EP2632210A1 - System and method for discontinuous reception control start time - Google Patents

System and method for discontinuous reception control start time Download PDF

Info

Publication number
EP2632210A1
EP2632210A1 EP20130169001 EP13169001A EP2632210A1 EP 2632210 A1 EP2632210 A1 EP 2632210A1 EP 20130169001 EP20130169001 EP 20130169001 EP 13169001 A EP13169001 A EP 13169001A EP 2632210 A1 EP2632210 A1 EP 2632210A1
Authority
EP
Grant status
Application
Patent type
Prior art keywords
mobile device
drx
periods
network
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20130169001
Other languages
German (de)
French (fr)
Inventor
Zhijun Cai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BlackBerry Ltd
Original Assignee
BlackBerry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling ; Dynamically scheduled allocation on shared channel
    • H04W72/1278Transmission of control information for scheduling
    • H04W72/1289Transmission of control information for scheduling in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/005Routing actions in the presence of nodes in sleep or doze mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling ; Dynamically scheduled allocation on shared channel
    • H04W72/1263Schedule usage, i.e. actual mapping of traffic onto schedule; Multiplexing of flows into one or several streams; Mapping aspects; Scheduled allocation
    • H04W72/1273Schedule usage, i.e. actual mapping of traffic onto schedule; Multiplexing of flows into one or several streams; Mapping aspects; Scheduled allocation of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/122Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 2nd generation [2G] networks
    • Y02D70/1224Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 2nd generation [2G] networks in General Packet Radio Service [GPRS] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/124Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks
    • Y02D70/1242Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks in Universal Mobile Telecommunications Systems [UMTS] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/126Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks
    • Y02D70/1262Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks in Long-Term Evolution [LTE] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/142Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Wireless Local Area Networks [WLAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/144Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Bluetooth and Wireless Personal Area Networks [WPAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/146Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Worldwide Interoperability for Microwave Access [WiMAX] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/23Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in Voice over IP [VoIP] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/24Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in Discontinuous Reception [DRX] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/25Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in Discontinuous Transmission [DTX] networks

Abstract

Methods of combining semi-persistent resource allocation and dynamic resource allocation are provided. Packets, such as VoIP packets, are transmitted on the uplink and downlink using respective semi-persistent resources. For each mobile device, awake periods and sleep periods are defined. The semi-persistent resources are aligned with the awake periods so that most of the time the mobile device can turn off its wireless access radio during the sleep periods. In addition, signalling to request, and to allocate, resources for additional packets are transmitted during the awake periods, and the resources allocated for the additional packets are within the awake periods. Methods of extending the awake periods in various embodiments are also provided. Methods of determining the first on period are also provided.

