakteten Betrieb der Einspritzvorrichtung bei kompakter Bauweise.Preferably, in a device according to the invention a closure for the separation of the jet channels of the fuel supply is provided. This allows clocked operation of the injector in a compact design.

In einer Weiterbildung dieser Ausführungsform wird ein gemeinsamer Verschluss für die Brennstoffzufuhr von drei oder mehreren Mehrfachstrahldüsen vorgesehen. Hierdurch wird der konstruktive Aufwand verringert und wiederum die Möglichkeit einer kompakten Bauweise bei gemeinsamer Taktung der Mehrfachstrahldüsen geschaffen.In a further development of this embodiment, a common closure for the fuel supply of three or more multiple jet nozzles is provided. As a result, the design effort is reduced and in turn created the possibility of a compact design with common timing of the multi-jet nozzles.

In einer besonderen Ausführungsform der Erfindung wird die Düsenkammer mit einem Verschlusselement als verschließbares Sackloch ausgebildet, wobei die Strahlkanäle in Strömungsrichtung hinter dem Verschlusselement die Wandung der Düsenkammer durchsetzen.In a particular embodiment of the invention, the nozzle chamber is formed with a closure element as a closable blind hole, wherein the jet channels in the flow direction behind the closure element pass through the wall of the nozzle chamber.

Durch diese Bauweise ist es möglich, eine Vielzahl von Strahlkanälen in der Wandung der Düsenkammer anzubringen, wobei die Brennstoffzufuhr zugleich mit nur einem Verschlusselement taktbar ist.By this construction, it is possible to attach a plurality of jet channels in the wall of the nozzle chamber, wherein the fuel supply is simultaneously clocked with only one closure element.

Gemäß der Erfindung werden die Strahlkanäle über die Umfangsfläche der Düsenkammer verteilt angeordnet, um eine entsprechende gute räumliche Verteilung des Sprühbereichs des Brennstoffs zu erzielen.According to the invention, the jet channels are distributed over the peripheral surface of the nozzle chamber in order to achieve a corresponding good spatial distribution of the spray region of the fuel.

Grundsätzlich ist es durch die Brennstoffversorgung aus einem gemeinsamen Brennstoffdruckraum zwar ohne Weiteres denkbar, dass sich Strahlkanäle in der Wandung der Düse tatsächlich treffen, d. h. miteinander in Verbindung stehen, da alle von der gleichen Düsenkammer abgehenden Strahlkanäle mit dem gleichen Druck beaufschlagt werden. Für eine definierte Strahlcharakteristik ist jedoch eine entsprechende Führungslänge der Flüssigkeit im Strahlkanal von Vorteil. Insbesondere bei geringen Wandstärken empfiehlt es sich daher, jeden Strahlkanal separat von den anderen Strahlkanälen auszubilden. Dies ist auch unter dem Gesichtspunkt von Vorteil, dass zur Erzeugung der gewünschten Strahlcharakteristik eine hohe Präzision und Güte bei der Fertigung der Strahlkanäle erforderlich ist, die bei separater Herstellung jedes Strahlkanals, beispielsweise durch mechanisches Bohren, aber auch durch andere Fertigungsverfahren besser zu gewährleisten ist.Basically, it is by the fuel supply from a common fuel pressure chamber, although conceivable that jet channels actually meet in the wall of the nozzle, d. H. communicate with each other, since all outgoing from the same nozzle chamber jet channels are subjected to the same pressure. For a defined beam characteristic, however, a corresponding guide length of the liquid in the jet channel is advantageous. In particular, with low wall thicknesses, it is therefore advisable to form each beam channel separately from the other beam channels. This is also advantageous from the viewpoint that to produce the desired beam characteristic high precision and quality in the production of the jet channels is required, which is to ensure better in separate production of each beam channel, for example by mechanical drilling, but also by other manufacturing processes.

Grundsätzlich sind zwar auch schlitzförmige Strahlkanäle denkbar, die ein eher dreidimensionales Sprühbild erzeugen, für die Erzeugung eines flachen Sprühbildes empfiehlt sich jedoch die Verwendung von Rundstrahlen, die durch Strahlkanäle mit rundem Querschnitt zu erzeugen sind.In principle, slit-shaped jet channels are also conceivable which produce a rather three-dimensional spray pattern, for the production of a flat spray pattern, however, the use of round beams, which are to be produced by beam channels with a round cross section, is recommended.

Bevorzugt werden die Mehrfachstrahldüsen so angeordnet, dass sie über einen Winkel von 360° im Wesentlichen gleichförmig verteilt liegen. Hierdurch kann beispielsweise ein flacher zylinderförmiger Brennraum gut ausgesprüht werden.Preferably, the multiple jet nozzles are arranged so that they are distributed substantially uniformly over an angle of 360 °. As a result, for example, a flat cylindrical combustion chamber can be sprayed out well.

Wie bereits oben angeführt, werden gemäß der Erfindung andere Orientierungen der Fächerebenen vorgesehen, z. B. um eine großvolumigere Brennstoffverteilung in der Tiefe zu erzielen.As already stated above, other orientations of the fan levels are provided according to the invention, z. B. to achieve a larger volume fuel distribution in depth.

Dabei können auch unterschiedliche Fächerorientierungen, z. B. kombiniert in vertikaler und horizontaler Richtung, bezogen auf die Injektor- oder die Zylinderachse, vorgesehen werden. Auch Zwischenstellungen mit geneigter, schräger Fächerebene, bezogen auf die Injektor- oder Zylinderachse, sind denkbar.It can also different fan orientations, z. B. combined in the vertical and horizontal directions, based on the injector or the cylinder axis, are provided. Also intermediate positions with inclined, oblique fan level, based on the injector or cylinder axis, are conceivable.

