EP2640977B1 - Magnetically driven pump arrangement having a micropump with forced flushing, and operating method - Google Patents
Magnetically driven pump arrangement having a micropump with forced flushing, and operating method Download PDFInfo
- Publication number
- EP2640977B1 EP2640977B1 EP11813388.3A EP11813388A EP2640977B1 EP 2640977 B1 EP2640977 B1 EP 2640977B1 EP 11813388 A EP11813388 A EP 11813388A EP 2640977 B1 EP2640977 B1 EP 2640977B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bearing
- micropump
- magnet
- arrangement according
- pump arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011010 flushing procedure Methods 0.000 title description 15
- 238000011017 operating method Methods 0.000 title 1
- 239000012530 fluid Substances 0.000 claims description 27
- 230000005291 magnetic effect Effects 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 11
- 238000005304 joining Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000001746 injection moulding Methods 0.000 claims description 6
- 230000033001 locomotion Effects 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000005476 soldering Methods 0.000 claims description 4
- 238000005538 encapsulation Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005461 lubrication Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000013256 coordination polymer Substances 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 238000004026 adhesive bonding Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910001047 Hard ferrite Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- 239000011224 oxide ceramic Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 1
- 239000011225 non-oxide ceramic Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/006—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/02—Arrangements of bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C11/00—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
- F04C11/008—Enclosed motor pump units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0057—Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
- F04C15/0061—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
- F04C15/0069—Magnetic couplings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0088—Lubrication
- F04C15/0092—Control systems for the circulation of the lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0096—Heating; Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/082—Details specially related to intermeshing engagement type machines or pumps
- F04C2/086—Carter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/102—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
Definitions
- the invention is concerned with a pump arrangement with a micropump which can be driven magnetically (claim 1).
- This micropump works to deliver a volume flow of a liquid delivery medium, which can be more or less viscous.
- the invention also relates to an associated working method of such a magnetically driven micropump, which method can claim the flow of the forced flow, since this occurs only when the micropump is in operation (claim: 18).
- the forced flow refers to the flow of the more or less viscous conveying medium.
- Micropumps are of a size that is hardly larger than a thumbnail. Dimensions below 20 mm, in particular below 10 mm (maximum dimension of the micropump) are specified and such pumping devices - called micropumps - must be stored appropriately.
- an axial channel section, 22b there, is shown rather incidentally, which allows fluid to flow back from an intermediate chamber (there Figure 2 , between 10 and 24) to the suction side .
- the channel is provided in the wall 30i as an inwardly open stepped bore and connects the intermediate chamber with the suction side for the return of fluid into the microsystem, cf. there also paragraph [74].
- the mini system or microsystem according to the WO mentioned also has a drive, cf. there Figure 2 and page 9, line 5 and page 10, third paragraph.
- FIG. 6 forms the main pump on the left-hand side with an inlet 207 and a pressure side 208 (viewed from top to bottom).
- This is MP. It has a rotor 701, which is in the there Figure 3 can be seen.
- the second flat pump CP can also be seen there, cf. Page 13, third paragraph.
- This second pump generates the flushing flow and it is in the picture Figure 3 To see a small hole which has no reference number, but which allows a mechanical coupling with a pin, not shown or described, which is coupled to the rear (not visible) side of the rotor 701 of the main pump. Only then is a coupling of the two pumps disclosed there possible so that they can rotate synchronously with one another.
- the reference symbols CP and MP are not found in the figures, instead the reference symbols 8470 in FIG Figure 3 to CP and the reference number 150 in Figures 7 and 8 for the main pump MP.
- the main pump itself does not generate any forced flow, but uses the auxiliary pump for this, as its names make clear.
- the auxiliary pump mounted on the right back of the rotor 701 of the main pump MP in FIG.
- the manufacturing effort is to be at least partially substituted by assembly effort, whereby the necessary tight tolerances are also achieved. These are a sinequa-non for microsystems and micropumps.
- the micropump in the bearing area is also to be flushed or lubricated, which is a notable problem at speeds above 5,000 rpm.
- a pump arrangement with a micropump that is magnetically driven conveys a liquid delivery medium.
- the micropump is held in place by a bearing bracket called the base.
- the magnetic drive takes place from an external magnet to an internal magnet, and the latter transfers the torque transmitted to it to the micropump via the axial shaft.
- the bearing bracket has three bearing pieces that are connected to it by joining. These "radial bearing pieces” cause the rotary bearing (also: guidance) of the axial shaft and also of the micropump.
- the radial bearing pieces are positioned and fixed in the bearing bracket, with one of the three bearings accommodating the outer rotor of the micropump so that it can rotate. This bearing for the outer rotor is arranged eccentrically to the shaft.
- the inner rotor which is driven with the axial shaft, is arranged centrally to the axial shaft.
- the pump itself contains the inner rotor and the outer rotor, both of which are meshed with one another and rotate with one another, but at different speeds.
- the outer rotor is received in the "eccentric bearing” and is held there by a cover on the front side.
- the at least two further bearing pieces are provided for the shaft.
- One of these bearings is closer to the inner magnet and the other of the bearings (each shaft bearing) is closer to the micropump. Both bearings are preferably as far apart as possible in order to give the axial shaft good stability and concentricity.
- one bearing is closer to the magnet and another bearing is closer to the micropump, a relative relationship is expressed.
- one of the bearings can be "close” to the inner magnet, or it can be surrounded by an annular magnet (then the radial bearing has a small radial dimension). That is certainly included in the concept of relation.
- the other bearing is closer to the micropump and this term also includes the fact that it is arranged close to or near the micropump, even directly on the micropump for end-face support and storage. What is claimed is not the term "close”, but a relationship between the bearings with a view of the internal magnet and the pump.
- a channel structure (or: channel guidance) is provided to enable flushing or lubrication. This ensures (during operation) a forced flow.
- the channel structure has several sections, at least two of which are to be highlighted.
- a first channel section is arranged in the cover.
- a second channel section is arranged in the bearing bracket.
- the channel guidance in the sense of the channel structure thus enables the fluid conveying medium on the pressure side to be diverted via the cover and the bearing bracket to enable flushing and / or lubrication of all three named bearings.
- the micropump is driven by an external magnet, which transmits a torque to the internal magnet, which is axially spaced from the micropump.
- This can be viewed as a “magnetic clutch” or as a magnetic torque transmission (claim 2) in the sense of the "magnetic drive” (claim 1).
- the pump is held in the eccentric bearing by a cover on the face.
- the channel structure provides the forced flow in order to actively flush and / or lubricate the bearings with the pumped medium (the conveyed volume flow).
- a bearing is close by, especially even within the inner magnet, and is part of the bearing bracket.
- the other bearing is near or directly to the micropump and part of the bearing bracket.
- the function-determining tolerances are (claim 1) combined on three precision bearings. Important dimensions are produced by precisely assembling these precision bearings to one another. After positioning, the precision bearings are connected to the bearing carrier by a joining process (a joining technique, claims 7, 10). For example, adhesive bonding, welding or soldering are used in order to meet the high demands on the tolerance in terms of assembly technology. The manufacturing costs of the individual parts can be reduced.
- the cover that holds the micropump in the eccentric bearing at the front is such a thrust bearing.
- Ceramic is preferably used here as a material in order to minimize wear.
- No axial bearing is required on the shaft side at the end of the shaft remote from the rotor (remote from the pump). The forces acting on the shaft are adjusted in such a way that such storage is unnecessary.
- the shaft must naturally be rotationally rigid or rotationally rigidly coupled to the inner magnet, which is done via a magnet carrier (claim 6).
- Magnet carrier and inner magnet are constructed concentrically and the one bearing remote from the pump is preferably provided in the center of the inner magnet.
- the outer magnet is preferably concentric to the inner magnet, outside the dome-shaped cap, which is also called a containment can.
- Components that are susceptible to failure can preferably be dispensed with due to the structure (claim 18). These are dynamic seals or shaft seals.
- the bearing bracket has a hood-shaped cap as a containment shell opposite the cover and concentric to the shaft, which is also connected to the bearing bracket via static seals, the hood area can accommodate the internal magnet and are completely traversed by the fluid conveying medium that emerges on the pressure side of the rotating pump via said channel sections. In this way, the hood (hood-shaped cap) can also be cooled from the inside.
- the micropump can also convey dangerous media, crystallizing media or highly volatile media.
- the shaft is still mounted in the bearing components, but rotates in a cavity between the bearing components through which the axial flushing flow runs.
- the containment shell can be omitted and an external housing is used.
- An electrical connection which supplies the stator with power for the formation of the rotating magnetic field and for transmission to the internal magnet, which is coupled to the shaft via the magnet carrier, can be hermetically sealed through an opening.
- the inner magnet and the outer magnet then both become inner magnets, which are located within the surrounding housing. They differ as a stator and rotor.
- the external magnet creates a rotating magnetic field and remains static.
- the inner magnet rotates the shaft and lies inside the outer magnet.
- the hood-shaped housing part (also: cap) does not have to be omitted even when the stator is stationary (with a rotating magnetic field), but can also be present. Due to the material used (mostly metallic), eddy currents in this containment can cannot be avoided, which lead to heat generation. Such a heat development is counteracted by the internal cooling on a very large inner surface of the containment shell. In a preferred embodiment, over 50%, usually significantly more, of the inner surface of the cap can be cooled (claim 28). A remnant piece is used to connect the cap with the bearing bracket in a centering manner.
- the first solution is designed in such a way that the bearing bracket is produced from metal or plastic by injection molding (claim 8). Nevertheless, the Radial bearing pieces are still manufactured separately and designed as precision bearing parts (claim 10). They are subsequently placed in the injection-molded bearing bracket and positioned and specified, for which purpose a joining technique can be used to reliably and accurately arrange the radial bearing pieces in the bearing bracket.
- an option and preferred design in the first solution is the presence of a heating element which, however, is to be arranged in an injection-molded bearing bracket (claim 9). With it, a warming of the still little liquid or hardly liquid pumping medium is achieved in order to improve the cold start capability of the micropump.
- a large inner surface is to be understood to mean that it can amount to at least 50% of a total inner surface of the cap. Preferably, however, more than 70% of the entire inner surface of the cap can be cooled.
- the hood-shaped cap can be omitted and another, hermetically sealed housing can be placed on the bearing bracket. Since no mechanical rotations have to be coupled into the housing formed in this way, but power is only supplied via electrical lines, the inner rotor and outer rotor are located together in a housing formed of this type.
- the compact structure creates short tolerance chains and short traction paths.
- the precise bearing pieces (claim 1) meet the requirements for low tolerances for the reliable function of the micropump and use in long-term applications.
- the torque transmission from the external magnet and internal magnet can preferably be designed as a central rotary coupling (claims 3, 11).
- the generated magnetic field of the external magnet can be generated by a stator (claim 4).
- the hood-shaped housing part can be omitted here.
- An internal annular gear pump can be used as the micropump (claim 5), cf. WO 97/12147 A .
- the shaft is torsionally rigidly connected to the inner rotor and also rotationally rigid to the magnet carrier and the inner magnet sitting on it.
- an internal gear pump with involute teeth is used.
- the inner magnet can be in one piece or in several pieces (claim 13). It is arranged on a carrier (claim 6). Preferred materials for the inner magnet are hard ferrite or higher-quality magnetic materials. In the case of a multi-part internal magnet, several individual magnets arranged in a ring can be attached to one another. If only an inner magnet is used, a ring magnet can preferably be used. Also “platelet-shaped" magnets (as magnetic pieces) made of higher quality magnetic material, e.g. NdFeB (as an example of a rare earth magnet) or SmCo (samarium cobalt) can be put together as segments to form a ring-shaped inner magnet.
- NdFeB as an example of a rare earth magnet
- SmCo sinarium cobalt
- Examples of such segments are the ring segments mentioned, which together (placed next to one another) result in the ring magnet as an internal magnet.
- a thickness of 2mm (thickness, measured radially) and a height of up to 10mm (measured axially) are possible.
- Encapsulation or coating of this magnet (one or more parts) is recommended for the promotion of aggressive media (claim 13).
- the channel structure which - branched off from the pressure side of the micropump (claim 1) - provides the forced flow, has at least three channel sections. One is in the cover (preferably with a radial directional component) and another is in the bearing bracket (preferably with an axial direction). Yet another axial channel section is provided, which runs in the cover and forms the outlet on the pressure side. Another channel section can be located in the bearing bracket (claim 15), which also runs axially but is traversed by the conveying media in the opposite direction (claim 16). At the point of change in flow direction, i.e.
- the housing fills practically completely from this channel section with the pressure level of the output side of the micropump.
- the containment shell serves as the boundary wall.
- the additional axial channel section in the bearing bracket guides the pumped medium to the outlet.
- the bearing carrier can have a concentrically formed elevation or extension around the axis, which preferably carries the first bearing at its end, opposite which the magnet carrier is and is fixedly fixed to the shaft.
- a reduced radial dimension of the elevation or extension can form a circumferential annular space in which a significantly longer inner magnet can be inserted axially, the axial length of which is longer than that of the magnet carrier.