Description

    Field of the Application
  • The application relates to wireless communication, and more particularly to transmission scheduling for wireless communication.
  • Background
  • With semi-persistent scheduling, for downlink VoIP (voice over IP (Internet Protocol)) communications to a mobile device, a periodic DL (downlink) transmission resource is allocated during a talk-spurt on the downlink. The same resource is allocated each time. The allocation is turned on during each of the talk-spurts and off between talk-spurts. In this manner, explicit signalling to request an allocation, and to grant a particular VoIP allocation is not required. Semi-persistent scheduling for uplink VoIP communications from a mobile station is similar.
  • In addition to regular VoIP traffic, mobile devices also need the ability to send and transmit larger IP packets. Such larger IP packets are likely to be relatively infrequent compared to the frequency of regular VoIP transmissions. Such packets might include uncompressed IP packets, RTCP (Remote Transmit Power Control) packets, SIP/SDP (Session Initiation Protocol/Session Description Protocol) packets, etc. Such IP packets may be several hundreds of bytes in size and may have high priority. In addition, larger packets may be required to transmit RRC (Radio Resource Control) Signalling messages. Examples of this are handover related messages such as measurement reports. Some mobile devices will also need the ability to deliver a mixed service in which case services in addition to VoIP need to be provided to the mobile device, such as e-mail, web browsing etc.
  • Summary
  • According to one broad aspect, the application provides a method in a network for the network to provide wireless communications to a mobile device, the method in the network comprising: transmitting by the network discontinuous reception control parameters to a mobile device, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active; determining by the network a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active; and transmitting by the network to the mobile device in accordance with the discontinuous reception control parameters starting with the first of the periods.
  • In some embodiments, transmitting by the network discontinuous reception control parameters to the mobile device, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active further comprises: transmitting a discontinuous control parameter that indicates an extension period during which the mobile device will continue to have its receiver powered on following one of the periods during which the mobile device will have its receiver powered on if there is a dynamic scheduling allocation.
  • In some embodiments, determining by the network a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active comprises: defining the first of the periods; and transmitting signaling to the mobile device to indicate the first of the periods thus defined.
  • In some embodiments, transmitting signaling to the mobile device to indicate the first of the periods thus defined comprises transmitting signaling that indicates the first of the periods in absolute terms.
  • In some embodiments, the transmitting signaling to the mobile device to indicate the first of the periods in absolute terms comprises transmitting a layer-1 sub-frame index.
  • In some embodiments, transmitting signaling to the mobile device to indicate the first of the periods thus defined comprises transmitting signaling that indicates the first of the periods in relative terms.
  • In some embodiments, transmitting signaling that indicates the first of the periods in relative terms comprises transmitting an activation timer duration.
  • In some embodiments, transmitting an activation timer duration comprises at least one of: transmitting the activation timer duration in units of layer-1 sub-frames; and transmitting the activation timer duration in units of actual time.
  • In some embodiments, determining by the network a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active comprises: accessing at least one default parameter defined for the mobile device to determine the first of the periods.
  • In some embodiments, accessing at least one default parameter comprises accessing at least one default parameter comprising at least one of: a layer-1 sub-frame index; and an indication that the first of the periods should be aligned with a first sub-frame in which the mobile device is assigned a semi-persistent resource.
  • According to another broad aspect, the application provides a method in a mobile device for the mobile device to receive wireless communications from a network, the method in the mobile device comprising: receiving by the mobile device discontinuous reception control parameters from the network, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active; determining by the mobile device a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active; and receiving by the mobile device communications from the network in accordance with the discontinuous reception control parameters starting with the first of the periods.
  • In some embodiments, receiving by the mobile device discontinuous reception control parameters from the network, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active comprise: receiving a discontinuous reception control parameter that indicates an extension period during which the mobile device will continue have its receiver powered on following one of the periods during which the mobile device will have its receiver powered on if there is a dynamic scheduling allocation.
  • In some embodiments, determining by the mobile device a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active comprises: receiving signaling at the mobile device to indicate the first of the periods.
  • In some embodiments, receiving signaling at the mobile device to indicate the first of the periods comprises receiving signaling that indicates the first of the periods in absolute terms.
  • In some embodiments, receiving signaling at the mobile device to indicate the first of the periods in absolute terms comprises receiving a layer-1 sub-frame index.
  • In some embodiments, receiving signaling at the mobile device to indicate the first of the periods comprises receiving signaling that indicates the first of the periods in relative terms.
  • In some embodiments, receiving signaling that indicates the first of the periods in relative terms comprises receiving an activation timer duration.
  • In some embodiments, receiving an activation timer duration comprises at least one of: receiving the activation timer duration in units of layer-1 sub-frames; and receiving the activation timer duration in units actual time.
  • In some embodiments, determining by the mobile device a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active comprises: accessing at least one default parameter defined for the mobile device to determine the first of the periods.
  • In some embodiments, accessing the at least one default parameter comprises accessing at least one of: a layer-1 sub-frame index; and an indication that the first of the periods should be aligned with a first sub-frame in which the mobile device is assigned a semi-persistent resource.
  • According to another broad aspect, the application provides an apparatus for providing communications services to a mobile device, the apparatus comprising: a DRX (discontinuous reception) controller that determines discontinuous reception control parameters for a mobile device, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active; the DRX controller being further configured to determine a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active; and a transceiver and at least one antenna for establishing a wireless link with the mobile device, the transceiver being used to transmit the discontinuous reception control parameters to the mobile device and to transmit to the mobile device in accordance with the discontinuous reception control parameters starting with the first of the periods.
  • In some embodiments, the DRX controller generates discontinuous reception control parameters that further indicate an extension period during which the mobile device will continue have its receiver powered on following one of the periods during which the mobile device will have its receiver powered if on there is a dynamic scheduling allocation.
  • In some embodiments, the apparatus the DRX controller is configured to determine a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active by defining the first of the periods, the apparatus being further configured to transmit signaling to the mobile device to indicate the first of the periods thus defined using the transceiver.
  • According to another broad aspect, the invention provides a mobile device comprising: a wireless access radio for receiving wireless communications from a network; a radio manager that controls when the wireless access radio is on and when the wireless access radio is off; the radio manager configured to perform the control of the wireless radio access in accordance with discontinuous reception control parameters from the network via the wireless access radio, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active; and the radio manager further configured to determine a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active such that the mobile device receives from the network in accordance with the discontinuous reception control parameters starting with the first of the periods.
  • Further embodiments provide computer readable media having computer executable instructions stored thereon, for execution by a wireless device or network device for example, that control the execution of one or more of the methods summarized above, or described below.
  • Brief Description of the Drawings
  • Embodiments will now be described with reference to the attached drawings in which:
    • Figure 1 is a signalling diagram showing dynamic scheduling vs. semi-persistent scheduling;
    • Figure 2 is a block diagram of an example wireless system;
    • Figure 3 is a signalling diagram showing an awake period for dynamic scheduling in DRX (discontinuous reception);
    • Figure 4 is a signalling diagram showing DRX and DTX (discontinuous transmission) for uplink and downlink;
    • Figure 5 is a state diagram having DRX and DTX transitions for VoIP;
    • Figures 6 and 7 are flowcharts of methods executed by a network to perform combined semi-persistent and dynamic scheduling;
    • Figure 8 and 9 are flowcharts of methods executed by a mobile device to perform combined semi-persistent and dynamic scheduling;
    • Figure 10 is a block diagram of a mobile device;
    • Figure 11 is a flowchart of a method for a network to determine a start time for discontinuous reception control;
    • Figure 12 is a flowchart of a method for a network to determine a start time for discontinuous reception control;
    • Figure 13 is a flowchart of a method for a network and mobile station to determine a start time for discontinuous reception control in which the network transmits signalling to the mobile device; and
    • Figure 14 is a flowchart of a method for a network and mobile station to determine a start time for discontinuous reception control in which the both the network and the mobile device access default parameters to determine the first on period.
    Detailed Description of Embodiments
  • Dynamic scheduling has been proposed to allow the dynamic allocation of transmission resources, and the subsequent transmission of a large packet using the dynamically allocated resources. Dynamic scheduling involves allocating a resource each time a packet is to be transmitted, and the resource can differ for each allocation. In a particular example, see Applicant's co-pending U.S. Provisional Patent Application No. 60/944,367 filed on June 15, 2007 and hereby incorporated by reference in its entirety.
  • In a specific example, a mobile device supporting VoIP with dynamic scheduling monitors layer 1 CCEs (Control Channel Elements) continuously for dynamic scheduling grants even though the mobile device might be only involved in a VoIP session. LTE (Long Term Evolution) refers to CCEs, but the term has more general application to mean simply control information.
  • As indicated above, a mobile device may support VoIP with dynamic scheduling by monitoring layer 1 CCEs continuously for dynamic scheduling grants. Unfortunately, this might waste battery power for the mobile device, particularly when there are very few or even no dynamic scheduling grants for the mobile device.
  • Referring now to Figure 1, shown is a signalling diagram showing dynamic scheduling vs. semi-persistent scheduling. Time is on the horizontal axis. Shown is a periodic semi-persistent allocation 50. For VoIP transmission, this can for example include a resource allocated every 20ms. In addition, there is a regular set of layer 1 CCEs 52 that are transmitted. In the illustrated example, these are transmitted in every 1 ms but it is to be clearly understood that the other resource allocation periods and CCE periods are possible. This example assumes downlink transmission, but a similar approach applies to uplink transmission. During the periods that occur between talk-spurts, (also referred to as "silence" or "silence periods"), the transmitter and receiver can be turned off. During a talk-spurt period (also referred to as a period that VoIP transmission is "active", or "active mode"), if not for dynamic scheduling, the mobile device could wake up regularly to blind-detect its data in the semi-persistently allocated resource at the pre-defined interval (e.g. every 20ms) while entering a "sleeping" mode at other times. This can also be referred to as DRX (discontinuous reception). This simply means that the receive capability of the mobile device's radio is basically turned off while the mobile device is in sleep mode thereby resulting in battery life extension. However, given that other data may arrive via dynamic scheduling by any of the CCEs 52, the mobile device needs to monitor the CCEs of all sub-frames. In the full dynamic scheduling case there is no DTX or DRX and this rules out the possibility of using DRX since the mobile device needs to continue monitoring the layer 1 CCEs for dynamic scheduling grants for possible data coming. This is not power efficient and leads to lower battery charge lifetimes.
  • To efficiently support the DRX in VoIP active mode in order to reduce the battery power consumption, systems and methods are provided for combining semi-persistent scheduling for VoIP with a scheduling capability for additional packet transmission. These methods are particularly effective for a mobile device that is only involved in a VoIP session (i.e. not requiring mixed service).
  • System for Semi-persistent Scheduling and DRX Control
  • Referring now to Figure 2, shown is a block diagram of an example wireless system 40. The wireless system 40 has a wireless network 28 and a mobile device 10. The wireless system also has other mobile devices 30.
  • The mobile device 10 has a wireless access radio 12, a processor 16 and a radio manager 14 that is responsible for controlling the wireless access radio 12 and performing radio resource control. There may be additional components not shown. The radio manager 14 may be implemented in software running on appropriate hardware, hardware, firmware or combinations thereof.
  • The wireless network 28 has a scheduler 32 that encompasses a semi-persistent scheduler 34 and a dynamic scheduler 36. The wireless network 28 has components such as base stations (not shown) for providing wireless access. These include a transceiver 31 having at least one antenna 33. The scheduler 32 may reside in a base station or elsewhere in the network 28. In LTE, the scheduler is typically in the eNB (enhanced NodeB). In the examples that follow, it is assumed that scheduler 32, transceiver 31 and antenna 33 are all parts of a base station. Also shown is a DRX controller 29 that is responsible for setting up/configuring/obtaining knowledge of the DRX behaviour for each mobile device. The DRX controller 29 may be part of a base station and may be implemented in software running on appropriate hardware, hardware, firmware or combinations thereof.
  • In the illustrated example, the scheduler 32 and radio manager 14 are implemented as software and executed on processors forming part of the network 28 and mobile device 10 respectively. However, more generally, these functions may be implemented as software, hardware, firmware, or any appropriate combination thereof.
  • Furthermore, it is to be understood that the wireless network would have any appropriate components suitable for a wireless network 28. Note that the wireless network may include wires that interconnect network components in addition to components for providing wireless communication with mobile devices. The components of the wireless network are implementation specific and may depend on the type of wireless network. There are many possibilities for the wireless network. The wireless network might for example be a UMTS network or any cellular network that uses semi-persistent resource assignment.
  • In operation, the mobile device 10 communicates with the wireless network 28 over a wireless connection 19 between the mobile device 10 and the wireless network 28. The communication with the wireless network 28 includes VoIP packet transmission and additional packet transmission. The semi-persistent scheduler 34 is responsible for making an initial resource allocation for a VoIP service to the mobile device 10. This includes an uplink semi-persistent allocation and a downlink semi-persistent allocation. The semi-persistent scheduler 34 is also responsible for keeping track of whether there is a talk-spurt in progress for the uplink and/or the downlink and for turning on and off the uplink and/or downlink allocation accordingly. While de-allocated, the semi-persistently allocated resources can be made available for other purposes. Note that the form of the transmission resources that are being allocated is implementation specific. Particular examples of resources that might be used include OFDM resources and CDMA resources. The dynamic scheduler 36 is responsible for making resource allocations for additional packet transmissions that are not accommodated by the semi-persistent allocation. The additional packets may be related to and/or form part of the VoIP service, or be unrelated to the VoIP service.
  • The radio manager 14 controls the on/off state of the wireless access radio 12. In some wireless access radios, the transmitter and receiver must be turned on and off together, and as such, uplink and downlink scheduling must be coordinated to allow the wireless access radio to be turned off. In some wireless access radios, receive and transmit capabilities can be independently turned off.
  • In some embodiments, the network 28 sends DRX control signalling to the mobile device 10 that sets a repeating pattern that has a DRX period having an awake period and a sleep period. An example could be: DRX period is 20ms with sleep period equal to 15ms and awake period equal to 5ms. During the awake period, the mobile device turns its receiver on. During the sleep period, the mobile device turns its receiver off. This signalling might be sent at the start of each VoIP session, for example.
  • In some embodiments, the DRX controller 29 transmits DRX control parameters to the mobile device to set up DRX control. In addition, the DRX controller 29 determines when DRX control is to start. Specific examples are provided below under the heading "Controlling the Start of DRX Control". In some embodiments, the DRX controller is a piece of base station software running on a processor in a base station that controls the DRX procedure. It may be incorporated into the base station radio resource control software or radio resource management software.
  • In the mobile device 10, the wireless access radio 12 receives wireless communications from the network 28. The radio manager 14 controls when the wireless access radio 12 is on and when the wireless access radio is off in accordance with DRX control parameters received from the network. Specific detailed examples are provided below. In addition, the radio manager further 14 is further configured to determine a first of the periods during which the mobile device will nominally have its receiver powered on and after which discontinuous reception control will be active such that the mobile device receives from the network in accordance with the discontinuous reception control parameters starting with the first of the periods. Various detailed examples are provided below under the heading "Controlling the Start of DRX Control".
  • Referring now to Figure 3, shown is a signalling diagram showing an example of semi-persistent and dynamic scheduling and DRX. Shown is a semi-persistent allocation 60 available for semi-persistent VoIP DL transmissions. In addition, there are layer 1 CCEs 62 for signalling dynamic allocations so as to allow the transmission of additional packets. This represents the transmissions from the base station. The mobile device receiving the transmissions alternates between being in an awake state and a sleep state. The mobile station is in an awake state during awake periods 64 and the mobile device is nominally in a sleep state during sleep periods 66. The first thing that the scheduler in the network needs to do is to ensure that the semi-persistent allocation 60 coincides with the awake periods 64. In addition, each awake period 64 is longer than the minimum necessary to transmit the VoIP semi-persistent allocation. There is also the opportunity to dynamically schedule (as signalled on one of the CCEs 62) and transmit an additional packet. An example of this is shown where a dynamic allocation is signalled in CCE 62-1. Additional packet 67 is shown transmitted immediately following CCE 62-1. The additional packet might for example be an RTCP packet, SIP/SDP packet, or a packet that has not undergone IP\UDP\RTP header compression, etc. While the mobile device is in the sleep state, it operates in a reduced power consumption mode, by turning off reception capability and/or by turning off its reception and transmission capabilities. In this example, the network has scheduled the additional packet 67 to be transmitted during one of the awake periods 64, and signals this using a CCE 62-1 that is transmitted during one of the awake periods 64. More generally, when the mobile device wakes up after a sleep period, the mobile device will not only blind detect its own VoIP data on the semi-persistently allocated resource 60, but also will detect, more generally attempt to detect, all the CCEs during the awake periods.