Vorzugsweise werden zudem vorbestimmte Freiräume aus dem Sprühbereich der Mehrfachstrahldüsen ausgespart. Dies kann beispielsweise im Bereich von Ein- oder Auslassventilen oder aber auch im Bereich einer Zündkerze von Vorteil sein, um diese Bauelemente vor Verunreinigung, insbesondere vor Verkokung oder Verrußen zu schützen. Die Aussparung aus dem Sprühbereich kann durch entsprechende räumliche Anordnung der Mehrfachstrahldüsen erzielt werden. Auch durch unterschiedliche Winkel der Strahlkanäle einer Mehrfachstrahldüsen kann ein bestimmter Bereich aus dem Sprühbereich ausgeklammert werden.Preferably also predetermined free spaces are recessed from the spray area of the multi-jet nozzles. This can be advantageous, for example, in the area of inlet or outlet valves or also in the region of a spark plug in order to protect these components against contamination, in particular against coking or sooting. The recess from the spray area can by appropriate spatial arrangement of the Multiple jet nozzles are achieved. Also by different angles of the jet channels of a multi-jet nozzles, a certain area can be excluded from the spray area.

Der Winkel zwischen den Strömungskanälen einer Mehrfachstrahldüse, der zugleich den Prallwinkel (z. B. als Winkel zwischen zwei Strahlen) bildet, unter dem die dadurch erzeugten Brennstoffstrahlen aufeinander prallen, wird bevorzugt größer als 10° oder 20° gewählt. Dies hat sich für die Ausprägung einer fächerförmigen Brennstoffverteilung unter den in Verbrennungsmotoren, insbesondere Hubkolbenmotoren herrschenden Drücken und der entsprechenden Kurzzeitdynamik des Einspritzvorgangs als vorteilhaft erwiesen. Ein besonders gutes Sprühbild hat sich bei Prallwinkeln zwischen 30° und 50°, z. B. 40° ergeben. Der Prallwinkel kann an die gewünschte Brennstoffverteilung angepasst werden. Wird beispielsweise eine größere Eindringtiefe in den Brennraum gewünscht, so können kleinere Prallwinkel gewählt werden. Andererseits ergibt ein größerer Prallwinkel einen breiteren Fächerstrahl. Über den Abstand der Strahlen zueinander und durch den Prallwinkel kann darüber hinaus auch der Abstand der Prallzone, d. h. des Ortes, an dem die Strahlen unter dem Prallwinkel aufeinanderprallen, zum Düsenkörper festgelegt werden.The angle between the flow channels of a multi-jet nozzle, which at the same time forms the impact angle (for example as an angle between two jets) under which the fuel jets produced thereby collide, is preferably chosen to be greater than 10 ° or 20 °. This has proven to be advantageous for the expression of a fan-shaped fuel distribution among the pressures prevailing in internal combustion engines, in particular reciprocating piston engines, and the corresponding short-term dynamics of the injection process. A particularly good spray pattern has at impact angles between 30 ° and 50 °, z. B. 40 °. The impact angle can be adapted to the desired fuel distribution. If, for example, a greater penetration depth is desired in the combustion chamber, smaller impact angles can be selected. On the other hand, a larger impact angle gives a wider fan beam. In addition, the distance between the beams to each other and the impact angle, the distance of the baffle zone, d. H. of the place where the rays collide at the impact angle, are set to the nozzle body.

Die erfindungsgemäße Einspritzvorrichtung eignet sich beispielsweise gut für Betriebsdruckdifferenzen zwischen der Hochdruckseite im Innern der Düsenkammer und der Niederdruckseite außerhalb größer 100 bar vorzugsweise größer 150 bar. Oberhalb dieser Druckdifferenzen bildet sich der gewünschte Sprühbereich mit einer Dynamik und Zerstäubung, die für den Betrieb in einem Verbrennungsmotor gut geeignet ist. Für den Einsatz in anderen Verbrennungsvorrichtungen können auch bei kleineren Druckdifferenzen die Verteilung und die Feinheit der Brennstoffzerstäubung einer erfindungsgemäßen Vorrichtung genutzt werden.For example, the injection device according to the invention is well suited for operating pressure differences between the high-pressure side in the interior of the nozzle chamber and the low-pressure side outside greater than 100 bar, preferably greater than 150 bar. Above these pressure differences, the desired spray range is formed with a dynamics and atomization that is well suited for operation in an internal combustion engine. For use in other combustion devices, the distribution and the fineness of the fuel atomization of a device according to the invention can be used even with smaller pressure differences.

Die erfindungsgemäße Einspritzvorrichtung wird in vorteilhafter Weise in einen sogenannten Injektor integriert, der als Baueinheit an Verbrennungsvorrichtungen montierbar ist. Solche Injektoren können beispielsweise in den Zylinderkopf von Hübkolbenmotoren montiert werden. Sie sind bevorzugt elektronisch ansteuerbar, um die Kraftstoffdosierung in der gewünschten Menge im erforderlichen zeitlichen Ablauf vorzunehmen.The injection device according to the invention is integrated in an advantageous manner in a so-called injector, which can be mounted as a unit to combustion devices. Such injectors can be mounted, for example, in the cylinder head of Hübkolbenmotoren. They are preferably electronically controllable in order to carry out the fuel metering in the desired amount in the required time sequence.

In der Regel werden derartige Injektoren an eine gemeinsame Druckleitung (common rail) angeschlossen. Grundsätzlich können sie jedoch auch einzeln mit einem entsprechenden Druckgenerator (Pumpe/Düse) versehen werden.As a rule, such injectors are connected to a common pressure line (common rail). In principle, however, they can also be provided individually with a corresponding pressure generator (pump / nozzle).

Die Erfindung ist grundsätzlich bei einer Vielzahl von Verbrennungsvorgängen verwendbar. Diese können kontinuierliche oder diskontinuierliche Verbrennung erfordern. Eine kontinuierliche Verbrennung wäre beispielsweise beim Einsatz in Turbinen oder Heizungsbrenner denkbar.The invention is basically usable in a variety of combustion processes. These may require continuous or discontinuous combustion. Continuous combustion would be conceivable, for example, when used in turbines or heating burners.