- the distance between the two bearing pieces that form the shaft bearing can be selected as large as possible.
- the opening on the suction side is located in the housing cover, as is the outlet on the pressure side. Only the inlet is in alignment with the micropump. The outlet is offset radially with respect to the micropump.
- the axial channel sections in the bearing carrier are preferably also arranged circumferentially offset from one another.
- liquid conveying medium which can have different material compositions, but is suitable for conveying with a micropump.
- this is, for example, urea, water or methanol.
- Hazardous media for example in chemistry, crystallizing media, for example the urea mentioned in automobile construction, or highly volatile media, for example methanol in fuel cell technology, can equally be conveyed with the exemplary embodiments described below.
- the promotion is a continuous promotion while the micropump P is running, which is used in a bearing 3, the rotor mount in Figure 1 is called.
- Figure 1 shows a shaft 10 as a central component, which is arranged in the axis of the structure. It is rotatably mounted in two further bearings 1 and 2, the two bearings being at a distance 'a' from one another.
- bearings 1, 2 and 3 are designed as bearing pieces that are precision bearing parts. They are inserted separately in the bearing bracket 22 and fixed there by means of a joining technique after positioning. Gluing, soldering or welding are suitable as a joining technique.
- Oxide ceramics, non-oxide ceramics, metal or even plastic come into consideration as the material for the precision bearings, which are specially manufactured for precision.
- oxide ceramics are aluminum oxide or zirconium oxide.
- ceramics are used.
- metal can be used.
- Plastic is also possible for the bearings, which is preferred for a one-piece design of the bearing bracket 22 by injection molding directly with the production of the bearing bracket 22 as plastic storage areas, but are not separate bearing pieces, but just storage areas, or - from a functional point of view - "bearings".
- the structure of the housing 20 in Figure 1 initially comprises the three components: hood-shaped cap 24, bearing carrier 22 and cover 26.
- the bearing carrier is designed so that it accommodates the three named radial bearings 1, 2 and 3 and represents the core of the magnetically driven micropump or the associated housing structure.
- the bearing bracket can be relatively roughly tolerated and made of less rigid materials, such as aluminum or plastic. The precision and accuracy to be obtained is achieved by installing the bearing pieces, which are connected to the bearing bracket 22 by joining.
- the bearing bracket 22 also serves to accommodate all static seals that are not specifically named in the figures but are immediately apparent to the person skilled in the art. These are O-rings and seals for fastening the cover 26, the hood-shaped cap 24 (also called containment can) and the magnetic drive unit, which are shown in, for example Figure 4 with its lower portion and a rotatable external magnet 44 can be seen.
- FIG Figure 1 The assembly of the cover 26 from the underside of the bearing bracket 22 is shown in FIG Figure 1 shown symbolically with an engaging screw device 22 '.
- This assembly can, however, also be carried out as shown for assembly of the hood-shaped cap 24 on the other side of the bearing bracket 22, namely by means of hold-down devices 21, via which an assembly force of a further screw device 22 ′′ is uniformly transmitted to the circumference of the lower assembly flange of the hood 24
- the cover 26 is made of ceramic, for example, such an arrangement with a hold-down device is recommended, which is shown in FIG Figure 1 is not shown separately.
- the magnetic drive system is placed inside the dome-shaped cap 24 around the shaft 10 at its upper end.
- the shaft here has an end “remote from the pump” or “remote from the rotor”, which is also called the “drive or magnet-side” end of the shaft 10.
- the other end 10a of the shaft 10 engages positively in the inner rotor 82, as at Figure 2a can be seen.
- the end of the shaft 10 on the pump side which is axially supported against the cover 26.
- the inner magnet 40 is axially longer than a carrier 42 for this inner magnet, which is non-rotatably connected to the shaft 10 and which is also non-rotatably connected to the internal magnet 40.
- This inner magnet carrier is designed to be axially shorter and lies at the upper end, but not in a touching manner, but leaving a gap near the upper wall 24b of the dome-shaped cap 24.
- the bearing 2 remote from the pump is positioned on an elevation or extension 22a arranged concentrically to the hood-shaped cap. At its (upper) end, it carries the named bearing piece 2 and leaves an annular gap opposite the inner magnet carrier 42.
- the elevation or extension is also geometrically designed so that it forms a cylindrical annular gap opposite the inner magnet 40.
- the inner magnet 40 in turn has an axial distance to leave an annular space 23d, which forms a section of a channel structure 23, which will be described later.
- the inner magnet 40 also leaves a cylindrical annular gap to the inner surface of the dome-shaped cap 24 (containment shell), a fluid can flow through the entire interior of this dome-shaped cap, provided that no geometric parts, which are described above, are located there.
- an inner wall of the hood-shaped cap 24 should be mentioned, which can be cooled by a fluid flow to be described, for which purpose the said cylindrical annular gap is provided outside the inner magnet 40.
- the shaft 10 has an annular space 22b between the two bearing pieces 1, 2, which is dimensioned radially larger than a diameter of the shaft 10.
- the shaft 10 is arranged centrally with respect to the hood-shaped cap 24, while the rotor receptacle as a bearing piece 3 is eccentric.
- This bearing piece 3 accommodates the outer rotor 80 in an eccentric manner relative to the centrally rotated inner rotor 82.
- Figures 2.2a show the pump P with inner rotor and outer rotor 80, 82 and also the widening and tapering of the rotating pumping chambers, which is characteristic of a gerotor pump.
- an internal gear pump can also be used, which is not shown separately in the figures.
- the fluid is supplied (on the suction side) via a channel section 23a (suction side).
- the outlet of the pump P opens into an in Figure 2a apparent pressure kidney, which merges into a radial channel section 23b.
- Said sections 23a, 23b are sections of the channel structure 23 which guide the fluid from the inlet F u (suction side) to the outlet F D (pressure side).
- the pressure side F D ' is located at the outlet of the pump P in the radial channel section 23b. Between F D 'and F D there is a further section of the channel guide 23 which extends through the bearing bracket 22 and - in the example - has two axial channel sections 23c and 23e. These two channel sections are in Figure 2a clearly visible. They are circumferentially offset from one another, but both extend in the axial direction in the bearing bracket 22.
- the axial section of the Figure 3 is based on the Figure 2 to explain.
- the section plane III-III has three kinks or lines A, B and C.
- A lies in the center of the axis, respectively the shaft 10.
- the second kink line B lies in the center of the first axial section 23c of the fluid guide (the channel structure 23).
- the second kink line lies in the second axial section 23e of the channel structure 23.
- Another radial section of the channel guide 23 is the transfer of the direct pressure outlet of the pump P along the section 23b of the channel structure 23 to the first axial section 23c in the bearing bracket 22.
- the bearings 1, 2 and 3 described are lubricated or flushed. Also both.
- the can 24 (as a hood-shaped cap of the housing 20) is cooled from the inside, the cooling surface being at least 50% of the total inner surface of the hood 24, but preferably being above 70%.
- the fluid F on the pressure side is supplied as pressurized fluid F D 'not immediately to the outlet in the cover 26, but first to the aforementioned annular space 23d, which is located between an upper surface of the bearing bracket (between the shoulders 22c and 22a, and a downward-facing surface is formed of the internal magnet 40.
- This section 23d is flat and belongs to the channel structure 23.
- the axial section 23c feeds pressurized fluid to this flat annular space 23d, which fluid is distributed into the remaining free spaces within the “hood” 24 and flows through there. It can flow off again via the second axial channel section 23e and can be fed via the axial channel section 23f in the cover 26 to the outlet side or pressure side of the micropump arrangement with bearing according to the figures.
- a large part of the inner surface of the cylindrical wall 24a of the dome-shaped cap 24 can thus be cooled.
- a flushing flow F ' should also be mentioned. It penetrates through the bearing surfaces of the precision bearings along path F 'from Figure 3 . It flushes both bearings 1, 2 and, due to the pressure difference, reaches pump P on its suction side. Lubrication of the bearings is also achieved.
- the liquid delivery medium is sucked in on the suction side through the housing cover 26 and fed to the axial channel section 23a in the micropump P with rotors 82, 80, or sucked in by the latter. It follows the rotating conveyor chambers according to Figure 2a the micropump (also called “pump” for short) and is fed to the pressure-side section of the fluid guide.
- the outlet of the pump P on the pressure side ends in the radial channel section 23b. At its end, it is fed to the internal channel 23c in the bearing bracket 22 and passed into the containment can 24.
- the fluid flows through this containment shell (the hood-shaped cap 24) and reaches the pressure-side opening in the housing cover 26 via a further axial channel section 23e.
- an aligned channel section 23f is provided, which is the continuation of the axial channel section (or channel segment) 23e.
- This fluid flow actively flows through all areas of the pump.
- the dead volume of the pump is limited.
- the pressure difference between the shaft end on the rotor side and the shaft end of the shaft 10 on the drive side ensures a forced flushing F 'and the associated lubrication of the bearings 1, 2 by the liquid delivery medium.
- the described bypass flow which is called the flushing flow F ', follows the pressure gradient between a delivery pressure in the containment can area (inside the hood 24) and the low pressure in the area of the rotor bearing (the suction side).
- the medium flowing through the containment shell 24 simultaneously serves to cool the containment shell and the internal magnet 40.
- the containment shell can also be omitted.
- the hood-shaped cap is still shown, but is unnecessary due to the drive shown there and could be omitted.
- This embodiment, not shown, is made possible by the fact that an outer housing 20 ′ is formed which is created outside the outer magnet 48 and is connected to the bearing carrier in a sealing manner. This can be done by a screwing device, of which two Screws 22 '"are visible. The hold-down device 21 and the hood-shaped cap 24 are omitted.
- Both the external magnet 48, which carries current-carrying windings 49 (which is not shown), as well as the internal magnet 40 are then arranged in the same space and characterized by their designation as external and internal. Due to the lack of rotational movement of the external magnet 48, the torque is transmitted to the internal magnet 40 via the rotating field.
- connection plug 91 which represents an opening in the motor housing 28, which is part of the modified housing structure 20 '.
- An integrated control 90 on a circuit board is shown and generates the current flows in the spatially distributed windings 49 for generating the rotating field.
- a heating winding 72 is arranged around the shaft in the bearing bracket 22.
- Another heating coil 71 can be located closer to the cover 26 and surround the pump P.
- the heating windings 71, 22 are electrically conductive resistance windings to which current is applied. This can also be supplied via the connection cover 91.
- the integrated heaters 71 and / or 72 which can be present individually or in combination, improve the cold start capability of the pump when thick or viscous pumping media are to be conveyed that cannot yet be conveyed due to the reduced ambient temperature, for example in automotive engineering.
- the heater can particularly advantageously be used in connection with a bearing bracket 22 which is produced by injection molding, for example from metal or plastic.
- FIG. 4 shows another embodiment, which the structure of the Figures 1 / 3 used.
- a motor 95 can be seen as a drive on a higher-level housing structure 20 *, which engages mechanically with a motor shaft 94 in a cover plate 29 of this housing structure 20 * and allows a rotating external magnet 44 to rotate via a radially expanding external magnet carrier 45. This takes, coupled via a magnetic field and through the hood-shaped cap 24, the Inner magnet 40 rotates with it and forms a central rotary coupling.
- the motor 95 is controlled by an electrical controller 96 which is shown in FIG Figure 2 can be seen in the section and is preferably placed at the upper end of the motor 95.
- Inner magnet 40 and outer magnet 44 are advantageously concentric with one another and not offset from one another in the axial direction. This minimizes axial forces that can (t) act on the shaft 10 through the magnetic field.
- the higher-level housing structure 20 * is connected to the bearing bracket 22 in a mechanically sealing manner. This can be done again by a screwing device, of which two screws 22 '′′ are visible, as also in FIG Figure 5 shown.
- the underside of the cover 26 is 26d and the inlet and outlet are provided on it, which are provided here with O-ring seals and have a diameter that is larger than the diameter of the outgoing channel sections.
- the lower surface of the bearing bracket 22 is 22d.
- the cover 26 is placed on it in order to achieve the axial guidance of the channel sections 23e and 23b as well as to lead the axial section 23a to the suction side of the pump P and also to lead the radial channel section 23b to the discharge side of the pump P on the pressure side.
- the inner magnet 40 arranged there over the magnet carrier 42 is preferably in one piece (made from one piece). It can consist of hard ferrite. Another construction is the use of the encapsulation of a plastic-bonded magnetic material around the shaft end (in the area of the outer magnet 44) and without a magnet carrier on the shaft side.
- the inner magnet 40 can be made from several parts. These several parts are held on the magnet carrier 42. For this purpose, several individual magnets (arranged in a ring) (as segments or sectors) can be used, which are assembled on the magnet carrier 42. Is only a piece of a magnet is provided, it sits as a ring magnet on the magnet carrier 42 and is joined to it in a rotationally fixed manner.
- the assembly of the several individual magnet pieces (in the form of “plate-like” magnets), which are made of high-quality magnetic material, can take place on the magnet carrier 42.
- Rare earth magnets are examples of such plate-shaped magnets.
