EP2641317A2 - Reluktanzmotor - Google Patents

Reluktanzmotor

Info

Publication number
EP2641317A2
EP2641317A2 EP11778625.1A EP11778625A EP2641317A2 EP 2641317 A2 EP2641317 A2 EP 2641317A2 EP 11778625 A EP11778625 A EP 11778625A EP 2641317 A2 EP2641317 A2 EP 2641317A2
Authority
EP
European Patent Office
Prior art keywords
rotor
permanent magnets
pole
axis
rotor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP11778625.1A
Other languages
English (en)
French (fr)
Inventor
Sven Urschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB SE and Co KGaA
Original Assignee
KSB AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB AG filed Critical KSB AG
Publication of EP2641317A2 publication Critical patent/EP2641317A2/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets

Definitions

  • the invention relates to a rotor of a synchronous machine, in particular a reluctance machine, according to the preamble of claim 1.
  • WO 2009/063350 A2 shows a rotor of a reluctance motor in which pronounced magnetic poles are formed by flow barriers in the rotor laminated core. Permanent magnets are embedded in these flow barriers. This arrangement of the permanent magnets affects the magnetic field in the rotor only to a limited extent by the field in the direction of the q-axis is amplified. In particular, this causes an increase in the power factor of the machine, the power density is thereby influenced only insignificantly.
  • DE 10 2008 057 391 A1 proposes a synchronous machine in which the rotor has pronounced magnetic poles which generate a square-wave torque.
  • permanent magnets are provided here, which ensure a displacement of the magnetic flux due to their arrangement in the rotor, so that a superposition of the reluctance torque and the magnetic torque leads to a maximum amplitude of the resulting torque.
  • this arrangement has the disadvantage that the rotor is not symmetrical, which is why the effect achieved can only be used in one direction of rotation.
  • the present invention is based on the object to provide a rotor of a synchronous machine, in particular a reluctance machine, overcomes the aforementioned disadvantages and achieves an increase in the magnetic properties of the rotor and thus a significant increase in power density while preserving the symmetry.
  • the solution of the problem provides that in the d-axis of the rotor recesses are provided, in which the permanent magnets are arranged.
  • This has the advantage that the magnetic field is amplified by the permanent magnets in the region of the d-axis.
  • the arrangement of the permanent magnets the power density of the machine is significantly increased and the symmetry of the rotor is maintained, so that the rotor can rotate in both directions and each of the advantages of the inventive arrangement of the permanent magnets come into effect.
  • this solution has the advantage that the necessary in reluctance machines to achieve a high efficiency and a high power density minimum radial air gap between the stator and rotor package can be increased without sacrificing the efficiency of the engine.
  • the demands made on the tolerances in the manufacture of the laminated cores are lower and the motor can also be used in applications in which a large radial air gap is necessary, for example in canned motors.
  • the permanent magnets are separated from the air gap by a web, in particular by a web whose width is less than one tenth of the rotor diameter.
  • a web in particular by a web whose width is less than one tenth of the rotor diameter.
  • An essential requirement for the embedding of permanent magnets in the rotor is the stable positioning.
  • the permanent magnets are exposed during operation of the engine centrifugal forces, which is why it is convenient to provide the magnets in the laminated core of the rotor.
  • the laminated core leads to a weakening of the magnetic field, which is why the overlap of the permanent magnets with rotor plate is reduced to a necessary minimum.
  • the permanent magnets are provided in a recess accessible from the air gap.
  • the permanent magnets are cuboid, whereby the manufacturing cost of the synchronous machine can be significantly reduced.
  • rotor magnets of various sizes can be realized in a modular manner, which considerably reduces material costs.