Je nach Anwendungsfall und Form des Brennraums kann die Anordnung und Orientierung der Mehrfachstrahldüsen variieren. So können z. B. mehrere Mehrfachstrahldüsen in Bezug auf eine geometrische Achse des Düsenkörpers in axialer Richtung versetzt und/oder umfangsseitig verteilt angeordnet sein und/oder die Fächerebenen der Mehrfachdüsen quer und/oder parallel und/oder geneigt zur Achse des Düsenkörpers ausgerichtet sein. Die Fächerebenen dreier oder mehrerer Mehrfachstrahldüsen können auch zueinander geneigt ausgerichtet sein.Depending on the application and the shape of the combustion chamber, the arrangement and orientation of the multi-jet nozzles can vary. So z. B. multiple multi-jet nozzles offset with respect to a geometric axis of the nozzle body in the axial direction and / or distributed circumferentially and / or the fan levels of the multiple nozzles transversely and / or parallel and / or be aligned to the axis of the nozzle body. The fan levels of three or more multiple jet nozzles can also be aligned with each other inclined.

Bevorzugt wird die Erfindung in getakteten Verbrennungsvorrichtungen eingesetzt, in denen die gute, räumlich definierte und schnell aufzubauende Brennstoffverteilung bei hohem Zerstäubungsgrad von besonderem Nutzen ist.Preferably, the invention is used in clocked combustion devices, in which the good, spatially defined and quickly established fuel distribution at a high Zerstäubungsgrad is of particular use.

Insbesondere bei Hubkolbenmotoren ist in der Regel eine scheibenförmige Brennstoffverteilung im flachen Brennraum beim oberen Totpunkt des Hubkolbens wünschenswert. Für diese Anwendung werden mehrere Mehrfachstrahldüsen vorteilhafterweise so angeordnet, dass sie im montierten Zustand der Einspritzdüsen parallel zur Hauptebene des Brennraums absprühen. Bei einem zum Hubkolben oder zur Zylinderachse parallelen Einbau eines solchen Injektors bedeutet dies, dass die Strahlkanäle der Mehrfachstrahldüsen quer zur Längsachse des Injektors abgehen. Bei schräger Einbaulage des Injektors bzw. der Düsenkammer, von der die Strahlkanäle abgehen, können die Strahlkanäle bezogen auf die Achse des Injektors bzw. des Brennstoffdruckraums auch geneigt angebracht werden, so dass die Abstrahlcharakteristik im Brennraum wiederum weitgehend parallel zur Hauptebene des Brennraums erfolgt.In particular, in reciprocating engines is usually a disc-shaped fuel distribution in the flat combustion chamber at top dead center of the reciprocating desirable. For this application, a plurality of multi-jet nozzles are advantageously arranged so that they spray parallel to the main plane of the combustion chamber in the assembled state of the injectors. In the case of an installation of such an injector parallel to the reciprocating piston or to the cylinder axis, this means that the jet channels of the multiple jet nozzles exit transversely to the longitudinal axis of the injector. In oblique mounting position of the injector or the nozzle chamber from which depart the jet channels, the jet channels relative to the axis of the injector or the fuel pressure chamber can also be inclined, so that the emission in the combustion chamber again takes place largely parallel to the main plane of the combustion chamber.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird anhand der Figuren nachfolgend näher erläutert.An embodiment of the invention is illustrated in the drawing and will be explained in more detail with reference to FIGS.

Im Einzelnen zeigen

Fig. 1
eine Seitenansicht auf eine erfindungsgemäße Einspritzvorrichtung,
Fig. 2
eine Draufsicht auf eine Vorrichtung gemäß Fig. 1,
Fig. 3
eine Schnittdarstellung entlang Schnittlinie III in Fig. 2,
Fig. 4
eine Detaildarstellung aus Fig. 1,
Fig. 5
eine Schnittdarstellung entlang Schnittlinie V in Fig. 4,
Fig. 6
eine Schnittdarstellung entlang Schnittlinie VI in Fig. 4;
Fig. 7
eine Schnittdarstellung durch eine erfindungsgemäße Einspritzvorrichtung mit Verschlussnadel,
Fig. 8a und 8b
Vergleichsdarstellungen zum grundsätzlichen Aufbau zwischen Sacklochdüse und Sitzlochdüse,
Fig. 9
eine schematische Darstellung des Sprühbildes einer Einspritzvorrichtung in perspektivischer Darstellung und
Fig. 10
eine schematische Darstellung einer Einspritzvorrichtung beim Einsatz in einem Verbrennungsmotor.
Show in detail
Fig. 1
a side view of an injection device according to the invention,
Fig. 2
a plan view of a device according to Fig. 1 .
Fig. 3
a sectional view along section line III in Fig. 2 .
Fig. 4
a detailed view Fig. 1 .
Fig. 5
a sectional view along section line V in Fig. 4 .
Fig. 6
a sectional view along section line VI in Fig. 4 ;
Fig. 7
a sectional view through an injection device according to the invention with a needle valve,
Fig. 8a and 8b
Comparative views of the basic structure between blind-hole nozzle and seat hole nozzle,
Fig. 9
a schematic representation of the spray pattern of an injection device in perspective view and
Fig. 10
a schematic representation of an injection device when used in an internal combustion engine.

Die Einspritzvorrichtung 1 gemäß Fig. 1 umfasst einen im Wesentlichen zylinderförmigen Injektorkopf 2 mit einem Kegelstumpf 3 zur Querschnittsverjüngung an dem Austrittsende der Einspritzvorrichtung 1, an den sich ein kuppelförmiger Düsenkörper 4 anschließt, der in seinem Innenraum eine Düsenkammer ausbildet. Der Düsenkörper 4 ist hierzu hohlförmig und umfasst Strahlkanäle, die nachfolgend näher beschrieben werden. Die Einspritzvorrichtung 1 ist zudem rund und zentrisch einer Hauptachse H ausgebildet.The injection device 1 according to Fig. 1 comprises a substantially cylindrical injector head 2 with a truncated cone 3 for cross-sectional tapering at the outlet end of the injection device 1, to which a dome-shaped nozzle body 4 connects, which forms a nozzle chamber in its interior. The nozzle body 4 is hollow for this purpose and comprises jet channels, which are described in more detail below. The injection device 1 is also formed round and centric of a major axis H.