- the individual magnets can also be coated or encapsulated. Such magnets would only turn out to be coated or encapsulated if they came into physical contact with the aggressive fluid being conveyed. This is the case for the inner magnet 40 in all exemplary embodiments. For the external magnet 44, this is only the case when the conveying fluid flows around it as a stator 48 and without a hood-shaped cap 24.
- the explained exemplary embodiment of the production of the bearing carrier 22 in the injection molding process means that bearing pieces to be joined separately are omitted and bearing areas are provided as “functional bearings”. Three of these bearings (manufactured in one piece or integrated as a bearing) are provided. Two of these bearing areas guide and support the shaft 10. Another supports the outer rotor 80 of the micropump P.
- bearings can be integrated into the bearing bracket without the need for additional bearing components (previously called “bearing pieces”).
- This embodiment is not shown separately, but should be read accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung befasst sich mit einer Pumpenanordnung mit einer Mikropumpe, die magnetisch angetrieben werden kann (Anspruch 1). Diese Mikropumpe arbeitet zur Förderung eines Volumenstroms eines liquiden Fördermediums, das mehr oder weniger viskos sein kann. Die Erfindung betrifft auch ein zugehöriges Arbeitsverfahren einer solchen magnetisch angetriebenen Mikropumpe, welches Verfahren den Strömungsfluss der Zwangsströmung beanspruchen kann, da dieser nur im Betrieb der Mikropumpe auftritt (Anspruch: 18).The invention is concerned with a pump arrangement with a micropump which can be driven magnetically (claim 1). This micropump works to deliver a volume flow of a liquid delivery medium, which can be more or less viscous. The invention also relates to an associated working method of such a magnetically driven micropump, which method can claim the flow of the forced flow, since this occurs only when the micropump is in operation (claim: 18).
Mit der Zwangsströmung ist der Fluss des mehr oder weniger viskosen Fördermediums gemeint.The forced flow refers to the flow of the more or less viscous conveying medium.
Im Stand der Technik stellt sich die Lagerung der genannten Mikropumpen als problematisch dar. Mikropumpen sind in einer Größenordnung, die kaum grösser als ein Daumennagel ist. Abmessungen unter 20 mm, insbesondere unter 10 mm (Höchstmaß einer Abmessung der Mikropumpe) sind vorgegeben und solche - Mikropumpen genannten - Pumpeinrichtungen sind passend zu lagern.In the prior art, the storage of the mentioned micropumps is problematic. Micropumps are of a size that is hardly larger than a thumbnail. Dimensions below 20 mm, in particular below 10 mm (maximum dimension of the micropump) are specified and such pumping devices - called micropumps - must be stored appropriately.
Zugehörig sind Vorschläge im Stand der Technik unterbreitet worden, vgl.
Eine andere Art einer Pumpe ist aus der
Es ist eine technische Problemstellung (Aufgabe) der Erfindung, einen Aufbau einer Pumpenanordnung mit der Mikropumpe zu erreichen, die mit einer minimalen Anzahl von Komponenten auskommt, die fertigungstechnisch möglichst einfach ausgeführt sind und montagetechnisch präzise zusammengefügt werden können. Daraus ergibt sich, dass sie kostengünstig ist. In einem besonderen Aspekt der Aufgabenstellung soll Fertigungsaufwand durch Montageaufwand zumindest teilweise substituiert werden, wodurch notwendige enge Toleranzen auch erreicht werden. Diese sind für Mikrosysteme und Mikropumpen ein sinequa-non. In einem weiteren Aspekt dieser Aufgabenstellung ist die Mikropumpe im Lagerbereich auch zu spülen oder zu schmieren, was bei Drehzahlen oberhalb von 5.000 U/min ein durchaus beachtenswertes Problem darstellt.It is a technical problem (object) of the invention to achieve a structure of a pump arrangement with the micropump that manages with a minimal number of components, which are as simple as possible in terms of production and can be assembled precisely in terms of assembly. As a result, it is inexpensive. In a special aspect of the task, the manufacturing effort is to be at least partially substituted by assembly effort, whereby the necessary tight tolerances are also achieved. These are a sinequa-non for microsystems and micropumps. In a further aspect of this task, the micropump in the bearing area is also to be flushed or lubricated, which is a notable problem at speeds above 5,000 rpm.
Als Lösung wird eine Pumpenanordnung mit einer Mikropumpe vorgeschlagen, die magnetisch angetrieben wird (Anspruch 1). Sie fördert ein liquides Fördermedium. Die Mikropumpe wird von einem Lagerträger gehalten, der Basisteil genannt wird. Der magnetische Antrieb erfolgt von einem Außenmagneten auf einen Innenmagneten, und Letzterer überträgt das auf ihn übertragene Drehmoment über die axiale Welle auf die Mikropumpe. Der Lagerträger hat drei Lagerstücke eingesetzt, die durch Fügen mit ihm verbunden sind. Diese "Radiallagerstücke" bewirken die Drehlagerung (auch: Führung) der axialen Welle und auch der Mikropumpe. Die Radiallagerstücke sind positioniert und im Lagerträger festgelegt, wobei eines der drei Lager den Außenrotor der Mikropumpe drehfähig aufnimmt. Dieses Lager für den Außenrotor ist exzentrisch zur Welle angeordnet. Der Innenrotor, der mit der axialen Welle angetrieben wird, ist dagegen zentrisch zur axialen Welle angeordnet. Die Pumpe selbst beinhaltet den Innenrotor und den Außenrotor, wobei beide miteinander verzahnt sind und miteinander drehen, indes mit unterschiedlichen Geschwindigkeiten.As a solution, a pump arrangement with a micropump that is magnetically driven is proposed (claim 1). It conveys a liquid delivery medium. The micropump is held in place by a bearing bracket called the base. The magnetic drive takes place from an external magnet to an internal magnet, and the latter transfers the torque transmitted to it to the micropump via the axial shaft. The bearing bracket has three bearing pieces that are connected to it by joining. These "radial bearing pieces" cause the rotary bearing (also: guidance) of the axial shaft and also of the micropump. The radial bearing pieces are positioned and fixed in the bearing bracket, with one of the three bearings accommodating the outer rotor of the micropump so that it can rotate. This bearing for the outer rotor is arranged eccentrically to the shaft. In contrast, the inner rotor, which is driven with the axial shaft, is arranged centrally to the axial shaft. The pump itself contains the inner rotor and the outer rotor, both of which are meshed with one another and rotate with one another, but at different speeds.
Der Außenrotor wird im "exzentrischen Lager" aufgenommen und stirnseitig von einem Deckel dort lagernd gehalten. Die zumindest zwei weiteren Lagerstücke sind für die Welle vorgesehen. Eines dieser Lager ist dem Innenmagnet näher und das andere der Lager (jeweils Wellenlager) ist der Mikropumpe näher. Bevorzugt sind beide Lager möglichst weit voneinander entfernt, um der axialen Welle eine gute Stabilität und Konzentrizität zu geben.The outer rotor is received in the "eccentric bearing" and is held there by a cover on the front side. The at least two further bearing pieces are provided for the shaft. One of these bearings is closer to the inner magnet and the other of the bearings (each shaft bearing) is closer to the micropump. Both bearings are preferably as far apart as possible in order to give the axial shaft good stability and concentricity.
Mit den Begriffen, dass sich ein Lager näher am Magneten und ein anderes Lager näher der Mikropumpe jeweils befindet, wird eine Relativbeziehung zum Ausdruck gebracht. Natürlich kann dabei das eine Lager "nahe" dem Innenmagneten sein, oder aber von einem ringförmigen Magneten umgeben sein (dann hat das Radiallager ein geringes radiales Maß). Das ist vom Begriff der Relation durchaus umfasst. Das andere Lager ist näher der Mikropumpe und dieser Begriff umfasst auch, dass es nahe oder bei der Mikropumpe, sogar unmittelbar an der Mikropumpe zur stirnseitigen Stützung und Lagerung angeordnet ist. Beansprucht ist indes nicht der Begriff "nahe", sondern eine Relation der Lager zueinander mit Blick auf den Innenmagneten und die Pumpe.With the terms that one bearing is closer to the magnet and another bearing is closer to the micropump, a relative relationship is expressed. Of course, one of the bearings can be "close" to the inner magnet, or it can be surrounded by an annular magnet (then the radial bearing has a small radial dimension). That is certainly included in the concept of relation. The other bearing is closer to the micropump and this term also includes the fact that it is arranged close to or near the micropump, even directly on the micropump for end-face support and storage. What is claimed is not the term "close", but a relationship between the bearings with a view of the internal magnet and the pump.
Zur Ermöglichung einer Spülung oder Schmierung ist eine Kanalstruktur (oder: Kanalführung) vorgesehen. Diese sorgt (im Betrieb) für eine Zwangsströmung. Die Kanalstruktur hat mehrere Abschnitte, von denen zumindest zwei hervorgehoben werden sollen. Ein erster Kanalabschnitt ist im Deckel angeordnet. Ein zweiter Kanalabschnitt ist im Lagerträger angeordnet. Damit ermöglicht die Kanalführung im Sinne der Kanalstruktur ein Ableiten des fluiden Fördermediums auf der Druckseite über den Deckel und den Lagerträger zur Ermöglichung einer Spülung und/oder Schmierung aller drei genannten Lager.A channel structure (or: channel guidance) is provided to enable flushing or lubrication. This ensures (during operation) a forced flow. The channel structure has several sections, at least two of which are to be highlighted. A first channel section is arranged in the cover. A second channel section is arranged in the bearing bracket. The channel guidance in the sense of the channel structure thus enables the fluid conveying medium on the pressure side to be diverted via the cover and the bearing bracket to enable flushing and / or lubrication of all three named bearings.
Angetrieben wird die Mikropumpe von einem Außenmagnet, der ein Drehmoment auf den von der Mikropumpe axial beabstandeten Innenmagnet überträgt. Dies kann als "magnetische Kupplung" angesehen werden, oder aber als eine magnetische Drehmoment-Übertragung (Anspruch 2) im Sinne des "magnetischen Antriebs" (Anspruch 1).The micropump is driven by an external magnet, which transmits a torque to the internal magnet, which is axially spaced from the micropump. This can be viewed as a "magnetic clutch" or as a magnetic torque transmission (claim 2) in the sense of the "magnetic drive" (claim 1).
Die Pumpe von einem stirnseitig angeordneten Deckel im exzentrischen Lager gehalten. Die Kanalstruktur sorgt für die Zwangsströmung, um die Lager aktiv mit dem Fördermedium (dem geförderten Volumenstrom) zu spülen und/oder zu schmieren.The pump is held in the eccentric bearing by a cover on the face. The channel structure provides the forced flow in order to actively flush and / or lubricate the bearings with the pumped medium (the conveyed volume flow).
Die beiden Lager für die Welle sind deutlich beabstandet. Ein Lager ist nahe, insbesondere sogar innerhalb des Innenmagneten, und Bestandteil des Lagerträgers. Das andere Lager ist nahe oder unmittelbar bei der Mikropumpe und Bestandteil des Lagerträgers.The two bearings for the shaft are clearly separated. A bearing is close by, especially even within the inner magnet, and is part of the bearing bracket. The other bearing is near or directly to the micropump and part of the bearing bracket.
Die funktionsbestimmenden Toleranzen sind (Anspruch 1) auf drei Präzisionslager vereint. Wichtige Maße werden durch eine präzise Montage dieser Präzisionslager zueinander hergestellt. Nach Positionierung erfolgt die Verbindung der Präzisionslager mit dem Lagerträger durch ein Fügeverfahren (eine Fügetechnik, Ansprüche 7, 10). Beispielsweise wird eine Klebung, ein Schweißen oder ein Löten angewendet, um die hohen Anforderungen an die Toleranz montagetechnisch zu erreichen. Die Fertigungskosten der Einzelteile können dabei gesenkt werden.The function-determining tolerances are (claim 1) combined on three precision bearings. Important dimensions are produced by precisely assembling these precision bearings to one another. After positioning, the precision bearings are connected to the bearing carrier by a joining process (a joining technique, claims 7, 10). For example, adhesive bonding, welding or soldering are used in order to meet the high demands on the tolerance in terms of assembly technology. The manufacturing costs of the individual parts can be reduced.
Es kann bei dem genannten Aufbau auch eine Reduzierung der Anzahl notwendiger Axiallager stattfinden. Der Deckel, der stirnseitig die Mikropumpe in dem exzentrischen Lager hält, ist ein solches Axiallager. Bevorzugt kommt hier Keramik als Werkstoff zum Einsatz, um Verschleiß zu minimieren. Auf der Wellenseite am rotorfernen (pumpenfernen) Ende der Welle ist kein Axiallager erforderlich. Die auf die Welle wirkenden Kräfte werden so eingestellt, dass eine solche Lagerung entbehrlich ist.With the structure mentioned, the number of necessary axial bearings can also be reduced. The cover that holds the micropump in the eccentric bearing at the front is such a thrust bearing. Ceramic is preferably used here as a material in order to minimize wear. No axial bearing is required on the shaft side at the end of the shaft remote from the rotor (remote from the pump). The forces acting on the shaft are adjusted in such a way that such storage is unnecessary.
