EP2626149B1 - Device for rolling metal sheet material and method for rolling metal sheet material - Google Patents

Device for rolling metal sheet material and method for rolling metal sheet material Download PDF

Info

Publication number
EP2626149B1
EP2626149B1 EP20120761152 EP12761152A EP2626149B1 EP 2626149 B1 EP2626149 B1 EP 2626149B1 EP 20120761152 EP20120761152 EP 20120761152 EP 12761152 A EP12761152 A EP 12761152A EP 2626149 B1 EP2626149 B1 EP 2626149B1
Authority
EP
European Patent Office
Prior art keywords
roll
rolling
force
work roll
bending force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20120761152
Other languages
German (de)
French (fr)
Other versions
EP2626149A4 (en
EP2626149A1 (en
Inventor
Taisuke Iwaki
Yasuhiro Nishiyama
Kunihiko Wakatsuki
Tsuyoshi Higo
Shigeru Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of EP2626149A1 publication Critical patent/EP2626149A1/en
Publication of EP2626149A4 publication Critical patent/EP2626149A4/en
Application granted granted Critical
Publication of EP2626149B1 publication Critical patent/EP2626149B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B29/00Counter-pressure devices acting on rolls to inhibit deflection of same under load, e.g. backing rolls ; Roll bending devices, e.g. hydraulic actuators acting on roll shaft ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/20Adjusting or positioning rolls by moving rolls perpendicularly to roll axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • B21B2013/025Quarto, four-high stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/18Adjusting or positioning rolls by moving rolls axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/20Adjusting or positioning rolls by moving rolls perpendicularly to roll axis
    • B21B31/203Balancing rolls