  • In some embodiments, after the mobile device determines that there will be a dynamically allocated resource for the mobile device as signalled in one of the CCEs in a given awake period, the mobile device does not monitor further CCEs during that awake period.
  • In some embodiments, the base station will transmit signalling to configure the mobile device with this DRX behaviour, and thereafter all the dynamic scheduling will occur only in this "awake period". For example, the mobile device may sleep every 15ms, and then wake up for 5ms to continuously receive data. The behaviour repeats with a period of 20ms. During the 5ms awake period, the mobile device will blind-detect its VoIP data on the semi-persistently allocated resource and also the mobile device will monitor all the CCEs. The base station understands this DRX configuration and will schedule the associated dynamic packets such as RTCP, SIP/SDP, etc, during this 5ms awake period. In some implementations, when a retransmission occurs, the mobile device will be in continuous mode by default.
  • The radio manager 14 controls the operation of the wireless access radio 12 such that a reception capability is powered on during the awake periods, and off for at least some of the sleep periods. As described below, it may be necessary for the reception capability to be on during some of the sleep periods to allow for retransmissions.
  • The signalling for dynamic scheduling is performed during the awake periods. In addition, the actual resources allocated for the additional packet transmissions are scheduled to occur during the awake periods.
  • In some embodiments, when it becomes necessary for a retransmission, the mobile device enters a continuous mode of operation. While in continuous mode, the mobile device continuously receives and monitors the downlink channel and does not turn off reception capability. Further, in some embodiments, if a mixed service needs to be provided to the mobile device, this is used as a trigger to also enable the continuous mode operation. This trigger may be dependent on the traffic QoS of the service being added.
  • Uplink semi-persistent alignment with Downlink for DRX
  • The above discussion is focussed on downlink transmission from the base station to the mobile device and on the mobile device's ability to turn off its reception capability during the sleep period. However, some mobile devices are not able to turn off only their reception capability while leaving on a transmit capability or vice versa. Thus, for such devices in order to fully realize the benefit of having an awake period and a sleep period for reception, uplink transmissions should are also scheduled to align with these awake periods and sleep periods. An example of this is shown in Figure 4. In Figure 4, the downlink transmission is indicated at 78 and this is basically the same as that described above with reference to Figure 3, and this will not be described again. The uplink transmissions are generally indicated at 80. Here, there is a semi-persistent allocation 82 for VoIP UL transmissions. These are scheduled to occur during the periods 64 that the mobile device is awake. In addition, an uplink control channel is indicated at 84. In the illustrated example, this occurs every 1ms. The mobile device only transmits the uplink control channel during the awake periods 64. The mobile device can use the uplink control channel to make requests for additional resources. By scheduling the uplink semi-persistent transmission and downlink semi-persistent transmission to occur during the same awake period, the mobile device can realize much more efficient DRX and DTX (discontinuous reception and discontinuous transmission) behaviour. In the example of Figure 4, the mobile device is configured to sleep every 15ms, and then wake up for 5ms. During this 5ms awake period, the mobile device will receive DL semi-persistent reception if available (during a DL talk-spurt) and make an uplink semi-persistent transmission if available (during an UL talk-spurt). The mobile device will also detect all the DL grants and possibly make uplink additional resource requests.
  • In case of retransmissions (either the DL or the UL), the mobile device will enter the continuous mode by default. Note that both the uplink and downlink VoIP semi-persistent allocations have the same traffic characteristics (every 20ms), hence the base station can easily align the semi-persistent allocation for the DL and UL.
  • With this approach, even in the active mode (talk-spurt in progress on the uplink or the downlink), the mobile device can be in DRX and DTX mode most of the time. The mobile device monitors the Layer 1 CCEs on the downlink only during the awake period, and may request more resources on the uplink. This can save battery power for the mobile device. Considering that an additional IP packet delivery during a VoIP session may be infrequent, the battery saving could be significant. A drawback is that the dynamic scheduling could be delayed by an additional 10ms on average.
  • Referring now to Figure 5, shown is a state diagram having DRX/DTX state transitions for VoIP. It is noted that when there is no uplink and downlink transmission (i.e. silence in both directions), the mobile device only needs to monitor the DL CCEs for dynamic scheduling during the awake period. There are two main states. The first main state is the mobile device sleep state 100 and the second main state is the mobile device awake state 102. For the illustrated example, it is assumed that the sleep state 100 lasts 15ms and the awake state lasts 5ms and can be extended, but this is again implementation specific. Steps 102-1 and 102-2 are executed for downlink communication during the awake state 102. Step 102-1 involves receiving all of the downlink CCEs and processing them to identify downlink dynamic scheduling if present. This is done irrespective of whether or not there is any downlink VoIP transmission. In the event that a downlink talk-spurt is ongoing, then step 102-2 is also executed. This involves receiving the VoIP payload in the semi-persistent resource. Steps 102-3 and 102-4 are executed in respect of uplink transmissions. Step 102-3 is only executed if the mobile device determines that it needs a dynamic allocation for uplink transmission. Step 102-3 involves making a resource request, for example over a random access channel, and monitoring the downlink CCE for uplink grants. In addition, if there is an uplink talk-spurt in progress, then the mobile device will execute step 102-4 which involves transmitting the uplink VoIP payload in the semi-persistent resource for uplink transmission.
  • The above description has focussed on applications where the traffic that is sent using the semi-persistent allocation is VoIP traffic. More generally, the same methods and systems can be applied to combine the transmission and scheduling of traffic of any type on a semi-persistently allocated resource with the transmission and scheduling of traffic that uses dynamic resource allocations.
  • In the above examples, CCEs spaced by 1 ms are used for the downlink control channel. More generally, the downlink control channel can take any form. The only limitation is that dynamic allocations for a given mobile device take place during awake periods for the mobile device. Similarly, at least in the figures, the uplink control channel has been depicted as a random access channel that is available at intervals spaced by 1 ms. More generally, the uplink control channel for requesting additional resource allocations can come in any form. The only limitation is that requests for dynamic allocations for uplink transmission from a given mobile device will need to be transmitted during awake periods for the mobile device.
  • In some embodiments, the additional packet is transmitted as a series of one or more sub-packets formed by segmenting the additional packet. These are subject to reassembly at the receiver.
  • Methods for Semi-persistent Scheduling and DRX Control Executed by the Wireless Network
  • A method in a wireless network for performing downlink transmission to mobile devices will be described with reference to the flowchart of Figure 6. These steps are performed for each mobile device being provided wireless access on a semi-persistent downlink transmission resource. The method begins at step 6-1 with transmitting downlink packets to the mobile device using a semi-persistent downlink transmission resource that is aligned with awake periods defined for the mobile device. These can be downlink VoIP packets during a downlink talk-spurt for a VoIP session involving the mobile device or otherwise. Steps 6-2,6-3,6-4 are executed for each additional downlink packet for the mobile device. In step 6-2, the wireless network dynamically allocates an additional downlink transmission resource to transmit the additional packet, the additional resource being allocated to occur within one of the awake periods defined for the mobile device. In step 6-3, during one of the awake periods defined for the mobile device, the wireless network transmits signaling that defines the additional downlink transmission resource to transmit the additional packet. In step 6-4, during one of the awake periods defined for the mobile device, the wireless network transmits the additional downlink packet using the additional downlink resource. In some embodiments, all of the steps are performed in a base station. In other embodiments, certain steps, for example the dynamic allocation, can be performed in another network element if centralized scheduling is performed.
  • A method in a wireless network for performing uplink reception from mobile devices will be described with reference to the flowchart of Figure 7. These steps are performed for each mobile device being provided wireless access on a semi-persistent downlink transmission resource. The method begins with receiving uplink packets from the mobile device using a semi-persistent uplink transmission resource that is aligned with the awake periods defined for the mobile device. These can be VoIP packets during an uplink talk-spurt for a VoIP session involving the mobile device or otherwise. Steps 7-2, 7-3, 7-4 and 7-5 are performed for each additional each additional uplink packet for the mobile device. In step 7-2, during one of the awake periods, the wireless network receives a request for an additional uplink transmission resource to transmit the additional uplink packet. In step 7-3, the wireless network dynamically allocates the additional uplink transmission resource such that the additional uplink transmission resource occurs during one of the awake periods defined for the mobile device. In step 7-4, during one of the awake periods defined for the mobile device, the wireless network transmits signaling that defines the additional uplink allocation. In step 7-5, the wireless network receives the additional uplink packet using the additional uplink transmission resource.
  • In some embodiments, the wireless network transmits signaling to each mobile device that defines the awake periods and that defines sleep periods of that mobile device and/or that defines the semi-persistent uplink and/or downlink transmission resource of that mobile device. For VoIP, the signaling to define the semi-persistent resources might be done at the start of each VoIP session. Such signaling can be performed on a channel that is dedicated to each mobile device, or using a broadcast channel containing such signaling for multiple devices.
  • Methods for Semi-persistent Scheduling and DRX Control Executed by the Mobile Device
  • Referring now to Figure 8, a method of receiving downlink transmission executed by a mobile device will now be described. The method begins at step 8-1 with the mobile device controlling a reception capability of the mobile device during a plurality of awake periods and a plurality of sleep periods, the awake periods alternating in time with the sleep periods, such that the reception capability is always on during each of the awake periods, and the reception capability is off for at least some of the sleep periods. On a nominal basis, typically the reception capability will be off for every sleep period. At step 8-2, the mobile device receives downlink packets on a semi-persistent downlink transmission resource that is aligned with a plurality of awake periods defined for the mobile device. These can be VoIP downlink packets during a downlink talk-spurt for a VoIP session involving the mobile device, or otherwise. Steps 8-3 and 8-4 are performed for each additional downlink packet for the mobile device. In step 8-3, during one of the awake periods, the mobile device receives signaling that defines an additional downlink transmission resource to transmit the additional packet, the additional downlink transmission resource being allocated to occur within one of the awake periods defined for the mobile device. In step 8-4, during one of the awake periods, the mobile device receives the additional downlink packet on the additional downlink resource.
  • The mobile device may receive signaling that defines the awake periods and the sleep periods of the mobile device and/or that defines the semi-persistent downlink transmission resource of that mobile device. This may take place over a respective dedicated channel for the mobile device or over a broadcast channel containing signaling information for the mobile device and other mobile devices.
  • Referring now to Figure 9, a method of transmitting uplink transmissions executed by a mobile device will now be described. The method begins at step 9-1 with controlling a transmission capability of the mobile device such that the transmission capability is on during all of the awake periods and such that the transmission capability is off for at least some of the sleep periods. In step 9-2, the mobile device transmits uplink packets (VoIP packets or otherwise) using a semi-persistent uplink transmission resource that is aligned with the awake periods defined for the mobile device. Steps 9-3, 9-4, 9-5 are executed for each additional uplink packet for the mobile device. In step 9-3, during one of the awake periods defined for the mobile device, the mobile device transmits a request for an additional uplink transmission resource to transmit the additional uplink packet. In step 9-4, during one of the awake periods, the mobile device receives signaling that defines the additional uplink transmission resource, the additional uplink transmission resource being allocated to occur during one of the awake periods defined for the mobile device. In step 9-5, during one of the awake periods, the mobile device transmits the additional uplink packet using the additional uplink transmission resource.
  • The mobile device may receive signaling that defines the semi-persistent uplink resource. In some embodiments, the request for an additional uplink allocation is transmitted using a contention based random access channel.
  • Additional Embodiments
  • The following variants can be applied in combination with previously described embodiments.
  • In some embodiments, the awake period that is aligned with the semi-persistent resource is provisioned to have a duration that is long enough that it also includes times that the mobile device is expected to transmit/receive an ACK/NACK in respect of a transmission on semi-persistent resource allocation for the uplink and/or the downlink. In some embodiments, where an ACK/NACK is expected (as will be the case when the semi-persistent allocation is active), the awake period is extended to allow for this.
  • In another embodiment, additional awake periods are provisioned that are aligned with times that the mobile device is expected transmit/receive an ACK/NACK. More specifically, in such embodiments, a DRX/DTX period is provisioned between an awake period for a voice packet (semi-persistent resource allocation) and an awake period for the ACK/NACK. CCEs transmitted during either of the awake periods can be used to signal a dynamic allocation for the uplink and/or downlink. In addition, in some embodiments, during the extended awake period, the mobile device is permitted to make requests for dynamic allocations for the uplink.
  • In some embodiments, the sleep period is used for downlink retransmissions, and the mobile device will have its reception capability on in the event a retransmission is expected. Similarly, in some embodiments, the sleep period is used for uplink retransmissions, and the mobile device will have its transmission capability on to allow for this. The mobile device will not be expecting dynamic allocations during such periods. In some embodiments, additional awake periods are configured for retransmissions on the uplink and/or downlink. During these additional awake periods, the CCEs can be used to signal possible dynamic allocations. In some embodiments, one or more of the nominal awake periods is made longer so as to allow for the transmission/reception of retransmissions. In this case, the CCEs of the longer awake periods are available for dynamic scheduling purposes.
  • In some embodiments, as described in the detailed examples above, the dynamic allocations are always scheduled to occur during one of the awake periods that are nominally defined with fixed duration. In another embodiment, an awake period can be extended to allow for the transmission/reception of one or more dynamic allocations. For example, a CCE sent during an awake period can allocate a dynamic resource allocation that occurs partially or entirely outside the awake period, and the mobile device stays powered on to allow that. During the period that the mobile device is powered on as a result of the dynamic resource allocation the mobile device continues to monitor the CCEs, and an additional CCE signalling another dynamic allocation can be sent and so on.
  • Controlling the Start of DRX Control
  • DRX (discontinuous reception) control refers generally to methods of controlling a mobile device to have discontinuous reception capability so as to reduce batter consumption. This means there will be periods that the mobile device will have its receiver on (an on period, also referred to as an awake period), and periods that the mobile device will have its receiver off (an off period, also referred to as a sleep period). Many different examples of methods of DRX control have been provided above.
  • In accordance with further embodiments, various methods for starting DRX control are provided. Typically one or more DRX parameters are sent to the mobile device to configure DRX control. These might include one or more parameters that indicate when the receiver of the mobile device will be powered on. They might also include one or more parameters that indicate an off period duration, although separate signalling to this effect might not be necessary if it can be deduced from the signalling that indicates the on periods. In some embodiments, the parameters also indicate an extension period during which the mobile device will continue have its receiver powered on following one of the periods during which the mobile device will have its receiver powered on if there is a dynamic scheduling allocation. These methods may for example be implemented by one or both of a DRX controller (such as DRX controller 29 forming part of a wireless network 28 of Figure 2) or a radio manager (such as a radio manager 14 forming part of a mobile device 10 of Figure 2).
  • It should be apparent from the foregoing that in some embodiments, the periods that the mobile device will have its receiver on, and the periods that the mobile device will have its receiver off may be nominal on and off durations respectively, subject to over-ride. In the example presented above, the nominal on period can be extended to accommodate dynamic scheduling. Other examples of how the nominal on and off durations may be varied include for transmitting/receiving ACKs/NACKs and transmitting/receiving retransmissions. Further details of such examples can be found in Applicants' co-pending Application No. 60/974653 filed September 24, 2007 hereby incorporated by reference in its entirety.
  • Referring to Figures 11 and 12, shown are flowcharts of two methods that are implemented in the network and mobile device respectively. References to steps executed by the network refer to steps that are executed by some component(s) in a network, as opposed to the mobile device. Examples of network components that might execute one or more of these steps include a base station, or an enhanced Node B (ENB). These methods occur in parallel and will be described as such. At step 11-1, the network transmits DRX control parameters to the mobile device. These parameters may include parameters that indicate periods during which the mobile device will have its receiver powered on, and an extension period during which the mobile will continue have its receiver on even at the end of the on period when dynamic scheduling allocation is detected, once discontinuous reception control is active. In some embodiments the parameters also indicate periods during which the mobile device will have its receiver powered off. They may also include parameters relating to semi-persistent assignment. They may also include parameters relating to how larger additional packets are to be handled. These parameters are typically sent at the start of a communications session between the mobile device and the network, for example at the start of a VoIP session. At step 12-1, the mobile device receives the DRX control parameters. At steps 11-2 and 12-2, the network and the mobile device determine the first of the periods that the mobile device will have its receiver powered on. There are various methods for this that are detailed below, but in each case it is advantageous that both the network and mobile device make the same determination. For example, in some cases, the network defines the start time and signals this to the mobile device. At step 11-3, the network transmits to the mobile device, starting with the first on period, in accordance with the DRX parameters after which DRX control is active. Similarly, at step 12-3, the mobile device receives from the network, starting with the first on period, in accordance with the DRX parameters.
  • Various specific methods for the network and mobile device to determine the first on period will now be described.
  • A) Network defines on period, and signals this to mobile device