Es kommen folgende Kräfte in Betracht, die auf die Welle wirken können. Eine axiale Kraftkomponente des Innenrotors der Pumpe. Durch den Schiebesitz (Polygon) werden bei der Drehung der Pumpe indes keine axialen Kräfte auf die Welle übertragen. Der magnetische Antrieb (also die Drehmoment-Übertragung vom Außenmagnet auf den Innenmagnet, der über einen Lagerträger mit der Welle drehfest gekoppelt ist), könnte eine axiale Kraftkomponente entstehen lassen. Wenn die axialen Positionen von Innenmagnet und Außenmagnet aber so abgestimmt werden, dass keine axiale Kraftkomponente entsteht, fehlt auch hier die Notwendigkeit, eine solche Kraftkomponente von einem Axiallager aufzunehmen. Stützend für das Fehlen eines solchen weiteren Axiallagers ist das entstehende Druckgefälle des Fördermediums innerhalb der Gehäuseanordnung, die aus dem Lagerträger, einem darauf aufgesetzten, haubenförmigen Kappenteil und einem gegenüberliegenden Deckel gebildet wird (Anspruch 18).The following forces can be considered that can act on the shaft. An axial force component of the pump's inner rotor. Due to the sliding fit (polygon), no axial forces are transmitted to the shaft when the pump rotates. The magnetic drive (i.e. the torque transmission from the external magnet to the internal magnet, which is rotatably coupled to the shaft via a bearing bracket) could create an axial force component. However, if the axial positions of the inner magnet and outer magnet are coordinated in such a way that no axial force component arises, there is also no need to absorb such a force component from an axial bearing. Support for the lack of such a further axial bearing is the resulting pressure gradient of the pumped medium within the housing arrangement, which comes from the bearing bracket, a hood-shaped cap part placed thereon and an opposite cover is formed (claim 18).
Es ergeben sich eine hermetische Abdichtung und ein sich aufbauender Druck innerhalb des Gehäuses, der durch die Arbeit der Pumpe und die vorhandenen Kanalabschnitte zur Zwangsströmung entsteht. Am pumpenfernen Ende der Welle, dies ist das antriebs- oder magnetseitige Ende der Welle, wird ein sich aufbauender Druck ein Druckgefälle zum rotorseitigen Ende der Welle erzeugen, wodurch die Welle im Betrieb durch das sich dabei aufbauende Druckgefälle in Richtung zur Pumpe gedrückt wird. Dort ist für die Pumpe und für das pumpenseitige Ende der Welle ein Axiallager durch den Deckel gegeben. Ein weiteres Axiallager am anderen Ende der Welle kann entfallen.The result is a hermetic seal and a pressure that builds up inside the housing, which is created by the work of the pump and the existing duct sections for the forced flow. At the end of the shaft remote from the pump, this is the drive or magnet-side end of the shaft, a pressure build-up will create a pressure gradient to the rotor-side end of the shaft, whereby the shaft is pressed during operation by the pressure gradient that builds up towards the pump. There is an axial bearing through the cover for the pump and for the end of the shaft on the pump side. Another axial bearing at the other end of the shaft can be omitted.
Zu erwähnen wäre, dass die Welle naturgemäß drehstarr oder drehfest mit dem Innenmagneten gekoppelt sein muss, was über einen Magnetträger geschieht (Anspruch 6). Magnetträger und Innenmagnet sind konzentrisch aufgebaut und bevorzugt mittig zum Innenmagneten ist das eine, pumpenferne Lager vorgesehen. Der Außenmagnet ist bevorzugt konzentrisch zum Innenmagneten, außerhalb der haubenförmigen Kappe, der auch Spalttopf genannt wird.It should be mentioned that the shaft must naturally be rotationally rigid or rotationally rigidly coupled to the inner magnet, which is done via a magnet carrier (claim 6). Magnet carrier and inner magnet are constructed concentrically and the one bearing remote from the pump is preferably provided in the center of the inner magnet. The outer magnet is preferably concentric to the inner magnet, outside the dome-shaped cap, which is also called a containment can.
Störanfällige Bauteile können durch den Aufbau bevorzugt entbehrlich werden (Anspruch 18). Es sind dies dynamische Dichtungen oder Wellendichtungen. Dadurch, dass die Pumpe einerseits von dem Deckel hermetisch abgedichtet ist und ihren Sitz im Lagerträger hat, der Lagerträger andererseits gegenüber dem Deckel und konzentrisch zur Welle eine haubenförmige Kappe als Spalttopf besitzt, der ebenfalls über statische Dichtungen mit dem Lagerträger verbunden ist, kann der Haubenbereich den Innenmagneten aufnehmen und vollständig von dem fluiden Fördermedium durchströmt werden, das auf der Druckseite der rotierenden Pumpe über die genannten Kanalabschnitte austritt. Hierdurch kann zusätzlich eine Kühlung der Haube (haubenförmigen Kappe) von innen her erfolgen.Components that are susceptible to failure can preferably be dispensed with due to the structure (claim 18). These are dynamic seals or shaft seals. The fact that the pump is hermetically sealed by the cover on the one hand and is seated in the bearing bracket, on the other hand, the bearing bracket has a hood-shaped cap as a containment shell opposite the cover and concentric to the shaft, which is also connected to the bearing bracket via static seals, the hood area can accommodate the internal magnet and are completely traversed by the fluid conveying medium that emerges on the pressure side of the rotating pump via said channel sections. In this way, the hood (hood-shaped cap) can also be cooled from the inside.
Durch den hermetischen Aufbau mit ausschließlich statischen Dichtungen (Spalttopf zum Lagerträger und Deckel zum Lagerträger) kann die Mikropumpe auch gefährliche Medien, kristallisierende Medien oder leicht flüchtige Medien fördern.Due to the hermetic structure with exclusively static seals (containment shell to the bearing bracket and cover to the bearing bracket), the micropump can also convey dangerous media, crystallizing media or highly volatile media.
Auch Langzeitanwendungen werden möglich, wenn die genannten verschleißanfälligen dynamischen Dichtungen wegfallen. Die Folge davon ist das aktive Durchströmen des Fördermediums durch den Spalttopf (das haubenförmige Gehäuseteil), indes mit weiteren Vorteilen. Das Totvolumen wird minimiert und das zu fördernde Medium (oder besser: das geförderte Medium) dient gleichzeitig der Kühlung des Spalttopfes, der Lagerflächen und der Magnete, wie auch der Schmierung der Lagerflächen.Long-term applications are also possible if the aforementioned dynamic seals, which are susceptible to wear, are omitted. The consequence of this is the active flow of the pumped medium through the containment shell (the hood-shaped housing part), but with further advantages. The dead volume is minimized and the medium to be conveyed (or better: the medium being conveyed) simultaneously serves to cool the containment shell, the bearing surfaces and the magnets, as well as lubricating the bearing surfaces.
Die zuvor umschriebene Kraftauswirkung durch Druckunterschied (Druckgefälle) ist ein weiterer sich ergebenden Vorteil. Entlang der Welle kann durch den gegebenen Druckunterschied zwischen dem Bereich des Spalttopfes (oder besser: Dem Bereich des Innenmagneten) und dem rotorseitigen Wellenende ein Spülstrom entstehen, der durch die Lagerbauteile der Welle führt.The previously described force effect due to pressure difference (pressure gradient) is another resulting advantage. Due to the pressure difference between the area of the containment can (or better: the area of the inner magnet) and the rotor-side shaft end, a flushing flow can arise along the shaft, which flows through the bearing components of the shaft.
Die Welle ist dabei dennoch in den Lagerbauteilen gelagert, dreht sich aber in einem Hohlraum zwischen den Lagerbauteilen, durch den der axiale Spülstrom verläuft.The shaft is still mounted in the bearing components, but rotates in a cavity between the bearing components through which the axial flushing flow runs.
Durch Einsatz eines statischen Antriebes mit einem Stator, der ein rotierendes Magnetfeld erzeugt, ohne rotierende Bauteile zu haben, wird ein minimaler Bauraum erzielt. In einer solchen Anwendung kann der Spalttopf entfallen und es wird ein außenliegendes Gehäuse verwendet. Durch eine Öffnung kann ein elektrischer Anschluss hermetisch dicht hineingeführt werden, der den Stator mit Strom versorgt zur Ausbildung des rotierenden Magnetfeldes und zur Übertragung auf den Innenmagneten, der über den Magnetträger mit der Welle drehstarr gekoppelt ist.By using a static drive with a stator that generates a rotating magnetic field without having rotating components, a minimal installation space is achieved. In such an application, the containment shell can be omitted and an external housing is used. An electrical connection, which supplies the stator with power for the formation of the rotating magnetic field and for transmission to the internal magnet, which is coupled to the shaft via the magnet carrier, can be hermetically sealed through an opening.
Der Innenmagnet und der Außenmagnet werden dann beide zu Innenmagneten, die innerhalb des umliegenden Gehäuses gelegen sind. Sie unterscheiden sich als Stator und Rotor. Der Außenmagnet erzeugt ein drehendes Magnetfeld und bleibt statisch. Der Innenmagnet dreht die Welle und liegt innerhalb des Außenmagneten.The inner magnet and the outer magnet then both become inner magnets, which are located within the surrounding housing. They differ as a stator and rotor. The external magnet creates a rotating magnetic field and remains static. The inner magnet rotates the shaft and lies inside the outer magnet.
Bei dieser Art des Antriebs wird ein minimaler Bauraum erzielt, allerdings sollte bei Wegfall des haubenförmigen Gehäuseteils (des Spalttopfes) eine Beschichtung der Antriebswicklung des Außenmagneten erfolgen, um gegenüber den Fördermedien Resistenz zu haben und Langzeitanwendungen zu ermöglichen.With this type of drive, a minimal installation space is achieved, but if the hood-shaped housing part (the containment can) is omitted, the drive winding of the external magnet should be coated in order to be resistant to the conveyed media and to enable long-term use.
Das haubenförmige Gehäuseteil (auch: Kappe) muss auch bei stehendem Stator (mit rotierendem Magnetfeld) nicht entfallen, sondern kann zusätzlich anwesend sein. Aufgrund des verwendeten Werkstoffs (meist metallischer Natur) sind Wirbelströme in diesem Spalttopf nicht zu vermeiden, die zu Wärmeentwicklung führen. Einer solchen Wärmeentwicklung wird indes durch die Innenkühlung auf einer sehr großen Innenfläche des Spalttopfes entgegengewirkt. In bevorzugter Ausführung kann über 50%, meist wesentlich mehr, der Innenfläche der Kappe gekühlt werden (Anspruch 28). Ein Reststück wird dazu verwendet, die Kappe mit dem Lagerträger zentrierend zu verbinden.The hood-shaped housing part (also: cap) does not have to be omitted even when the stator is stationary (with a rotating magnetic field), but can also be present. Due to the material used (mostly metallic), eddy currents in this containment can cannot be avoided, which lead to heat generation. Such a heat development is counteracted by the internal cooling on a very large inner surface of the containment shell. In a preferred embodiment, over 50%, usually significantly more, of the inner surface of the cap can be cooled (claim 28). A remnant piece is used to connect the cap with the bearing bracket in a centering manner.
In einer Option wird die erste Lösung so gestaltet, dass der Lagerträger durch ein Spritzgießen aus Metall oder Kunststoff hergestellt wird (Anspruch 8). Gleichwohl werden die Radiallagerstücke noch immer gesondert hergestellt und als Präzisionslagerteile ausgebildet (Anspruch 10). Sie werden nachträglich in dem aus Spritzguss hergestellten Lagerträger platziert und dabei positioniert und festgelegt, wozu ein Verfahren der Fügetechnik Anwendung finden kann, die Radiallagerstücke zuverlässig und genau in den Lagerträger anzuordnen.In one option, the first solution is designed in such a way that the bearing bracket is produced from metal or plastic by injection molding (claim 8). Nevertheless, the Radial bearing pieces are still manufactured separately and designed as precision bearing parts (claim 10). They are subsequently placed in the injection-molded bearing bracket and positioned and specified, for which purpose a joining technique can be used to reliably and accurately arrange the radial bearing pieces in the bearing bracket.
Auch eine Option und bevorzugte Gestaltung ist bei der ersten Lösung die Anwesenheit eines Heizelementes, das indes in einem spritzgegossenen Lagerträger anzuordnen ist (Anspruch 9). Mit ihm wird eine Erwärmung des noch wenig liquiden oder kaum liquiden Fördermediums erreicht, um die Kaltstartfähigkeit der Mikropumpe zu verbessern.Also an option and preferred design in the first solution is the presence of a heating element which, however, is to be arranged in an injection-molded bearing bracket (claim 9). With it, a warming of the still little liquid or hardly liquid pumping medium is achieved in order to improve the cold start capability of the micropump.