Definitions

  • the present invention relates to a device for rolling a metal sheet material and a method for rolling a metal sheet material.
  • a device in accordance with the preamble of claim 1 is e.g. known from JP-H 0452014 .
  • the present invention relates to a rolling device suitable for thick-plate rolling devices, or roughing rolling devices or finishing rolling devices in a thin-sheet hot rolling device, and capable of increasing the maximum gap between the top and the bottom work rolls and easily applying a strong roll bending force, whereby it is possible to achieve high-response and strong plate, strip-crown and shape controlling function, and a rolling method using this rolling device.
  • rolling devices such as rolling devices 1A and 1B illustrated in FIG. 12 and FIG. 13 are known, in which back up roll chocks cradle and hold work roll chocks to obtain increased roller gap.
  • an increase-bending device is incorporated in an arm portion extending from the back up roll chock for holding the work roll chock, and hence, it is difficult to employ a large-capacity hydraulic cylinder.
  • a rolling device disclosed in Patent Document 1 is a four-high rolling device having a structure type illustrated in FIG. 16 . More specifically, a top work roll chock 3-1 is held by an arm portion connected with a top back up roll chock 4-1. Top increase-bending devices 6-1 and 6-2 that each work to a top work roll 1-1 are assembled to the arm portion so as to achieve a large roller gap.
  • a rolling device such as a rolling device 1C illustrated in FIG. 14 in which the increase-bending devices 6-1 and 6-2 are incorporated in the bottom work roll chock 3-2 to achieve a large roller gap.
  • Patent Document 2 discloses a rolling device in which the increase-bending device of the work roll is incorporated in the work roll chock.
  • Patent Document 3 discloses a rolling device with a roll-cross system.
  • the increase-bending device is incorporated in the work roll chock.
  • This type of rolling device has the following problems.
  • a rolling device having a configuration in which an increase-bending device is provided to a project block to obtain a bending device having high responsiveness.
  • Patent Document 4 discloses a rolling device having a work-roll shift function.
  • this rolling device as illustrated in FIG. 15 , increase-bending devices 6-1 to 6-4 are incorporated in project blocks 5-1 and 5-2 formed integrally with a housing 9.
  • bottom increase-bending devices 6-3 and 6-4 working to a bottom work roll 1-2 are incorporated in a project block internally protruding from the housing 9.
  • the increase-bending device represents a hydraulic device that applies a force acting on the work roll chock and in the direction in which the roller gap increases, and is a generic name of a device including a hydraulic cylinder serving as an actuator of the hydraulic device and a piston rod of the hydraulic device.
  • the increase-bending device represents the hydraulic cylinder serving as the actuator of the increase-bending device and the piston rod of the hydraulic cylinder unless otherwise specified.
  • a force applied to the work roll by the increase-bending device is referred to as the increase-bending force.
  • a hydraulic device that applies, to the work roll chock, a force acting in a direction in which the roller gap decreases is referred to as a decrease-bending device.
  • a force applied to the work roll by the decrease-bending device is referred to as the decrease-bending force.
  • the decrease-bending device is a generic name of the device including the hydraulic cylinder serving as the actuator of the device and the piston rod of the hydraulic cylinder.
  • the decrease-bending device represents the hydraulic cylinder serving as the actuator of the decrease-bending device and the piston rod of the decrease-bending device, unless otherwise specified.
  • the rolling device for manufacturing the thick steel sheet does not have the decrease-bending device (see Patent Documents 1 to 4).
  • Patent Documents referred to in the description are listed as below.
  • a problem to be solved by the present invention is to provide a rolling device capable of increasing the maximum gap between the top and the bottom work rolls and applying a strong roll bending force, and a rolling method using this rolling device.
  • an object of the present invention is to provide a rolling device including a decrease-bending device as with a thin sheet rolling device and capable of: dealing with a steel sheet having a wide range of thickness; increasing the roller gap between the top and the bottom work rolls; easily applying a strong roll bending force; and overcoming the above-described drawbacks that the conventional rolling device has, and a rolling method using this rolling device.
  • the maximum gap between the top and the bottom work rolls can be increased, and even in the case where the decrease-bending device having low responsiveness is provided, this is compensated for by the increase-bending device having high responsiveness and provided to the pair of first project blocks, whereby it is possible to obtain a high-response and strong plate, strip-crown and shape controlling function.
  • the increase-bending force and the decrease-bending force are applied to the top work roll to achieve the strong plate, strip-crown and shape controlling function, and further, a multi-stage hydraulic cylinder is employed for the top-work-roll decrease-bending device to achieve generation of the roll balance force, whereby it is possible to largely increase the roll gap.
  • a multi-stage hydraulic cylinder is employed for the top-work-roll decrease-bending device to achieve generation of the roll balance force, whereby it is possible to largely increase the roll gap.
  • the force in the rolling direction acting on the top work roll chock is always borne by the housing window, whereby it is possible to stably support the top work roll chock.
  • top and the bottom increase-bending devices can be incorporated in the pair of first project blocks. This makes it possible to achieve the strong bending device having the large capacity and large stroke.
  • the increase-bending device is incorporated in the pair of first project blocks, which makes it possible to fix the hydraulic pipes and employ servo valves. With this configuration, it is possible to control the increase-bending force in a high response manner.
  • FIG. 1 is a side view illustrating an example of a structure of a rolling device 1 according to an embodiment of the present invention.
  • the rolling device 1 according to an embodiment of the present invention includes a top work roll chock 3-1, a bottom work roll chock 3-2, a top back up roll chock 4-1, a bottom back up roll chock 4-2, and a housing 9 containing these roll chocks.
  • the housing 9 has a pair of first project blocks 5-1 and 5-2 (in other words, a first project block provided on the side where a metal sheet material is inputted and a first project block provided on the output side) formed integrally with the housing, thereby forming a housing window 12.
  • the top work roll chock 3-1 supports a top work roll 1-1 for rolling a metal sheet material
  • the bottom work roll chock 3-2 supports a bottom work roll 1-2 for rolling the metal sheet material.
  • top back up roll chock 4-1 supports a top back up roll 2-1 disposed above the top work roll 1-1
  • the bottom back up roll chock 4-2 supports a bottom back up roll disposed below the bottom work roll 1-2.
  • the pair of the first project blocks 5-1 and 5-2 are formed integrally so as to protrude inwardly from the housing 9.
  • the pair of the first project blocks 5-1 and 5-2 are provided with top increase-bending devices 6-1 and 6-2 that each apply an increase-bending force through the top work roll chock 3-1 to the top work roll 1-1, and are provided with bottom increase-bending devices 6-3 and 6-4 that each apply an increase-bending force through the bottom work roll chock 3-2 to the bottom work roll 1-2.
  • the top increase-bending devices 6-1 and 6-2 are each formed by a first hydraulic cylinder serving as an actuator of the device 6-1, 6-2 and a piston rod (first piston rod) of the first hydraulic cylinder.
  • the first hydraulic cylinder is incorporated in the pair of the first project blocks 5-1 and 5-2, and is provided such that an end portion of the first piston rod protrudes from the top surface of each of the pair of the first project block 5-1, 5-2 and comes into contact with the top work roll chock 3-1.
  • the bottom increase-bending devices 6-3 and 6-4 are each formed by a second hydraulic cylinder serving as an actuator of the device 6-3, 6-4 and a piston rod (second piston rod) of the second hydraulic cylinder.
  • the second hydraulic cylinder is incorporated in the pair of the first project blocks 5-1 and 5-2, and is provided such that an end portion of the second piston rod protrudes from the bottom surface of each of the pair of the first project blocks 5-1 and 5-2 and comes into contact with the bottom work roll chock 3-2.
  • the rolling device 1 includes top decrease-bending devices 7-1 and 7-2 provided in the top back up roll chock 4-1 and having a function of applying the decrease-bending force through the top work roll chock 3-1 to the top work roll 1-1 and a function of causing a pulling-up force (roll balance force) for bringing the top work roll 1-1 into contact with the top back up roll 2-1.
  • the top decrease-bending devices 7-1 and 7-2 having the two functions are formed by a third hydraulic cylinder serving as an actuator of the device 7-1, 7-2 and a piston rod (third piston rod) of the third hydraulic cylinder.
  • the third hydraulic cylinder is provided in the top back up roll chock 4-1.
  • the third piston rod includes a top end shaped so as to engage with the top work roll chock 3-1.
  • the rolling device 1 includes bottom decrease-bending devices 7-3 and 7-4 that each apply the decrease-bending force through the bottom work roll chock 3-2 to the bottom work roll 1-2.
  • the bottom decrease-bending devices 7-3 and 7-4 are each formed by a fourth hydraulic cylinder serving as an actuator of the device 7-3, 7-4 and a piston rod (fourth piston rod) of the fourth hydraulic cylinder.
  • the fourth hydraulic cylinder is provided to the bottom back up roll chock 4-2, or is incorporated in a pair of second project blocks 5-3 and 5-4, which will be described later.
  • the fourth piston rod is provided such that a top end thereof is brought into contact with the bottom work roll chock 3-2.
  • a rolling device 1E illustrated in FIG. 16 improves the above-described points, and is frequently found in thick-sheet finishing rolling devices.
  • the top back up roll chock 4-1 includes an arm that cradles the top work roll chock 3-1. With this type of rolling device, the top back up roll chock 4-1 cradles the top work roll chock 3-1, and hence, the top work roll 1-1 ascends as the top back up roll 2-1 elevates, which makes it possible to increase the roller gap.
  • the rolling device having this structure does not have sufficient space for the increase-bending device and the decrease-bending device used for the top work roll 1-1.
  • the rolling device having this structure does not have sufficient space for the increase-bending device and the decrease-bending device used for the top work roll 1-1.
  • the small-capacity increase-bending devices 6-1 and 6-2 are provided between the top back up roll chock 4-1 and the top work roll chock 3-1, and no decrease-bending device is provided for the top work roll 1-1. This results in a drawback of limited shape-controlling ability.
  • the force in the rolling direction acting on the top work roll 1-1 is received by the contact surface on the downstream side in the rolling direction between the top back up roll chock 4-1 and the top work roll chock 3-1. Further, this force is finally received by the contact surface between the outer surface of the arm on the downstream side in the rolling direction of the top back up roll chock 4-1 and the inner side of the housing window 12.
  • the contact surface on the downstream side in the rolling direction has limited space, and it is difficult to install a load cell that can sufficiently support the top work roll chock 3-1. Further, a wobble remains on the contact surface between the top back up roll chock 4-1 and the housing window 12.
  • a stabilizer or load cell is required for each back up roll chock, and arrangement of wires necessary for activating these units significantly deteriorates workability.
  • the rolling device 1 includes the pair of the first project blocks 5-1 and 5-2 protruding inwardly from the housing 9 and disposed at positions shifted downward with respect to a pass line, as illustrated in FIG. 1 . More specifically, unlike the conventional configuration illustrated in FIG. 15 , the pair of the first project blocks 5-1 and 5-2 are disposed at positions that are not vertically symmetric with respect to the pass line.
  • the top work roll chock 3-1 is shaped such that a base portion adjacent to the portion located between the pair of the first project blocks 5-1 and 5-2, in other words, the top side portion corresponding to the width of the housing window 12 (housing window width) is set higher instead of increasing the height of the portion located between the pair of the first project blocks 5-1 and 5-2.
  • the force in the rolling direction such as a component of the offset force acting on the top work roll 1-1, in other words, the force in the rolling direction acting on the body portion of the top work roll 1-1 from the metal sheet (plate) material 10 or top back up roll 2-1 is borne by the contact surface between the top side portion of the top work roll chock 3-1 corresponding to the housing window width and the housing window 12 located above the pair of the first project blocks 5-1 and 5-2.
  • the area of the surface on which the top work roll chock 3-1 is brought into contact with the housing window 12 remains unchanged even if a drafting device 11 of the rolling device 1 is operated to increase the roller gap.
  • the position of the top work roll chock 3-1 can be stably maintained regardless of the amount of the roller gap.
  • the rolling device 1 includes the pair of the first project blocks 5-1 and 5-2 inwardly protruding from the housing 9 and including the top increase-bending devices 6-1 and 6-2 that apply the increase-bending force to the top work roll 1-1, and the bottom increase-bending devices 6-3 and 6-4 that apply the increase-bending force to the bottom work roll 1-2.
  • This configuration eliminates the need for detaching the hydraulic pipes of the increase-bending device every time the work roll is exchanged, and allows using fixed pipes. This makes it possible to employ accurate servo valves, thereby obtaining a high-responsive increase-bending device.
  • top decrease-bending devices 7-1 and 7-2 are formed by the third hydraulic cylinder incorporated in the top back up roll chock 4-1 and the third piston rod of the third hydraulic cylinder.
  • the top end of the third piston rod of the third hydraulic cylinder is operated to move in the roll axis direction at the time of exchanging the roll so as to be able to be connected with the top work roll chock 3-1, thereby applying the roll balance force.
  • the roller gap can be increased regardless of the stroke of the increase-bending device, and it is possible to apply the strong decrease-bending force in the case where a plate, strip crown control is necessary for a steel plate with a thickness of approximately 100 mm or less.
  • connection portion shows merely one embodiment, and does not limit the specific structure of the present invention.
  • FIG. 2 is a plan view of the top work roll 1-1 and the top work roll chock 3-1, and in the drawing, the near side shows the drive side, while the far side shows the work side.
  • a groove 31 having a reversed T-shape in cross-section and engaged with the top end of the third piston rod of the third hydraulic cylinder constituting the top decrease-bending device 7-1, 7-2 as a second engagement portion.
  • the groove 31 opens on the drive side, and extends up to the vicinity of the center of the chock.
  • the work roll having both ends each set with the roll chock from the operation side is delivered through a rail or other tool to a predetermined position in the housing of the rolling device 1.
  • the piston rod of the hydraulic cylinder serving as the decrease-bending device is retracted in the top back up roll chock 4-1, so that this piston rod does not obstruct the delivery.
  • the groove 31 of the top work roll chock 3-1 is positioned immediately in front of an expanded portion (first engagement portion) of the third piston rod of the third hydraulic cylinder to be engaged with the groove 31.
  • the piston rod is descended to a predetermined position.
  • the inner surface of the groove 31 is kept in a position where it does not come into contact with the external surface of the third piston rod, and the expanded portion of the third piston rod is moved into the groove 31 from the groove opening portion on the drive side.
  • FIG. 3A is a diagram illustrating a state where the expanded portion formed at the top end of the third piston rod of the third hydraulic cylinder of the top decrease-bending device 7-1, 7-2 is engaged with the groove 31. More specifically, FIG. 3A illustrates a state where, with the pulling-up operation made by the third hydraulic cylinder, the third piston rod is pulled upward and is brought into contact with the top surface of the groove 31 of the top work roll chock 3-1, thereby applying a lifting force f RB .
  • the lifting force f RB acts as the roll balance force.
  • FIG. 3B is a diagram illustrating a state where the top decrease-bending force is applied in the case of controlling plate, strip crown and shapes in such a case as finishing rolling in the thin-sheet hot rolling.
  • the third piston rod extends downward to apply a pressing force f DC to the bottom surface of the groove 31 of the top work roll chock 3-1, thereby applying the decrease-bending force.
  • FIG. 3C is a diagram illustrating a non-contact state where the groove 31 is brought into engagement with the third piston rod at the time of exchanging rolls as described above, or this engagement is canceled.
  • the groove 31 is formed in the top work roll chock 3-1, and the expanded portion to be engaged with the groove 31 is formed in the top decrease-bending device 7-1, 7-2.
  • the present invention is not limited to this mode.
  • the force in the rolling direction applied to the body portion of the bottom work roll 1-2 is borne by the contact surface between the bottom work roll chock 3-2 and the project block (5-1 or 5-2) provided on the output side.
  • a portion of the bottom work roll chock 3-2 located between the pair of the first project blocks 5-1 and 5-2 is raised.