  • the permanent magnets can be produced, which are symmetrically contoured in the axial direction. Although these are more expensive to manufacture than the above-described rectangular permanent magnets, for use on the surface of the rotor, it is advantageous to use permanent magnets, which are held by positive engagement in the AusOSE ung on the rotor surface. In the case of the rotor according to the invention, it is possible to provide additional permanent magnets in the q-axis of the rotor. As a result, the magnetic field of the rotor can be further influenced as needed.
  • the rotor according to the invention is advantageously used in a multi-pole, in particular two-pole, four-pole, six-pole, eight-pole or ten-pole, reluctance machine, wherein at least one permanent magnet in the d-axis is provided for each pole.
  • the permanent magnets provided in the rotor are preferably made of rare earth materials or ferrite. These permanent magnets cause due Their power densities have a beneficial effect on the magnetic properties of the rotor.
  • the magnetic field of the rotor is amplified such that it is possible, the air gap between the rotor and stator in the reluctance machine can be increased compared to reluctance machines without additional permanent magnets in the d-axis.
  • a rotor which has been equipped with permanent magnets according to the invention is therefore particularly suitable for use in a Spatrohr motor, in particular for the operation of a canned motor pump.
  • Fig. 1 shows a sheet metal section of a reluctance motor
  • FIG. 1 shows a sheet-metal section of a rotor for a reluctance motor of known design. To simplify the illustration, the stator is not shown.
  • the rotor plate 1 has a plurality of flow barriers 2, by the arrangement of which a four-pole rotor is formed, in which the magnetic flux in the regions with the flow barriers 2 is inhibited.
  • Several rotor laminations 1 with the illustrated sheet metal section are stacked in the direction of the axis of rotation 3, thus forming the rotor.
  • This easy-to-manufacture rotor has a region of high magnetic conductivity, the d-axis d, and a region of low magnetic conductivity, the q-axis q.
  • FIGS. 2a to 2d show a section of the sheet-metal section of Figure 1, wherein in the region of the d-axis according to the invention, permanent magnets are provided. These increase the magnetic conductivity in the d axes.
  • FIGS. 2 a to 2 d show various positions of the permanent magnets which are the rotor give specific properties.
  • a permanent magnet 4 is embedded between two iron webs and the flow barriers 2. The permanent magnet 4 sits as close as possible to the air gap between the rotor and the stator of the electric motor in order to achieve the highest possible induction. To ensure mechanical stability, 4 iron bars remain on the sides of the permanent magnet.
  • the permanent magnet 4 is buried in the sheet for support against the centrifugal forces occurring.
  • a permanent magnet 5 is embedded directly between the flow barriers, wherein the iron webs are spatially separated from the permanent magnet 5. This has the effect that the agnetvoiumen can be increased compared to the permanent magnet 4 shown above. The webs for mechanical stability must therefore be introduced elsewhere. As in FIG. 2a, the permanent magnet 5 is buried in the metal sheet for support against the centrifugal forces that occur.
  • a permanent magnet 6 is provided at the rotor outer diameter.
  • the induction can be further increased in comparison with the above examples.
  • the permanent magnet can be easily inserted from the outside, which leads to simplification in the manufacture of the rotor. It may be a bandage necessary to counteract the centrifugal forces occurring and support the permanent magnet.
  • a permanent magnet 7 is displaced in the direction of the axis of rotation 3 in comparison with the position of the permanent magnet 6 in FIG. 2c.
  • the Magnetvoiumen can be greater than that of the permanent magnets 4, 5 and 6 shown in Figures 2a to 2c.
  • the permanent magnet 7 is buried in the sheet to support against centrifugal forces occurring, To further target the magnetic field are combinations of the illustrated Magnet positions possible. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

Die Erfindung betrifft den Rotor einer Reluktanzmaschine, umfassend ein Blechpaket, wobei das Blechpaket Flusssperren aufweist, die eine gerade Anzahl von ausgeprägten magnetischen Polen ausbilden und die q-Achse des Rotors definieren, wobei bei dem Rotor Permanentmagnete vorgesehen sind, wobei in der d-Achse des Rotors Ausnehmungen vorgesehen sind, in denen die Permanentmagnete angeordnet sind.