  • A first method for the network and mobile device to determine the first on period will now be described with reference to Figure 13. This flowchart includes steps executed by the network, and steps executed by the mobile device. The method begins with the network defining the first on period at step 13-1. For example, in semi-persistent scheduling case, the network might define the first on period such that the pre-configured resource occurs during the first on period. At step 13-2, the network transmits signalling to the mobile device to indicate the first on period. Various examples are given below. At step 13-3, the mobile device receives the signalling that indicates the first on period.
  • Absolute value of start time.
  • In a first example of the network sending signalling to indicate the first on period, the network sends a signaling message to the mobile device that indicates in absolute terms the start time of the DRX control. In some embodiments, this is sent together with the other DRX parameters in which case an additional message is not required. The start time of the DRX control identifies the start time of the first on period for the DRX control.
  • In a specific example, the start time can be represented by a layer 1 sub-frame index or a layer 2 frame index. Transmission period is divided into layer 1 sub-frames having a duration known to both the network and mobile devices. Thus, reference to a specific layer 1 sub-frame will be a reference to a specific time. In some embodiments, layer 1 sub-frames are 1 ms in duration, but other values are possible, and more generally the sub-frame duration is implementation specific. A layer 1 sub-frame index is simply a reference to a specific layer 1 sub-frame. In some embodiments, the layer 1 sub-frame index is a cyclically repeating index, for example starting at zero, counting up to 4095, and then starting at zero again. In such a case, the start time signaled by way of sub-frame index will refer to the next layer 1 sub-frame having that index.
  • Relative Value of Start time
  • In a second example of the network sending signalling to indicate the first on period, the network sends a signaling message to the mobile device that indicates the start time of the DRX control in relative terms. For example, the network may transmit signaling to the mobile device that includes an activation timer duration. The activation timer duration identifies the start of the DRX control relative to when the signaling was sent or received, thereby indicating when the first on period will occur. The mobile device starts a timer, and when the timer reaches the activation timer duration, the DRX procedure starts. This timer might for example be represented in terms of number of layer-1 sub-frames (for example number of TTIs (transmission time intervals), or an actual time value. In some embodiments, the activation timer duration is sent along with other DRX parameters.
  • B) Default Configuration
  • In another embodiment, the mobile device has a default configuration that defines when the first on time will be. When a default configuration is employed, both the network and the mobile device need to be aware of the default configuration to be employed for a given mobile device, and to act accordingly. This method for the network and mobile device determine the first on period will now be described with reference to Figure 14. This flowchart includes steps executed by the network, and steps executed by the mobile device. The method begins with the network accessing default parameter(s) to determine the first on period at step 14-1. For example, the first on-duration may be defined by default to start with the sub-frame that aligns with the semi-persistent resource. At step 14-2, the mobile device accesses default parameter(s) to determine the first on period. For example, the mobile device may be configured by default to assume that the first on-duration starts with the sub-frame that aligns with the semi-persistent resource. These default configurations are pre-configured at both the network (for example in an ENB) and the mobile device.
  • In a first example of the default configuration approach, the start time of the first on period is aligned with the first sub-frame in which the mobile device is assigned a semi-persistent resource, following the assignment of that semi-persistent resource.
  • b) In a second example of the default configuration approach, the first on period always occurs at a certain sub-frame index. For example, using the example of 4096 layer-1 sub-frame indexes that cyclically repeat, a given mobile device might be configured to have a first on period following sub-frame 400. In that case, after configuring the mobile device to with other DRX parameters, the first on period will occur following the next occurrence of sub-frame 400.
  • Another Mobile Device
  • Referring now to Figure 10, shown is a block diagram of another mobile device that may implement any of the mobile device methods described herein. The mobile device 101 is shown with specific components for implementing features similar to those of the mobile device 10 of Figure 2. It is to be understood that the mobile device 101 is shown with very specific details for example purposes only.
  • A processing device (a microprocessor 128) is shown schematically as coupled between a keyboard 114 and a display 126. The microprocessor 128 may be a specific example of the processor with features similar to those of the processor 16 of the mobile device 10 shown in Figure 2. The microprocessor 128 controls operation of the display 126, as well as overall operation of the mobile device 101, in response to actuation of keys on the keyboard 114 by a user.
  • The mobile device 101 has a housing that may be elongated vertically, or may take on other sizes and shapes (including clamshell housing structures). The keyboard 114 may include a mode selection key, or other hardware or software for switching between text entry and telephony entry.
  • In addition to the microprocessor 128, other parts of the mobile device 101 are shown schematically. These include: a communications subsystem 170; a short-range communications subsystem 103; the keyboard 114 and the display 126, along with other input/output devices including a set of LEDs 104, a set of auxiliary I/O devices 106, a serial port 108, a speaker 111 and a microphone 112; as well as memory devices including a flash memory 116 and a Random Access Memory (RAM) 118; and various other device subsystems 120. The mobile device 101 may have a battery 121 to power the active elements of the mobile device 101. The mobile device 101 is in some embodiments a two-way radio frequency (RF) communication device having voice and data communication capabilities. In addition, the mobile device 101 in some embodiments has the capability to communicate with other computer systems via the Internet.
  • Operating system software executed by the microprocessor 128 is in some embodiments stored in a persistent store, such as the flash memory 116, but may be stored in other types of memory devices, such as a read only memory (ROM) or similar storage element. In addition, system software, specific device applications, or parts thereof, may be temporarily loaded into a volatile store, such as the RAM 118. Communication signals received by the mobile device 101 may also be stored to the RAM 118.
  • The microprocessor 128, in addition to its operating system functions, enables execution of software applications on the mobile device 101. A predetermined set of software applications that control basic device operations, such as a voice communications module 130A and a data communications module 130B, may be installed on the mobile device 101 during manufacture. In addition, a personal information manager (PIM) application module 130C may also be installed on the mobile device 101 during manufacture. The PIM application is in some embodiments capable of organizing and managing data items, such as e-mail, calendar events, voice mails, appointments, and task items. The PIM application is also in some embodiments capable of sending and receiving data items via a wireless network 110. In some embodiments, the data items managed by the PIM application are seamlessly integrated, synchronized and updated via the wireless network 110 with the device user's corresponding data items stored or associated with a host computer system. As well, additional software modules, illustrated as another software module 130N, may be installed during manufacture. One or more of the modules 130A,130B,130C,130N of the flash memory 116 can be configured for implementing features similar to those of the radio manager 14 of the mobile device 10 shown in Figure 2.
  • Communication functions, including data and voice communications, are performed through the communication subsystem 170, and possibly through the short-range communications subsystem 103. The communication subsystem 170 includes a receiver 150, a transmitter 152 and one or more antennas, illustrated as a receive antenna 154 and a transmit antenna 156. In addition, the communication subsystem 170 also includes a processing module, such as a digital signal processor (DSP) 158, and local oscillators (LOs) 160. The communication subsystem 170 having the transmitter 152 and the receiver 150 is an implementation of a specific example of the wireless access radio 12 of the mobile device 10 shown in Figure 2. The specific design and implementation of the communication subsystem 170 is dependent upon the communication network in which the mobile device 101 is intended to operate. For example, the communication subsystem 170 of the mobile device 101 may be designed to operate with the Mobitex™, DataTAC™ or General Packet Radio Service (GPRS) mobile data communication networks and also designed to operate with any of a variety of voice communication networks, such as Advanced Mobile Phone Service (AMPS), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), Personal Communications Service (PCS), Global System for Mobile Communications (GSM), etc. The communication subsystem 170 may also be designed to operate with an 802.11 Wi-Fi network, and/or an 802.16 WiMAX network. Other types of data and voice networks, both separate and integrated, may also be utilized with the mobile device 101.
  • Network access may vary depending upon the type of communication system. For example, in the Mobitex™ and DataTAC™ networks, mobile devices are registered on the network using a unique Personal Identification Number (PIN) associated with each device. In GPRS networks, however, network access is typically associated with a subscriber or user of a device. A GPRS device therefore typically has a subscriber identity module, commonly referred to as a Subscriber Identity Module (SIM) card, in order to operate on a GPRS network.
  • When network registration or activation procedures have been completed, the mobile device 101 may send and receive communication signals over the communication network 110. Signals received from the communication network 110 by the receive antenna 154 are routed to the receiver 150, which provides for signal amplification, frequency down conversion, filtering, channel selection, etc., and may also provide analog to digital conversion. Analog-to-digital conversion of the received signal allows the DSP 158 to perform more complex communication functions, such as demodulation and decoding. In a similar manner, signals to be transmitted to the network 110 are processed (e.g., modulated and encoded) by the DSP 158 and are then provided to the transmitter 152 for digital to analog conversion, frequency up conversion, filtering, amplification and transmission to the communication network 110 (or networks) via the transmit antenna 156.
  • In addition to processing communication signals, the DSP 158 provides for control of the receiver 150 and the transmitter 152. For example, gains applied to communication signals in the receiver 150 and the transmitter 152 may be adaptively controlled through automatic gain control algorithms implemented in the DSP 158.
  • In a data communication mode, a received signal, such as a text message or web page download, is processed by the communication subsystem 170 and is input to the microprocessor 128. The received signal is then further processed by the microprocessor 128 for an output to the display 126, or alternatively to some other auxiliary I/O devices 106. A device user may also compose data items, such as e-mail messages, using the keyboard 114 and/or some other auxiliary I/O device 106, such as a touchpad, a rocker switch, a thumb-wheel, or some other type of input device. The composed data items may then be transmitted over the communication network 110 via the communication subsystem 170.
  • In a voice communication mode, overall operation of the device is substantially similar to the data communication mode, except that received signals are output to a speaker 111, and signals for transmission are generated by a microphone 112. Alternative voice or audio I/O subsystems, such as a voice message recording subsystem, may also be implemented on the mobile device 101. In addition, the display 126 may also be utilized in voice communication mode, for example, to display the identity of a calling party, the duration of a voice call, or other voice call related information.
  • The short-range communications subsystem 103 enables communication between the mobile device 101 and other proximate systems or devices, which need not necessarily be similar devices. For example, the short-range communications subsystem may include an infrared device and associated circuits and components, or a Bluetooth™ communication module to provide for communication with similarly-enabled systems and devices.
  • Numerous modifications and variations of the present application are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the application may be practised otherwise than as specifically described herein.
  • Embodiments of the present invention may relate to one or more of the following enumerated example embodiments.
  1. 1. A method in a network for the network to provide wireless communications to a mobile device, the method in the network comprising:
    • transmitting by the network discontinuous reception control parameters to a mobile device, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active;
    • determining by the network a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active; and
    • transmitting by the network to the mobile device in accordance with the discontinuous reception control parameters starting with the first of the periods.
  2. 2. The method of enumerated example embodiment 1 wherein transmitting by the network discontinuous reception control parameters to the mobile device, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active further comprises:
    • transmitting a discontinuous control parameter that indicates an extension period during which the mobile device will continue to have its receiver powered on following one of the periods during which the mobile device will have its receiver powered on if there is a dynamic scheduling allocation.
  3. 3. The method of enumerated example embodiment 1 wherein determining by the network a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active comprises:
    • defining the first of the periods; and
    • transmitting signaling to the mobile device to indicate the first of the periods thus defined.
  4. 4. The method of enumerated example embodiment 3 wherein transmitting signaling to the mobile device to indicate the first of the periods thus defined comprises transmitting signaling that indicates the first of the periods in absolute terms.
  5. 5. The method of enumerated example embodiment 4 wherein the transmitting signaling to the mobile device to indicate the first of the periods in absolute terms comprises transmitting a layer-1 sub-frame index.
  6. 6. The method of enumerated example embodiment 3 wherein transmitting signaling to the mobile device to indicate the first of the periods thus defined comprises transmitting signaling that indicates the first of the periods in relative terms.
  7. 7. The method of enumerated example embodiment 6 wherein transmitting signaling that indicates the first of the periods in relative terms comprises transmitting an activation timer duration.
  8. 8. The method of enumerated example embodiment 7 wherein transmitting an activation timer duration comprises at least one of:
    • transmitting the activation timer duration in units of layer-1 sub-frames; and
    • transmitting the activation timer duration in units of actual time.
  9. 9. The method of enumerated example embodiment 1 wherein determining by the network a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active comprises:
    • accessing at least one default parameter defined for the mobile device to determine the first of the periods.
  10. 10. The method of enumerated example embodiment 9 wherein accessing at least one default parameter comprises accessing at least one default parameter comprising at least one of:
    • a layer-1 sub-frame index; and
    • an indication that the first of the periods should be aligned with a first sub-frame in which the mobile device is assigned a semi-persistent resource.
  11. 11. A method in a mobile device for the mobile device to receive wireless communications from a network, the method in the mobile device comprising:
    • receiving by the mobile device discontinuous reception control parameters from the network, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active;
    • determining by the mobile device a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active; and
    • receiving by the mobile device communications from the network in accordance with the discontinuous reception control parameters starting with the first of the periods.
  12. 12. The method of enumerated example embodiment 11 wherein receiving by the mobile device discontinuous reception control parameters from the network, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active comprise:
    • receiving a discontinuous reception control parameter that indicates an extension period during which the mobile device will continue have its receiver powered on following one of the periods during which the mobile device will have its receiver powered on if there is a dynamic scheduling allocation.
  13. 13. The method of enumerated example embodiment 11 wherein determining by the mobile device a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active comprises:
    • receiving signaling at the mobile device to indicate the first of the periods.
  14. 14. The method of enumerated example embodiment 13 wherein receiving signaling at the mobile device to indicate the first of the periods comprises receiving signaling that indicates the first of the periods in absolute terms.
  15. 15. The method of enumerated example embodiment 14 wherein receiving signaling at the mobile device to indicate the first of the periods in absolute terms comprises receiving a layer-1 sub-frame index.
  16. 16. The method of enumerated example embodiment 13 wherein receiving signaling at the mobile device to indicate the first of the periods comprises receiving signaling that indicates the first of the periods in relative terms.
  17. 17. The method of enumerated example embodiment 16 wherein receiving signaling that indicates the first of the periods in relative terms comprises receiving an activation timer duration.
  18. 18. The method of enumerated example embodiment 17 wherein receiving an activation timer duration comprises at least one of:
    • receiving the activation timer duration in units of layer-1 sub-frames; and
    • receiving the activation timer duration in units actual time.
  19. 19. The method of enumerated example embodiment 11 wherein determining by the mobile device a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active comprises:
    • accessing at least one default parameter defined for the mobile device to determine the first of the periods.
  20. 20. The method of enumerated example embodiment 19 wherein accessing the at least one default parameter comprises accessing at least one of:
    • a layer-1 sub-frame index; and
    • an indication that the first of the periods should be aligned with a first sub-frame in which the mobile device is assigned a semi-persistent resource.
  21. 21. An apparatus for providing communications services to a mobile device, the apparatus comprising:
    • a DRX (discontinuous reception) controller that determines discontinuous reception control parameters for a mobile device, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active;
    • the DRX controller being further configured to determine a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active; and
    • a transceiver and at least one antenna for establishing a wireless link with the mobile device, the transceiver being used to transmit the discontinuous reception control parameters to the mobile device and to transmit to the mobile device in accordance with the discontinuous reception control parameters starting with the first of the periods.
  22. 22. The apparatus of enumerated example embodiment 21, wherein the DRX controller generates discontinuous reception control parameters that further indicate an extension period during which the mobile device will continue have its receiver powered on following one of the periods during which the mobile device will have its receiver powered if on there is a dynamic scheduling allocation.
  23. 23. The apparatus of enumerated example embodiment 21, wherein the DRX controller is configured to determine a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active by defining the first of the periods, the apparatus being further configured to transmit signaling to the mobile device to indicate the first of the periods thus defined using the transceiver.
  24. 24. A mobile device comprising:
    • a wireless access radio for receiving wireless communications from a network;
    • a radio manager that controls when the wireless access radio is on and when the wireless access radio is off;
    • the radio manager configured to perform the control of the wireless radio access in accordance with discontinuous reception control parameters from the network via the wireless access radio, the discontinuous reception control parameters indicating periods during which the mobile device will have its receiver powered on once discontinuous reception control is active; and
    • the radio manager further configured to determine a first of the periods during which the mobile device will have its receiver powered on and after which discontinuous reception control will be active such that the mobile device receives from the network in accordance with the discontinuous reception control parameters starting with the first of the periods.