  • the roller gap is adjusted mainly by moving upward and downward the top work roll chock 3-1, the amount of travel of the bottom work roll chock 3-2 is small in the vertical direction. Thus, the positions of the bottom work roll 1-2 remain stable even if the roller gap is increased.
  • FIG. 4 is a plan sectional view illustrating an example of arrangement of the top and bottom increase-bending devices 6-1 to 6-4.
  • FIG. 4 is a sectional view at the height of the pass line of the pair of the first project blocks 5-1 and 5-2.
  • the top and bottom increase-bending devices 6-1 to 6-4 so as to be positionally shifted to each other on the plan sectional view of the pair of the first project blocks 5-1 and 5-2.
  • the top and bottom increase-bending devices 6-1 to 6-4 do not interfere with each other within the pair of the first project blocks 5-1 and 5-2.
  • first hydraulic cylinder and the second hydraulic cylinder which are incorporated in each of the first project blocks 5-1 and 5-2, do not interfere with each other. This makes it possible to increase the capacity of the first hydraulic cylinder and the second hydraulic cylinder, increase the stroke of each of the first piston rod and the second piston rod, and increase the amount of operation of the increase bending.
  • the bottom increase-bending devices 6-3 and 6-4 are formed by two second hydraulic cylinders located on the input side and the output side.
  • a similar effect can be obtained by using one second hydraulic cylinder for each of the bottom increase-bending devices 6-3 and 6-4 and arranging them at different positions in the axial direction of the bottom work roll 1-2 to prevent the second hydraulic cylinder from interfering with the first hydraulic cylinder.
  • FIG. 5 is a plan sectional view illustrating an example of arrangement of the top and bottom increase-bending devices 6-1 to 6-4.
  • FIG. 5 is a sectional view at the height of the pass line of the pair of the first project blocks 5-1 and 5-2.
  • the first hydraulic cylinder and the second hydraulic cylinder may be arranged so as to be positionally shifted in the rolling direction. With this arrangement, the first hydraulic cylinder and the second hydraulic cylinder do not interfere with each other.
  • FIG. 12 and FIG. 13 illustrate rolling devices 1A and 1B according to conventional arts, each of which has an increased roller gap.
  • these rolling devices 1A and 1B cannot apply a strong roll bending force. This is because these rolling devices have a structure in which the top increase-bending devices 6-1 and 6-2 are incorporated in the arm portion protruding downward from the top back up roll chock 4-1, which prevents the large-capacity and large-stroke top increase-bending devices 6-1 and 6-2 from being installed. Further, these rolling devices 1A and 1B have the arm portion extending from the top back up roll chock 4-1, and hence, the top decrease-bending devices 7-1 and 7-2 are required to be installed at the space shifted to the axial center of the roll. Thus, interference with the bearing for the top back up roll 2-1 occurs, which makes it impossible to dispose the large-capacity and large-stroke top decrease-bending devices 7-1 and 7-2.
  • the large-capacity and large-stroke top increase-bending devices 6-1 and 6-2 can be disposed in the pair of the first project blocks 5-1 and 5-2 protruding inwardly from the housing 9 of the rolling device 1.
  • the top back up roll chock 4-1 does not have the arm portion. This allows the large-capacity and large-stroke top decrease-bending devices 7-1 and 7-2 to be disposed at positions of the top back up roll chock 4-1 that do not interfere with the bearing for the top back up roll 2-1, whereby it is possible to apply the large decrease-bending force to the top work roll 1-1.
  • the rolling device 1 of this embodiment having a structure in which, together with the positions of the pair of the first project blocks 5-1 and 5-2, the force in the rolling direction applied to the body portion of the top work roll 1-1 is received by the contact surface between the top work roll chock 3-1 and the housing window 12, it is possible to increase the roller gap and apply the strong roll bending force.
  • FIG. 6 is a side view illustrating a rolling device 1' according to a modification example of this embodiment.
  • the rolling device 1' illustrated in FIG. 6 has the same top roll systems as those illustrated in FIG. 1 and different bottom roll systems from those illustrated in FIG. 1 .
  • the bottom back up roll chock 4-2 has the bottom decrease-bending devices 7-3 and 7-4 that apply the decrease-bending force to the bottom work roll 1-2.
  • the bottom decrease-bending devices 7-3 and 7-4 are disposed to a pair of second project blocks 5-3 and 5-4 located below the pair of the first project blocks 5-1 and 5-2.
  • the hydraulic pipes of the decrease-bending device are required to be detached when the bottom back up roll 2-2 is exchanged. In other words, it is highly likely that small foreign substances enter the hydraulic pipes at the time of detachment.
  • the roll bending device has reduced responsiveness as compared with the case where the fixed pipes or servo valves are employed.
  • the rolling device 1' illustrated in FIG. 6 it is possible to overcome the above-described problem occurring at the time of exchanging the bottom back up roll 2-2.
  • servo valves for high-response hydraulic control can be used for the hydraulic pipes of the bottom decrease-bending devices 7-3 and 7-4 provided to the pair of the second project blocks 5-3 and 5-4, whereby it is possible to eliminate the need for using the flexible pipes.
  • the bottom back up roll 2-2 can be easily exchanged, and the high-response roll bending device can be obtained.
  • top decrease-bending devices 7-1 and 7-2 are provided to the top back up roll chock 4-1 as illustrated in FIG. 1 and FIG. 6 , the hydraulic pipes of the top decrease-bending devices 7-1 and 7-2 are required to be detached at the time of exchanging the top back up roll 2-1, and hence, it is highly likely that small foreign substances enter the hydraulic pipes at the time of exchange.
  • the responsiveness of the roll bending device reduces as compared with the case where the fixed pipes or servo valves are used.
  • the decrease-bending force cannot be applied at idle time when the rolling load is not applied.
  • it is necessary to rapidly complete setting the decrease-bending force by the start of rolling from the idle state in which the roll balance force is applied, and rapidly turn back into the roll balance state at the time of completion of the rolling.
  • the rolling method according to this embodiment solves the above-described problems.
  • the rolling method uses the rolling device 1, 1' according to this embodiment including the top back up roll chock 4-1 provided with the top decrease-bending devices 7-1 and 7-2, and solves the above-described problems that may occur in the rolling device 1, 1'.
  • the responsiveness of the decrease-bending device may deteriorate.
  • the rolling device 1, 1' has a structure in which the pair of the first project blocks 5-1 and 5-2 protruding inwardly from the housing 9 includes the top increase-bending devices 6-1 and 6-2, thereby obtaining the top increase-bending device having the large capacity and large stroke.
  • the rolling method according to this embodiment uses the increase-bending device having high responsiveness for changing the roll bending force at the time of starting rolling and at the time of finishing rolling, in the case where the decrease-bending force is applied to the work roll to control the plate, strip crown and shapes, thereby compensating for the responsiveness of the decrease-bending device.
  • FIG. 7 is a diagram illustrating an example of an operation flow of the rolling method according to this embodiment. More specifically, FIG. 7 is a diagram illustrating an operation flow performed by the increase-bending device having the high responsiveness and an operation flow performed by the decrease-bending device having relatively low responsiveness as compared with the increase-bending device.
  • FIG. 8 illustrates a change in time series of the roll bending force to one roll material or other parameters in this rolling method.
  • FIG. 8 indicates, from top to bottom, a change in time series of rolling load, output from the increase-bending device, output from the decrease-bending device, and work-roll bending force serving as the resultant force of these forces.
  • a setting value F R of the work-roll bending force during rolling that corresponds to a roll material to be next rolled.
  • the F R is a negative value, in other words, is calculated as the decrease-bending force.
  • the increase-bending force force acting in the increase direction in which roll is opened
  • the decrease-bending force force acting in the decrease direction in which the roll is pressed
  • both the increase-bending force and the decrease-bending force are activated, so that a roll bending force on the increase side corresponding to a roll balance force F B acts as a resultant force on the work roll chock.
  • I B + D B acts as the roll balance force F B (>0), where I B (>0) is the output from the increase-bending device and D B ( ⁇ 0) is the output from the decrease-bending device.
  • the roll balance force F B is determined to be a force by which slippage does not occur between the work roll driven by an electric motor even in the idle time and the back up roll, which is a follower.
  • D B is set to be the minimum hydraulic pressure at which the actuator of the decrease-bending device does not detach from the work roll chock.
  • the increase-bending force is changed (decreased) while the decrease-bending force is kept constant so that the predetermined work-roll bending force F R during rolling acts as a resultant force on the work roll chock.
  • the output from the increase-bending device is changed from Is to I R .
  • the work-roll bending force as the resultant force is rapidly changed from the roll balance force F B (>0) to the roll bending force F R ( ⁇ 0) during rolling operation through the control performed by the increase-bending device having high responsiveness, while the output from the decrease-bending device having low responsiveness is kept unchanged from D S .
  • the time (b) of starting rolling represents a time when the rolling starts, and may be determined to be the time when the load detected, for example, with a load cell for measuring the rolling load of the rolling device 1, 1' exceeds 30% of the expected rolling load.
  • the metal sheet is rolled while the roll bending force during rolling is maintained.
  • the roll bending force corresponding to the roll balance force F B is caused to act as the resultant force on the work roll chock, and the rolling ends.
  • the output from the increase-bending device having high responsiveness is changed from I R to Is, while the output from the decrease-bending device is kept to D S .
  • the work-roll bending force as the resultant force is rapidly changed from the work-roll bending force (F R ( ⁇ 0)) during rolling to the roll balance force (F S (>0)).
  • the time (c) of completion of rolling represents the time when the rolling ends, and may be determined, for example, to be the timing when the load detected, for example, with the load cell for measuring the rolling load of the rolling device 1, 1' falls below 50% of the average value of the actual rolling load.
  • the point in time when 1 to 3 seconds elapses from the time (c) of completion of rolling is determined to be a work completion timing (point (d) on the time axis), and at this timing, the output from the increase-bending device is changed to be I B , and the output from the decrease-bending device is changed to be D B . Even at these changes, the work-roll bending force as the resultant force is substantially kept to the roll balance force F B .
  • the increase-bending device having high responsiveness is used to change the roll bending force at the time of starting rolling and at the time of completion of rolling.
  • the increase-bending device having high responsiveness is compensated for by the increase-bending device having high responsiveness, so that it is possible to control plate, strip crown and shapes in a high-response and strong manner.
  • the rolling method of this embodiment it is possible to obtain favorable plate, strip crown and shape even if there exist external disturbances varying during rolling such as thickness of roll materials on the input side and temperatures of the roll material. This makes it possible to significantly improve the product quality and production yield.
  • FIG. 9 is a diagram illustrating a change in time series of the roll bending force and other parameters in the case where the decrease-bending device has significantly low responsiveness (in particular, the decrease-bending device has a hydraulic characteristic in which the pressure decreases if the loading force becomes lost).
  • FIG. 9 illustrates a change in time series of the roll bending force and other parameters occurring in association with operations of rolling a roll material performed in accordance with the operation flow of the increase-bending device and the decrease-bending device illustrated in FIG. 7 .
  • FIG. 9 illustrates an example in which the decrease-bending device has low response speed as compared with the case in FIG. 7 and FIG. 8 .
  • the output from the increase-bending device having high responsiveness sharply changes, and hence, the output from the decrease-bending device having low responsiveness varies.
  • the work-roll bending force as the resultant force reaches F R later than the timing (b), and reaches F B later than the timing (c).
  • the rolling method illustrated in FIG. 10 solves this problem.
  • FIG. 10 is a diagram illustrating an operation flow in the case where the increase-bending device having high responsiveness and the decrease-bending device having low responsiveness are provided.
  • FIG. 11 illustrates a change in time series of the roll bending force acting on one roll material and other parameters in this rolling method.
  • FIG. 11 indicates, from top to bottom, a change in time series of rolling load, output from the increase-bending device, output from the decrease-bending device, the work-roll bending force, which is the resultant force thereof.
  • the decrease-bending force is measured at all times with a load cell provided to the decrease-bending device, or the hydraulic pressure in the hydraulic pipes connected with the decrease-bending device is measured at all times.
  • the increase-bending device is dynamically controlled. More specifically, before and after the rolling, the output from the increase-bending device is controlled on the basis of the decrease-bending force or hydraulic pressure of the decrease-bending device so as to make the work-roll bending force equal to the roll balance force F B . Note that controls other than that described above are similar to those in the rolling method illustrated in FIG. 7 , and will be described in detail below.
  • both the increase-bending force and the decrease-bending force are activated, so that a roll bending force on the increase side corresponding to a roll balance force F B acts as the resultant force on the work roll chock.
  • I B + D B acts as the roll balance force F B (>0), where I B (>0) is the output from the increase-bending device and D B ( ⁇ 0) is the output from the decrease-bending device.
  • the increase-bending force is changed (decreased) while the decrease-bending force is kept constant so that the predetermined work-roll bending force F R during rolling acts as the resultant force on the work roll chock.
  • the output from the increase-bending device is changed from I S to I R .
  • the work-roll bending force as the resultant force is rapidly changed from the roll balance force F B (>0) to the roll bending force F R ( ⁇ 0) during rolling operation through the control performed by the increase-bending device having high responsiveness while the output from the decrease-bending device having low responsiveness is kept unchanged from D S .
  • the metal sheet is rolled while the roll bending force during rolling is maintained.
  • the output I R from the increase-bending device is controlled so as to always keep at constant the roll balance force F B that may slightly vary, and then, is outputted simultaneously with the output D S from the decrease-bending device.
  • the roll bending force corresponding to the roll balance force F B is caused to act as the resultant force on the work roll chock, and the rolling ends.
  • the output from the increase-bending device having high responsiveness is changed from I R to Is while the output from the decrease-bending device is kept to D S .
  • the work-roll bending force as the resultant force is rapidly changed from the work-roll bending force (F R ( ⁇ 0)) during rolling to the roll balance force (F S (>0)).
  • the point in time when 1 to 3 seconds elapses from the time (c) of completion of rolling is determined to be a work completion timing (point (d) on the time axis), and at this timing, the output from the increase-bending device is changed to I B , and the output from the decrease-bending device is changed to D B .
  • the output Is from the increase-bending device is controlled so as to always keep at constant the roll balance force F B that may slightly vary, and then, is outputted simultaneously with D S .
  • the variation in the output from the decrease-bending device is compensated for by the increase-bending device, as illustrated in FIG. 11 , whereby it is possible to control the work-roll bending force in an appropriate and high-response manner.
  • the roll balance force for the top work roll 1-1 is provided through the pull operation of the third piston rod, and then, in the case where rolling is performed with a roller gap not exceeding the stroke of the first hydraulic cylinder, the above-described rolling method (first step to sixth step) is applied.
  • the present invention may be expressed in the following manner.
  • this method for rolling the metal sheet material it may be possible to measure hydraulic pressure in a hydraulic cylinder that generates the decrease-bending force or in hydraulic pipes connected with the hydraulic cylinder, and control the increase-bending force on the basis of the measurement values so that the roll bending force acting as the resultant force on the work roll chock is equal to a predetermined value.
  • a device for rolling a steel sheet and a rolling method which can deal with steel materials having various thicknesses ranging from an extremely thick sheet to a thin sheet, and can be used in particular as a reverse rolling device having an increased gap or a rolling device that strongly controls plate, strip crown and shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Description