Description

Beschreibung
Reluktanzmotor
Die Erfindung betrifft einen Rotor einer Synchronmaschine, insbesondere einer Reluktanzmaschine, nach dem Oberbegriff des Anspruchs 1. Die WO 2009/063350 A2 zeigt einen Rotor eines Reluktanzmotors, bei dem durch Flusssperren im Rotorblechpaket ausgeprägte magnetische Pole ausgebildet sind. In diese Flusssperren sind Permanentmagnete eingebettet. Diese Anordnung der Permanentmagnete beeinflusst das Magnetfeld im Rotor nur in eingeschränkter Weise, indem das Feld in Richtung der q-Achse verstärkt wird. Dies bewirkt insbesondere eine Erhö- hung des Leistungsfaktors der Maschine, die Leistungsdichte wird hierdurch nur unwesentlich beeinflusst.
In der DE 10 2008 057 391 A1 wird eine Synchronmaschine vorgeschlagen, bei der der Rotor ausgeprägte magnetische Pole aufweist, die ein Reiuktanzdrehmoment erzeu- gen. Zusätzlich sind hier Permanentmagnete vorgesehen, die durch ihre Anordnung im Rotor für eine Verschiebung des magnetischen Flusses sorgen, sodass eine Überlagerung des Reluktanzdrehmoments und des Magnetdrehmoments zu einer maximalen Amplitude des resultierenden Drehmoments führt. Diese Anordnung hat jedoch den Nachteil, dass der Rotor nicht symmetrisch aufgebaut ist, weshalb der erzielte Effekt nur in einer Drehrichtung zur Anwendung kommen kann. Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, einen Rotor einer Synchronmaschine, insbesondere einer Reluktanzmaschine, zu schaffen der vorgenannte Nachteile überwindet und eine Verstärkung der magnetischen Eigenschaften des Rotors und damit eine deutliche Erhöhung der Leistungsdichte bei Erhaltung der Symmet- rie erreicht.
Die Lösung der Aufgabe sieht vor, dass in der d-Achse des Rotors Ausnehmungen vorgesehen sind, in denen die Permanentmagnete angeordnet sind. Dies hat den Vorteil, dass das Magnetfeld durch die Permanentmagnete im Bereich der d-Achse verstärkt wird. Durch die Anordnung der Permanentmagnete wird die Leistungsdichte der Maschine deutlich erhöht und die Symmetrie des Rotors bleibt erhalten, sodass der Rotor in beide Richtungen drehen kann und jeweils die Vorteile der erfindungsgemäßen Anordnung der Permanentmagnete zur Wirkung kommen. Des Weiteren bietet diese Lösung den Vorteil, dass der bei Reluktanzmaschinen zur Erzielung eines hohen Wirkungsgrads und einer hohen Leistungsdichte notwendige minimale radiale Luftspalt zwischen Statorpaket und Rotorpaket ohne Einbußen beim Wirkungsgrad des Motors vergrößert werden kann. Hierdurch sind die bei der Fertigung der Blechpakete gestellten Anforderungen an die Toleranzen geringer und der Motor kann auch in den Anwendungen eingesetzt werden, in denen ein großer radialer Luftspalt notwendig ist, beispielsweise bei Spaltrohrmotoren.