Zur Umschreibung des begrifflichen Inhalts der Mikropumpe wird auf Anspruch 14 verwiesen. Dieser ist mit Bezug auf die Erfindung (Anspruch 1) hier stützend einbezogen. Mit Bezug auf die Kühlfähigkeit der haubenförmigen Kappe ist eine große Innenfläche so zu verstehen, dass sie zumindest 50% einer gesamten Innenfläche der Kappe betragen kann. Bevorzugt ist aber mehr als 70% der gesamten Innenfläche der Kappe kühlfähig. Bei der Ausführungsform mit einem stehenden Stator, der ein Drehfeld erzeugt, kann die haubenförmige Kappe wegfallen und ein anderes, hermetisch dichtes Gehäuse auf den Lagerträger aufgesetzt werden. Da keine mechanischen Drehungen in das so gebildete Gehäuse eingekoppelt werden müssen, sondern nur über elektrische Leitungen Strom zugeführt wird, befinden sich Innenrotor und Außenrotor gemeinsam in einem - von solcher Art gebildeten - Gehäuse.Reference is made to claim 14 for a description of the conceptual content of the micropump. This is included here in support of the invention (claim 1). With regard to the cooling capacity of the dome-shaped cap, a large inner surface is to be understood to mean that it can amount to at least 50% of a total inner surface of the cap. Preferably, however, more than 70% of the entire inner surface of the cap can be cooled. In the embodiment with a stationary stator that generates a rotating field, the hood-shaped cap can be omitted and another, hermetically sealed housing can be placed on the bearing bracket. Since no mechanical rotations have to be coupled into the housing formed in this way, but power is only supplied via electrical lines, the inner rotor and outer rotor are located together in a housing formed of this type.
Der kompakte Aufbau schafft kurze Toleranzketten und kurze Kraftschlusswege. Die präzisen Lagerstücke (Anspruch 1) erfüllen die Anforderungen an geringe Toleranzen für die zuverlässige Funktion der Mikropumpe und den Einsatz in Langzeitanwendungen.The compact structure creates short tolerance chains and short traction paths. The precise bearing pieces (claim 1) meet the requirements for low tolerances for the reliable function of the micropump and use in long-term applications.
Mit den beanspruchten Pumpen (Anspruch 5) können praktisch (oder nahezu) alle Arten von fluiden Fördermedien gefördert werden: Besonders gefährliche Medien, kristallisierende Medien, bspw. Harnstoff, oder leicht flüchtige Medien, bspw. Methanol, und bei bevorzugtem Einsatz eines Heizelementes auch solche Medien, die in kaltem Zustand nicht förderbar sind, bspw. Harnstoff, Wasser oder Methanol (wie im Automobil).With the claimed pumps (claim 5) practically (or almost) all types of fluid conveying media can be conveyed: particularly dangerous media, crystallizing media, e.g. urea, or volatile media, e.g. methanol, and if a heating element is preferred, also such Media that cannot be conveyed when cold, for example urea, water or methanol (as in automobiles).
Die Drehmoment-Übertragung von Außenmagnet und Innenmagnet (Anspruch 2) kann bevorzugt als Zentraldrehkupplung ausgebildet sein (Ansprüche 3, 11).The torque transmission from the external magnet and internal magnet (claim 2) can preferably be designed as a central rotary coupling (claims 3, 11).
Das erzeugte Magnetfeld des Außenmagnets kann von einem Stator erzeugt werden (Anspruch 4). Hierbei kann der haubenförmige Gehäuseteil wegfallen.The generated magnetic field of the external magnet can be generated by a stator (claim 4). The hood-shaped housing part can be omitted here.
Als Mikropumpe kann eine Innenzahnringpumpe Verwendung finden (Anspruch 5), vgl.
Der Innenmagnet kann einteilig oder mehrteilig sein (Anspruch 13). Er ist auf einem Träger angeordnet (Anspruch 6). Bevorzugte Materialien des Innenmagnets sind Hart-Ferrit oder höherwertige Magnetwerkstoffe. Bei einem mehrteiligen Innenmagnet können mehrere ringförmig angeordnete Einzelmagnete aneinandergesetzt werden. Wird nur ein Innenmagnet verwendet, kann bevorzugt ein Ringmagnet Anwendung finden. Auch "plättchenförmige" Magnete (als Magnetstücke) aus höherwertigem Magnetwerkstoff, z.B. NdFeB (als Beispiel eines Seltene-Erden-Magnets) oder SmCo (Samarium-Cobalt) können als Segmente zur Bildung eines ringförmigen Innenmagneten zusammengesetzt werden.The inner magnet can be in one piece or in several pieces (claim 13). It is arranged on a carrier (claim 6). Preferred materials for the inner magnet are hard ferrite or higher-quality magnetic materials. In the case of a multi-part internal magnet, several individual magnets arranged in a ring can be attached to one another. If only an inner magnet is used, a ring magnet can preferably be used. Also "platelet-shaped" magnets (as magnetic pieces) made of higher quality magnetic material, e.g. NdFeB (as an example of a rare earth magnet) or SmCo (samarium cobalt) can be put together as segments to form a ring-shaped inner magnet.
Beispiele für solche Segmente sind die genannten Ringsegmente, die gemeinsam (aneinandergesetzt) den Ringmagnet als Innenmagneten ergeben. Im Beispiel sind Größenordnungen von 2mm Stärke (Dicke, radial gemessen) und bis zu 10mm Höhe (axial gemessen) möglich.Examples of such segments are the ring segments mentioned, which together (placed next to one another) result in the ring magnet as an internal magnet. In the example, a thickness of 2mm (thickness, measured radially) and a height of up to 10mm (measured axially) are possible.
Eine Kapselung oder die Beschichtung dieses Magnets (ein- oder mehrteilig) empfiehlt sich für die Förderung von aggressiven Fördermedien (Anspruch 13).Encapsulation or coating of this magnet (one or more parts) is recommended for the promotion of aggressive media (claim 13).
Die Kanalstruktur, die - abgezweigt von der Druckseite der Mikropumpe (Anspruch 1) - für die Zwangsströmung sorgt, hat zumindest drei Kanalabschnitte. Einer liegt im Deckel (bevorzugt mit radialer Richtungskomponente) und ein weiterer liegt im Lagerträger (bevorzugt mit axialer Richtung). Ein noch weiterer axialer Kanalabschnitt ist vorgesehen, der im Deckel verläuft und den druckseitigen Auslass bildet. In dem Lagerträger kann noch ein weiterer Kanalabschnitt liegen (Anspruch 15), der ebenfalls axial verläuft aber in entgegengesetzter Richtung von den Fördermedien durchströmt wird (Anspruch 16). Am Punkt des Wechsels der Strömungsrichtung, also zwischen den beiden axialen Kanalabschnitten findet sich ein flächiger, bevorzugt ringförmiger Aufnahmeraum, der sich axial zwischen einem unteren Ende des Innenmagneten und einer oberen Oberfläche des Lagerträgers ausbildet (Anspruch 17). Gespeist von der Druckseite der Mikropumpe füllt sich das Gehäuse von diesem Kanalabschnitt ausgehend praktisch vollständig mit dem Druckniveau der Ausgangsseite der Mikropumpe. Als Begrenzungswand dient der Spalttopf.The channel structure, which - branched off from the pressure side of the micropump (claim 1) - provides the forced flow, has at least three channel sections. One is in the cover (preferably with a radial directional component) and another is in the bearing bracket (preferably with an axial direction). Yet another axial channel section is provided, which runs in the cover and forms the outlet on the pressure side. Another channel section can be located in the bearing bracket (claim 15), which also runs axially but is traversed by the conveying media in the opposite direction (claim 16). At the point of change in flow direction, i.e. between the two axial channel sections, there is a flat, preferably ring-shaped receiving space which is formed axially between a lower end of the inner magnet and an upper surface of the bearing bracket (claim 17). Fed from the pressure side of the micropump, the housing fills practically completely from this channel section with the pressure level of the output side of the micropump. The containment shell serves as the boundary wall.
Der noch weitere axiale Kanalabschnitt im Lagerträger führt das Fördermedium dem Auslass zu.The additional axial channel section in the bearing bracket guides the pumped medium to the outlet.
Entsprechend der haubenförmigen Ausbildung des Spalttopfes kann der Lagerträger um die Achse herum eine konzentrisch ausgebildete Erhöhung oder Verlängerung haben, die bevorzugt an ihrem Ende das erste Lager trägt, dem gegenüber der Magnetträger liegt und an der Welle drehstarr befestigt ist. Durch ein reduziertes Radialmaß der Erhöhung oder Verlängerung kann sich umlaufend ein Ringraum bilden, in den axial ein deutlich längerer Innenmagnet eingesetzt werden kann, dessen axiale Länge länger ist, als diejenige des Magnetträgers.Corresponding to the dome-shaped design of the containment shell, the bearing carrier can have a concentrically formed elevation or extension around the axis, which preferably carries the first bearing at its end, opposite which the magnet carrier is and is fixedly fixed to the shaft. A reduced radial dimension of the elevation or extension can form a circumferential annular space in which a significantly longer inner magnet can be inserted axially, the axial length of which is longer than that of the magnet carrier.
Durch Verwendung der Erhöhung oder Verlängerung kann der Abstand der beiden Lagerstücke, welche die Wellenlagerung bilden, größtmöglich gewählt werden.By using the increase or extension, the distance between the two bearing pieces that form the shaft bearing can be selected as large as possible.
Zum Verlauf der Zwangsströmung des Fördermediums kann angemerkt werden, dass die saugseitige Öffnung im Gehäusedeckel ebenso liegt, wie der druckseitige Auslass. Nur der Einlass ist indes in Fluchtung der Mikropumpe. Der Auslass ist radial gegenüber der Mikropumpe versetzt. Bevorzugt sind auch die axialen Kanalabschnitte im Lagerträger zueinander umfänglich versetzt angeordnet.Regarding the course of the forced flow of the conveying medium, it can be noted that the opening on the suction side is located in the housing cover, as is the outlet on the pressure side. Only the inlet is in alignment with the micropump. The outlet is offset radially with respect to the micropump. The axial channel sections in the bearing carrier are preferably also arranged circumferentially offset from one another.
Durch eine solche Fluidführung können alle Bereiche der Pumpe aktiv durchflossen werden und das Totvolumen der Pumpe ist begrenzt. Der sich ausbildende Druckunterschied im Spalttopf gegenüber der Mikropumpe im Ansaugbereich sorgt für einen axialen Spülstrom entlang der Welle. Diese "Zwangsspülung" sorgt auch für eine Schmierung der Wellenlager und des exzentrischen Pumpenlagers und bei Anwesenheit eines Spalttopfes für dessen Kühlung.Through such a fluid guide, all areas of the pump can be actively flowed through and the dead volume of the pump is limited. The pressure difference that develops in the containment can compared to the micropump in the suction area ensures an axial flushing flow along the shaft. This "forced flushing" also ensures lubrication of the shaft bearings and the eccentric pump bearing and, if a containment shell is present, it cools it.
Ausführungsbeispiele der Erfindung werden an den folgenden Figuren erläutert. Das Verständnis der Erfindung(en) wird mit ihnen vertieft und ergänzt.
-
Figur 1 - ist ein vertikaler Schnitt durch ein erstes Beispiel einer magnetisch antreibbaren Pumpenanordnung mit Mikropumpe.
Der Lagerträger 22 ist Zentrum des Aufbaus, oberhalb istein haubenförmiger Gehäuseabschnitt 24 undunten ein Deckel 26, der axial-lagernd an der Mikropumpe Pmit dem Außenrotor 80 anliegt. Der haubenförmige Gehäuseabschnitt, der im Folgenden auch Spalttopf genannt wird, ist Teil eines Gehäuses 20, welchesSpalttopf 24,Lagerträger 22und Deckel 26 umfasst. -
Figur 2 - ist eine Ansicht von der Deckelseite (in
von unten), wobei die Richtungen oben, unten lediglich auf die Darstellung in den Figuren Bezug nehmen und den Aufbau als solches nicht hinsichtlich seiner Einbaurichtung präjudizieren. InFigur 1 ist eine Schnittebene III-III eingezeichnet, die inFigur 2Figur 3 dargestellt ist, wobei die Schnittführung drei Knicklinien A, B und C aufweist, die bei der Betrachtung derFigur 3 zu berücksichtigen sind. Dadurch wird dieKanalführung 23, die im Folgenden näher erläutert wird, inFigur 3 deutlicher, als sie in gezeigt werden kann, welche einem Schnitt III'-III' entspricht, der keine Knickstellen hat, sondern mittig eben verläuft.Figur 1 - Figur 2a
- ist eine Ausschnitts-Vergrößerung des Zentrums der
Figur 2 , um diezur Figur 2 gemachten Aussagen zu verdeutlichen. Besonders tritt hier die Mikropumpe P hervor, dieeinen Außenrotor 80 und einen Innenrotor 82 aufweist.Die Welle 10 als Axialbezug der Anordnung greift formschlüssig mit einem Mehrkant-Abschnitt 10a in eine entsprechend geformte Innenöffnung desInnenrotors 82, um diesen anzutreiben. - Figur 3
- ist die Schnittansicht mit der Schnittführung III-
III aus Figur 2 und den zu berücksichtigenden Knicklinien A, B und C, wie dort dargestellt. Zusätzlich ist inFigur 3 eine Fluidführung F von der Saugseite zur Druckseite der Mikropumpe ebenso eingezeichnet, wie eine Spülströmung F'.Die zugehörige Kanalstruktur 23 wird oft synonym für die Strömungsführung des liquiden Fördermediums verwendet, das der Kanalstruktur 23 folgt.Die Kanalstruktur 23 besteht aus mehreren zu erläuternden Abschnitten. -
Figur 4 - ist ein weiteres Ausführungsbeispiel, wie die
Anordnung nach Figuren 1 und2 inein Gehäuse 20* eingesetzt ist undvon einem Antriebsmotor 95 über einen drehbaren Außenmagneten 44 angetrieben wird. Als Referenzdienen die Welle 10 und der haubenförmige Abschnitt 24 des hier innen liegenden Gehäuses 20. - Figur 5
- ist ein weiteres Ausführungsbeispiel mit einem stehenden Statormagneten 48, der ein magnetisches Drehfeld zu erzeugen vermag und
den Innenmagneten 40 bei Übertragung eines Drehmoments antreibt. Durch die elektrische Erzeugung des Drehfeldes ist der Zugang zu dem modifizierten Gehäuse 20' über einen Anschlussstecker 91 erreicht, der von außen keine drehbare Welle in das Gehäuse 20' überführen muss. Zusätzlich ist eine integrierte Heizung 71,72 dargestellt, die eine besondere Ausführungsart ist.