  • The present invention relates to a device for rolling a metal sheet material and a method for rolling a metal sheet material. A device in accordance with the preamble of claim 1 is e.g. known from JP-H 0452014 . In particular, the present invention relates to a rolling device suitable for thick-plate rolling devices, or roughing rolling devices or finishing rolling devices in a thin-sheet hot rolling device, and capable of increasing the maximum gap between the top and the bottom work rolls and easily applying a strong roll bending force, whereby it is possible to achieve high-response and strong plate, strip-crown and shape controlling function, and a rolling method using this rolling device.
  • Conventionally, rolling devices such as rolling devices 1A and 1B illustrated in FIG. 12 and FIG. 13 are known, in which back up roll chocks cradle and hold work roll chocks to obtain increased roller gap. However, an increase-bending device is incorporated in an arm portion extending from the back up roll chock for holding the work roll chock, and hence, it is difficult to employ a large-capacity hydraulic cylinder.
  • For example, a rolling device disclosed in Patent Document 1 is a four-high rolling device having a structure type illustrated in FIG. 16. More specifically, a top work roll chock 3-1 is held by an arm portion connected with a top back up roll chock 4-1. Top increase-bending devices 6-1 and 6-2 that each work to a top work roll 1-1 are assembled to the arm portion so as to achieve a large roller gap.
  • However, this type of rolling device has the following problems.
    1. (1) The top increase-bending devices 6-1, 6-2 are required to be incorporated in the arm portion of the top back up roll chock 4-1 that cradles the top work roll chock 3-1. Thus, it is difficult to assemble the large-capacity hydraulic cylinder.
    2. (2) If the strong increase-bending force is applied to the top work roll 1-1, the arm portion connected to the top back up roll chock 4-1 receives a moment acting in the direction in which the arm portion opens outwards. In this case, it is highly possible that the arm portion is pressed on the housing window, and the mill hysteresis increases, causing deteriorated thickness accuracy, or a frictional force between the chock and the window is not in symmetry in terms of right-left direction, which causes the metal sheet to meander during rolling or increases instability of a rolling operation due to occurrence of camber. Thus, it is substantially impossible to use the strong work roll bender.
    3. (3) The top work roll chock 3-1 is brought into contact with the inner surface of the arm portion of the top back up roll chock 4-1, and the side surface of the arm portion is brought into contact with the inner surface of the housing window. Thus, the metal sheet increasingly wobbles in the rolling direction, which increases the possibility of meandering of the metal sheet or occurrence of camber during rolling.
    4. (4) Spaces are strictly limited, and in particular, complicated arrangement for wires from the back up roll chock is required at the time of exchanging the back up roll. Thus, it is difficult to install a mill stabilizer and load cell for measurement of the force in the rolling direction.
  • There exists a rolling device such as a rolling device 1C illustrated in FIG. 14 in which the increase-bending devices 6-1 and 6-2 are incorporated in the bottom work roll chock 3-2 to achieve a large roller gap.
  • For example, Patent Document 2 discloses a rolling device in which the increase-bending device of the work roll is incorporated in the work roll chock.
  • Similarly, Patent Document 3 discloses a rolling device with a roll-cross system. In this rolling device, the increase-bending device is incorporated in the work roll chock.
  • This type of rolling device has the following problems.
    • (5) At the time of exchanging the work roll, hydraulic pipes need to be detached. To make the detachment easy, it is necessary to employ flexible pipes, which makes it difficult to employ a servo valve for controlling high-response hydraulic pressure. Thus, it is difficult to configure a bending device having high responsiveness.
  • Further, a rolling device is known having a configuration in which an increase-bending device is provided to a project block to obtain a bending device having high responsiveness.
  • For example, Patent Document 4 discloses a rolling device having a work-roll shift function. In this rolling device, as illustrated in FIG. 15, increase-bending devices 6-1 to 6-4 are incorporated in project blocks 5-1 and 5-2 formed integrally with a housing 9.
  • In the rolling device 1D illustrated in FIG. 15, bottom increase-bending devices 6-3 and 6-4 working to a bottom work roll 1-2 are incorporated in a project block internally protruding from the housing 9.
  • However, this type of rolling device has the following problems.
    • (6) This rolling device has a structure in which a force on the work roll acting in the rolling direction is supported by a contact surface on which the project block and the work roll chock are brought into contact with each other. Thus, with the increase in the roll gap, this contact surface becomes smaller. This makes it impossible to appropriately support the work roll chock, and to obtain a large roller gap.
    • (7) The capacity of the hydraulic cylinder in the increase-bending device depends on the height of the project block. Thus, if the rolling device includes a project block not having sufficient height, the hydraulic cylinder cannot provide sufficient stroke length, which makes it impossible to obtain the large roller gap.
  • It should be noted that the increase-bending device represents a hydraulic device that applies a force acting on the work roll chock and in the direction in which the roller gap increases, and is a generic name of a device including a hydraulic cylinder serving as an actuator of the hydraulic device and a piston rod of the hydraulic device.
  • However, in the present invention, for the sake of simplicity, the increase-bending device represents the hydraulic cylinder serving as the actuator of the increase-bending device and the piston rod of the hydraulic cylinder unless otherwise specified. A force applied to the work roll by the increase-bending device is referred to as the increase-bending force.
  • A hydraulic device that applies, to the work roll chock, a force acting in a direction in which the roller gap decreases is referred to as a decrease-bending device. Further, a force applied to the work roll by the decrease-bending device is referred to as the decrease-bending force. Yet further, the decrease-bending device is a generic name of the device including the hydraulic cylinder serving as the actuator of the device and the piston rod of the hydraulic cylinder. In the present invention, for the sake of simplification, the decrease-bending device represents the hydraulic cylinder serving as the actuator of the decrease-bending device and the piston rod of the decrease-bending device, unless otherwise specified.
  • It should be noted that, in general, as illustrated in FIG. 12 to FIG. 16, the rolling device for manufacturing the thick steel sheet does not have the decrease-bending device (see Patent Documents 1 to 4).
  • This is because: (A) in the case of thick sheet rolling, a relatively large-diameter work roll is used as compared with a case of thin sheet rolling, and hence, a change in shape of the roll crown is smaller even when the same bending force is applied; and (B) even if a small decrease-bending device is installed at a narrow portion in the vicinity of a relatively large-diameter work roll chock as compared with the thin sheet rolling device, the range of control is narrow, and the machine structure becomes complicated, which results in a low cost performance.
  • Patent Documents referred to in the description are listed as below.
    • Patent Document 1: Japanese Unexamined Patent Application, First Publication No. H06-87011
    • Patent Document 2: Japanese Unexamined Patent Application, First Publication No. S62-220205
    • Patent Document 3: Japanese Unexamined Patent Application, First Publication No. H06-198307
    • Patent Document 4: Japanese Unexamined Patent Application, First Publication No. H04-52014
  • As described above, conventionally, a rolling device having an increased roller gap cannot achieve high responsiveness or accommodate a strong roll bending device.
  • A problem to be solved by the present invention is to provide a rolling device capable of increasing the maximum gap between the top and the bottom work rolls and applying a strong roll bending force, and a rolling method using this rolling device.
  • More specifically, an object of the present invention is to provide a rolling device including a decrease-bending device as with a thin sheet rolling device and capable of: dealing with a steel sheet having a wide range of thickness; increasing the roller gap between the top and the bottom work rolls; easily applying a strong roll bending force; and overcoming the above-described drawbacks that the conventional rolling device has, and a rolling method using this rolling device.
  • The above problem can be solved by the features defined in the claims
  • According to the rolling device and the rolling method according to the present invention, the maximum gap between the top and the bottom work rolls can be increased, and even in the case where the decrease-bending device having low responsiveness is provided, this is compensated for by the increase-bending device having high responsiveness and provided to the pair of first project blocks, whereby it is possible to obtain a high-response and strong plate, strip-crown and shape controlling function.
  • Thus, it is possible to obtain favorable plate, strip crown and shapes even if there exist external disturbances such as thickness of the material on the input side or temperatures of the rolling material, which varies during rolling, whereby it is possible to significantly improve product quality and production yield.
  • Further, the increase-bending force and the decrease-bending force are applied to the top work roll to achieve the strong plate, strip-crown and shape controlling function, and further, a multi-stage hydraulic cylinder is employed for the top-work-roll decrease-bending device to achieve generation of the roll balance force, whereby it is possible to largely increase the roll gap. In other words, with only one rolling device, it is possible to deal with various applications ranging from blooming roll with a large thickness to hot-roll thin sheet roll for which precise plate, strip crown and shape control is required.
  • Yet further, the force in the rolling direction acting on the top work roll chock is always borne by the housing window, whereby it is possible to stably support the top work roll chock.
  • Yet further, the top and the bottom increase-bending devices can be incorporated in the pair of first project blocks. This makes it possible to achieve the strong bending device having the large capacity and large stroke.
  • Yet further, the increase-bending device is incorporated in the pair of first project blocks, which makes it possible to fix the hydraulic pipes and employ servo valves. With this configuration, it is possible to control the increase-bending force in a high response manner.
  • Yet further, even if the decrease-bending device having low responsiveness is used, it is possible to control the roll bending force in a high response manner with cooperation of the increase-bending device having high responsiveness. This makes it possible to largely improve the product quality and yield in terms of rolling.
  • The invention is described in detail in conjunction with the drawings in which:
    • FIG. 1 is a side view illustrating a structure of a rolling device according to an embodiment of the present invention,
    • FIG. 2 is a diagram illustrating a connection structure between a top work roll chock and a top decrease-bending device,
    • FIG. 3A is a sectional view illustrating a first mode of an engagement relationship between a first engagement portion of a third piston rod of a third hydraulic cylinder and a second engagement portion of a top work roll chock,
    • FIG. 3B is a sectional view illustrating a second mode of an engagement relationship between a first engagement portion of a third piston rod of a third hydraulic cylinder and a second engagement portion of a top work roll chock,
    • FIG. 3C is a sectional view illustrating a third mode of an engagement relationship between a first engagement portion of a third piston rod of a third hydraulic cylinder and a second engagement portion of a top work roll chock,
    • FIG. 4 is a perspective plan view illustrating an example of arrangement of top and bottom increase-bending devices,
    • FIG. 5 is a perspective plan view illustrating an example of arrangement of top and bottom increase-bending devices,
    • FIG. 6 is a side view illustrating another example of a structure of a rolling device according to an embodiment of the present invention,
    • FIG. 7 is a diagram illustrating an example of an operation flow of a rolling method according to an embodiment of the present invention,
    • FIG. 8 is a diagram illustrating a change in time series of a roll bending force and other parameters associated with the operation flow in FIG. 7,
    • FIG. 9 is a diagram illustrating a change in time series of a roll bending force and other parameters in the case where the responsiveness of a decrease-bending device is significantly low,
    • FIG. 10 is a diagram illustrating another example of an operation flow of a rolling method according to an embodiment of the present invention,
    • FIG. 11 is a diagram illustrating a change in time series of a roll bending force and other parameters associated with the operation flow in FIG. 10,
    • FIG. 12 is a side view illustrating a structure of a rolling device 1A according to a conventional art,
    • FIG. 13 is a side view illustrating a structure of a rolling device 1B according to a conventional art,
    • FIG. 14 is a side view illustrating a structure of a rolling device 1C according to a conventional art,
    • FIG. 15 is a side view illustrating a structure of a rolling device 1D according to a conventional art, and
    • FIG. 16 is a side view illustrating a structure of a rolling device 1E according to a conventional art.
  • Hereinbelow, a rolling device according to the present invention based on the findings described above and a rolling method using this rolling device will be described with reference to FIG. 1 through FIG. 16.
  • FIG. 1 is a side view illustrating an example of a structure of a rolling device 1 according to an embodiment of the present invention. As illustrated in FIG. 1, the rolling device 1 according to an embodiment of the present invention includes a top work roll chock 3-1, a bottom work roll chock 3-2, a top back up roll chock 4-1, a bottom back up roll chock 4-2, and a housing 9 containing these roll chocks. The housing 9 has a pair of first project blocks 5-1 and 5-2 (in other words, a first project block provided on the side where a metal sheet material is inputted and a first project block provided on the output side) formed integrally with the housing, thereby forming a housing window 12.
  • The top work roll chock 3-1 supports a top work roll 1-1 for rolling a metal sheet material, and the bottom work roll chock 3-2 supports a bottom work roll 1-2 for rolling the metal sheet material.
  • Further, the top back up roll chock 4-1 supports a top back up roll 2-1 disposed above the top work roll 1-1, and the bottom back up roll chock 4-2 supports a bottom back up roll disposed below the bottom work roll 1-2.
  • The pair of the first project blocks 5-1 and 5-2 are formed integrally so as to protrude inwardly from the housing 9. The pair of the first project blocks 5-1 and 5-2 are provided with top increase-bending devices 6-1 and 6-2 that each apply an increase-bending force through the top work roll chock 3-1 to the top work roll 1-1, and are provided with bottom increase-bending devices 6-3 and 6-4 that each apply an increase-bending force through the bottom work roll chock 3-2 to the bottom work roll 1-2.
  • More specifically, the top increase-bending devices 6-1 and 6-2 are each formed by a first hydraulic cylinder serving as an actuator of the device 6-1, 6-2 and a piston rod (first piston rod) of the first hydraulic cylinder. The first hydraulic cylinder is incorporated in the pair of the first project blocks 5-1 and 5-2, and is provided such that an end portion of the first piston rod protrudes from the top surface of each of the pair of the first project block 5-1, 5-2 and comes into contact with the top work roll chock 3-1.
  • Further, the bottom increase-bending devices 6-3 and 6-4 are each formed by a second hydraulic cylinder serving as an actuator of the device 6-3, 6-4 and a piston rod (second piston rod) of the second hydraulic cylinder. The second hydraulic cylinder is incorporated in the pair of the first project blocks 5-1 and 5-2, and is provided such that an end portion of the second piston rod protrudes from the bottom surface of each of the pair of the first project blocks 5-1 and 5-2 and comes into contact with the bottom work roll chock 3-2.
  • Further, the rolling device 1 according to this embodiment includes top decrease-bending devices 7-1 and 7-2 provided in the top back up roll chock 4-1 and having a function of applying the decrease-bending force through the top work roll chock 3-1 to the top work roll 1-1 and a function of causing a pulling-up force (roll balance force) for bringing the top work roll 1-1 into contact with the top back up roll 2-1.
  • The top decrease-bending devices 7-1 and 7-2 having the two functions are formed by a third hydraulic cylinder serving as an actuator of the device 7-1, 7-2 and a piston rod (third piston rod) of the third hydraulic cylinder. The third hydraulic cylinder is provided in the top back up roll chock 4-1. The third piston rod includes a top end shaped so as to engage with the top work roll chock 3-1.
  • Further, the rolling device 1 according to this embodiment includes bottom decrease-bending devices 7-3 and 7-4 that each apply the decrease-bending force through the bottom work roll chock 3-2 to the bottom work roll 1-2.
  • The bottom decrease-bending devices 7-3 and 7-4 are each formed by a fourth hydraulic cylinder serving as an actuator of the device 7-3, 7-4 and a piston rod (fourth piston rod) of the fourth hydraulic cylinder. The fourth hydraulic cylinder is provided to the bottom back up roll chock 4-2, or is incorporated in a pair of second project blocks 5-3 and 5-4, which will be described later. The fourth piston rod is provided such that a top end thereof is brought into contact with the bottom work roll chock 3-2.
  • The configuration in which a project block has an increase-bending device, and top and bottom back up roll chocks each have a decrease-bending device is commonly found in hot-rolling finish rolling devices. However, with this configuration, the force acting in the rolling direction and occurring during rolling has to be supported by the contact surface on which the surface on the top stream side of the project block provided on the output side of the metal sheet material is brought into contact with the work roll chock. Thus, with the increase in the roller gap, the center of the rotational moment of the top work roll deviates upward from the contact surface, and the area of the contact surface that supports the force in the rolling direction decreases. For these reasons, in the top work roll chock, even if the height of the pair of the project blocks is increased, the contact surface between the surface on the top stream side of the project block and the work roll chock decreases with the increase in the roller gap, and the position of the top work roll chock becomes unstable, which makes it impossible to increase the roller gap.
  • A rolling device 1E illustrated in FIG. 16 improves the above-described points, and is frequently found in thick-sheet finishing rolling devices. In the rolling device 1E, the top back up roll chock 4-1 includes an arm that cradles the top work roll chock 3-1. With this type of rolling device, the top back up roll chock 4-1 cradles the top work roll chock 3-1, and hence, the top work roll 1-1 ascends as the top back up roll 2-1 elevates, which makes it possible to increase the roller gap.
  • However, the rolling device having this structure does not have sufficient space for the increase-bending device and the decrease-bending device used for the top work roll 1-1. Thus, in general, as illustrated in FIG. 16, for the top work roll 1-1, only the small-capacity increase-bending devices 6-1 and 6-2 are provided between the top back up roll chock 4-1 and the top work roll chock 3-1, and no decrease-bending device is provided for the top work roll 1-1. This results in a drawback of limited shape-controlling ability.