In einer für die Erfindung günstigen Ausführung sind die Permanentmagnete durch einen Steg vom Luftspalt getrennt, insbesondere durch einen Steg, dessen Breite weni- ger als ein Zehntel des Rotordurchmessers beträgt. Eine wesentliche Anforderung an die Einbettung von Permanentmagneten in den Rotor ist die stabile Positionierung. Die Permanentmagnete sind im Betrieb des Motors Fliehkräften ausgesetzt, weshalb es günstig ist, die Magnete im Blechpaket des Rotors vorzusehen. Allerdings führt das Blechpaket zu einer Schwächung des Magnetfelds, weshalb die Überdeckung der Per- manentmagnete mit Rotorblech auf ein notwendiges Minimum reduziert ist. In einer alternativen Ausführung sind die Permanentmagnete in einer vom Luftspalt zugänglichen Ausnehmung vorgesehen. Bei dieser Anordnung, bei der das Magnetfeld nicht durch das Blechpaket überdeckt wird, ist darauf zu achten, dass die Magnete durch ihre Form oder durch einen geeigneten Klebstoff oder eine Bandage auf dem Ro- tor gehalten werden. In Abhängigkeit von der Anwendung ist diese Variante vor allem bei langsam drehenden Motoren, die ein großes Drehmoment erzeugen sollen, vorzuziehen.
In einer weiteren Ausgestaltung sind die Permanentmagnete quaderförmig, wodurch die Herstellungskosten der Synchronmaschine erheblich reduzierbar sind. Durch die Verwendung von Standardteilen lassen sich baukastenartig Rotormagnete in verschiedenen Größen realisieren, wodurch die Materialkosten erheblich gesenkt werden.
Alternativ lassen sich die Permanentmagnete herstellen, die in Achsrichtung symmet- risch konturiert sind. Diese sind zwar in der Herstellung teurer als die oben dargestellten quaderförmigen Permanentmagnete, zur Verwendung an der Oberfläche des Rotors ist es jedoch vorteilhaft, Permanentmagnete zu verwenden, die durch Formschluss in der Ausnehm ung an der Rotoroberfläche gehalten werden. Bei dem erfindungsgemäßen Rotor besteht die Möglichkeit, zusätzliche Permanentmagnete in der q-Achse des Rotors vorzusehen. Hierdurch iässt sich das Magnetfeld des Rotors bei Bedarf noch weiter beeinflussen.
Der erfindungsgemäße Rotor kommt vorteilhafter Weise bei einer mehrpoligen, insbe- sondere zweipoligen, vierpoligen, sechspoligen, achtpoligen oder zehnpoligen, Reluktanzmaschine zum Einsatz, wobei für jeden Pol mindestens ein Permanentmagnet in der d-Achse vorgesehen ist. Somit ist für unterschiedliche Anwendungen ermöglicht, die jeweils passenden Reluktanzmaschine mit der erhöhten Leistungsdichte zu konzipieren. Die Permanentmagnete, die im Rotor vorgesehen sind, bestehen bevorzugt aus Materialien der Seltenen Erden oder aus Ferrit. Diese Permanentmagnete bewirken aufgrund ihrer Leistungsdichten einen vorteilhaften Einfluss auf die magnetischen Eigenschaften des Rotors.
Durch die Permanentmagnete im Rotor wird das magnetische Feld des Rotors derart verstärkt, dass es möglich ist, den Luftspalt zwischen Rotor und Stator bei der Reluktanzmaschine vergrößert sein kann im Vergleich zu Reluktanzmaschinen ohne zusätzliche Permanentmagnete in der d-Achse. Ein Rotor, der auf erfindungsgemäße Art mit Permanentmagneten ausgestattet wurde, eignet sich deshalb besonders für den Einsatz in einem Spatrohrmotor, insbesondere zum Betrieb einer Spaltrohrmotorpumpe.
Weitere vorteilhafte Ausführungen ergeben sich aus der Kombination der Ansprüche.
Ein Ausführungsbeispie! der Erfindung ist in den Zeichnungen dargestellt und wird im Folgenden näher beschrieben. Es zeigen die
Fig. 1 einen Blechschnitt eines Reluktanzmotors und die