Claims (15)

  1. A method for operating a base station in a wireless network, the method comprising:
    determining, by the base station configured to provide wireless communications to a mobile device configured to operate in a discontinuous reception (DRX) mode, DRX awake periods during each of which the mobile device monitors a plurality of downlink layer 1 control channel elements (CCE's), wherein the DRX mode includes DRX sleep periods and DRX awake periods the downlink layer 1 CCE's providing signaling of a dynamically allocated resource for the mobile device to communicate data; and
    transmitting, by the base station, signaling comprising a DRX control parameter that indicates a first of said DRX awake periods;
    optionally further comprising transmitting, by the base station, a plurality of downlink layer 1 CCE's to the mobile device during at least one of the DRX awake periods.
  2. The method of claim 1, further comprising:
    transmitting, by the base station, signaling comprising a DRX control parameter that indicates an extension period during which the mobile device will continue to monitor downlink layer 1 CCE's following one of said DRX awake periods for a dynamic scheduling allocation.
  3. The method of claim 1, wherein transmitting the signaling comprises transmitting signaling that indicates the first of said DRX awake periods in relative terms.
  4. The method of claim 1, wherein the base station is part of a Long Term Evolution (LTE) network, and wherein the mobile device is configured to be associated with the LTE network.
  5. A method for operating a mobile device to receive wireless communications from a base station, the method comprising:
    operating the mobile device in a discontinuous reception (DRX) mode, the DRX mode including DRX sleep periods and DRX awake periods during each of which the mobile device monitors a plurality of downlink layer 1 CCE's; and
    receiving, by the mobile device, signaling comprising a DRX control parameter that indicates a first of said DRX awake periods.
  6. The method of claim 5, further comprising:
    receiving, by the mobile device, a DRX control parameter that indicates an extension period during which the mobile device will continue to monitor downlink layer 1 CCE's following one of said DRX awake periods for a dynamic scheduling allocation.
  7. The method of claim 6, wherein receiving the signaling comprises receiving signaling that indicates the first of said DRX awake periods in relative terms.
  8. The method of claim 6, further comprising receiving, by the mobile device, a plurality of downlink layer 1 CCE's transmitted during at least one of the DRX awake periods.
  9. The method of claim 6, wherein the base station is part of a Long Term Evolution (LTE) network, and wherein the mobile device is configured to be associated with the LTE network.
  10. A base station device for communicating with a mobile device in a wireless network, the device comprising:
    a discontinuous reception (DRX) controller configured to determine a DRX control parameter for a mobile device, the DRX control parameter indicating DRX awake periods during each of which the mobile device monitors a plurality of downlink layer 1 control channel elements (CCE's), the DRX controller being further configured to determine a first of said DRX awake periods;
    wherein the mobile device is configured to operate in a DRX mode, which includes DRX sleep periods and DRX awake periods during each of which the mobile device monitors the plurality of downlink layer 1 CCE's, the downlink layer 1 CCE's providing signaling of a dynamically allocated resource for the mobile device to communicate data; and
    a transceiver and at least one antenna configured to establish a wireless link with the mobile device;
    wherein the device is configured to transmit signaling to the mobile device to indicate the first of said DRX awake periods;
    wherein the device is optionally further configured to transmit a plurality of downlink layer 1 CCE's during at least one of the DRX awake periods.
  11. The device of claim 10, wherein the device is further configured to generate a DRX control parameter that indicates an extension period during which the mobile device will continue to monitor downlink layer 1 CCE's following one of said DRX awake periods for a dynamic scheduling allocation.
  12. The device of claim 10, wherein the base station device is part of a Long Term Evolution (LTE) network, and wherein the mobile device is configured to be associated with the LTE network.
  13. A mobile device comprising:
    a radio manager configured to operate in accordance with one or more discontinuous reception (DRX) parameters received from a base station,
    wherein the one or more DRX parameters indicate DRX awake periods during which the mobile device monitors a plurality of downlink layer 1 control channel elements (CCE's), and indicate a first of said DRX awake periods,
    wherein the mobile device is configured to operate in a DRX mode including DRX sleep periods and DRX awake periods, starting with the first of said DRX awake periods.
  14. The device of claim 13, wherein the mobile device is configured to receive a plurality of downlink layer 1 CCE's transmitted during at least one of the DRX awake periods.
  15. The device of claim 13, wherein the base station is part of a Long Term Evolution (LTE) network, and wherein the mobile device is configured to be associated with the LTE network.
EP20130169001 2007-09-14 2007-12-17 System and method for discontinuous reception control start time Withdrawn EP2632210A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US97258307 true 2007-09-14 2007-09-14
EP20070855581 EP2198642B1 (en) 2007-09-14 2007-12-17 System and method for discontinuous reception control start time
EP20110186713 EP2413638B1 (en) 2007-09-14 2007-12-17 System and method for discontinuous reception control start time