In der Detailvergrößerung gemäß Fig. 4 sind winkelförmige Aussparungen 5 im Düsenkörper 4 erkennbar, in denen Strahlkanäle 6 ausmünden. Wie in der Schnittdarstellung gemäß den Fig. 5 und 6 erkennbar ist, dienen die winkelförmigen Aussparungen 5 dazu, eine zur jeweiligen Austrittsfläche rechtwinklig angeordnete Fläche zur Bohrung von runden Strahlenkanälen 6, 7 bereitzustellen. Dies ist insbesondere dann von Vorteil, wenn die Strahlkanäle 6, 7 mechanisch gebohrt werden. Die Durchmesser der Bohrungen für die Strahlkanäle 6, 7 werden bevorzugt deutlich < 500 µm gewählt, beispielsweise < 150 µm, vorzugsweise im Bereich von 100 µm. Derartige Strahlkanäle bieten unter den in Verbrennungsmotoren herrschenden Betriebsbedingungen eine gute Verteilung und Zerstäubung des Brennstoffs.In the detail enlargement according to Fig. 4 are angular recesses 5 in the nozzle body 4 can be seen in which jet channels 6 open. As in the sectional view according to the FIGS. 5 and 6 It can be seen that the angular recesses 5 serve to provide a surface arranged at right angles to the respective exit surface for drilling round beam channels 6, 7. This is particularly advantageous when the beam channels 6, 7 are mechanically drilled. The diameters of the bores for the jet channels 6, 7 are preferably selected to be clearly <500 μm, for example <150 μm, preferably in the range of 100 μm. Such jet channels offer among those in internal combustion engines Ruling operating conditions a good distribution and atomization of the fuel.

Wie in den Fig. 5 und 6 erkennbar ist, sind jeweils paarweise zwei Strahlkanäle 6, 7 unter einem Winkel α zueinander angeordnet. Der Scheitelpunkt S dieses Winkels α definiert die Prallzone einer aus jeweils zwei Strahlkanälen 6, 7 gebildeten Mehrfachstrahldüse 8. Durch eine derartige Ausgestaltung von Strahlkanälen 6, 7 ergibt sich in Strahlrichtung hinter dem Scheitelpunkt S bzw. hinter der Prallzone S ein Fächerstrahl 9, dessen Geometrie im Wesentlichen durch die geradlinige Verlängerung der Strahlkanäle 6, 7 vorgegeben ist.As in the FIGS. 5 and 6 can be seen, in pairs two beam channels 6, 7 are arranged at an angle α to each other. The vertex S of this angle α defines the impingement zone of a multiple jet nozzle 8 formed from two jet channels 6, 7. Such a configuration of jet channels 6, 7 results in a fan jet 9, the geometry thereof, behind the vertex S or behind the impingement zone S in the jet direction is essentially given by the rectilinear extension of the beam channels 6, 7.

Grundsätzlich könnte auch an Stelle einer Doppelstrahldüse 8 als Mehrfachstrahldüse eine Düse mit mehr als zwei Strahlen, beispielsweise eine Dreifachstrahldüse, verwendet werden, bei der drei oder mehrere Strahlen in einem gemeinsamen Scheitelpunkt S zusammenlaufen. So könnte beispielsweise in der Mitte der Strahlen 6, 7 ein dritter Strahl auf den Scheitelpunkt S gerichtet sein. Durch derartige Mehrfachstrahldüsen kann beispielsweise gegenüber einer Doppelstrahldüse die Geschwindigkeitsverteilung im Fächerstrahl beeinflusst werden.In principle, instead of a double-jet nozzle 8 as a multiple jet nozzle, a nozzle with more than two jets, for example a triple-jet nozzle, could be used in which three or more jets converge in a common vertex S. For example, in the middle of the rays 6, 7, a third ray could be directed to the vertex S. By means of such multiple jet nozzles, for example, the velocity distribution in the fan jet can be influenced compared to a double jet nozzle.

Die Querschnitte der Strahlkanäle (6, 7) sind im dargestellten Ausführungsbeispiel für alle Mehrfachstrahldüsen 8 gleich gewählt. Dies kann jedoch auch variiert werden. Die Querschnitte verschiedener Strömungskanäle 6, 7 einer Mehrfachstrahldüse 8 können ebenso verschieden gewählt werden, wie die Querschnitte von Strahlkanälen 6, 7 verschiedener Mehrfachstrahldüsen 8.The cross sections of the jet channels (6, 7) are chosen equal in the illustrated embodiment for all multi-jet nozzles 8. However, this can also be varied. The cross sections of various flow channels 6, 7 of a multi-jet nozzle 8 can also be chosen differently, as are the cross sections of jet channels 6, 7 of different multi-jet nozzles 8.

Es hat sich jedoch im Versuch gezeigt, dass mit der Verwendung von Doppelstrahldüsen gemäß dem Ausführungsbeispiel die erfindungsgemäßen Vorteile gut realisierbar sind.However, it has been shown in the experiment that with the use of double jet nozzles according to the embodiment, the advantages of the invention are well feasible.

Der Prallwinkel α, der zugleich den Winkel zwischen den beiden Strahlen 6, 7 einer Doppelstrahldüse bildet und die Ebene des Fächerstrahls 9 definiert, sollte dabei möglichst nicht zu klein gewählt werden. Versuche haben mit Winkeln > 10° oder > 20°, bevorzugt > 30° und idealerweise um die 40° gute Ergebnisse erbracht.The impact angle α, which at the same time forms the angle between the two beams 6, 7 of a double-jet nozzle and defines the plane of the fan beam 9, should not be too great be chosen small. Experiments have yielded good results with angles> 10 ° or> 20 °, preferably> 30 ° and ideally around 40 °.