Fig. 2a bis 2d verschiedene Positionierungen der Permanentmagnete im Rotor. Die Figur 1 zeigt einen Blechschnitt eines Rotors für einen Reluktanzmotor bekannter Bauart. Zur Vereinfachung der Darstellung ist der Stator nicht abgebildet. Das Rotorblech 1 verfügt über mehrere Flusssperren 2, durch deren Anordnung ein vierpoliger Rotor gebildet wird, bei dem der magnetische Fluss in den Bereichen mit den Flusssperren 2 gehemmt wird. Mehrere Rotorbleche 1 mit dem gezeigten Blechschnitt wer- den in Richtung der Drehachse 3 gestapelt, und bilden so den Rotor. Dieser einfach herzustellende Rotor weist einen Bereich hoher magnetischer Leitfähigkeit, die d-Achse d, und einen Bereich geringer magnetischer Leitfähigkeit, die q- Achse q, auf.
Die Figuren 2a bis 2d zeigen einen Ausschnitt des Blechschnitts aus Figur 1 , wobei im Bereich der d-Achse entsprechend der Erfindung Permanentmagnete vorgesehen sind. Diese verstärken die magnetische Leitfähigkeit in den d-Achsen. In den Figuren 2a bis 2d sind verschiedene Positionen der Permanentmagnete dargestellt, die dem Rotor spezifische Eigenschaften verleihen. Bei der Figur 2a ist ein Permanentmagnet 4 zwischen zwei Eisenstegen und den Flusssperren 2 eingebettet. Der Permanentmagnet 4 sitzt möglichst dicht beim Luftspalt zwischen dem Rotor und dem Stator des Elektromotors, um eine möglichst hohe Induktion zu erreichen. Um die mechanische Stabilität zu gewährleisten, bleiben an den Seiten des Permanentmagneten 4 Eisenstege stehen. Der Permanentmagnet 4 ist, zur Abstützung gegen die auftretenden Fliehkräfte, im Blech vergraben.
In der Figur 2b ist ein Permanentmagnet 5 direkt zwischen den Flusssperren eingebet- tet, wobei die Eisenstege vom Permanentmagneten 5 räumlich getrennt sind. Dies hat den Effekt, dass das agnetvoiumen im Vergleich zum oben dargestellten Permanentmagneten 4 erhöht werden kann. Die Stege zur mechanischen Stabilität müssen daher an anderer Stelle eingebracht werden. Wie in Fig 2a ist der Permanentmagnet 5, zur Abstützung gegen die auftretenden Fliehkräfte, im Blech vergraben.
In der Figur 2c ist ein Permanentmagnet 6 am Rotoraußendurchmesser vorgesehen. Die Induktion kann dadurch im Vergleich zu obigen Beispielen weiter erhöht werden. Der Permanentmagnet kann von außen einfach eingebracht werden, was zu Erleichterungen bei der Herstellung des Rotors führt. Es wird eventuell eine Bandage notwendig, um den auftretenden Fliehkräften entgegenzuwirken und den Permanentmagneten abzustützen.
In der Figur 2d ist ein Permanentmagnet 7 im Vergleich zur Position des Permanentmagneten 6 in der Figur 2c in Richtung der Drehachse 3 verschoben. Dadurch ist die mechanische Stabilität bei dieser Anordnung im Vergleich zu der oben dargestellten am höchsten. Das Magnetvoiumen kann größer sein, als das der in den Figuren 2a bis 2c dargestellten Permanentmagnete 4, 5 und 6. Der Permanentmagnet 7 ist, zur Abstützung gegen auftretende Fliehkräfte, im Blech vergraben, Um das magnetische Feld noch gezielter zu führen sind Kombinationen der dargestellten Magnetpositionen möglich. Bezugszeichenliste
1 Rotorblech
2 Flusssperren 3 Drehachse
4 Permanentmagnet
5 Permanentmagnet
6 Permanentmagnet
7 Permanentmagnet d d-Achse
q q-Achse

