EP2620412A1 - Procédé de détermination d'une impureté de surface de silicium polycristallin - Google Patents

Procédé de détermination d'une impureté de surface de silicium polycristallin Download PDF

Info

Publication number
EP2620412A1
EP2620412A1 EP20130151468 EP13151468A EP2620412A1 EP 2620412 A1 EP2620412 A1 EP 2620412A1 EP 20130151468 EP20130151468 EP 20130151468 EP 13151468 A EP13151468 A EP 13151468A EP 2620412 A1 EP2620412 A1 EP 2620412A1
Authority
EP
European Patent Office
Prior art keywords
rod
polycrystalline silicon
impurities
silicon
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20130151468
Other languages
German (de)
English (en)
Other versions
EP2620412B1 (fr
Inventor
Hanns Dr. Wochner
Robert Dr. Baumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP2620412A1 publication Critical patent/EP2620412A1/fr
Application granted granted Critical
Publication of EP2620412B1 publication Critical patent/EP2620412B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Definitions

  • the invention relates to a method for determining a surface contamination of polycrystalline silicon.
  • crude silicon is obtained by reducing silica with carbon in the arc furnace at temperatures of about 2000 ° C.
  • the metallurgical silicon For applications in photovoltaics and in microelectronics, the metallurgical silicon must be cleaned. For this purpose, it is for example reacted with gaseous hydrogen chloride at 300-350 ° C in a fluidized bed reactor to a silicon-containing gas, such as trichlorosilane. This is followed by distillation steps to purify the silicon-containing gas.
  • a silicon-containing gas such as trichlorosilane.
  • This high-purity silicon-containing gas then serves as a starting material for the production of high-purity polycrystalline silicon.
  • the polycrystalline silicon often called polysilicon for short, is usually produced by means of the Siemens process.
  • a bell-shaped reactor (“Siemens reactor") thin filament rods of silicon are heated by direct current passage and a reaction gas containing a silicon-containing component and hydrogen is introduced.
  • the filament rods are usually placed vertically in electrodes located at the bottom of the reactor, via which the connection to the power supply takes place.
  • Two Filamanentstäbe are coupled via a horizontal bridge (also made of silicon) and form a carrier body for the silicon deposition.
  • the bridging coupling produces the typical U-shape of the support bodies, which are also called thin rods.
  • these polysilicon rods are usually further processed by mechanical processing into fragments of different size classes, optionally subjected to a wet-chemical cleaning and finally packaged.
  • the polysilicon can also be further processed in the form of rods or rod pieces. This applies in particular to the use of polysilicon in FZ processes.
  • Polycrystalline silicon serves as a starting material in the production of monocrystalline silicon by means of crucible pulling (Czochralski or CZ process) or by zone melting (floatzone or FZ process). This monocrystalline silicon is cut into slices (wafers) and after a variety of mechanical, chemical and chemo-mechanical processing in the semiconductor industry used to manufacture electronic components (chips).
  • polycrystalline silicon is increasingly required for the production of monocrystalline or multicrystalline silicon by means of drawing or casting processes, this monocrystalline or multicrystalline silicon being used to produce solar cells for photovoltaics.
  • the material is investigated, for example, for contamination with metals or dopants. A distinction is made between the contamination in the bulk and the contamination on the surface of the polysilicon fragments or bar pieces.
  • Dopants (B, P, As, Al) are analyzed by photoluminescence according to SEMI MF 1398 on an FZ single crystal (SEMI MF 1723) produced from the polycrystalline material.
  • FTIR Fast-Transform IR spectroscopy
  • Bases of the FZ process are, for example, in DE-3007377 A described.
  • a polycrystalline stock rod is gradually melted by means of a high-frequency coil and the molten material is converted into a monocrystal by seeding with a monocrystalline seed crystal and subsequent recrystallization.
  • the diameter of the resulting single crystal is first conically enlarged (cone formation) until a desired final diameter is reached (rod formation).
  • the single crystal is also mechanically supported to relieve the thin seed crystal.
  • a disk (wafer) is cut off from the single-crystal rod produced from a polycrystalline silicon rod by means of FZ (SEMI MF 1723). From the pulled monocrystalline rod, a disk is cut out, etched with HF / HNO 3, rinsed with 18MOH of water and dried. The photoluminescence measurements are carried out on this disk.
  • a slice is cut out of a polycrystalline rod.
  • the slice is polished.
  • the carbon content is determined by means of FTIR spectroscopy.
  • Impurities on the surface can only be determined indirectly.
  • DE 41 37 521 A1 describes a method for analyzing the concentration of impurities in silicon particles, characterized in that particulate silicon is placed in a silicon vessel, the particulate silicon and the silicon vessel work up to monocrystalline silicon in a suspension zone and the concentration Impurities that are present in the monocrystalline silicon can be determined.
  • the concentrations of boron, phosphorus, aluminum and carbon in the silicon vessel used were determined and provide a reproducible background value.
  • the values for boron, phosphorus and carbon determined by the FTIR using the floating zone method were corrected for the proportion that originated from the silicon vessel. In this application it is also shown that the fragmentation of a polycrystalline silicon rod leads to a contamination of the silicon.
  • DE 43 30 598 A1 also discloses a method which makes it possible to deduce the contamination of silicon due to comminution processes.
  • a block of silicon was broken into pieces.
  • the silicon lump was then subjected to a zone melting process and converted into a single crystal.
  • a wafer was sawn out and examined by photoluminescence for boron and phosphorus.
  • photoluminescence for boron and phosphorus.