  • Further, the force in the rolling direction acting on the top work roll 1-1 is received by the contact surface on the downstream side in the rolling direction between the top back up roll chock 4-1 and the top work roll chock 3-1. Further, this force is finally received by the contact surface between the outer surface of the arm on the downstream side in the rolling direction of the top back up roll chock 4-1 and the inner side of the housing window 12. However, the contact surface on the downstream side in the rolling direction has limited space, and it is difficult to install a load cell that can sufficiently support the top work roll chock 3-1. Further, a wobble remains on the contact surface between the top back up roll chock 4-1 and the housing window 12. Yet further, a stabilizer or load cell is required for each back up roll chock, and arrangement of wires necessary for activating these units significantly deteriorates workability.
  • In view of the circumstances described above, the rolling device 1 according to this embodiment includes the pair of the first project blocks 5-1 and 5-2 protruding inwardly from the housing 9 and disposed at positions shifted downward with respect to a pass line, as illustrated in FIG. 1. More specifically, unlike the conventional configuration illustrated in FIG. 15, the pair of the first project blocks 5-1 and 5-2 are disposed at positions that are not vertically symmetric with respect to the pass line. Further, the top work roll chock 3-1 is shaped such that a base portion adjacent to the portion located between the pair of the first project blocks 5-1 and 5-2, in other words, the top side portion corresponding to the width of the housing window 12 (housing window width) is set higher instead of increasing the height of the portion located between the pair of the first project blocks 5-1 and 5-2.
  • With the rolling device 1 according to this embodiment having such a shape, the force in the rolling direction such as a component of the offset force acting on the top work roll 1-1, in other words, the force in the rolling direction acting on the body portion of the top work roll 1-1 from the metal sheet (plate) material 10 or top back up roll 2-1 is borne by the contact surface between the top side portion of the top work roll chock 3-1 corresponding to the housing window width and the housing window 12 located above the pair of the first project blocks 5-1 and 5-2.
  • With this structure, the area of the surface on which the top work roll chock 3-1 is brought into contact with the housing window 12 remains unchanged even if a drafting device 11 of the rolling device 1 is operated to increase the roller gap. Thus, the position of the top work roll chock 3-1 can be stably maintained regardless of the amount of the roller gap.
  • Further, the rolling device 1 according to this embodiment includes the pair of the first project blocks 5-1 and 5-2 inwardly protruding from the housing 9 and including the top increase-bending devices 6-1 and 6-2 that apply the increase-bending force to the top work roll 1-1, and the bottom increase-bending devices 6-3 and 6-4 that apply the increase-bending force to the bottom work roll 1-2.
  • This configuration eliminates the need for detaching the hydraulic pipes of the increase-bending device every time the work roll is exchanged, and allows using fixed pipes. This makes it possible to employ accurate servo valves, thereby obtaining a high-responsive increase-bending device.
  • Further, the top decrease-bending devices 7-1 and 7-2 are formed by the third hydraulic cylinder incorporated in the top back up roll chock 4-1 and the third piston rod of the third hydraulic cylinder. The top end of the third piston rod of the third hydraulic cylinder is operated to move in the roll axis direction at the time of exchanging the roll so as to be able to be connected with the top work roll chock 3-1, thereby applying the roll balance force.
  • With this configuration, the roller gap can be increased regardless of the stroke of the increase-bending device, and it is possible to apply the strong decrease-bending force in the case where a plate, strip crown control is necessary for a steel plate with a thickness of approximately 100 mm or less. This makes it possible for only one rolling device 1 to deal with various rolling applications ranging from rolling of a roll material with a thickness of over 800 mm to rolling with a precise plate, strip crown control during the thick-sheet rolling with a thickness of 100 mm or less.
  • Next, an example of a structure of the connection portion will be described in detail. This example shows merely one embodiment, and does not limit the specific structure of the present invention.
  • FIG. 2 is a plan view of the top work roll 1-1 and the top work roll chock 3-1, and in the drawing, the near side shows the drive side, while the far side shows the work side. At each of the right and the left on the top surface of the roll chock 3-1 for the top work roll 1-1, there is formed a groove 31 having a reversed T-shape in cross-section and engaged with the top end of the third piston rod of the third hydraulic cylinder constituting the top decrease-bending device 7-1, 7-2 as a second engagement portion. The groove 31 opens on the drive side, and extends up to the vicinity of the center of the chock.
  • When a roll set is inserted into the rolling device 1, the work roll having both ends each set with the roll chock from the operation side is delivered through a rail or other tool to a predetermined position in the housing of the rolling device 1. At this time, the piston rod of the hydraulic cylinder serving as the decrease-bending device is retracted in the top back up roll chock 4-1, so that this piston rod does not obstruct the delivery.
  • Next, the groove 31 of the top work roll chock 3-1 is positioned immediately in front of an expanded portion (first engagement portion) of the third piston rod of the third hydraulic cylinder to be engaged with the groove 31. At this position, the piston rod is descended to a predetermined position. Then, as illustrated in FIG. 3C, the inner surface of the groove 31 is kept in a position where it does not come into contact with the external surface of the third piston rod, and the expanded portion of the third piston rod is moved into the groove 31 from the groove opening portion on the drive side. Through these procedures, the first engagement portion and the second engagement portion are engaged with each other.
  • FIG. 3A is a diagram illustrating a state where the expanded portion formed at the top end of the third piston rod of the third hydraulic cylinder of the top decrease-bending device 7-1, 7-2 is engaged with the groove 31. More specifically, FIG. 3A illustrates a state where, with the pulling-up operation made by the third hydraulic cylinder, the third piston rod is pulled upward and is brought into contact with the top surface of the groove 31 of the top work roll chock 3-1, thereby applying a lifting force fRB.
  • The lifting force fRB acts as the roll balance force. Thus, without relying on the stroke of the first piston rod of the top increase-bending devices 6-1 and 6-2 provided to the pair of the first project blocks 5-1 and 5-2, it is possible to raise the top work roll 1-1 together with the top back up roll 2-1. This makes it possible to easily obtain the large roller gap.
  • FIG. 3B is a diagram illustrating a state where the top decrease-bending force is applied in the case of controlling plate, strip crown and shapes in such a case as finishing rolling in the thin-sheet hot rolling.
  • More specifically, with the third hydraulic cylinder of the top decrease-bending device 7-1, 7-2, the third piston rod extends downward to apply a pressing force fDC to the bottom surface of the groove 31 of the top work roll chock 3-1, thereby applying the decrease-bending force.
  • FIG. 3C is a diagram illustrating a non-contact state where the groove 31 is brought into engagement with the third piston rod at the time of exchanging rolls as described above, or this engagement is canceled.
  • In the example described above, the groove 31 is formed in the top work roll chock 3-1, and the expanded portion to be engaged with the groove 31 is formed in the top decrease-bending device 7-1, 7-2. However, the present invention is not limited to this mode. For example, it may be possible that the groove 31 is formed in the top decrease-bending device 7-1, 7-2, and the expanded portion to be engaged with the groove 31 is formed in the top work roll chock 3-1.
  • It should be noted that, in the rolling device 1 according to this embodiment, the force in the rolling direction applied to the body portion of the bottom work roll 1-2 is borne by the contact surface between the bottom work roll chock 3-2 and the project block (5-1 or 5-2) provided on the output side. Thus, in the rolling device 1 according to this embodiment illustrated in FIG. 1, a portion of the bottom work roll chock 3-2 located between the pair of the first project blocks 5-1 and 5-2 is raised.
  • Further, since the roller gap is adjusted mainly by moving upward and downward the top work roll chock 3-1, the amount of travel of the bottom work roll chock 3-2 is small in the vertical direction. Thus, the positions of the bottom work roll 1-2 remain stable even if the roller gap is increased.
  • FIG. 4 is a plan sectional view illustrating an example of arrangement of the top and bottom increase-bending devices 6-1 to 6-4. In other words, FIG. 4 is a sectional view at the height of the pass line of the pair of the first project blocks 5-1 and 5-2.
  • In the rolling device 1 according to this embodiment, it is desirable to arrange the top and bottom increase-bending devices 6-1 to 6-4 so as to be positionally shifted to each other on the plan sectional view of the pair of the first project blocks 5-1 and 5-2. For example, as illustrated in FIG. 4, it is desirable to arrange the top increase-bending devices 6-1 and 6-2 and the bottom increase-bending devices 6-3 and 6-4 so as to be positionally shifted in the axial direction of the work roll 1-2. With this arrangement, the top and bottom increase-bending devices 6-1 to 6-4 do not interfere with each other within the pair of the first project blocks 5-1 and 5-2.
  • In other words, the first hydraulic cylinder and the second hydraulic cylinder, which are incorporated in each of the first project blocks 5-1 and 5-2, do not interfere with each other. This makes it possible to increase the capacity of the first hydraulic cylinder and the second hydraulic cylinder, increase the stroke of each of the first piston rod and the second piston rod, and increase the amount of operation of the increase bending.
  • It should be noted that, in FIG. 4, the bottom increase-bending devices 6-3 and 6-4 are formed by two second hydraulic cylinders located on the input side and the output side. However, a similar effect can be obtained by using one second hydraulic cylinder for each of the bottom increase-bending devices 6-3 and 6-4 and arranging them at different positions in the axial direction of the bottom work roll 1-2 to prevent the second hydraulic cylinder from interfering with the first hydraulic cylinder.
  • FIG. 5 is a plan sectional view illustrating an example of arrangement of the top and bottom increase-bending devices 6-1 to 6-4. In other words, FIG. 5 is a sectional view at the height of the pass line of the pair of the first project blocks 5-1 and 5-2. As illustrated in FIG. 5, the first hydraulic cylinder and the second hydraulic cylinder may be arranged so as to be positionally shifted in the rolling direction. With this arrangement, the first hydraulic cylinder and the second hydraulic cylinder do not interfere with each other. Thus, it is possible to increase the capacity of the first hydraulic cylinder and the second hydraulic cylinder, increase the stroke of each of the first piston rod and the second piston rod, and increase the amount of operation of bending.
  • These are descriptions of the structure of the rolling device 1 according to this embodiment mainly from the viewpoint of increasing the roller gap, which is one of the problems to be solved.
  • Next, with this structure, a description will be made showing that the strong roll bending force can be easily applied, which is another problem to be solved.
  • FIG. 12 and FIG. 13 illustrate rolling devices 1A and 1B according to conventional arts, each of which has an increased roller gap.
  • However, these rolling devices 1A and 1B cannot apply a strong roll bending force. This is because these rolling devices have a structure in which the top increase-bending devices 6-1 and 6-2 are incorporated in the arm portion protruding downward from the top back up roll chock 4-1, which prevents the large-capacity and large-stroke top increase-bending devices 6-1 and 6-2 from being installed. Further, these rolling devices 1A and 1B have the arm portion extending from the top back up roll chock 4-1, and hence, the top decrease-bending devices 7-1 and 7-2 are required to be installed at the space shifted to the axial center of the roll. Thus, interference with the bearing for the top back up roll 2-1 occurs, which makes it impossible to dispose the large-capacity and large-stroke top decrease-bending devices 7-1 and 7-2.
  • Further, as illustrated in FIG. 1, in the rolling device 1 according to this embodiment, the large-capacity and large-stroke top increase-bending devices 6-1 and 6-2 can be disposed in the pair of the first project blocks 5-1 and 5-2 protruding inwardly from the housing 9 of the rolling device 1.
  • Further, unlike the rolling devices 1A and 1B illustrated in FIG. 12 and FIG. 13, in the rolling device 1 according to this embodiment, the top back up roll chock 4-1 does not have the arm portion. This allows the large-capacity and large-stroke top decrease-bending devices 7-1 and 7-2 to be disposed at positions of the top back up roll chock 4-1 that do not interfere with the bearing for the top back up roll 2-1, whereby it is possible to apply the large decrease-bending force to the top work roll 1-1.
  • More specifically, according to the rolling device 1 of this embodiment having a structure in which, together with the positions of the pair of the first project blocks 5-1 and 5-2, the force in the rolling direction applied to the body portion of the top work roll 1-1 is received by the contact surface between the top work roll chock 3-1 and the housing window 12, it is possible to increase the roller gap and apply the strong roll bending force.
  • Further, with this structure, it is possible to eliminate the need for detaching the hydraulic pipes of the increase-bending device every time the work rolls are exchanged. This makes it possible for the increase-bending devices 6-1 to 6-4 to be connected with hydraulic control valves through fixed hydraulic pipes and employ servo valves used for high-response hydraulic control. Thus, it is possible to obtain the high-response increase-bending device.
  • FIG. 6 is a side view illustrating a rolling device 1' according to a modification example of this embodiment. The rolling device 1' illustrated in FIG. 6 has the same top roll systems as those illustrated in FIG. 1 and different bottom roll systems from those illustrated in FIG. 1. In the rolling device illustrated in FIG. 1, the bottom back up roll chock 4-2 has the bottom decrease-bending devices 7-3 and 7-4 that apply the decrease-bending force to the bottom work roll 1-2. On the other hand, in the rolling device 1' illustrated in FIG. 6, the bottom decrease-bending devices 7-3 and 7-4 are disposed to a pair of second project blocks 5-3 and 5-4 located below the pair of the first project blocks 5-1 and 5-2.
  • If the bottom decrease-bending devices 7-3 and 7-4 are disposed to the bottom back up roll chock 4-2 as in the rolling device 1 illustrated in FIG. 1, the hydraulic pipes of the decrease-bending device are required to be detached when the bottom back up roll 2-2 is exchanged. In other words, it is highly likely that small foreign substances enter the hydraulic pipes at the time of detachment.
  • Thus, in general, it is difficult to employ a servo valve for the high-response hydraulic control, and further, it may be necessary to partially employ flexible pipes.
  • Accordingly, the roll bending device has reduced responsiveness as compared with the case where the fixed pipes or servo valves are employed.
  • On the other hand, according to the rolling device 1' illustrated in FIG. 6, it is possible to overcome the above-described problem occurring at the time of exchanging the bottom back up roll 2-2. This is because servo valves for high-response hydraulic control can be used for the hydraulic pipes of the bottom decrease-bending devices 7-3 and 7-4 provided to the pair of the second project blocks 5-3 and 5-4, whereby it is possible to eliminate the need for using the flexible pipes. Thus, the bottom back up roll 2-2 can be easily exchanged, and the high-response roll bending device can be obtained.
  • Next, a rolling method according to this embodiment will be described.
  • In the case where the top decrease-bending devices 7-1 and 7-2 are provided to the top back up roll chock 4-1 as illustrated in FIG. 1 and FIG. 6, the hydraulic pipes of the top decrease-bending devices 7-1 and 7-2 are required to be detached at the time of exchanging the top back up roll 2-1, and hence, it is highly likely that small foreign substances enter the hydraulic pipes at the time of exchange.
  • Thus, in general, it is relatively difficult to employ the servo valve for high-response hydraulic control. Further, in order to easily detach the pipes, it is necessary to connect the hydraulic-control valves through detachable hydraulic pipes having flexibility such as flexible pipes. However, in the case where the detachable hydraulic pipes having flexibility such as flexible pipes are employed, this flexibility may absorb or alleviate the variation of the hydraulic pressure.
  • Thus, in the case where the top decrease-bending devices 7-1 and 7-2 are provided to the top back up roll chock 4-1, the responsiveness of the roll bending device reduces as compared with the case where the fixed pipes or servo valves are used.
  • Incidentally, the decrease-bending force cannot be applied at idle time when the rolling load is not applied. Thus, when the decrease-bending force is applied, it is necessary to rapidly complete setting the decrease-bending force by the start of rolling from the idle state in which the roll balance force is applied, and rapidly turn back into the roll balance state at the time of completion of the rolling.
  • Thus, if the change in the roll bending force is controlled by the decrease-bending device having reduced responsiveness, a predetermined decrease-bending force is not applied at the tail end of the roll material, possibly causing malformation of the roll material.
  • The rolling method according to this embodiment solves the above-described problems.
  • More specifically, the rolling method uses the rolling device 1, 1' according to this embodiment including the top back up roll chock 4-1 provided with the top decrease-bending devices 7-1 and 7-2, and solves the above-described problems that may occur in the rolling device 1, 1'.
  • As described above, in the rolling device 1, 1' including the top back up roll chock 4-1 provided with the top decrease-bending devices 7-1 and 7-2, the responsiveness of the decrease-bending device may deteriorate.
  • However, the rolling device 1, 1' according to this embodiment has a structure in which the pair of the first project blocks 5-1 and 5-2 protruding inwardly from the housing 9 includes the top increase-bending devices 6-1 and 6-2, thereby obtaining the top increase-bending device having the large capacity and large stroke.
  • It is not necessary to detach the hydraulic pipes of the increase-bending device every time the rolls are exchanged, and hence, the fixed hydraulic pipes or servo valves can be used, which makes it possible to obtain the increase-bending device having the high-responsiveness.
  • The rolling method according to this embodiment uses the increase-bending device having high responsiveness for changing the roll bending force at the time of starting rolling and at the time of finishing rolling, in the case where the decrease-bending force is applied to the work roll to control the plate, strip crown and shapes, thereby compensating for the responsiveness of the decrease-bending device.