Claims

Patentansprüche
Reluktanzmotor
Rotor einer Synchronmaschine, insbesondere einer Reluktanzmaschine, umfassend ein Blechpaket, wobei das Blechpaket Flusssperren aufweist, die eine gerade Anzahl von ausgeprägten magnetischen Polen ausbilden und die q- Achse des Rotors definieren, wobei bei dem Rotor Permanentmagnete vorgesehen sind, dadurch gekennzeichnet, dass in der d-Achse d des Rotors Ausnehmungen vorgesehen sind, in denen die Permanentmagnete (4, 5, 6, 7) angeordnet sind.
Rotor nach Anspruch 1 , dadurch gekennzeichnet, dass die Permanentmagnete (4, 5, 6, 7) durch einen Steg vom Luftspalt getrennt sind, insbesondere durch einen Steg, dessen Breite weniger als ein Zehntel des Rotordurchmessers beträgt.
Rotor nach Anspruch 1 , dadurch gekennzeichnet, dass die Permanentmagnete (4, 5, 6, 7) in einer vom Luftspalt zugänglichen Ausnehmung vorgesehen sind.
Rotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Permanentmagnete (4, 5, 6, 7) quaderförmig sind.
Rotor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Permanentmagnete (4, 5, 6, 7) in Achsrichtung symmetrisch konturiert sind.
6. Rotor nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass zusätzliche Permanentmagnete (4, 5, 6, 7) in der q-Achse (q) des Rotors vorgesehen sind.
7. Rotor nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Reluktanzmaschine mehrpolig, insbesondere zweipolig, vierpolig, sechspo- lig, achtpolig oder zehnpolig, ausgeführt ist, wobei für jeden Pol mindestens ein Permanentmagnet in der d-Achse (d) vorzusehen ist.
8. Rotor nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Permanentmagnete (4, 5, 6, 7) aus Materialien der Seltenen Erden oder aus Ferrit bestehen.
9. Rotor nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Motor integraler Bestandteil eines Spaitrohrmotors ist.
EP11778625.1A 2010-11-17 2011-11-04 Reluktanzmotor Ceased EP2641317A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010044046A DE102010044046A1 (de) 2010-11-17 2010-11-17 Reluktanzmotor
PCT/EP2011/069391 WO2012065857A2 (de) 2010-11-17 2011-11-04 Reluktanzmotor

Publications (1)

Publication Number Publication Date
EP2641317A2 true EP2641317A2 (de) 2013-09-25

Family

ID=44906148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11778625.1A Ceased EP2641317A2 (de) 2010-11-17 2011-11-04 Reluktanzmotor

Country Status (5)

Country Link
EP (1) EP2641317A2 (de)
CN (1) CN103384954B (de)
BR (1) BR112013012173A8 (de)
DE (1) DE102010044046A1 (de)
WO (1) WO2012065857A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3193431A1 (de) * 2016-01-14 2017-07-19 Siemens Aktiengesellschaft Elektroblech mit gedrucktem steg
US10608487B2 (en) * 2017-03-07 2020-03-31 Ford Global Technologies, Llc Electric machine rotor
US10355537B2 (en) * 2017-03-27 2019-07-16 Ford Global Technologies, Llc Method for adjusting magnetic permeability of electrical steel
EP3474417A1 (de) * 2017-10-20 2019-04-24 Siemens Aktiengesellschaft Modifizierter läufer einer reluktanzmaschine zur drehmomenterhöhung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818340B2 (ja) * 1997-09-26 2006-09-06 株式会社富士通ゼネラル 永久磁石電動機
JPH11103546A (ja) * 1997-09-29 1999-04-13 Fujitsu General Ltd 永久磁石電動機
JP2000050542A (ja) * 1998-07-23 2000-02-18 Okuma Corp リラクタンスモータ
JP3832540B2 (ja) * 1999-01-13 2006-10-11 株式会社富士通ゼネラル 永久磁石電動機
JP2003319583A (ja) * 2002-04-17 2003-11-07 Yaskawa Electric Corp 同期モータ
WO2005017926A2 (en) * 2003-08-02 2005-02-24 Inoki, Kanji Rotary machine and electromagnetic machine
JP5157138B2 (ja) * 2006-11-24 2013-03-06 株式会社日立製作所 永久磁石式回転電機及び風力発電システム
JP5332137B2 (ja) * 2007-05-22 2013-11-06 日産自動車株式会社 回転電機
ITTO20070809A1 (it) 2007-11-13 2009-05-14 Emerson Appliance Motors Europe Rotore a magneti permanenti per una macchina elettrica sincrona, in particolare per un motore a riluttanza.
JP4492681B2 (ja) 2007-11-16 2010-06-30 株式会社デンソー 同期機
KR101478838B1 (ko) * 2008-01-22 2015-01-05 엘지전자 주식회사 팬 모터, 비엘디씨 모터, 및 비엘디씨 모터의 회전자
EP2614579A1 (de) * 2010-09-10 2013-07-17 Nissan Motor Co., Ltd Rotierender elektromaschinenrotor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012065857A2 *