- Figure 1
- is a vertical section through a first example of a magnetically drivable pump arrangement with a micropump. The bearing
support 22 is the center of the structure, above is a hood-shapedhousing section 24 and below is acover 26, which rests axially on the micropump P with theouter rotor 80. The hood-shaped housing section, which is also called the containment can in the following, is part of ahousing 20 which comprises the containment can 24, bearingsupport 22 andcover 26. - Figure 2
- is a view from the lid side (in
Figure 1 from below), whereby the directions above and below merely refer to the representation in the figures and do not prejudice the structure as such with regard to its installation direction. InFigure 2 a section plane III-III is shown, which inFigure 3 is shown, the section having three crease lines A, B and C, which when viewing theFigure 3 are to be considered. As a result, thechannel guide 23, which is explained in more detail below, is shown in FIGFigure 3 clearer than it is inFigure 1 can be shown, which corresponds to a section III'-III ', which has no kinks, but runs flat in the middle. - Figure 2a
- is an enlarged section of the center of the
Figure 2 to the forFigure 2 to clarify the statements made. The micropump P, which has anouter rotor 80 and aninner rotor 82, stands out in particular. Theshaft 10 as the axial reference of the arrangement engages positively with apolygonal section 10a in a correspondingly shaped inner opening of theinner rotor 82 in order to drive the latter. - Figure 3
- FIG. 3 is the sectional view with the section III-III from FIG
Figure 2 and the kink lines A, B and C to be considered, as shown there. In addition, inFigure 3 a fluid guide F from the suction side to the pressure side of the micropump is also shown, as is a flushing flow F '. The associatedchannel structure 23 is often used synonymously for the flow guidance of the liquid conveying medium that follows thechannel structure 23. Thechannel structure 23 consists of several sections to be explained. - Figure 4
- is a further embodiment, like the arrangement according to
Figures 1 and2 is inserted into ahousing 20 * and from adrive motor 95 via a rotatableexternal magnet 44 is driven. Theshaft 10 and the hood-shapedsection 24 of thehousing 20 located on the inside serve as a reference. - Figure 5
- is a further embodiment with a
stationary stator magnet 48, which is able to generate a rotating magnetic field and drives theinner magnet 40 when a torque is transmitted. The electrical generation of the rotating field provides access to the modified housing 20 'via aconnector 91, which does not have to transfer a rotatable shaft from the outside into the housing 20'. In addition, anintegrated heater 71, 72 is shown, which is a special embodiment.
Zu fördern ist ein physisch nicht dargestelltes liquides Fördermedium, welches verschiedene stoffliche Zusammensetzungen haben kann, aber zum Fördern mit einer Mikropumpe geeignet ist. Für den Automobilbau ist das beispielsweise Harnstoff, Wasser oder Methanol. Gefährliche Medien, beispielsweise in der Chemie, kristallisierende Medien, beispielsweise der genannte Harnstoff im Automobilbau, oder leicht flüchtige Medien, beispielsweise Methanol in der Brennstoffzellentechnik, können gleichermaßen mit den im Folgenden beschriebenen Ausführungsbeispielen gefördert werden.To be conveyed is a physically not shown liquid conveying medium, which can have different material compositions, but is suitable for conveying with a micropump. For the automotive industry, this is, for example, urea, water or methanol. Hazardous media, for example in chemistry, crystallizing media, for example the urea mentioned in automobile construction, or highly volatile media, for example methanol in fuel cell technology, can equally be conveyed with the exemplary embodiments described below.
Die Förderung ist eine kontinuierliche Förderung, während die Mikropumpe P läuft, die in einem Lager 3 eingesetzt ist, das Rotorenaufnahme in
Alle drei genannten Lager 1, 2 und 3 sind als Lagerstücke ausgebildet, die Präzisionslagerteile sind. Sie sind gesondert in den Lagerträger 22 eingesetzt und dort mittels einer Fügetechnik nach der Positionierung festgelegt. Als Fügetechnik eignet sich ein Kleben, ein Löten oder ein Schweißen.All three named
Als Werkstoff für die Präzisionslager, die gesondert auf Präzision gefertigt sind, kommen Oxidkeramiken, Nicht-Oxidkeramiken, Metall oder sogar Kunststoff in Betracht. Beispiele von Oxidkeramiken sind Aluminiumoxid oder Zirkonoxid. In besonderer Ausgestaltung, bei einem zu erwartenden hohen Verschleiß oder bei erwünschter langer Lebensdauer werden Keramiken eingesetzt. In normalen, verschleißärmeren Anwendungen kann indes auf Metall zurückgegriffen werden. Auch Kunststoff ist für die Lager möglich, die bevorzugt bei einer einstückigen Ausbildung des Lagerträgers 22 durch Spritzguss unmittelbar mit der Herstellung des Lagerträgers 22 als Kunststoff-Lagerbereiche hergestellt werden, aber dabei keine gesonderte Lagerstücke sind, sondern eben nur Lagerbereiche, oder - funktionell betrachtet - "Lager".Oxide ceramics, non-oxide ceramics, metal or even plastic come into consideration as the material for the precision bearings, which are specially manufactured for precision. Examples of oxide ceramics are aluminum oxide or zirconium oxide. In a special embodiment, when high wear is to be expected or when a long service life is desired, ceramics are used. In normal, low-wear applications, however, metal can be used. Plastic is also possible for the bearings, which is preferred for a one-piece design of the bearing
Der Aufbau des Gehäuses 20 in
Der Lagerträger 22 dient darüber hinaus als Aufnahme aller statischen Dichtungen, die in den Figuren nicht gesondert benannt, sondern für den Fachmann unmittelbar ersichtlich sind. Diese sind O-Ringe und Dichtungen zur Befestigung des Deckels 26, der haubenförmigen Kappe 24 (auch: Spalttopf genannt) und der magnetischen Antriebseinheit, die beispielsweise in
Die Montage des Deckels 26 von der Unterseite des Lagerträgers 22 ist in
Das magnetische Antriebssystem ist innerhalb der haubenförmigen Kappe 24 um die Welle 10 an deren oberen Ende platziert. Die Welle hat hier ein "pumpenfernes" oder "rotorfernes" Ende, das auch "antriebs- oder magnetseitiges" Ende der Welle 10 genannt wird. Das andere Ende 10a der Welle 10 greift formschlüssig in den Innenrotor 82 ein, wie an
Der Antrieb erfolgt von außen (in
Der Innenmagnet 40 ist axial länger ausgebildet, als ein Träger 42 für diesen Innenmagnet, der drehfest mit der Welle 10 verbunden ist und der ebenfalls drehfest mit dem Innenmagnet 40 verbunden ist. Dieser Innenmagnetträger ist axial kürzer ausgestaltet und liegt am oberen Ende, aber nicht berührend, sondern unter Belassung eines Spaltes nahe der oberen Wand 24b der haubenförmigen Kappe 24.The
Zu erwähnen ist ein erreichbarer "relativ großer" Abstand, den die beiden ersten Lager 1 und 2, welche zur Drehlagerung der Welle 10 vorgesehen sind, voneinander haben. Das untere Lager liegt nahe der Mikropumpe P, eigentlich unmittelbar an der Mikropumpe P und dient als ein gegenüberliegendes Axiallager für die beiden Rotoren 80,82. Das diesen Rotoren gegenüberliegende axiale Lager ist der Deckel 26 mit seinem Innenbereich. Ein erreichbarer Abstand 'a' ist mehr als dreimal grösser als die axiale Höhe eines der beiden Wellenlager 1,2.Mention should be made of an achievable “relatively large” distance between the two
Die Platzierung des pumpenfernen Lagers 2 erfolgt an einer konzentrisch zur haubenförmigen Kappe angeordneten Erhöhung oder Verlängerung 22a. An ihrem (oberen) Ende trägt sie das genannte Lagerstück 2 und belässt einen Ringspalt gegenüber dem Innenmagnetträger 42. Die Erhöhung oder Verlängerung ist geometrisch auch so ausgebildet, dass sie einen zylindrischen Ringspalt gegenüber dem Innenmagnet 40 bildet. Der Innenmagnet 40 wiederum hat einen axialen Abstand zur Belassung eines Ringraums 23d, der einen Abschnitt einer Kanalstruktur 23 bildet, die noch zu beschreiben sein wird.The
Nachdem der Innenmagnet 40 auch einen zylindrischen Ringspalt zur Innenfläche der haubenförmigen Kappe 24 (Spalttopf) belässt, ist der gesamte Innenraum dieser haubenförmigen Kappe von einem Fluid durchströmbar, soweit keine geometrischen Teile, die oben beschrieben sind, dort Platz nehmen. Insbesondere ist eine Innenwand der haubenförmigen Kappe 24 zu erwähnen, die durch eine zu beschreibende Fluidströmung gekühlt werden kann, wozu der genannte zylindrische Ringspalt außerhalb des Innenmagneten 40 vorgesehen ist.Since the
Die Welle 10 hat zwischen den beiden Lagerstücken 1,2 einen Ringraum 22b, der radial grösser dimensioniert ist, als ein Durchmesser der Welle 10.The
Die Welle 10 ist zentrisch gegenüber der haubenförmigen Kappe 24 angeordnet, die Rotoraufnahme als Lagerstück 3 dagegen exzentrisch. Dieses Lagerstück 3 nimmt den Außenrotor 80 exzentrisch gelagert gegenüber dem zentrisch gedrehten Innenrotor 82 auf.