In Fig. 5 liegen beispielsweise vier Doppelstrahldüsen 8 in einer Ebene, die der Schnittebene V gemäß Fig. 4 entspricht. Weitere vier Doppelstrahldüsen 8 sind in einer Ebene angeordnet, die der Schnittebene VI in Fig. 4 entspricht.In Fig. 5 For example, four double jet nozzles 8 lie in a plane corresponding to the sectional plane V Fig. 4 equivalent. Another four double-jet nozzles 8 are arranged in a plane corresponding to the sectional plane VI in Fig. 4 equivalent.

Grundsätzlich werden gemäß der Erfindung jedoch die Fächerebenen auch unter einem Winkel β (siehe Fig. 4) zur Hauptachse H mit Einspritzvorrichtung 1 angeordnet, so dass die Fächerebene bzw. das flache Sprühbild, das durch die Doppelstrahldüsen 8 erzeugt wird, ebenfalls zur Hauptachse H geneigt ist. Die genaue geometrische Ausgestaltung hängt u. a. von der Einbaulage eines Injektorkopfs 2 in dem jeweiligen Brennraum ab. Auch die Verwendung unterschiedlicher β-Winkel ist denkbar, wie dies beispielsweise anhand der Winkel β1 und β2 in Figur 8a dargestellt ist.Basically, however, according to the invention, the fan levels are also at an angle β (see Fig. 4 ) is arranged to the main axis H with injection device 1, so that the fan plane or the flat spray pattern, which is generated by the double jet nozzles 8, is also inclined to the main axis H. The exact geometric configuration depends, inter alia, on the installation position of an injector head 2 in the respective combustion chamber. The use of different β-angle is conceivable, as for example, based on the angle β 1 and β 2 in FIG. 8a is shown.

Wie in Fig. 4 erkennbar ist, sind im dargestellten Ausführungsbeispiel Doppelstrahldüsen 8 in zwei verschiedenen, um den Versatz oder Abstand A versetzten Ebenen V, VI angebracht, d. h. sie sind quer zur Fächerebene der Fächerstrahlen 9 angeordnet. Durch diese Anordnung lässt sich eine größere Anzahl von Doppelstrahldüsen umfangseitig verteilt anbringen, ohne dass sich die Strahlkanäle 6, 7 in der Wandung des Düsenkörpers 4 treffen. Trotz des geringen Versatzes A wird dennoch ein im Wesentlichen flaches Sprühbild durch die Gesamtheit aller Doppelstrahldüsen 8 erzeugt. Bei Bedarf kann aber durch mehrere solcher Ebenen und/oder durch einen größeren Versatz A auch ein in axialer Richtung ausgedehnteres, z. B. säulenartiges Sprühbild erzeugt werden.As in Fig. 4 can be seen, in the illustrated embodiment, double jet nozzles 8 in two different, offset by the offset or distance A planes V, VI mounted, ie they are arranged transversely to the fan plane of the fan beams 9. By this arrangement, a larger number of double-jet nozzles can be circumferentially distributed without the jet channels 6, 7 meet in the wall of the nozzle body 4. Despite the small offset A, however, a substantially flat spray pattern is generated by the totality of all double-jet nozzles 8. If necessary, but by a plurality of such levels and / or by a larger offset A and a more extensive in the axial direction, z. B. columnar spray pattern can be generated.

Fig. 7 zeigt eine der Fig. 3 entsprechende Darstellung der Vorrichtung 1, wobei zusätzlich eine Injektornadel 10 als Verschlusselement vorgesehen ist. Die Injektornadel 10 sitzt auf einem Ventilsitz 11, der im übergang des Düsenkörpers 4 zum Kegelstumpf 3 angebracht ist. Die Injektornadel 10 dichtet somit den Düsenkörper 4 gegenüber dem Injektorkopf 2 ab. Fig. 7 shows one of the Fig. 3 corresponding representation of the device 1, wherein additionally an injector needle 10 is provided as a closure element. The Injektornadel 10 sits on a valve seat 11 which is mounted in the transition of the nozzle body 4 to the truncated cone 3. The injector needle 10 thus seals the nozzle body 4 with respect to the injector head 2.

In dieser Ausführungsform spricht man von einer sogenannten Sacklochdüse, wie sie in anderer Ausprägung in Fig. 8a dargestellt ist. Bei einer Sacklochdüse wird ein Sackloch durch ein Verschlusselement 12 verschlossen, wobei die Strahlkanäle 13 gegenüber dem Innenraum 14 des Düsenkörpers offen bleiben. Der Innenraum 14 des Düsenkörpers bildet dabei ein gewisses Totvolumen.In this embodiment, one speaks of a so-called blind hole nozzle, as in other expression in Fig. 8a is shown. In a blind hole, a blind hole is closed by a closure element 12, wherein the jet channels 13 remain open with respect to the interior 14 of the nozzle body. The interior 14 of the nozzle body forms a certain dead volume.

Grundsätzlich kann eine erfindungsgemäße Einspritzvorrichtung 1 auch als sogenannte Sitzlochdüse ausgebildet werden, wie sie in Fig. 8b dargestellt. In diesem Fall verschließt das Verschlusselement 12 unmittelbar die Strahlkanäle 13, die dementsprechend im Bereich des Ventilsitzes 15 ausmünden.In principle, an injection device 1 according to the invention can also be designed as a so-called seat hole nozzle, as in Fig. 8b shown. In this case, the closure element 12 closes immediately the jet channels 13, which accordingly open in the region of the valve seat 15.