  • concentration of boron and phosphorus which is also attributable, inter alia, to the comminution process.
  • the described methods do not take into account that the environment in which not only the comminution process, but also other process steps such as storage, transport, cleaning, packaging take place, have an influence on the contamination of the silicon, in particular on its superficial contamination.
  • two polycrystalline silicon rods are provided by depositing polycrystalline silicon in a Siemens reactor to form U-shaped polycrystalline silicon bodies each comprising two polycrystalline silicon rods.
  • the reaction gas used in the deposition is typically a silicon-containing component, preferably trichlorosilane, and hydrogen.
  • the deposition takes place in a small test reactor.
  • a previously mentioned U-shaped body can be removed from the reactor after deposition, with the bridge and the respective bar ends subsequently being severed, so that two polycrystalline silicon rods are obtained in one and the same batch.
  • the two polycrystalline silicon rods provided in step a) were preferably connected to one another during the deposition via a bridge (U-shape) (fret rods).
  • the two polycrystalline silicon rods When using a small reactor, the two polycrystalline silicon rods typically have a length of about 20 cm and a diameter of about 1.6 cm.
  • One of the two bars is preferably packed in a PE bag immediately after the separation and separation of bridge and bar end.
  • both bars are each packed in a PE bag.
  • This first rod is then examined for contamination.
  • dopants and carbon are determined.
  • the bar is removed from the PE bag, a slice is separated from the polycrystalline bar and fed to the FTIR measurement.
  • the carbon concentration is determined.
  • the remaining rod is preferably converted by means of FZ into a monocrystalline rod.
  • the concentration of dopants is determined by means of photoluminescence.
  • the second rod is preferably passed through the plants for producing polycrystalline silicon fracture (comminution, packaging) and optionally through the plants for the purification of polycrystalline silicon fracture.
  • the rod absorbs the impurities with respect to dopants and carbon when passing through the systems.
  • the contaminated rod After passing through the cleaning equipment or the road to produce unpurified poly-break the contaminated rod is preferably again packaged in a high-purity PE bag.
  • dopants are determined by means of photoluminescence and carbon by means of FTIR.
  • the determination of the carbon concentration by means of FTIR does not take place on a polycrystalline disc but on a monocrystalline disc.
  • the values measured on the first bar are subtracted from the values of the second bar passed by the facilities.
  • the difference values between the first and second bars then give the value that can be assigned to the surface of the polycrystalline silicon after processing, cleaning, packaging.
  • the method according to the invention thus offers the possibility of indirectly determining how polysilicon is contaminated in the processing steps such as comminution, cleaning, packaging or transport processes on the surface.
  • the process thus provides surface contamination for all sorts of products, such as polysilicon rods, cutrods and polysilicon fractions of different size classes (etched or unetched).
  • the dopant concentrations were determined by means of photoluminescence.
  • the twelve brother rods - although they come from different batches - must have the same analytical values for boron, phosphorus, aluminum and arsenic, since they were simultaneously driven through the cleaning system under the same conditions.
  • Table 1 shows the values determined for boron, phosphorus, aluminum and arsenic in ppta.
  • the content of carbon particles on the silicon surface can also be determined with a reproducibility of +/- 10 ppba with a detection limit of 10 ppba.
  • the example shows how the second rod is passed through the cleaning system and then examined for dopant concentration.
  • the first rod (brother rod of the second rod from a U-shaped body after deposition) was analyzed for dopants by photoluminescence as described above.
  • the PE bag in which the second rod (length 20 cm, diameter 1.6 cm) was packed, is opened with a pair of scissors, preferably a ceramic scissors.
  • the rod is removed, using a high-purity glove for manual removal. Then the rod is placed in a process bowl.
  • PET-Tyvek® glove A suitable high purity glove (PE-Tyvek® glove) is disclosed in U.S. Patent No. 5,348,866 US 2011-0083249 , which is hereby incorporated by reference.
  • Tyvek ® from DuPont is a paper-like nonwoven fiber textile function of thermally welded fibers of high density polyethylene (HDPE).
  • the process bowl filled with the rod is moved through the cleaning system.
  • the silicon rod is washed in a pre-cleaning with an oxidizing cleaning solution containing the compounds hydrofluoric acid (HF), hydrochloric acid (HCl) and hydrogen peroxide (H 2 O 2 ).
  • HF hydrofluoric acid
  • HCl hydrochloric acid
  • H 2 O 2 hydrogen peroxide
  • the bar is washed with a cleaning solution containing nitric acid (HNO 3 ) and hydrofluoric acid (HF).
  • HNO 3 nitric acid
  • HF hydrofluoric acid
  • the rod After cleaning the rod, it is dried and, after cooling, handled with a high-purity glove, preferably a PE Tyvek® glove, and packed in a high-purity PE bag and sealed.
  • a high-purity glove preferably a PE Tyvek® glove
  • the contaminated rod is processed by FZ to a monocrystalline rod.
  • dopants are determined by photoluminescence.
  • FTIR could also be used to study carbon.
  • the difference values between the first and second bars then give the values that can be assigned to the surface of the polysilicon.
  • Table 2 shows the determined difference values for surface contamination on boron, phosphorus, aluminum and arsenic. ⁇ b> Table 2 ⁇ / b> B P al ace 44.06 15.46 0.03 1.29 119.32 405.97 194.63 22.78 19.10 4.28 0.89 4.66 128.55 250.91 145.57 17.18 7.70 79.68 0.87 0.52 3.58 21,01 1.53 2.66 3.86 16.17 6.71 4.39 6.57 0.22 0.25 1.24 9.11 2.68 1.37 1.08 10.10 1.37 14,60 0.59 20.47 41.02 7.26 3.18