Die Zufuhr des Fluids (auf der Saugseite) erfolgt über einen Kanalabschnitt 23a (Saugseite). Der Auslass der Pumpe P mündet in einer in
Am Auslass der Pumpe P im radialen Kanalabschnitt 23b liegt die Druckseite FD'. Zwischen FD' und FD liegt ein weiterer Abschnitt der Kanalführung 23, die durch den Lagerträger 22 reicht und - im Beispiel - zwei axiale Kanalabschnitte 23c und 23e aufweist. Diese beiden Kanalabschnitte sind in
Der Axialschnitt der
Im Deckel 26 sind weitere axiale Abschnitte der Kanalstruktur 23 zu ersehen. Auf der Einlassseite (Saugseite) des Fluids F ist der Abschnitt 23a vorgesehen. Auf der Druckseite der Anordnung der
Ein weiterer radialer Abschnitt der Kanalführung 23 ist die Überleitung des unmittelbaren Druckauslasses der Pumpe P entlang des Abschnitts 23b der Kanalstruktur 23, hin zum ersten axialen Abschnitt 23c im Lagerträger 22.Another radial section of the
Mit der Kanalstruktur 23 wird eine Zwangsströmung erzeugt, die bei Betrieb der Pumpe P eintritt und nicht nur für eine Nutzförderung des Fluids F sorgt, sondern begleitend mehrere Aufgaben erfüllt.With the
Die beschriebenen Lager 1, 2 und 3 werden geschmiert oder gespült. Auch beides. Der Spalttopf 24 (als haubenförmige Kappe des Gehäuses 20) wird von der Innenseite gekühlt, wobei die Kühlfläche zumindest 50 % der gesamten Innenfläche der Haube 24 ist, bevorzugt aber oberhalb von 70 % liegt.The
Ersichtlich ist dies an einer ersten Erhöhung 22c des Lagerträgers 22, die verjüngend in die Erhöhung oder Verlängerung 22a überleitet, die zuvor beschrieben war. An der randseitigen Oberfläche liegt die Haube 24 ein Stück weit berührend an und wird mit dem umfänglichen Niederhalter 21 und entsprechend positionierten Schrauben, von denen in
Mit dem axialen Kanalabschnitt 23c wird das Fluid F auf der Druckseite als unter Druck stehendes Fluid FD' nicht gleich dem Auslass im Deckel 26, zugeführt, sondern erst dem vorerwähnten Ringraum 23d, der zwischen einer oberen Fläche des Lagerträgers (zwischen den Absätzen 22c und 22a verläuft, und einer nach unten weisenden Fläche des Innenmagneten 40 gebildet wird. Dieser Abschnitt 23d ist flächig und gehört zur Kanalstruktur 23.With the
Der axiale Abschnitt 23c führt diesem flächigen Ringraum 23d unter Druck stehendes Fluid zu, das sich in die übrigen freien Räume innerhalb der "Haube" 24 verteilt und dort durchströmt. Es kann über den zweiten axialen Kanalabschnitt 23e wieder abfließen und über den axialen Kanalabschnitt 23f im Deckel 26 der Auslassseite oder Druckseite der Mikropumpenanordnung mit Lager nach den Figuren zugeführt werden.The
Ein Großteil der Innenfläche der zylindrischen Wand 24a der haubenförmigen Kappe 24 kann so gekühlt werden.A large part of the inner surface of the
Ist in
Zu erwähnen ist neben der Hauptströmung des Fluids F auch eine Spülströmung F'. Sie dringt durch die Lagerflächen der Präzisionslager entlang des Weges F' von
Die Spülströmung F' führt entlang der Welle und in den zentralen Hohlraum 22b, durch den die Welle 10 hindurchgreift, respektive in dem sie dreht, während sie von den beiden - um 'a' beabstandeten - Lagerstücken 1, 2 drehgelagert ist.The flushing flow F 'leads along the shaft and into the
Der Weg entlang der Fluidführung 23 soll nochmals übersichtlich zusammengefasst und dargestellt werden.The path along the
Das liquide Fördermedium wird auf der Saugseite durch den Gehäusedeckel 26 angesaugt und dem axialen Kanalabschnitt 23a in der Mikropumpe P mit Rotoren 82, 80 zugeleitet, respektive von diesem angesaugt. Es folgt den drehenden Förderkammern gemäß
In dem Deckel 26 ist ein fluchtender Kanalabschnitt 23f vorgesehen, der die Fortführung des axialen Kanalabschnitts (oder Kanalsegments) 23e ist. Durch diese Fluidführung werden alle Bereiche der Pumpe aktiv durchflossen. Das Totvolumen der Pumpe ist dagegen begrenzt. Der Druckunterschied zwischen dem rotorseitigen Wellenende und dem antriebsseitigen Wellenende der Welle 10 sorgt für eine Zwangsspülung F' und damit einhergehend eine Schmierung der Lager 1, 2 durch das liquide Fördermedium.In the
Die beschriebene Bypass-Strömung, welche Spülstrom F' genannt wird, folgt dem Druckgefälle zwischen einem Förderdruck im Spalttopfbereich (innerhalb der Haube 24) und dem niederen Druck im Bereich der Rotorlagerung (der Saugseite). Das den Spalttopf 24 durchfließende Medium dient gleichzeitig der Kühlung des Spalttopfs und des Innenmagneten 40.The described bypass flow, which is called the flushing flow F ', follows the pressure gradient between a delivery pressure in the containment can area (inside the hood 24) and the low pressure in the area of the rotor bearing (the suction side). The medium flowing through the
Aufgrund des magnetischen Drehfeldes und der meist metallischen Ausbildung der haubenförmigen Kappe 24 wird über Wirbelströme eine Wärme erzeugt, deren Abführung der Fluidstrom dient.Due to the rotating magnetic field and the mostly metallic construction of the hood-shaped
In einer anderen Ausführungsform, die sich aus
Sowohl der Außenmagnet 48, der Strom führende Wicklungen 49 trägt (die nicht dargestellt ist), wie auch der Innenmagnet 40 sind dann im gleichen Raum angeordnet und mit ihrer Benennung als außenliegend und innenliegend charakterisiert. Aufgrund der fehlenden Drehbewegung des Außenmagneten 48 wird das Drehmoment über das Drehfeld auf dem Innenmagneten 40 übertragen.Both the
Die elektrische Energie wird über den Anschlussstecker 91 zugeführt, der eine Durchbrechung im Motorgehäuse 28 darstellt, welches Teil des modifizierten Gehäuseaufbaus 20' ist. Eine integrierte Steuerung 90 auf einer Platine ist dargestellt und erzeugt die Stromflüsse in den räumlich verteilten Wicklungen 49 zur Erzeugung des Drehfeldes.The electrical energy is supplied via the
In einer besonderen Ausführungsart, die aber nicht verbindlich nur für dieses Beispiel gilt, sondern auch für die anderen Beispiele verwendet werden kann, ist eine Heizwicklung 72 um die Welle herum im Lagerträger 22 angeordnet. Eine weitere Heizwicklung 71 kann näher zum Deckel 26 gelegen sein und die Pumpe P umgeben.In a special embodiment, which is not binding only for this example, but can also be used for the other examples, a heating winding 72 is arranged around the shaft in the
Die Heizwicklungen 71, 22 sind elektrisch leitfähige Widerstands-Wicklungen, welche mit Strom beaufschlagt werden. Dieser kann auch über den Anschlussdeckel 91 zugeführt werden.The
In weiteren Bereichen der
Die integrierten Heizungen 71 und/oder 72, die einzeln oder kombiniert vorhanden sein können, verbessern die Kaltstartfähigkeit der Pumpe, wenn dick- oder zähflüssige Fördermedien zu fördern sind, die aufgrund herabgesetzter Umgebungstemperatur noch nicht förderbar sind, bspw. in dem Automobilbau.The integrated heaters 71 and / or 72, which can be present individually or in combination, improve the cold start capability of the pump when thick or viscous pumping media are to be conveyed that cannot yet be conveyed due to the reduced ambient temperature, for example in automotive engineering.
Besonders vorteilhaft kann die Heizung in Verbindung mit einem Lagerträger 22 verwendet werden, der im Spritzgussverfahren hergestellt wird, bspw. aus Metall oder Kunststoff.The heater can particularly advantageously be used in connection with a bearing
Vorteilhaft sind Innenmagnet 40 und Außenmagnet 44 konzentrisch zueinander und in axialer Richtung nicht gegeneinander versetzt. Dadurch minimieren sich axiale Kräfte, die auf die Welle 10 durch das Magnetfeld wirken könn(t)en.
Der übergeordnete Gehäuseaufbau 20* ist mit dem Lagerträger 22 mechanisch abdichtend verbunden. Dies kann erneut durch eine Schraubvorrichtung geschehen, von der zwei Schrauben 22'" sichtbar sind, wie auch in
Bemerkenswert, auch an dieser Ausführung, ist die Verwendung nur eines Axiallagers der Welle 10, namentlich am Deckel 26 und das freie Wellenende nahe der oberen horizontalen Wand 24b der haubenförmigen Kappe 24. Ebenfalls bemerkenswert, nicht nur an dieser Ausführungsform, sondern auch bei den anderen Ausführungsformen, ist die Verwendung keiner dynamischen Dichtung, also keiner vorzusehenden Wellendichtung, die gegenüber einem rotierenden Teil abzudichten hat.Remarkable, also in this embodiment, is the use of only one axial bearing of the
Die Unterseite des Deckels 26 ist 26d und an ihr sind Einlass und Auslass vorgesehen, die hier mit O-Ring Dichtungen versehen sind und einen gegenüber dem Durchmesser der abgehenden Kanalabschnitte vergrößerten Durchmesser besitzen.The underside of the
Die untere Oberfläche des Lagerträgers 22 ist 22d. Auf ihr wird der Deckel 26 aufgesetzt, um sowohl die Axialführung der Kanalabschnitte 23e und 23b zu erreichen, wie auch den axialen Abschnitt 23a zur Saugseite der Pumpe P führen und auch den radialen Kanalabschnitt 23b zur druckseitigen Auslassseite der Pumpe P zu führen.The lower surface of the bearing
Zu den antriebsseitigen Magnetkonstruktionen aus Außenmagnet 44 und Innenmagnet 40 ist folgendes zu sagen, was auch für die Beispiele der
Am antriebsseitigen Ende der Welle 10 ist der dort über den Magnetträger 42 angeordnete Innenmagnet 40 bevorzugt einstückig (aus einem Stück gefertigt). Er kann aus Hartferrit bestehen. Eine andere Aufbauweise ist die Verwendung der Umspritzung eines kunststoffgebundenen Magnetwerkstoffs um das Wellenende (im Bereich des Außenmagneten 44) und ohne wellenseitigen Magnetträger. Weiter alternativ kann der Innenmagnet 40 aus mehreren Teilen ausgeführt sein. Diese mehreren Teile werden auf dem Magnetträger 42 gehalten. Dazu können mehrere - ringförmig angeordnete - Einzelmagnete (als Segmente oder Sektoren) verwendet werden, die auf dem Magnetträger 42 zusammengesetzt werden. Ist nur ein Stück eines Magneten vorgesehen, so sitzt er als Ringmagnet auf dem Magnetträger 42 und ist mit ihm drehfest gefügt.At the drive-side end of the
Die Assemblierung der mehreren Einzelmagnetstücke (in Form "plättchenförmiger" Magnete), die aus höherwertigem Magnetstoff gefertigt sind, kann auf dem Magnetträger 42 erfolgen. Seltene-Erden-Magnete sind Beispiele für solche plättchenförmige Magnete.The assembly of the several individual magnet pieces (in the form of “plate-like” magnets), which are made of high-quality magnetic material, can take place on the
Sind aggressive Medien zu fördern, können die Einzelmagnete (als Magnetstücke) zusätzlich beschichtet oder gekapselt sein. Solche Magnete würden sich aber nur dann als zu beschichten oder zu kapseln herausstellen, wenn sie mit dem geförderten aggressiven Fluid physisch in Berührung kommen. Für den Innenmagnet 40 ist das in allen Ausführungsbeispielen der Fall. Für den Außenmagnet 44 ist das nur dann der Fall, wenn er als Stator 48 und ohne haubenförmige Kappe 24 von dem Förderfluid umströmt wird.If aggressive media are to be conveyed, the individual magnets (as magnetic pieces) can also be coated or encapsulated. Such magnets would only turn out to be coated or encapsulated if they came into physical contact with the aggressive fluid being conveyed. This is the case for the
Das anhand der
Schon bei der Herstellung durch Spritzguss können die Lager im Lagerträger integriert entstehen, ohne dass zusätzliche Lagerbauteile (zuvor "Lagerstücke" genannt) hinzutreten müssen. Diese Ausführungsform ist nicht gesondert dargestellt, sondern sinngemäß mitzulesen.Already during production by injection molding, the bearings can be integrated into the bearing bracket without the need for additional bearing components (previously called "bearing pieces"). This embodiment is not shown separately, but should be read accordingly.
Claims (19)
- Pump arrangement with a magnetically drivable micropump (P) for conveying a liquid pumping medium and with a bearing carrier (22) as base part, wherein an outer magnet (44) and an inner magnet (40) are provided, transmitting a rotary motion to the micropump (P) by means of an axial shaft (10), and wherein- within the bearing carrier (22) three radial bearing pieces (1, 2, 3) are positioned and defined as bearing for the rotational mounting and guidance of the shaft (10) and the micropump (P), wherein one of the bearings as first bearing (3) rotatably accomodates an outer rotor (80) of the micropump and is arranged eccentrically to the shaft (10);- the second bearing (2) is arranged closer to the inner magnet (40) and/or the third bearing (1) is arranged closer to the micropump (P);- the micropump (P) is held in the eccentric bearing (3) by a cover (26) arranged at the front;- a pressure-side channel structure (23) is provided for a forced flow, the pressure-side channel structure having at least a first channel section (23b) with a radial direction component within the cover (26), at least a first second channel section (23c, 23e) within the bearing carrier (22), and another further axial section (23f) of the pressure-side channel structure (23) leading through the cover (26), the further axial section (23f) also being arranged at the pressure side of the micropump (P);- a hermetically sealed casing arrangement (20) is formed out of the bearing carrier (22), a dome-shaped cap (24) and the cover (26), so that the conveyed liquid pumping medium from the pressure side of the micropump is able to cool the dome-shaped cap (24) from the inside via the pressure-side channel structure (23).
- Pump arrangement according to claim 1, wherein the outer magnet (44) and the inner magnet (40) create a magnetic torque transmission, thus generating a magnetic drive to the shaft (10) and an inner rotor (82) of the micropump (P).
- Pump arrangement according to claim 2, wherein the movement of the inner magnet (40) is generated by a magnetic field that is created by a rotating outer magnet (44) arranged radially further on the outside.
- Pump arrangement according to claim 2, wherein the inner magnet is turned by a rotating magnetic field that may be generated by a mechanically not rotating stator in the form of a rotating field, the stator being arranged radially further on the outside.
- Pump arrangement according to claim 1, wherein the outer rotor (80) is the outer rotor of a gear ring pump (Zahnringpumpe) (P) or an outer rotor of an internal gear pump (Innenzahnradpumpe).