Es hat sich gezeigt, dass sich in der Ausprägung als Sacklochdüse ein gleichmäßigeres Einspritzverhalten realisierbar ist, was besonders wichtig ist für die Kleinstmengendosierung bei den Vor- und Nacheinspritzungen von Verbrennungsmotoren. Bei einer Sitzlochdüse kann bei Kleinsthüben ein ungleiches Spraybild entstehen, was auf fertigungsbedingte Toleranzen zurückzuführen ist. Mit einem erhöhten Aufwand im Bereich dieser Toleranzen kann jedoch auch eine Sitzlochdüse gute Ergebnisse liefern. Die Sitzlochdüse bietet gegenüber der Sacklochdüse den Vorteil eines kleineren Totvolumens.It has been shown that a more uniform injection behavior can be realized in the embodiment as a blind-hole nozzle, which is particularly important for the micro-quantity metering in the pre- and post-injections of internal combustion engines. In the case of a seat-hole nozzle, an uneven spray pattern can occur with small strokes, which is due to production-related tolerances. However, with an increased expenditure in the range of these tolerances, a seat hole nozzle can also provide good results. The seat hole nozzle offers the advantage over the blind hole nozzle of a smaller dead volume.

Im Falle einer Sacklochdüse kann das Totvolumen durch die Anordnung und Form des Verschlusselementes, z. B. der Injektornadel 10 beeinflusst werden. Vorteilhafterweise wird die Injektornadel 10 so gestaltet, dass sie das Totvolumen im Bereich des Düsenkörpers im geschlossenen Zustand minimiert.In the case of a blind hole nozzle, the dead volume by the arrangement and shape of the closure element, for. B. the Injektornadel 10 can be influenced. Advantageously, the injector needle 10 is designed so that it minimizes the dead volume in the region of the nozzle body in the closed state.

Die Führung der Strahlkanäle 13 ist derart, dass diese gegenüber der Hauptachse H leicht unter einem Winkel stehen. Dies hat zur Folge, dass die durch Fächerdüsen erzeugte Sprühzone nicht eben, sondern leicht pyramidenförmig ausgestaltet ist. Dies ist gemäß der Erfindung beabsichtigt.The leadership of the beam channels 13 is such that they are slightly opposite to the main axis H at an angle. This has the consequence that the spray zone generated by fan nozzles is not flat, but slightly pyramid-shaped. This is intended according to the invention.

Bei einer Einspritzvorrichtung 1 gemäß Fig. 9 mit regelmäßig umfangseitig verteilten Doppelstrahldüsen 8 ergibt sich eine gleichmäßige ebene Verteilung von Fächerstrahlen 9, die jeweils schmale Freizonen 15 begrenzen, in denen kein oder nur wenig Brennstoff versprüht wird. Wie anhand von Fig. 9 gut erkennbar ist, kann durch Anordnung und Ausgestaltung der Doppelstrahldüsen 8 die Geometrie des Sprühbildes definiert gestaltet werden. Durch einen kleineren Prallwinkel bei einer Doppelstrahldüse kann beispielsweise eine bestimmte Freizone 15 vergrößert werden. Durch Wegfall oder andere Positionierung einer Doppelstrahldüse kann die Freizone 15 ebenfalls gestaltet werden. Beispielsweise kann ein gesamter Fächerstrahl 9 ausgespart werden, um an dieser Stelle beispielsweise ein Ein- oder Auslassventil oder aber eine Zündkerze aus dem Sprühbereich auszusparen.In an injection device 1 according to Fig. 9 with regularly circumferentially distributed double jet nozzles 8 results in a uniform planar distribution of fan beams 9, each narrow narrow zones 15 limit, in which no or little fuel is sprayed. As based on Fig. 9 can be clearly seen, the geometry of the spray pattern can be designed defined by arrangement and design of the double jet nozzles 8. By a smaller impact angle in a double jet nozzle, for example, a certain free zone 15 can be increased. By eliminating or otherwise positioning a double jet nozzle, the free zone 15 can also be designed. For example, an entire fan jet 9 can be recessed to save at this point, for example, an inlet or outlet valve or a spark plug from the spray area.

Das in Fig. 9 dargestellte Sprühbild eignet sich besonders für die Verwendung in einem Hubkolbenmotor. Zur Veranschaulichung hierzu ist in Fig. 10 ein Zylinder 16 sowie der zugehörige Kolben 17 eines Hubkolbenmotors schematisch dargestellt. Der Kolben 17 befindet sich im oberen Totpunkt. Der Zylinderkopf ist nicht dargestellt, um den Blick in den aufgeschnittenen Zylinder 16 freizugeben. Der Zylinderkopf würde den Brennraum 18 auf Höhe der Dichtfläche 19 verschließen, so dass der Injektor 20 durch den Zylinderkopf hindurch in den Brennraum 18 ragt. Dies entspricht einer üblichen Geometrie in Hubkolbenmotoren, die einen flachen scheibenförmigen Brennraum 18 ergibt.This in Fig. 9 spray pattern shown is particularly suitable for use in a reciprocating engine. To illustrate this is in Fig. 10 a cylinder 16 and the associated piston 17 of a reciprocating engine shown schematically. The piston 17 is at top dead center. The cylinder head is not shown to release the view into the cut cylinder 16. The cylinder head would close the combustion chamber 18 at the level of the sealing surface 19, so that the injector 20 projects through the cylinder head into the combustion chamber 18. This corresponds to a conventional geometry in reciprocating engines, which results in a flat disc-shaped combustion chamber 18.