  • FIG. 7 is a diagram illustrating an example of an operation flow of the rolling method according to this embodiment. More specifically, FIG. 7 is a diagram illustrating an operation flow performed by the increase-bending device having the high responsiveness and an operation flow performed by the decrease-bending device having relatively low responsiveness as compared with the increase-bending device.
  • FIG. 8 illustrates a change in time series of the roll bending force to one roll material or other parameters in this rolling method. FIG. 8 indicates, from top to bottom, a change in time series of rolling load, output from the increase-bending device, output from the decrease-bending device, and work-roll bending force serving as the resultant force of these forces. Below, a description will be made with reference to FIG. 7 and FIG. 8.
  • First, prior to start of rolling, calculation is made to obtain a setting value FR of the work-roll bending force during rolling that corresponds to a roll material to be next rolled. In this example, it is assumed that the FR is a negative value, in other words, is calculated as the decrease-bending force. Note that, in this embodiment, it is assumed that the increase-bending force (force acting in the increase direction in which roll is opened) is a positive value and the decrease-bending force (force acting in the decrease direction in which the roll is pressed) is a negative value.
  • [First Step]
  • Prior to the start of rolling, both the increase-bending force and the decrease-bending force are activated, so that a roll bending force on the increase side corresponding to a roll balance force FB acts as a resultant force on the work roll chock.
  • In other words, at the idle time before rolling, IB + DB acts as the roll balance force FB (>0), where IB (>0) is the output from the increase-bending device and DB (<0) is the output from the decrease-bending device.
  • The roll balance force FB is determined to be a force by which slippage does not occur between the work roll driven by an electric motor even in the idle time and the back up roll, which is a follower. At this time, DB is set to be the minimum hydraulic pressure at which the actuator of the decrease-bending device does not detach from the work roll chock.
  • [Second Step]
  • Next, at a certain timing prior to the start of rolling (at the point (a) on the time axis), calculation is made on the basis of DS = FR - IR to obtain a predetermined output Ds from the decrease-bending device during rolling sufficient to generate the work-roll bending force FR during rolling. Then, DS and IS are simultaneously outputted so as to make the roll balance force FB constant. In this example, IR is the output from the increase-bending device during rolling, and the value of IR is determined in advance to be a value close to the minimum controllable value such that the absolute value of DS is not excessive. IS is the output from the increase-bending device, and constitutes Is + DS = Fr. Thus, at the timing of the setting, the work-roll bending force, which is the resultant force, remains FB, and is substantially unchanged.
  • [Third Step]
  • Next, at the start of rolling, the increase-bending force is changed (decreased) while the decrease-bending force is kept constant so that the predetermined work-roll bending force FR during rolling acts as a resultant force on the work roll chock.
  • In other words, at the time of starting rolling (at the point b on the time axis), the output from the increase-bending device is changed from Is to IR. With this change, the work-roll bending force as the resultant force is rapidly changed from the roll balance force FB (>0) to the roll bending force FR (<0) during rolling operation through the control performed by the increase-bending device having high responsiveness, while the output from the decrease-bending device having low responsiveness is kept unchanged from DS.
  • It should be noted that the time (b) of starting rolling represents a time when the rolling starts, and may be determined to be the time when the load detected, for example, with a load cell for measuring the rolling load of the rolling device 1, 1' exceeds 30% of the expected rolling load.
  • [Fourth Step]
  • Then, the metal sheet is rolled while the roll bending force during rolling is maintained.
  • [Fifth Step]
  • At the time of completion of rolling, in order to return the roll bending force to the state before the starting of rolling, the roll bending force corresponding to the roll balance force FB is caused to act as the resultant force on the work roll chock, and the rolling ends.
  • More specifically, at the time of completion of rolling (at the point (c) on the time axis), the output from the increase-bending device having high responsiveness is changed from IR to Is, while the output from the decrease-bending device is kept to DS. With this operation, the work-roll bending force as the resultant force is rapidly changed from the work-roll bending force (FR (<0)) during rolling to the roll balance force (FS (>0)).
  • It should be noted that the time (c) of completion of rolling represents the time when the rolling ends, and may be determined, for example, to be the timing when the load detected, for example, with the load cell for measuring the rolling load of the rolling device 1, 1' falls below 50% of the average value of the actual rolling load.
  • [Sixth Step]
  • Then, the point in time when 1 to 3 seconds elapses from the time (c) of completion of rolling is determined to be a work completion timing (point (d) on the time axis), and at this timing, the output from the increase-bending device is changed to be IB, and the output from the decrease-bending device is changed to be DB. Even at these changes, the work-roll bending force as the resultant force is substantially kept to the roll balance force FB.
  • As illustrated in FIG. 7 and FIG. 8, in the rolling method according to this embodiment, the increase-bending device having high responsiveness is used to change the roll bending force at the time of starting rolling and at the time of completion of rolling. Thus, even in the case where the decrease-bending device having relatively low responsiveness is required to be equipped, this is compensated for by the increase-bending device having high responsiveness, so that it is possible to control plate, strip crown and shapes in a high-response and strong manner.
  • Further, even in the case where the rolling force varies during rolling due to various factors (external disturbance), it is possible to rapidly control with the increase-bending device having high responsiveness so as to maintain the optimal work-roll bending force.
  • In other words, according to the rolling method of this embodiment, it is possible to obtain favorable plate, strip crown and shape even if there exist external disturbances varying during rolling such as thickness of roll materials on the input side and temperatures of the roll material. This makes it possible to significantly improve the product quality and production yield.
  • FIG. 9 is a diagram illustrating a change in time series of the roll bending force and other parameters in the case where the decrease-bending device has significantly low responsiveness (in particular, the decrease-bending device has a hydraulic characteristic in which the pressure decreases if the loading force becomes lost). As in FIG. 8, FIG. 9 illustrates a change in time series of the roll bending force and other parameters occurring in association with operations of rolling a roll material performed in accordance with the operation flow of the increase-bending device and the decrease-bending device illustrated in FIG. 7. In other words, FIG. 9 illustrates an example in which the decrease-bending device has low response speed as compared with the case in FIG. 7 and FIG. 8.
  • At the timings b and c, the output from the increase-bending device having high responsiveness sharply changes, and hence, the output from the decrease-bending device having low responsiveness varies. As a result, the work-roll bending force as the resultant force reaches FR later than the timing (b), and reaches FB later than the timing (c). The rolling method illustrated in FIG. 10 solves this problem.
  • FIG. 10 is a diagram illustrating an operation flow in the case where the increase-bending device having high responsiveness and the decrease-bending device having low responsiveness are provided. Further, FIG. 11 illustrates a change in time series of the roll bending force acting on one roll material and other parameters in this rolling method. FIG. 11 indicates, from top to bottom, a change in time series of rolling load, output from the increase-bending device, output from the decrease-bending device, the work-roll bending force, which is the resultant force thereof. Below, a description will be made with reference to FIG. 10 and FIG. 11.
  • In the rolling method illustrated in FIG. 10, the decrease-bending force is measured at all times with a load cell provided to the decrease-bending device, or the hydraulic pressure in the hydraulic pipes connected with the decrease-bending device is measured at all times. On the basis of the measured values, the increase-bending device is dynamically controlled. More specifically, before and after the rolling, the output from the increase-bending device is controlled on the basis of the decrease-bending force or hydraulic pressure of the decrease-bending device so as to make the work-roll bending force equal to the roll balance force FB. Note that controls other than that described above are similar to those in the rolling method illustrated in FIG. 7, and will be described in detail below.
  • First, prior to the start of rolling, calculation is made to obtain a setting value FR of the work-roll bending force during rolling suitable for a roll material to be next rolled.
  • [First Step]
  • Before the start of rolling, both the increase-bending force and the decrease-bending force are activated, so that a roll bending force on the increase side corresponding to a roll balance force FB acts as the resultant force on the work roll chock.
  • In other words, during idle time before rolling, IB + DB acts as the roll balance force FB (>0), where IB (>0) is the output from the increase-bending device and DB (<0) is the output from the decrease-bending device.
  • [Second Step]
  • Next, at a certain timing prior to the start of rolling (at the point (a) on the time axis), calculation is made on the basis of DS = FR - IR to obtain a predetermined output Ds from the decrease-bending device during rolling sufficient to generate the work-roll bending force FR during rolling. The decrease-bending force is changed from DB to DS. Is is the output from the increase-bending device determined on the basis of IS + DS = Fr, and is outputted simultaneously with DS. In this example, using a measured value DM obtained by continuously measuring the decrease-bending force, the output Is from the increase-bending device is controlled so as to always keep at constant the roll balance force FB that may slightly vary.
  • [Third Step]
  • Next, at the start of rolling, the increase-bending force is changed (decreased) while the decrease-bending force is kept constant so that the predetermined work-roll bending force FR during rolling acts as the resultant force on the work roll chock.
  • In other words, at the time of starting rolling (at the point (b) on the time axis), the output from the increase-bending device is changed from IS to IR. With this change, the work-roll bending force as the resultant force is rapidly changed from the roll balance force FB (>0) to the roll bending force FR (<0) during rolling operation through the control performed by the increase-bending device having high responsiveness while the output from the decrease-bending device having low responsiveness is kept unchanged from DS.
  • [Fourth Step]
  • Then, the metal sheet is rolled while the roll bending force during rolling is maintained. In this step, using the measured value DM obtained by continuously measuring the decrease-bending force, the output IR from the increase-bending device is controlled so as to always keep at constant the roll balance force FB that may slightly vary, and then, is outputted simultaneously with the output DS from the decrease-bending device.
  • [Fifth Step]
  • At the time of completion of rolling, in order to return the roll bending force to the state before the starting of rolling, the roll bending force corresponding to the roll balance force FB is caused to act as the resultant force on the work roll chock, and the rolling ends.
  • More specifically, at the time of completion of rolling (at the point (c) on the time axis), the output from the increase-bending device having high responsiveness is changed from IR to Is while the output from the decrease-bending device is kept to DS. With this operation, the work-roll bending force as the resultant force is rapidly changed from the work-roll bending force (FR (<0)) during rolling to the roll balance force (FS (>0)).
  • [Sixth Step]
  • Then, for example, the point in time when 1 to 3 seconds elapses from the time (c) of completion of rolling is determined to be a work completion timing (point (d) on the time axis), and at this timing, the output from the increase-bending device is changed to IB, and the output from the decrease-bending device is changed to DB. In this step, using the measured value DM obtained by continuously measuring the decrease-bending force, the output Is from the increase-bending device is controlled so as to always keep at constant the roll balance force FB that may slightly vary, and then, is outputted simultaneously with DS.
  • By performing rolling using the rolling method illustrated in FIG. 10, the variation in the output from the decrease-bending device is compensated for by the increase-bending device, as illustrated in FIG. 11, whereby it is possible to control the work-roll bending force in an appropriate and high-response manner.
  • Further, without measuring the decrease-bending force during rolling or performing feedback control through hydraulic measurement, it is possible to obtain a similar effect, by predicting in advance the variation in the output from the decrease-bending device, and setting the output from the increase-bending device that compensates for the predicted variation.
  • It should be noted that, in the case where rolling is performed with a roller gap exceeding the stroke of the first hydraulic cylinder, the roll balance force for the top work roll 1-1 is provided through the pull operation of the third piston rod, and then, in the case where rolling is performed with a roller gap not exceeding the stroke of the first hydraulic cylinder, the above-described rolling method (first step to sixth step) is applied. This makes it possible for only one rolling device to deal with various applications ranging from blooming roll having a large thickness to hot-roll thin-sheet roll for which precise plate, strip crown and shape control is required.
  • The present invention may be expressed in the following manner.
    1. (1) A device for rolling a metal sheet material having a pair of top and bottom work rolls and a pair of top and bottom back up rolls that support the top and the bottom work rolls, respectively, in which: hydraulic cylinders that each apply an increase-bending force to each of the top and the bottom work rolls are provided to a project block protruding inwardly from a housing of the rolling device; a rolling direction force acting on the bottom work roll is supported by the project block; a rolling direction force acting on the top work roll is supported by a housing window of the rolling device disposed above the project block; and a double-acting hydraulic cylinder that applies a top-work-roll decrease-bending force is provided in a top back up roll chock, and has a piston top end connected with a top work roll chock and having a roll balance output force that maintains the top back up roll and the top work roll in a contacted state.
      In this rolling device, the hydraulic cylinder that applies the increase-bending force to the top work roll and the hydraulic cylinder that applies the increase-bending force to the bottom work roll may be arranged in the project block at different positions in plan view.
      In this rolling device, the hydraulic cylinder that applies the decrease-bending force to the bottom work roll may be provided to a bottom back up roll chock or a second project block located below the project block.
      In this rolling device, a piston top end in cross-section of the hydraulic cylinder that applies the top-work-roll decrease-bending force may be provided with an expanded portion, and the top work roll chock may have a recessed portion that engages with the expanded portion through movement in a roll axis direction at the time of exchanging the top work roll.
    2. (2) A hot-rolling method that performs plate rolling using the rolling device described above.
    3. (3) A hot rolling method in which, when a plate is manufactured with the rolling device described above, the roll balance force of the top work roll is applied through a pull operation performed by the hydraulic cylinder that applies the top-work-roll decrease-bending force, in the case where a roll gap is set so as to exceed a stroke of the hydraulic cylinder that applies the top-work-roll increase-bending force.
    4. (4) A hot rolling method that performs roughing rolling and/or finishing rolling in strip hot rolling using the rolling device described above.
    5. (5) The hot rolling method described above, in which, prior to the start of rolling, both the increase-bending force and the decrease-bending force are activated; a roll bending force corresponding to the roll balance force is caused to act as the resultant force on the work roll chock; then, the increase-bending force is changed while the decrease-bending force is changed so as to be a predetermined decrease-bending force during rolling so that the resultant force of the decrease-bending force and the increase-bending force maintains the roll balance force; then, at the start of rolling, the increase-bending force is changed while control is performed so as to keep the decrease-bending force to be the predetermined decrease-bending force during rolling so that a predetermined work-roll bending force during rolling as the resultant force acts on the work roll chock; rolling is performed in a state where the predetermined work-roll bending force during rolling is maintained during the rolling; then, at the time of completion of rolling, the increase-bending force is changed so as to cause a roll bending force corresponding to the roll balance force to act as the resultant force with the decrease-bending force on the work roll chock; in this state, rolling of the metal sheet material is ended; and then, the decrease-bending force and the increase-bending force are decreased so that the roll balance force as the resultant force is maintained.
  • In this method for rolling the metal sheet material, it may be possible to measure hydraulic pressure in a hydraulic cylinder that generates the decrease-bending force or in hydraulic pipes connected with the hydraulic cylinder, and control the increase-bending force on the basis of the measurement values so that the roll bending force acting as the resultant force on the work roll chock is equal to a predetermined value.
  • According to the present invention, it is possible to provide a device for rolling a steel sheet and a rolling method, which can deal with steel materials having various thicknesses ranging from an extremely thick sheet to a thin sheet, and can be used in particular as a reverse rolling device having an increased gap or a rolling device that strongly controls plate, strip crown and shape.
  • Reference signs used in the description are listed as below:
    • 1-1 Top work roll,
    • 1-2 Bottom work roll,
    • 2-1 Top back up roll,
    • 2-2 Bottom back up roll,
    • 3-1 Top work roll chock,
    • 3-2 Bottom work roll chock,
    • 4-1 Top back up roll chock,
    • 4-2 Bottom back up roll chock,
    • 5-1, 5-2 Pair of first project blocks,
    • 5-3, 5-4 Pair of second project blocks,
    • 6-1 Top increase-bending device on input side,
    • 6-2 Top increase-bending device on output side,
    • 6-3 Bottom increase-bending device on input side,
    • 6-4 Bottom increase-bending device on output side,
    • 7-1 Top decrease-bending device on input side,
    • 7-2 Top decrease-bending device on output side,
    • 7-3 Bottom decrease-bending device on input side,
    • 7-4 Bottom decrease-bending device on output side,
    • 8-1 Input-side back up roll balance device,
    • 8-2 Output-side back up roll balance device,
    • 9 Housing,
    • 10 Metal sheet (plate) material,
    • 11 Drafting device,
    • 12 Housing window, and
    • 31 Groove.