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP07855581.0 Division 2007-12-17
EP20110186713 Division-Into EP2413638B1 (en) 2007-09-14 2007-12-17 System and method for discontinuous reception control start time
EP11186713.1 Division 2011-10-26

Publications (1)

Publication Number Publication Date
EP2632210A1 true true EP2632210A1 (en) 2013-08-28

Family

ID=40451501

Family Applications (4)

Application Number Title Priority Date Filing Date
EP20130169001 Withdrawn EP2632210A1 (en) 2007-09-14 2007-12-17 System and method for discontinuous reception control start time
EP20070855581 Active EP2198642B1 (en) 2007-09-14 2007-12-17 System and method for discontinuous reception control start time
EP20110186713 Active EP2413638B1 (en) 2007-09-14 2007-12-17 System and method for discontinuous reception control start time
EP20110186711 Active EP2413637B1 (en) 2007-09-14 2007-12-17 System and Method for Discontinuous Reception Control Start Time

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP20070855581 Active EP2198642B1 (en) 2007-09-14 2007-12-17 System and method for discontinuous reception control start time
EP20110186713 Active EP2413638B1 (en) 2007-09-14 2007-12-17 System and method for discontinuous reception control start time
EP20110186711 Active EP2413637B1 (en) 2007-09-14 2007-12-17 System and Method for Discontinuous Reception Control Start Time

Country Status (4)

Country Link
US (4) US8711745B2 (en)
EP (4) EP2632210A1 (en)
ES (3) ES2558744T3 (en)
WO (1) WO2009033253A1 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044696B2 (en) 2007-06-15 2012-10-10 リサーチ イン モーション リミテッドResearch In Motion Limited System and method for semi-persistent and dynamic scheduling and DRX Control
JP4718595B2 (en) * 2007-12-27 2011-07-06 パナソニック株式会社 Wireless communication system and a mobile terminal device
US8929304B2 (en) 2008-01-04 2015-01-06 Optis Wireless Technology, Llc Radio communication base station device, radio communication mobile station device, and control channel allocation method
US8059570B2 (en) * 2008-01-11 2011-11-15 Apple Inc. Mobile network device battery conservation system and methods
US8249004B2 (en) * 2008-03-14 2012-08-21 Interdigital Patent Holdings, Inc. Coordinated uplink transmission in LTE DRX operations for a wireless transmit receive unit
KR101477061B1 (en) * 2008-05-16 2014-12-29 삼성전자주식회사 A method for Discontinuous Reception in a portable terminal and an apparatus thereof
EP2315486A4 (en) * 2008-08-11 2016-05-25 Ntt Docomo Inc Base station device and communication control method
US8509795B2 (en) * 2008-09-22 2013-08-13 Htc Corporation Method of performing data transmission corresponding to semi-persistent resources in wireless communications system and related device
US8472362B2 (en) * 2008-09-30 2013-06-25 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for detecting radio link failure in a telecommunications system
WO2010100966A1 (en) * 2009-03-06 2010-09-10 シャープ株式会社 Communication system and discontinuous reception method
KR101723411B1 (en) 2009-08-21 2017-04-05 엘지전자 주식회사 Method and apparatus of sleep mode operation in multi_carrier system
JP5297317B2 (en) * 2009-09-16 2013-09-25 Kddi株式会社 The wireless resource allocating apparatus and a radio resource allocation method
EP2526726B1 (en) 2010-01-18 2015-03-25 Telefonaktiebolaget L M Ericsson (publ) Technique of controlling discontinuous transceiving operations
KR101682004B1 (en) * 2010-03-16 2016-12-05 삼성전자주식회사 Apparatus and method for drx operating in wireless communication system
EP2369890A1 (en) * 2010-03-26 2011-09-28 Panasonic Corporation Connection peak avoidance for machine-type-communication (MTC) devices
WO2012040903A1 (en) * 2010-09-28 2012-04-05 富士通株式会社 Base station and communication resource allocation method thereof, and user equipment and communication control method thereof
US9088947B2 (en) * 2010-11-15 2015-07-21 Lg Electronics Inc. Method for a terminal to transmit data in a wireless communication system, and a device therefor
US20120163248A1 (en) * 2010-12-23 2012-06-28 Tom Chin Baton Handover From TDD-LTE to TD-SCDMA Systems
CN103535083B (en) * 2011-02-11 2017-05-31 黑莓有限公司 hethet deployment eicic having a user equipment battery saving
WO2012108880A1 (en) 2011-02-11 2012-08-16 Research In Motion Limited User equipment battery saving in a hetnet deployment with eicic
CN102655666B (en) * 2011-03-02 2017-06-06 中兴通讯股份有限公司 A delay-scheduling method and system for
US8971225B2 (en) * 2011-06-16 2015-03-03 Lg Electronics Inc. Method of communication for station operating based on battery in wireless local area network system and apparatus for the same
US20130039238A1 (en) * 2011-08-12 2013-02-14 Renesas Mobile Corporation Method Of Operating A Wireless Device And Processor For A Wireless Device
US9066240B2 (en) * 2011-09-30 2015-06-23 Qualcomm Incorporated Discontinuous reception (DRX) based mechanisms for connection setup
CN103209487A (en) * 2012-01-17 2013-07-17 中兴通讯股份有限公司 Wireless communication method, device and system
JP5865740B2 (en) * 2012-03-14 2016-02-17 株式会社Nttドコモ The mobile station
US9603184B2 (en) 2012-05-25 2017-03-21 Apple Inc. Tune back coordination with connected mode discontinuous receive
US20130343252A1 (en) * 2012-06-25 2013-12-26 Broadcom Corporation Power Saving for Mobile Terminals
JP5808719B2 (en) * 2012-08-30 2015-11-10 株式会社東芝 Wireless communication device
WO2014036722A1 (en) * 2012-09-07 2014-03-13 华为技术有限公司 Method and terminal device for implementing discontinuous receiving
US8964616B2 (en) * 2012-09-14 2015-02-24 Alcatel Lucent System and method for scheduling cell broadcast message
US9681465B2 (en) * 2013-01-17 2017-06-13 Qualcomm Incorporated Methods and apparatus for power efficient operation of LTE based machine type communications
CN103986546B (en) * 2013-02-07 2017-10-24 华为终端有限公司 A method for transmitting information, apparatus, and systems
US20150009874A1 (en) * 2013-07-08 2015-01-08 Amazon Technologies, Inc. Techniques for optimizing propagation of multiple types of data
US20160174207A1 (en) * 2013-08-02 2016-06-16 Telefonaktiebolaget L M Ericsson (Publ) Methods, network node, wireless device, computer programs and computer program products for use with discontinous reception
US9402273B2 (en) 2013-12-23 2016-07-26 Qualcomm Incorporated DRX wakeup rule in an eICIC environment
US9374781B2 (en) * 2014-07-14 2016-06-21 Amazon Technologies, Inc. Method for discontinuous reception (DRX) in dual connectivity
US9713192B2 (en) 2015-03-27 2017-07-18 Intel Corporation Device and method for processing audio data
DE102015105008A1 (en) * 2015-03-31 2016-10-06 Atmel Corporation Means for activating an electrically or electronically controlled device from an energy-saving passive state
US20170171818A1 (en) * 2015-12-09 2017-06-15 Qualcomm Incorporated Macro and micro discontinuous reception
US20170171908A1 (en) * 2015-12-09 2017-06-15 Qualcomm Incorporated Macro and micro discontinuous transmission
US20170171907A1 (en) * 2015-12-09 2017-06-15 Qualcomm Incorporated Receiving upon transmit and transmitting upon receive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1317156A1 (en) * 2001-11-28 2003-06-04 Alcatel Alsthom Compagnie Generale D'electricite Method of operating a mobile station in an energy saving mode
US20030185162A1 (en) * 2002-03-28 2003-10-02 General Motors Corporation Method and system for dynamically determining sleep cycle values in a quiescent mobile vehicle
WO2007073118A1 (en) * 2005-12-22 2007-06-28 Electronics And Telecommunications Research Institute Method and apparatus for discontinuous transmission/reception operation for reducing power consumption in cellular system