Das in Fig. 10 dargestellte Sprühbild entspricht dem Sprühbild gemäß Fig. 9, wie es beispielsweise von einer Einspritzvorrichtung gemäß den Fig. 1 bis 6 erzielbar ist. In der Ausführung gemäß Fig. 10 ragt der Injektor 20 zentral in den Zylinder 16 parallel und konzentrisch hinein. In diesem Fall ist es von Vorteil, die Doppelstrahldüsen 8 in der Tat quer zur Hauptachse H des Injektors anzuordnen, wie es in Fig. 4 mit dem Winkel β angedeutet ist. Falls erwünscht, kann der Injektor 20 jedoch auch zur Hauptachse des Zylinders 16 geneigt in den Brennraum eingebracht werden, wobei zur Erzeugung eines quer zur Hauptachse des Zylinders 16 verlaufenden Sprühbilds eine entsprechende Neigung der Fächerebenen der Doppelstrahldüsen 8 möglich ist. In diesem Fall wäre der Winkel β, wie er in Fig. 4 eingezeichnet ist, abweichend von dem rechten Winkel zu wählen.This in Fig. 10 spray pattern shown corresponds to the spray pattern according to Fig. 9 , as for example, by an injection device according to the Fig. 1 to 6 is achievable. In the execution according to Fig. 10 The injector 20 projects centrally into the cylinder 16 in parallel and concentric manner. In this case, it is advantageous to arrange the double-jet nozzles 8 in fact transversely to the main axis H of the injector, as shown in FIG Fig. 4 is indicated by the angle β. If desired, however, the injector 20 may be inclined to the main axis of the cylinder 16 are introduced into the combustion chamber, wherein a corresponding inclination of the fan planes of the double jet nozzles 8 is possible to produce a transverse to the main axis of the cylinder 16 spray pattern. In this case, the angle would be β, as in Fig. 4 is drawn, deviating from the right angle to choose.

Wie bereits mehrfach angedeutet, kann durch entsprechende Anordnung und Ausgestaltung der Mehrfachstrahldüsen das Sprühbild dem jeweiligen Brennraum der Verbrennungsvorrichtung angepasst werden. Wesentlich für die Erfindung ist der Umstand, dass mit mehreren, gleichzeitig beaufschlagten Mehrfachstrahldüsen, insbesondere Doppelstrahldüsen zum einen eine hervorragende Zerstäubung mit kleinsten Tröpfchen und der damit verbundenen großen Oberfläche des Brennstoffs erzielbar ist, wobei zugleich eine ausgezeichnete Anpassung an die Geometrie des Brennraums und somit eine sehr gleichmäßige und schnelle Verteilung des Brennstoffs im Brennraum möglich ist.As already indicated several times, by appropriate arrangement and design of the multi-jet nozzles, the spray pattern can be adapted to the respective combustion chamber of the combustion device. Essential for the invention is the fact that with multiple, simultaneously acted multi-jet nozzles, in particular double jet nozzles on the one hand excellent atomization with the smallest droplets and the associated large surface area of the fuel can be achieved, at the same time an excellent adaptation to the geometry of the combustion chamber and thus a very uniform and fast distribution of the fuel in the combustion chamber is possible.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
EinspritzvorrichtungInjector
22
Injektorkopfinjector
33
Kegelstumpftruncated cone
44
Düsenkörpernozzle body
55
Aussparungrecess
66
Strahlkanalbeam channel
77
Strahlkanalbeam channel
88th
DoppelstrahldüseDoppelstrahldüse
99
Fächerstrahlfan beam
1010
Injektornadelinjector needle
1111
Ventilsitzvalve seat
1212
Verschlusselementclosure element
1313
Strahlkanalbeam channel
1414
Innenrauminner space
1515
Freizonefree zone
1616
Zylindercylinder
1717
Kolbenpiston
1818
Brennraumcombustion chamber
1919
Dichtflächesealing surface
2020
Injektorinjector

Claims (10)

  1. A device for injecting fuel into a combustion chamber, in particular for injecting fuel into a cylinder of an internal combustion engine, wherein a multiple jet nozzle (8) with at least two jet channels (6, 7) is provided for generating at least two at least partially colliding fuel jets in one impact zone (S), wherein three or more such multiple jet nozzles (8) form a fan nozzle for generating a fan jet (9) through the at least two jet channels (6, 7), the extension of which in a fan plane is larger than in the transverse direction to said fan plane, wherein the jet channels (6, 7) are arranged distributed over the circumferential surface of a nozzle body (4), and wherein the fan planes of the multiple jet nozzles (8) are aligned transversely and/or inclined with respect to the geometrical axis of the nozzle body (4), characterized in that the guide of the jet channels (6, 7, 13) is such that the latter (6, 7, 13) are at an angle to the main axis (H) of the injection device (1), so that the spray zone generated by the fan nozzles is designed in the shape of a pyramid.
  2. A device according to Claim 1, characterized in that a common nozzle chamber (4) is provided, from which the jet channels (6, 7) of the three or more multiple jet nozzles (8) emanate.
  3. A device according to any one of the aforementioned claims, characterized in that a closing element (10) is provided for the closure of the fuel supply.
  4. A device according to any one of the aforementioned claims, characterized in that a common closing element (10) for the closure of the fuel supply is provided for three or more, in particular for all of the multiple jet nozzles (8).
  5. A device according to any one of the aforementioned claims, characterized in that the nozzle chamber forms a blind hole closable with a closing element (10), wherein the jet channels (6, 7) pass through the wall of the nozzle chamber in the flow direction behind the closing element (10).
  6. A device according to any one of the aforementioned claims, characterized in that the jet channels (6, 7) are designed as round channels.
  7. A device according to any one of the aforementioned claims, characterized in that the predetermined free spaces (15) are recessed from the spray area of the multiple jet nozzles (8).
  8. A device according to any one of the aforementioned claims, characterized in that the collision angle of the two colliding jets is designed to be > 10° or > 20°, preferably between 30° and 50°.
  9. An injector for a combustion device for injecting fuel into a combustion chamber, in particular of an internal combustion engine, characterized in that it comprises an injection device (1) according to any one of the aforementioned claims.
  10. An internal combustion engine with a device for injecting fuel into a combustion chamber, characterized in that a device (1) is provided according to any one of the Claims 1 to 8 for the injection of fuel into the combustion chamber.
EP13003438.2A 2010-05-28 2011-03-31 Device for injecting fuel into a combustion chamber Not-in-force EP2650527B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010021873 2010-05-28
EP11002655.6A EP2390491B1 (en) 2010-05-28 2011-03-31 Device for injecting fuel into a combustion chamber