Claims (10)

  1. A device for rolling a metal sheet material, comprising:
    a top work roll (1-1) and a bottom work roll (1-2) that roll a metal sheet material;
    a top back up roll (2-1) and a bottom back up roll (2-2) that support the top work roll (1-1) and the bottom work roll (1-2), respectively;
    a top work roll chock (3-1) and a bottom work roll chock (3-2) that support the top work roll (1-1) and the bottom work roll (1-2), respectively;
    a top back up roll chock (4-1) and a bottom back up roll chock (4-2) that support the top back up roll (2-1) and the bottom back up roll (2-2), respectively;
    a housing (9) that accommodates the top work roll chock (3-1), the bottom work roll chock (3-2), the top back up roll chock (4-1), and the bottom back up roll chock (4-2), the housing (9) including a pair of first project blocks (5-1, 5-2) protruding inwardly that bears a force in a rolling direction acting on the bottom work roll (1-2),
    first hydraulic cylinders (6-1, 6-2) provided to the pair of first project blocks (5-1, 5-2) and each including a first piston rod that applies an increase-bending force by way of the top work roll chock (3-1) to the top work roll (1-1); and
    second hydraulic cylinders (6-3, 6-4) provided to the pair of first project blocks (5-1, 5-2) and each including a second piston rod that applies an increase-bending force by way of the bottom work roll chock (3-2) to the bottom work roll (1-2);
    characterized in that the housing (9) further includes a housing window (12) that bears a force in the rolling direction acting on the top work roll (1-1), and
    the device further comprises
    third hydraulic cylinders (7-1, 7-2) provided to the top back up roll chock (4-1) and each including a third piston rod that applies a decrease-bending force to the top work roll (1-1) or that brings the top work roll (1-1) into contact with the top back up roll (2-1) to generate a roll balance force; and
    fourth hydraulic cylinders (7-3, 7-4) each including a fourth piston rod that applies a decrease-bending force to the bottom work roll (1-2).
  2. The device for rolling a metal sheet material according to Claim 1, wherein
    the first hydraulic cylinders (6-1, 6-2) and the second hydraulic cylinders (6-3, 6-4) are arranged in the pair of first project blocks (5-1, 5-2) at positions different from each other in plan view.
  3. The device for rolling a metal sheet material according to Claim 1, wherein
    the bottom back up roll chock is provided with the fourth hydraulic cylinders (7-3, 7-4).
  4. The device for rolling a metal sheet material according to Claim 1, wherein
    the housing (9) further includes a pair of second project blocks (5-3, 5-4) located below the pair of first project blocks (5-1, 5-2) and protruding inwardly from the housing (9), and
    the pair of second project blocks (5-3, 5-4) are provided with the fourth hydraulic cylinders (7-3, 7,-4).
  5. The device for rolling a metal sheet material according to Claim 1, wherein
    the third piston rod has a top end portion having a first engagement portion, and
    the top work roll chock (3-1) has a second engagement portion that engages with the first engagement portion through movement of the top work roll (1-1) in a roll axial direction.
  6. A method for rolling a metal sheet material using the device for rolling a metal sheet material according to any one of Claims 1 to 5, wherein
    the third piston rod performs a pull operation to generate a roll balance force in a case where rolling is performed with a roller gap exceeding a stroke of the first hydraulic cylinders (6-1, 6-2).
  7. A method for rolling a metal sheet material using the device for rolling a metal sheet material according to any one of Claims 1 to 5, wherein
    in a case where rolling is performed with a roller gap that falls within a stroke of the first hydraulic cylinders (6-1, 6-2), the method includes:
    a first process of, prior to start of rolling, causing an increase-bending force and a decrease-bending force to act on the top work roll (1-1) and the bottom work roll (1-2) to cause a roll bending force corresponding to a roll balance force to act as a resultant force on the top work roll (1-1) and the bottom work roll (1-2);
    a second process of, after the first process, increasing the increase-bending force while changing the decrease-bending force to be a decrease-bending force during rolling so as to maintain the resultant force to be the roll balance force;
    a third process of, at start of rolling, changing the increase-bending force while maintaining the decrease-bending force to cause a roll bending force corresponding to a roll bending force during rolling to act as a resultant force on the top work roll (1-1) and the bottom work roll (1-2);
    a fourth process of performing rolling while maintaining the roll bending force during rolling;
    a fifth process of, at completion of rolling, changing the increase-bending force while maintaining the decrease-bending force to cause a roll bending force corresponding to the roll balance force to act as a resultant force on the top work roll (1-1) and the bottom work roll (1-2), and in this state, ending rolling of the metal sheet material; and
    a sixth process of, thereafter, decreasing the decrease-bending force and the increase-bending force so as to maintain the roll balance force.
  8. The method for rolling a metal sheet material according to Claim 7, wherein
    continuous measurement is performed on at least one of hydraulic pressure in the third hydraulic cylinders, hydraulic pressure in a hydraulic pipe connected with the third hydraulic cylinders (7-1, 7-2), hydraulic pressure in the fourth hydraulic cylinders (7-3, 7-4), and hydraulic pressure in a hydraulic pipe connected with the fourth hydraulic cylinders (7-3, 7-4), and
    based on a measurement result, the increase-bending force is controlled such that the roll bending force acting as a resultant force on the top work roll chock (3-1) and the bottom work roll chock (3-2) becomes a predetermined value.
  9. A method for rolling a metal sheet material using the device for rolling a metal sheet material according to any one of Claims 1 to 5, wherein
    a roll balance force for the top work roll (1-1) is applied through a pull operation performed by the third piston rod in a case where rolling is performed with a roller gap exceeding a stroke of the first hydraulic cylinders (6-1, 6-2) during rolling, and
    then, in a case where rolling is performed with a roller gap that falls within a stroke of the first hydraulic cylinders (6-1, 6-2), the method includes:
    a first process of, prior to start of rolling, causing an increase-bending force and a decrease-bending force to act on the top work roll (1-1) and the bottom work roll (1-2) to cause a roll bending force corresponding to a roll balance force to act as a resultant force on the top work roll (1-1) and the bottom work roll (1-2);
    a second process of, after the first process, increasing the increase-bending force while changing the decrease-bending force to be a decrease-bending force during rolling so as to maintain a resultant force to be the roll balance force;
    a third process of, at the start of rolling, changing the increase-bending force while maintaining the decrease-bending force to cause a roll bending force corresponding to a roll bending force during rolling to act as a resultant force on the top work roll (1-1) and the bottom work roll (1-2);
    a fourth process of performing rolling while maintaining the roll bending force during rolling;
    a fifth process of, at completion of rolling, changing the increase-bending force while maintaining the decrease-bending force to cause a roll bending force corresponding to the roll balance force to act as a resultant force on the top work roll (1-1) and the bottom work roll (1-2), and in this state, ending rolling of the metal sheet material; and
    a sixth process of, thereafter, decreasing the decrease-bending force and the increase-bending force so as to maintain the roll balance force.
  10. The method for rolling a metal sheet material according to Claim 9, wherein
    continuous measurement is performed on at least one of hydraulic pressure in the third hydraulic cylinders, hydraulic pressure in a hydraulic pipe connected with the third hydraulic cylinders (7-1, 7-2), hydraulic pressure in the fourth hydraulic cylinders (7-3, 7-4), and hydraulic pressure in a hydraulic pipe connected with the fourth hydraulic cylinders (7-3, 7-4), and
    based on a measurement result, the increase-bending force is controlled such that the roll bending force acting as a resultant force on the top work roll chock (3-1) and the bottom work roll chock (3-2) becomes a predetermined value.
EP20120761152 2011-03-24 2012-03-05 Device for rolling metal sheet material and method for rolling metal sheet material Not-in-force EP2626149B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011066153 2011-03-24
PCT/JP2012/055515 WO2012128019A1 (en) 2011-03-24 2012-03-05 Rolling mill and rolling method for metal sheet material