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241542A (en) 1991-08-23 1993-08-31 International Business Machines Corporation Battery efficient operation of scheduled access protocol
US5649298A (en) 1992-12-17 1997-07-15 Motorola, Inc. Method and apparatus of inter-operability between conventional and trunked communications system
US5991279A (en) 1995-12-07 1999-11-23 Vistar Telecommunications Inc. Wireless packet data distributed communications system
US6104929A (en) 1997-06-20 2000-08-15 Telefonaktiebolaget Lm Ericsson Data packet radio service with enhanced mobility management
US6009553A (en) 1997-12-15 1999-12-28 The Whitaker Corporation Adaptive error correction for a communications link
US20010056560A1 (en) 1998-10-08 2001-12-27 Farooq Khan Method and system for measurement based automatic retransmission request in a radiocommunication system
US6947398B1 (en) 1998-11-13 2005-09-20 Lucent Technologies Inc. Addressing scheme for a multimedia mobile network
US6545996B1 (en) * 1998-12-10 2003-04-08 Lucent Technologies Inc. Management of wireless control channel
US6622251B1 (en) 1999-04-07 2003-09-16 Telefonaktiebolaget Lm Ericsson (Publ) Method to put a mobile terminal into sleep when a frame control channel containing a location of slow broadcast channel does not include wakeup information
US6975629B2 (en) * 2000-03-22 2005-12-13 Texas Instruments Incorporated Processing packets based on deadline intervals
WO2001086885A1 (en) 2000-05-10 2001-11-15 Nokia Corporation Communication system and method for classifying and marking information elements to be transmitted in a network
US6574770B1 (en) 2000-06-29 2003-06-03 Lucent Technologies Inc. Error-correcting communication method for transmitting data packets in a network communication system
US7230932B2 (en) 2000-08-18 2007-06-12 Nokia Mobile Phones Ltd. Method and apparatus for discontinuous reception scheme and power saving mode for user equipment in packet access mode
US7016296B2 (en) 2000-10-16 2006-03-21 Broadcom Corporation Adaptive modulation for fixed wireless link in cable transmission system
US8670390B2 (en) * 2000-11-22 2014-03-11 Genghiscomm Holdings, LLC Cooperative beam-forming in wireless networks
US7023824B2 (en) 2001-02-27 2006-04-04 Telefonaktiebolaget L M Ericsson (Publ) Method, apparatus, and system for optimizing transmission power and bit rate in multi-transmission scheme communication systems
US6901046B2 (en) 2001-04-03 2005-05-31 Nokia Corporation Method and apparatus for scheduling and modulation and coding selection for supporting quality of service in transmissions on forward shared radio channels
US7027400B2 (en) 2001-06-26 2006-04-11 Flarion Technologies, Inc. Messages and control methods for controlling resource allocation and flow admission control in a mobile communications system
US7027420B2 (en) 2001-07-24 2006-04-11 Nokia Mobile Phones Ltd. Method for determining whether to perform link adaptation in WCDMA communications
DE60104113T2 (en) 2001-08-22 2004-10-28 Matsushita Electric Industrial Co., Ltd., Kadoma Transmission method and transmission device with multi-channel ARQ
US20030039226A1 (en) 2001-08-24 2003-02-27 Kwak Joseph A. Physical layer automatic repeat request (ARQ)
KR100571802B1 (en) 2001-09-03 2006-04-17 삼성전자주식회사 Mobile communication system and method for raising communication efficiency
JP2005509381A (en) 2001-11-06 2005-04-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィKoninklijke Philips Electronics N.V. Wireless communication apparatus that performs header compression
US7003269B2 (en) 2002-02-20 2006-02-21 Qualcomm Incorporated Method and apparatus for a dedicated physical channel in a wireless communication system
US7054643B2 (en) 2002-02-20 2006-05-30 Nokia Corporation System for rate control of multicast data delivery in a wireless network
US7197276B2 (en) 2002-03-15 2007-03-27 Broadcom Corporation Downstream adaptive modulation in broadband communications systems
JP3561510B2 (en) 2002-03-22 2004-09-02 松下電器産業株式会社 The base station apparatus and packet transmission method
US7142810B2 (en) 2002-04-03 2006-11-28 General Motors Corporation Method of communicating with a quiescent vehicle
US7221945B2 (en) 2002-05-03 2007-05-22 Leapstone Systems, Inc. System and method for establishing and controlling access to network resources
EP2846592B1 (en) 2002-05-09 2016-06-08 Microsoft Technology Licensing, LLC HSDPA CQI, ACK, NACK power offset known in node B and in SRNC
US6769086B2 (en) 2002-07-22 2004-07-27 Motorola, Inc. Apparatus and methods for a coding scheme selection
US6957157B2 (en) 2002-11-12 2005-10-18 Flow Metrix, Inc. Tracking vibrations in a pipeline network
US20040100911A1 (en) 2002-11-25 2004-05-27 Raymond Kwan Method for link adaptation
KR100495331B1 (en) 2002-12-10 2005-06-14 한국전자통신연구원 A Terminal Equipment and A Base Station in High Speed Mobile System, A Slot Assignment and A Starting Slot Searching Method in High Speed Mobile System
US7693117B2 (en) 2002-12-16 2010-04-06 Avaya Inc. Power-saving mechanism for periodic traffic streams in wireless local-area networks
US7340163B2 (en) 2002-12-16 2008-03-04 Alcatel Lucent Signaling protocol and architecture for protection rings
US7596366B2 (en) * 2002-12-31 2009-09-29 Temic Automotive Of North America, Inc. System and method for controlling the power in a wireless client device
US7340615B2 (en) 2003-01-31 2008-03-04 Microsoft Corporation Method and apparatus for managing power in network interface modules
US20040198411A1 (en) 2003-03-07 2004-10-07 Steven D. Cheng Antenna extension control for a mobile communications device
US7400889B2 (en) 2003-04-01 2008-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Scalable quality broadcast service in a mobile wireless communication network
US7734805B2 (en) 2003-04-15 2010-06-08 Alcatel-Lucent Usa Inc. Method for scheduling transmissions in communication systems
US7412265B2 (en) 2003-06-12 2008-08-12 Industrial Technology Research Institute Method and system for power-saving in a wireless local area network
JP3746280B2 (en) 2003-06-27 2006-02-15 株式会社東芝 COMMUNICATION METHOD, COMMUNICATION SYSTEM AND COMMUNICATION device
US7245946B2 (en) 2003-07-07 2007-07-17 Texas Instruments Incorporated Optimal power saving scheduler for 802.11e APSD
KR101109924B1 (en) 2003-08-20 2012-03-02 파나소닉 주식회사 Allocation method in a wireless communication apparatus and subcarrier
FI20031200A0 (en) 2003-08-26 2003-08-26 Nokia Corp The method and base station for controlling a transmission timing of the packet matching and HSDPA radio system
US7978637B2 (en) 2003-08-26 2011-07-12 Avaya Inc. Power-saving mechanisms for 802.11 clients
WO2005022772A1 (en) 2003-08-29 2005-03-10 Samsung Electronics Co., Ltd. Apparatus and method for controlling operational states of medium access control layer in a broadband wireless access communication system
KR20050029254A (en) * 2003-09-20 2005-03-24 삼성전자주식회사 Apparatus and method for transmitting wakeup channel for state transition in broadband wirelesse communication system
KR20050029112A (en) 2003-09-20 2005-03-24 삼성전자주식회사 Method for uplink bandwidth request and allocation based on quality of service class in a broadband wireless access communication system
US7164890B2 (en) 2003-11-21 2007-01-16 Telefonaktiebologet Lm Ericsson (Publ) Link adaptation for point-to-multipoint channel
CN1625137A (en) 2003-12-05 2005-06-08 国际商业机器公司 Method and device for adapting transmission parameters in a transmitting node of the current link quality of a data communication channel
US6917598B1 (en) 2003-12-19 2005-07-12 Motorola, Inc. Unscheduled power save delivery method in a wireless local area network for real time communication
US6973052B2 (en) * 2003-12-19 2005-12-06 Motorola, Inc. Hybrid power save delivery method in a wireless local area network for real time communication
US7197341B2 (en) 2003-12-22 2007-03-27 Interdigital Technology Corporation Precise sleep timer using a low-cost and low-accuracy clock
KR100608844B1 (en) 2004-01-09 2006-08-08 엘지전자 주식회사 RADIO COMMUNICATION SYSTEM PROVIDING VoIP SERVICE
KR100595644B1 (en) 2004-01-09 2006-07-03 엘지전자 주식회사 Method for receiving notification indicator for point-to-multipoint service in mobile communication system
CN102594501B (en) 2004-02-07 2014-11-26 桥扬科技有限公司 Methods for multi-carrier communication systems with automatic repeat request (ARQ)
US8521139B2 (en) 2004-02-11 2013-08-27 Qualcomm Incorporated Transmission of notifications for broadcast and multicast services
FI20040232A0 (en) 2004-02-13 2004-02-13 Nokia Corp A method for controlling data transmission, the radio system, the base station and the PCU
US20050180325A1 (en) 2004-02-13 2005-08-18 Nokia Corporation Method of controlling data transmission, radio system, packet control unit, and remote network element
US7386030B2 (en) 2004-02-17 2008-06-10 Texas Instruments Incorporated Automatic threshold selection method for improving the detection of a wireless signal
US7433329B2 (en) 2004-04-07 2008-10-07 Cisco Technology, Inc. Aggregation scheduler
US7424007B2 (en) 2004-05-12 2008-09-09 Cisco Technology, Inc. Power-save method for 802.11 multicast paging applications
JP4827839B2 (en) 2004-06-21 2011-11-30 ノキア コーポレイション Recovery method of lost signaling connection in HSDPA / f-dpch
JP4689671B2 (en) 2004-06-22 2011-05-25 株式会社エヌ・ティ・ティ・ドコモ Packet communication method and system for a power mode recognition
GB2419786C (en) 2004-10-27 2009-10-07 Toshiba Res Europ Ltd Multiple list link adaption
US7969959B2 (en) 2004-12-16 2011-06-28 Critical Response Systems, Inc. Method and apparatus for efficient and deterministic group alerting
US7505751B1 (en) 2005-02-09 2009-03-17 Autocell Laboratories, Inc. Wireless mesh architecture
WO2006114710A3 (en) 2005-02-28 2007-01-11 Nokia Corp Discontinuous transmission/reception in a communications system
US8660561B2 (en) 2005-03-30 2014-02-25 Nokia Corporation MBMS feedback and neighboring cell measurement reporting
US20060252449A1 (en) * 2005-04-26 2006-11-09 Sridhar Ramesh Methods and apparatus to provide adaptive power save delivery modes in wireless local area networks (LANs)
CN101167384A (en) 2005-04-29 2008-04-23 艾利森电话股份有限公司 Method, mobile station and base station system for transmitting data packet in packet data communication system
GB2429871A (en) 2005-06-30 2007-03-07 Nokia Corp Method of implementing unscheduled automatic power save delivery (APSD) between a terminal and an access point
US7869417B2 (en) 2005-07-21 2011-01-11 Qualcomm Incorporated Multiplexing and feedback support for wireless communication systems
US8094595B2 (en) 2005-08-26 2012-01-10 Qualcomm Incorporated Method and apparatus for packet communications in wireless systems
DE102005040916A1 (en) * 2005-08-30 2007-03-08 Robert Bosch Gmbh Memory device and operating method thereof
US7733891B2 (en) 2005-09-12 2010-06-08 Zeugma Systems Inc. Methods and apparatus to support dynamic allocation of traffic management resources in a network element
WO2007044316A1 (en) 2005-10-06 2007-04-19 Interdigital Technology Corporation Method and apparatus for controlling uplink transmission power for ofdma based evolved utra
KR100615139B1 (en) 2005-10-18 2006-08-22 삼성전자주식회사 Method and apparatus for allocating transmission period in wireless telecommunication system and therefor system
JP2009520389A (en) 2005-11-30 2009-05-21 ノキア コーポレイション Apparatus for providing retransmission using multiple arq mechanisms, methods and computer program
KR101194072B1 (en) 2006-02-15 2012-10-24 삼성전자주식회사 Apparatus and Method for optimized acquisition of offline Paging Indicator in WCDMA system
KR101161918B1 (en) 2006-03-24 2012-07-03 인터디지탈 테크날러지 코포레이션 Method and apparatus for maintaining uplink synchronization and reducing battery power consumption
ES2324736T3 (en) * 2006-03-28 2009-08-13 Samsung Electronics Co., Ltd. Method and apparatus for the discontinuous reception of a terminal connected a mobile communication system.
US7830977B2 (en) 2006-05-01 2010-11-09 Intel Corporation Providing CQI feedback with common code rate to a transmitter station
US7864724B2 (en) 2006-05-05 2011-01-04 Nokia Corporation Enhanced UE out-of-sync behavior with gated uplink DPCCH or gated downlink F-DPCH or DPCCH transmission
US7848287B2 (en) 2006-05-16 2010-12-07 Telefonaktiebolaget Lm Ericsson Bi-directional RLC non-persistent mode for low delay services
US7916775B2 (en) 2006-06-16 2011-03-29 Lg Electronics Inc. Encoding uplink acknowledgments to downlink transmissions
WO2007144956A1 (en) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation Mobile communication system and mobile terminal
CA2656421C (en) 2006-06-19 2014-01-28 Ntt Docomo, Inc. Base station, mobile station, synchronization control method, and ic chip
US7760676B2 (en) * 2006-06-20 2010-07-20 Intel Corporation Adaptive DRX cycle length based on available battery power
US8121634B2 (en) * 2006-06-26 2012-02-21 Panasonic Corporation Radio communication terminal device, radio communication base station device, and radio communication method
KR101298265B1 (en) 2006-07-07 2013-08-22 삼성전자주식회사 Method for receiving and sending packets
CA2669560A1 (en) 2006-08-21 2008-02-28 Interdigital Technology Corporation Resource allocation, scheduling, and signaling for grouping real time services
US8848618B2 (en) 2006-08-22 2014-09-30 Qualcomm Incorporated Semi-persistent scheduling for traffic spurts in wireless communication
KR101347404B1 (en) 2006-10-05 2014-01-02 엘지전자 주식회사 Method for transmitting voice packet in wireless communication system
KR20140136528A (en) * 2006-10-27 2014-11-28 인터디지탈 테크날러지 코포레이션 Method and apparatus for enhancing discontinuous reception in wireless systems
US7813296B2 (en) 2006-12-27 2010-10-12 Telefonaktiebolaget L M Ericsson (Publ) Adapting transmission and reception time in packet based cellular systems
US7957360B2 (en) 2007-01-09 2011-06-07 Motorola Mobility, Inc. Method and system for the support of a long DRX in an LTE—active state in a wireless network
US8238260B2 (en) * 2007-01-30 2012-08-07 Interdigital Technology Corporation Implicit DRX cycle length adjustment control in LTE—active mode
US9918277B2 (en) 2007-02-06 2018-03-13 Nokia Technologies Oy Method and apparatus for providing efficient discontinuous communication
US8005107B2 (en) 2007-02-06 2011-08-23 Research In Motion Limited Method and system for robust MAC signaling
US8830914B2 (en) 2007-02-09 2014-09-09 Nokia Corporation Method and apparatus for acknowledgement signaling
US8072963B2 (en) 2007-02-14 2011-12-06 Research In Motion Limited Method and system for recovering from DRX timing de-synchronization in LTE—ACTIVE
US8077796B2 (en) 2007-03-05 2011-12-13 Intel Corporation Methods and arrangements for communicating in a multiple input multiple output system
US20080225772A1 (en) 2007-03-12 2008-09-18 Shugong Xu Explicit layer two signaling for discontinuous reception
KR20080084533A (en) 2007-03-16 2008-09-19 엘지전자 주식회사 A method of data communication in mobile communication system
US20080232310A1 (en) * 2007-03-19 2008-09-25 Shugong Xu Flexible user equipment-specified discontinuous reception
EP2127441A2 (en) * 2007-03-23 2009-12-02 Nokia Corporation Apparatus, method and computer program product providing semi-dynamic persistent allocation
US7996744B2 (en) 2007-04-30 2011-08-09 Nokia Corporation Method and apparatus for providing a data retransmission scheme
US20080268863A1 (en) 2007-04-30 2008-10-30 Klaus Pedersen Method and Apparatus for Reporting Channel Quality
US8369299B2 (en) 2007-05-07 2013-02-05 Qualcomm Incorporated Method and apparatus for multiplexing CDM pilot and FDM data
US8691129B2 (en) * 2007-05-08 2014-04-08 Nanotek Instruments, Inc. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
US8131310B2 (en) 2007-05-18 2012-03-06 Research In Motion Limited Method and system for discontinuous reception de-synchronization detection
US7756506B2 (en) 2007-05-18 2010-07-13 Research In Motion Limited Method and system for discontinuous reception de-synchronization detection and recovery
US20080311946A1 (en) 2007-06-13 2008-12-18 Motorola, Inc. System and method for dynamically providing control plane capacity
US8031656B2 (en) * 2007-06-14 2011-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Semi-persistent resource allocation method for uplink transmission in wireless packet data systems
US20080313300A1 (en) * 2007-06-18 2008-12-18 Alanara Seppo M Method and apparatus for providing system information
US8412209B2 (en) 2007-06-18 2013-04-02 Motorola Mobility Llc Use of the physical uplink control channel in a 3rd generation partnership project communication system
EP2156680A2 (en) 2007-06-19 2010-02-24 Nokia Corporation Apparatus, method and computer program product providing idle mode discontinuous reception
KR20090004725A (en) 2007-07-06 2009-01-12 엘지전자 주식회사 Broadcast receiver and method of processing data of broadcast receiver
CN105072668A (en) 2007-08-03 2015-11-18 交互数字专利控股公司 Information processing method realized by WTRU, WTRU and evolution type node B
WO2009022860A1 (en) * 2007-08-13 2009-02-19 Lg Electronics Inc. Method for performing handover in wireless communication system
US7899003B2 (en) 2007-08-13 2011-03-01 Sharp Laboratories Of America, Inc. Method and system for control of discontinuous reception (DRX) by a mobile device in a wireless communications network supporting voice-over-internet-protocol (VoIP)
EP2028781A1 (en) * 2007-08-20 2009-02-25 Research In Motion Limited System and method for DRX control and NACK/ACK
US8320271B2 (en) * 2007-09-03 2012-11-27 Telefonaktiebolaget Lm Ericsson (Publ) Discontinuous transmission and reception
KR101455982B1 (en) 2007-09-13 2014-11-03 엘지전자 주식회사 Methods for data communication in mobile communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1317156A1 (en) * 2001-11-28 2003-06-04 Alcatel Alsthom Compagnie Generale D'electricite Method of operating a mobile station in an energy saving mode
US20030185162A1 (en) * 2002-03-28 2003-10-02 General Motors Corporation Method and system for dynamically determining sleep cycle values in a quiescent mobile vehicle
WO2007073118A1 (en) * 2005-12-22 2007-06-28 Electronics And Telecommunications Research Institute Method and apparatus for discontinuous transmission/reception operation for reducing power consumption in cellular system