- Pump arrangement according to claim 1, wherein the inner magnet (40) is arranged on an inner magnet carrier (42).
- Pumping arrangement according to claim 1, wherein a joining connection of the bearing pieces (1, 2, 3) with the bearing carrier (22) is achieved by means of bonding, soldering or moulding.
- Pump arrangement according to claim 1, wherein the bearing carrier (22) is produced by means of injection moulding of metal or plastic.
- Pump arrangement according to claim 8, wherein at least one heating element (71, 72) is integrated in an injection-moulded bearing carrier (22).
- Pump arrangement according to claim 1, wherein the bearing pieces (1, 2, 3) are separate precision components that are or were positioned and defined within the bearing carrier (22) by means of a joining technique.
- Pump arrangement according to claim 3, wherein the torque transmission is a concentric rotary coupling (Zentraldrehkupplung).
- Pump arrangement according to claim 4, wherein the inner and the outer magnet (44, 40) are arranged concentrically.
- Pump arrangement according to claim 6, wherein the inner magnet (40) is one- or multi-piece, particularly is encapsulated by means of encapsulation or coating.
- Pump arrangement according to claim 1, wherein the maximum dimensions of the micropump (P) are not larger than 20 mm, particularly 10 mm.
- Pump arrangement according to claim 1, wherein the pressure-side channel structure (23) for the forced flow has a further second channel section (23e) within the bearing carrier (22).
- Pump arrangement according to claim 15, wherein the two second pressure-side channel sections (23c, 23e) located within the bearing carrier (22) both substantially extend in an axial direction.
- Pump arrangement according to claim 1, wherein the pressure-side channel structure (23) has a planar section (23d) extending in a radial direction.
- Method for conveying a fluid pumping medium, wherein- a rotary motion is transmitted to the micropump (P) of the pump arrangement according to claim 1 by means of the axial shaft (10);- the magnetically driven micropump (P) for conveying the liquid pumping medium is driven by an outer magnet (44) and an inner magnet (40) being coupled by a magnetic field;- a wall of a dome-shaped cap (24) is positioned between the outer magnet (44) and the inner magnet (40) and the inner magnet rotates within the dome-shaped cap (24) and transmits its rotary motion to the micropump (P) by means of an axial shaft (10).
- Method according to claim 18, with the pump arrangement according to one of the claims 2 to 17.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010060566 | 2010-11-15 | ||
DE102011001041.6A DE102011001041B9 (en) | 2010-11-15 | 2011-03-02 | Magnetically driven pump arrangement with a micropump with forced flushing and working method |
PCT/IB2011/055108 WO2012066483A2 (en) | 2010-11-15 | 2011-11-15 | Magnetically driven pump arrangement having a micropump with forced flushing, and operating method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2640977A2 EP2640977A2 (en) | 2013-09-25 |
EP2640977B1 true EP2640977B1 (en) | 2020-09-09 |
Family
ID=45531463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11813388.3A Active EP2640977B1 (en) | 2010-11-15 | 2011-11-15 | Magnetically driven pump arrangement having a micropump with forced flushing, and operating method |
Country Status (5)
Country | Link |
---|---|
US (1) | US10012220B2 (en) |
EP (1) | EP2640977B1 (en) |
CN (1) | CN103348141B (en) |
DE (1) | DE102011001041B9 (en) |
WO (1) | WO2012066483A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022207129A1 (en) | 2022-07-12 | 2024-01-18 | Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg | Electric fluid pump for a motor vehicle |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011051486B4 (en) | 2011-06-30 | 2023-06-01 | Hnp Mikrosysteme Gmbh | Pump arrangement with micropump and bearing element |
DE102014111721A1 (en) | 2014-08-18 | 2016-02-18 | Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg | Fluidbeaufschlagungsvorrichtung for a transmission for a motor vehicle |
DE102015117562A1 (en) | 2014-10-16 | 2016-04-21 | Johnson Electric S.A. | gear pump |
CZ201597A3 (en) * | 2015-02-13 | 2016-02-24 | Jihostroj A.S. | Gear-type pump with a drive |
CN104976114B (en) * | 2015-07-16 | 2017-05-10 | 三明索富泵业有限公司 | High-engaging-degree gear set of miniature gear pump and machining method of gears |
CN104976320B (en) * | 2015-07-16 | 2018-01-30 | 三明索富泵业有限公司 | The Mini gear pump gear train and gear working method of a kind of working stability |
AT517817B1 (en) * | 2015-09-15 | 2017-08-15 | Avl List Gmbh | Device with split pot motor for measuring flow processes of measuring fluids |
WO2017046199A1 (en) * | 2015-09-15 | 2017-03-23 | Avl List Gmbh | Device comprising a canned motor for measuring flow processes of measuring fluids |
CN105134878A (en) * | 2015-09-28 | 2015-12-09 | 三明索富泵业有限公司 | Gear set for minitype gear pump and gear machining method |
DE102017200485B3 (en) * | 2017-01-13 | 2018-06-21 | Continental Automotive Gmbh | Hydraulic pump, in particular for a motor vehicle |
DE102017210770B4 (en) | 2017-06-27 | 2019-10-17 | Continental Automotive Gmbh | Screw pump, fuel delivery unit and fuel delivery unit |
DE102017127736A1 (en) * | 2017-11-23 | 2019-05-23 | Manfred Sade | Magnetic pump with mechanical seal |
CN112112796A (en) | 2019-06-19 | 2020-12-22 | 杭州三花研究院有限公司 | Electric pump |
CN110425222A (en) * | 2019-07-18 | 2019-11-08 | 常州嵘驰发动机技术有限公司 | A kind of bearing for fluid pump |
DE102019130723A1 (en) * | 2019-11-14 | 2021-05-20 | Fte Automotive Gmbh | Liquid pump |
CN111173731A (en) * | 2020-02-13 | 2020-05-19 | 上海琼森流体设备有限公司 | Shaft seal-free magnetic drive hypocycloid gear pump |
DE102020131360A1 (en) * | 2020-11-26 | 2022-06-02 | Fte Automotive Gmbh | Fluid pump, in particular for a component of a drive train of a motor vehicle |
DE202021001972U1 (en) | 2021-06-05 | 2021-11-15 | Felix Brinckmann | Bursting cartridge with little dead space for overpressure protection for fluids |
DE102022202619A1 (en) * | 2022-03-16 | 2023-09-21 | Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg | Oil pump for a motor vehicle |
CN114776585B (en) * | 2022-04-26 | 2024-05-17 | 西南石油大学 | Oil-gas-sand three-phase mixing pump driven by embedded permanent magnet synchronous motor |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3493036A (en) | 1968-06-28 | 1970-02-03 | Du Pont | Gear pump and heating and cooling means therefor |
US4165206A (en) * | 1977-01-28 | 1979-08-21 | Micropump Corporation | Three gear pump with module construction |
US4329128A (en) * | 1979-12-17 | 1982-05-11 | Parks-Cramer Company | Pump for thermoplastic materials with heater means |
DE3641581C3 (en) | 1986-12-05 | 1996-08-01 | Byk Chemie Gmbh | Process for the preparation of dispersants and their salts and their use |
EP0583003A1 (en) * | 1992-08-13 | 1994-02-16 | Perseptive Biosystems, Inc. | Fluid metering, mixing and composition control system |
US5263829A (en) * | 1992-08-28 | 1993-11-23 | Tuthill Corporation | Magnetic drive mechanism for a pump having a flushing and cooling arrangement |
US5472329A (en) | 1993-07-15 | 1995-12-05 | Alliedsignal Inc. | Gerotor pump with ceramic ring |
EP0769621A1 (en) * | 1995-09-26 | 1997-04-23 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Micropump and micromotor |
DE19815421A1 (en) | 1998-04-07 | 1999-10-14 | Eckerle Ind Elektronik Gmbh | Internal gear machine |
US6106240A (en) | 1998-04-27 | 2000-08-22 | General Motors Corporation | Gerotor pump |
US6033193A (en) * | 1998-05-27 | 2000-03-07 | Micropump Corporation | Single seal gear pump |
DE19843161C2 (en) * | 1998-09-21 | 2000-11-23 | Hnp Mikrosysteme Gmbh | Layer structure housing construction |
EP1354135B1 (en) * | 2001-01-22 | 2006-12-20 | HNP Mikrosysteme GmbH | Miniature precision bearings for minisystems or microsystems and method for assembling such systems |
DE10146793A1 (en) * | 2001-01-22 | 2002-09-26 | Hnp Mikrosysteme Gmbh | Precise small storage in mini to microsystems and assembly processes for such systems |
US7393192B2 (en) * | 2004-03-25 | 2008-07-01 | Gregory P Wood | Rotary vane pump |
US7183683B2 (en) * | 2005-06-23 | 2007-02-27 | Peopleflo Manufacturing Inc. | Inner magnet of a magnetic coupling |
JP4904946B2 (en) | 2006-06-30 | 2012-03-28 | ミツミ電機株式会社 | pump |
US8177528B2 (en) * | 2006-10-17 | 2012-05-15 | SPX Flow Technology Belgium | Rotary positive displacement pump with magnetic coupling having integrated cooling system |
TW201038828A (en) * | 2009-04-28 | 2010-11-01 | Assoma Inc | Permanent magnetism can pump |
-
2011
- 2011-03-02 DE DE102011001041.6A patent/DE102011001041B9/en not_active Expired - Fee Related
- 2011-11-15 WO PCT/IB2011/055108 patent/WO2012066483A2/en active Application Filing
- 2011-11-15 CN CN201180065051.7A patent/CN103348141B/en active Active
- 2011-11-15 US US13/884,088 patent/US10012220B2/en active Active
- 2011-11-15 EP EP11813388.3A patent/EP2640977B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022207129A1 (en) | 2022-07-12 | 2024-01-18 | Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg | Electric fluid pump for a motor vehicle |
Also Published As
Publication number | Publication date |
---|---|
WO2012066483A2 (en) | 2012-05-24 |
US20130294940A1 (en) | 2013-11-07 |
CN103348141B (en) | 2017-11-17 |
US10012220B2 (en) | 2018-07-03 |
DE102011001041A1 (en) | 2012-05-16 |
CN103348141A (en) | 2013-10-09 |
DE102011001041B4 (en) | 2014-05-22 |
DE102011001041B9 (en) | 2014-06-26 |
EP2640977A2 (en) | 2013-09-25 |
WO2012066483A3 (en) | 2013-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2640977B1 (en) | Magnetically driven pump arrangement having a micropump with forced flushing, and operating method | |
EP3179106B1 (en) | Electric motor driven liquid pump | |
EP1328731B1 (en) | Pump driven by an electromotor and method for producing a pump of this type | |
DE4121430C1 (en) | ||
EP3504433B1 (en) | Motor pump device | |
EP0346730A2 (en) | Submersible pump assembly | |
DE102017210426B4 (en) | Pump, especially transmission oil pump | |
DE69904834T2 (en) | ELECTRICALLY DRIVEN PUMP | |
DE102006049326A1 (en) | Encapsulated electric machine with liquid-cooled stator | |
WO2013000745A2 (en) | Micropump, bearing element for a micropump, and working method | |
WO2019166118A1 (en) | Electric coolant pump | |
DE10064717A1 (en) | Method for operating a pump set | |
EP0903500B1 (en) | Electrically driven coolant pump | |
EP1343645B1 (en) | Vehicle heating device with an integrated heat transfer circulation pump | |
EP3299627B1 (en) | Feed pump | |
DE10301613B4 (en) | Motor-pump unit | |
EP3358225B1 (en) | Compact transmission motor assembly | |
DE102004047637B4 (en) | Electrically operated pump with external rotor | |
EP1413757A2 (en) | Assembly of a motor and a pump | |
EP3879105B1 (en) | Pump insert and pump assembly comprising such a pump insert | |
DE102011082587A1 (en) | Pump with electric motor | |
DE102004047635B4 (en) | Electrically operated pump with internal rotor | |
DE102010041244A1 (en) | Pump with electric motor | |
EP2619886A2 (en) | Pump having an electric motor | |
DE10312978A1 (en) | Electro-hydrodynamic unit e.g. fluid pump or heating pump, has radial struts formed as vanes or blades for forming the fluid pressure generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130506 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1185648 Country of ref document: HK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160502 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200225 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20200630 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WEISENER, THOMAS Inventor name: REIMANN, SVEN Inventor name: STOJKE, MARTIN Inventor name: VOEGELE, GERALD Inventor name: MATZ, ASTRID |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1311905 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011016898 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KELLER SCHNEIDER PATENT- UND MARKENANWAELTE AG, CH Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201210 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210109 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011016898 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201115 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201130 |
|
26N | No opposition filed |
Effective date: 20210610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011016898 Country of ref document: DE Representative=s name: LEONHARD, REIMUND, DIPL.-ING., DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240220 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240216 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240131 Year of fee payment: 13 Ref country code: CH Payment date: 20240227 Year of fee payment: 13 Ref country code: GB Payment date: 20240215 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240216 Year of fee payment: 13 |