Publications (3)

Publication Number Publication Date
EP2626149A1 EP2626149A1 (en) 2013-08-14
EP2626149A4 EP2626149A4 (en) 2014-03-05
EP2626149B1 true EP2626149B1 (en) 2015-04-29

Family

ID=46879176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20120761152 Not-in-force EP2626149B1 (en) 2011-03-24 2012-03-05 Device for rolling metal sheet material and method for rolling metal sheet material

Country Status (6)

Country Link
EP (1) EP2626149B1 (en)
JP (1) JP5059250B1 (en)
KR (1) KR101392078B1 (en)
CN (1) CN103237609B (en)
TW (1) TWI496630B (en)
WO (1) WO2012128019A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923564B (en) * 2014-03-21 2017-02-22 宝山钢铁股份有限公司 Method capable of avoiding false alarm due to roll pullout in work roll shifting process
TWI499881B (en) * 2014-04-29 2015-09-11 China Steel Corp Method of establishing the instant compensation system of width compensation and its database
JP7313768B2 (en) * 2019-05-23 2023-07-25 スチールプランテック株式会社 Rolling mill, rolling method and work roll operation method
WO2021205548A1 (en) * 2020-04-07 2021-10-14 Primetals Technologies Japan 株式会社 Rolling mill, method for manufacturing rolling mill, and method for modifying rolling mill
CN113787095B (en) * 2021-09-03 2024-05-03 太原理工大学 Metal composite plate rolling device capable of applying horizontal vibration

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517635B2 (en) * 1971-12-10 1976-03-09
JPS6040928B2 (en) * 1978-08-09 1985-09-13 株式会社日立製作所 rolling mill
JPS5942106A (en) * 1982-09-01 1984-03-08 Hitachi Ltd Rolling mill
JPS62142403U (en) * 1986-02-28 1987-09-08
JPH0749124B2 (en) 1986-03-20 1995-05-31 株式会社日立製作所 Roll shift rolling mill
JPS63199006A (en) * 1987-02-12 1988-08-17 Nippon Steel Corp Work roll bending method for rolling mill
JPH02280910A (en) * 1989-04-20 1990-11-16 Kawasaki Steel Corp Rolling machine
JP2879239B2 (en) * 1990-02-23 1999-04-05 株式会社ユニシアジェックス Shift control device for automatic transmission for vehicle
JPH084812B2 (en) 1990-06-15 1996-01-24 株式会社日立製作所 Rolling mill
JPH0687011A (en) 1992-09-09 1994-03-29 Kawasaki Steel Corp Method for rolling thick plate
JP3040037B2 (en) 1992-12-28 2000-05-08 株式会社日立製作所 Rolling method and multi-high rolling mill
JPH08215730A (en) * 1995-02-21 1996-08-27 Nippon Steel Corp Roll bending equipment and plate rolling method of plate rolling mill
JP3879239B2 (en) * 1998-03-24 2007-02-07 Jfeスチール株式会社 Crown control method
CN2936473Y (en) * 2006-06-27 2007-08-22 宝山钢铁股份有限公司 Improved structure of rolling mill support roll lift piston rod
TW200817109A (en) * 2006-10-03 2008-04-16 Metal Ind Res & Dev Ct Continuous manufacturing method of metal sheet and apparatus of the same
EP2554284B1 (en) * 2010-03-31 2014-11-19 Nippon Steel & Sumitomo Metal Corporation Rolling method of metal flat-rolled product
EP2554282B1 (en) * 2010-03-31 2015-03-25 Nippon Steel & Sumitomo Metal Corporation Metal plate rolling machine and rolling method

Also Published As

Publication number Publication date
EP2626149A4 (en) 2014-03-05
WO2012128019A1 (en) 2012-09-27
KR101392078B1 (en) 2014-05-07
KR20130069875A (en) 2013-06-26
TWI496630B (en) 2015-08-21
TW201304886A (en) 2013-02-01
CN103237609A (en) 2013-08-07
JPWO2012128019A1 (en) 2014-07-24
EP2626149A1 (en) 2013-08-14
CN103237609B (en) 2014-05-28
JP5059250B1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
EP2626149B1 (en) Device for rolling metal sheet material and method for rolling metal sheet material
CN101961728A (en) Milling train and tandem mill with this milling train
CN101633000B (en) Axial moving device of intermediate rolls
CA3069981A1 (en) Systems and methods for controlling flatness of a metal substrate with low pressure rolling
EP2554284B1 (en) Rolling method of metal flat-rolled product
US11173529B2 (en) In-line calibration of the roll gap of a roll stand
WO2011122069A1 (en) Metal plate rolling machine and rolling method
JP5640769B2 (en) Metal plate rolling machine and rolling method
JP5533754B2 (en) Tandem rolling equipment and hot rolling method for metal sheet
KR20120130008A (en) Operation control method of tandem rolling mill, and method for producing hot-rolled steel sheet using same
JP5527238B2 (en) Thick plate rolling machine for metal sheet
CN101961729A (en) Milling train and tandem mill with this milling train
JP5712620B2 (en) Metal plate rolling machine
JP5673279B2 (en) Metal plate rolling machine and rolling method
JP4772934B1 (en) Metal plate rolling machine and rolling method
JP4763100B1 (en) Metal plate rolling method
CN117380781A (en) Levelling machine and control method for back pressure of main hydraulic cylinder of levelling machine
CN116723901A (en) Rolling with minimal bending force drop upon entry
HONJO et al. IHI Shape Control Equipment for Strip and Plate Rolling Mill
JPS628241B2 (en)
JPH05293508A (en) Rolling mill

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

A4 Supplementary search report drawn up and despatched

Effective date: 20140131

RIC1 Information provided on ipc code assigned before grant

Ipc: B21B 31/20 20060101ALI20140127BHEP

Ipc: B21B 29/00 20060101ALI20140127BHEP

Ipc: B21B 37/38 20060101ALI20140127BHEP

Ipc: B21B 13/14 20060101AFI20140127BHEP

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141008

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012007056

Country of ref document: DE

Effective date: 20150611

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012007056

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 724150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160305

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160305

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120305

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160331

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602012007056

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012007056

Country of ref document: DE

Owner name: NIPPON STEEL CORPORATION, JP

Free format text: FORMER OWNER: NIPPON STEEL & SUMITOMO METAL CORPORATION, TOKYO, JP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200218

Year of fee payment: 9

Ref country code: AT

Payment date: 20200225

Year of fee payment: 9

Ref country code: IT

Payment date: 20200221

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012007056

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 724150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210305

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210305