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP11002655.6A Division EP2390491B1 (en) 2010-05-28 2011-03-31 Device for injecting fuel into a combustion chamber
EP11002655.6 Division 2011-03-31

Publications (2)

Publication Number Publication Date
EP2650527A1 EP2650527A1 (en) 2013-10-16
EP2650527B1 true EP2650527B1 (en) 2017-06-14

Family

ID=44259667

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13003438.2A Not-in-force EP2650527B1 (en) 2010-05-28 2011-03-31 Device for injecting fuel into a combustion chamber
EP11002655.6A Not-in-force EP2390491B1 (en) 2010-05-28 2011-03-31 Device for injecting fuel into a combustion chamber

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11002655.6A Not-in-force EP2390491B1 (en) 2010-05-28 2011-03-31 Device for injecting fuel into a combustion chamber

Country Status (4)

Country Link
EP (2) EP2650527B1 (en)
DE (2) DE102011015755A1 (en)
ES (2) ES2440966T3 (en)
HU (1) HUE034473T2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2509958T3 (en) 2011-03-31 2014-10-20 Kw -Technologie Gmbh & Co. Kg Device for fogging or spraying liquids in a combustion chamber
US9546633B2 (en) * 2012-03-30 2017-01-17 Electro-Motive Diesel, Inc. Nozzle for skewed fuel injection
EP2943680A1 (en) 2013-01-11 2015-11-18 KW Technologie GmbH & Co. KG Device for spraying liquid into an operating space
US9850869B2 (en) 2013-07-22 2017-12-26 Delphi Technologies, Inc. Fuel injector
DE102013220917A1 (en) * 2013-10-15 2015-04-16 Continental Automotive Gmbh injection
DE102014220928A1 (en) * 2014-10-15 2016-04-21 Continental Automotive Gmbh Register nozzle for injecting fuel into the combustion chamber of an internal combustion engine
SE539926C2 (en) * 2016-05-24 2018-01-16 Scania Cv Ab Sackless fuel injector
DE102017203146A1 (en) * 2017-02-27 2018-08-30 Robert Bosch Gmbh Nozzle body for a fuel injector and fuel injector

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE369670C (en) 1921-01-11 1923-02-22 Hugo Junkers Dr Ing Injection device for internal combustion engines with airless injection
US5540200A (en) * 1993-12-28 1996-07-30 Nissan Motor Co., Ltd. Fuel injection valve
DE4407360A1 (en) 1994-03-05 1995-09-07 Otto C Pulch Fuel injection system for cylinders of IC engine
JP4099075B2 (en) * 2002-05-30 2008-06-11 株式会社日立製作所 Fuel injection valve
DE102004041031A1 (en) * 2004-08-25 2006-03-02 Audi Ag Fuel injecting valve for internal combustion engine has spraying holes that spray jets such that cone coats are formed
DE602005009334D1 (en) * 2005-05-03 2008-10-09 Delphi Tech Inc Device for a fuel injection valve with switchable operating modes
DE102006041476A1 (en) * 2006-09-05 2008-03-06 Robert Bosch Gmbh Fuel injecting valve for fuel injection systems of internal combustion engine, has atomizing device, which is acted as multi-fan-jet nozzle with multiple pair of holes consists of two injection openings
JP2010031772A (en) * 2008-07-30 2010-02-12 Nippon Soken Inc Group injection hole nozzle and selecting method of its design specification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2639849T3 (en) 2017-10-30
EP2390491A1 (en) 2011-11-30
DE202011103592U1 (en) 2012-02-28
ES2440966T3 (en) 2014-01-31
HUE034473T2 (en) 2018-02-28
EP2650527A1 (en) 2013-10-16
DE102011015755A1 (en) 2011-12-01
EP2390491B1 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
EP2650527B1 (en) Device for injecting fuel into a combustion chamber
EP2699791B1 (en) Internal combustion engine
DE102006000407B4 (en) Fuel injector with multiple injection holes
DE102007049607A1 (en) Fuel injection valve and fuel injection system for an internal combustion engine with the same
EP2776702B1 (en) Injection nozzle
DE102014117439A1 (en) Device for atomizing or spraying liquid into an operating room
DE102007000731A1 (en) fuel Injector
EP2478211B1 (en) Nozzle assembly for an injection valve and injection valve
DE10246693A1 (en) Injector for injecting fuel
EP2505820B1 (en) Device for turning a liquid in a combustion chamber into a fog or spray
EP2757247A1 (en) Injection nozzle for a combustion engine
DE102009041028A1 (en) Nozzle assembly for injection valve, has nozzle body, in which nozzle body cutout and injection opening are disposed, where nozzle body cutout is hydraulically coupled to high-pressure circuit of fluid
WO2016037970A1 (en) Fuel injection valve
EP2365207A1 (en) Injection nozzle for a combustion engine
EP1481159B1 (en) Fuel injection valve
DE102018005075A1 (en) fuel injector
EP1565650B1 (en) Device for injecting fuel
DE102018207828A1 (en) Auto-ignition internal combustion engine
DE102011100523A1 (en) Injector nozzle i.e. multi-hole injector nozzle, for use in diesel engine, has nozzle body whose wall is penetrated by four spraying holes, which alternatively include flattened angle and steep spraying hole angle
DE10350795A1 (en) Direct injection internal combustion engine
DE102016208080A1 (en) Fuel injection valve and method for producing a fuel injection valve
EP2610459A2 (en) Direct injection internal combustion engine and fuel injection valve
WO2003040538A1 (en) Method for injecting fuel
DE102013019473A1 (en) diesel engine
DE102018221833A1 (en) Valve for metering a fluid, in particular a fuel injection valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130708

AC Divisional application: reference to earlier application

Ref document number: 2390491

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2390491

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 901228

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012460

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170614

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2639849

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170915

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171014

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E034473

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012460

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

26N No opposition filed

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 901228

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180401

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220322

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220324

Year of fee payment: 12

Ref country code: FR

Payment date: 20220322

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220331

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011012460

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331