Also Published As

Publication number Publication date
WO2012065857A2 (de) 2012-05-24
DE102010044046A1 (de) 2012-05-24
BR112013012173A8 (pt) 2018-07-31
BR112013012173A2 (pt) 2016-08-16
CN103384954B (zh) 2016-11-23
WO2012065857A3 (de) 2013-05-23
CN103384954A (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
EP2044671B1 (de) Rotor für eine elektrische maschine, sowie herstellungsverfahren eines solchen
DE112018003942T5 (de) Magnetische Erzeugungseinrichtung für einen Motor, Weichmagnetischer Kern und Verfahren zur Herstellung eines Magneten
EP2696469B1 (de) Rotor für eine permanent erregte Synchronmaschine
DE112015001725T5 (de) Drehende elektrische Maschine mit eingebetteten Permanentmagneten
DE112008001226T5 (de) Rotor einer rotierenden elektrischen Maschine und Fertigungsverfahren dafür
DE10256523A1 (de) Elektrische Maschine, insbesondere bürstenloser Synchronmotor
DE102013212616A1 (de) Rotor für eine elektrische Maschine, wobei an dem Rotor über seinen Umfang mehrere Rotorpole angeordnet sind
DE102014101221A1 (de) Rotor für einen Permanentmagnet-Motor, Verfahren zur Herstellung eines Rotors für einen Permanentmagnet-Motor sowie Permanentmagnet-Motor
WO2013131795A2 (de) Rotor und elektrische maschine
WO2012065857A2 (de) Reluktanzmotor
DE102017100437A1 (de) Verwendung von Magnetfeldern in Elektromaschinen
EP2104976B1 (de) Elektrische maschine
EP2319164B1 (de) Rotor für eine elektrische maschine mit reduziertem rastmoment
DE102021205740A1 (de) Rotor für eine elektrische Maschine, eine elektrische Maschine, sowie Verfahren zum Herstellen eines solchen Rotors
EP2705590B1 (de) Rotor für eine permanentmagnetische maschine
WO2010076256A1 (de) Gleichstrommotor
WO2019154573A1 (de) Permanenterregte synchronmaschine mit reduziertem pendeldrehmoment
WO2007088101A1 (de) Elektrische maschine
DE102012218993A1 (de) Läuferanordnung für eine permanentmagneterregte elektrische Maschine
DE102021211050A1 (de) Elektromotor mit verschiedenen aufeinandergestapelten rotorsegmenten und verfahren zum ausgestalten desselben
DE60036003T2 (de) Elektromagnetische motor oder generator vorrichtungen
DE102008010909A1 (de) Elktromotor
WO2021063501A1 (de) Permanenterregter rotor mit verbesserter magnetgeometrie
WO2002041471A1 (de) Rotor für eine elektrische maschine
WO2011026600A2 (de) Elektrische maschine und verfahren zu deren herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130502

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KSB SE & CO. KGAA

17Q First examination report despatched

Effective date: 20180912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200512