Also Published As

Publication number Publication date Type
ES2558744T3 (en) 2016-02-08 grant
EP2413637B1 (en) 2013-01-23 grant
EP2198642A4 (en) 2010-10-27 application
ES2404684T3 (en) 2013-05-28 grant
US8897192B2 (en) 2014-11-25 grant
US8711745B2 (en) 2014-04-29 grant
WO2009033253A1 (en) 2009-03-19 application
EP2413638A1 (en) 2012-02-01 application
US9030986B2 (en) 2015-05-12 grant
EP2413638B1 (en) 2015-10-07 grant
US20140198665A1 (en) 2014-07-17 application
US20120051226A1 (en) 2012-03-01 application
US20150078238A1 (en) 2015-03-19 application
ES2378267T3 (en) 2012-04-10 grant
US20090073907A1 (en) 2009-03-19 application
EP2413637A1 (en) 2012-02-01 application
US8811250B2 (en) 2014-08-19 grant
EP2198642A1 (en) 2010-06-23 application
EP2198642B1 (en) 2011-11-30 grant

Similar Documents

Publication Publication Date Title
US20080186893A1 (en) Method and apparatus for providing efficient discontinuous communication
US20150271846A1 (en) Scheduling wireless device-to-device communications
US7995661B2 (en) Systems and methods for conserving the power supply of a communications device
US8149749B2 (en) Mobile communications system and mobile terminal
US20070161364A1 (en) Method and apparatus for scheduling in a wireless communication network
US20090285141A1 (en) Method and system for the control of discontinuous reception in a wireless network
US20130003629A1 (en) Paging method and apparatus for communication of m2m/mtc device operating in high power saving reception mode in a mobile communication system, and system thereof
US20110294491A1 (en) Method and System for Discontinuous Reception Operation for Long Term Evolution Advanced Carrier Aggregation
US20080198795A1 (en) Method and apparatus for processing uplink data by drx-mode terminal in mobile telecommunication system
US20080310389A1 (en) Method and System for Dynamic ACK/NACK Repetition for Robust Downlink MAC PDU Transmission in LTE
CN102075993A (en) Method and equipment for maintaining timer in carrier aggregation system
WO2007148198A2 (en) Method and system for providing interim discontinuous reception/transmission
US20100067457A1 (en) Method and apparatus for signaling the release of a persistent resource
US20110103327A1 (en) Method of transmitting semi-persistent scheduling data in multiple component carrier system
US20110032924A1 (en) Apparatuses, Systems, and Methods for Managing Operation Status of Wireless Transmissions and Receptions
US20090046639A1 (en) System and Method for Handling Large IP Packets During VoIP Session
US20140254452A1 (en) Active bandwidth indicator for power-saving ues
US20120257559A1 (en) Battery consumption control method of user equipment in mobile communication system
US20090052367A1 (en) System and Method for Retransmissions in a Discontinuous Reception Configured System
US20110103315A1 (en) Coordinated Signaling of Scheduling Information for Uplink and Downlink Communications
US20110199984A1 (en) Mobile communication system and mobile station
CN101848487A (en) Method and communication apparatus for power headroom reporting
WO2010025774A1 (en) Use of off period of drx for direct peer to peer communication in a cell
US20080310356A1 (en) System and Method for Large Packet Delivery During Semi-Persistently Allocated Session
US20090073907A1 (en) System and Method for Discontinuous Reception Control Start Time

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130523

AC Divisional application (art. 76) of:

Ref document number: 2198642

Country of ref document: EP

Kind code of ref document: P

Ref document number: 2413638

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states:

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Transfer of rights of an ep published application

Owner name: BLACKBERRY LIMITED

RAP1 Transfer of rights of an ep published application

Owner name: BLACKBERRY LIMITED

18D Deemed to be withdrawn

Effective date: 20140301