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
EP13151468.9A 2012-01-24 2013-01-16 Procédé de détermination d'une impureté de surface de silicium polycristallin Active EP2620412B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012200994A DE102012200994A1 (de) 2012-01-24 2012-01-24 Verfahren zur Bestimmung einer Oberflächen-Verunreinigung von polykristallinem Silicium

Publications (2)

Publication Number Publication Date
EP2620412A1 true EP2620412A1 (fr) 2013-07-31
EP2620412B1 EP2620412B1 (fr) 2015-11-25

Family

ID=47563231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13151468.9A Active EP2620412B1 (fr) 2012-01-24 2013-01-16 Procédé de détermination d'une impureté de surface de silicium polycristallin

Country Status (8)

Country Link
US (1) US10605659B2 (fr)
EP (1) EP2620412B1 (fr)
JP (1) JP5722361B2 (fr)
KR (1) KR101460144B1 (fr)
CN (1) CN103217396B (fr)
CA (1) CA2799075C (fr)
DE (1) DE102012200994A1 (fr)
ES (1) ES2561004T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173596A1 (fr) * 2013-04-22 2014-10-30 Wacker Chemie Ag Procédé de production de silicium polycristallin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013221826A1 (de) 2013-10-28 2015-04-30 Wacker Chemie Ag Verfahren zur Herstellung von polykristallinem Silicium
JP6472768B2 (ja) * 2016-04-08 2019-02-20 信越化学工業株式会社 フォトルミネッセンス法によるシリコン結晶中の不純物定量方法および多結晶シリコンの選別方法
CN111060017A (zh) * 2020-01-15 2020-04-24 长治高测新材料科技有限公司 一种单多晶硅棒自动检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0345618A2 (fr) * 1988-06-01 1989-12-13 Advanced Silicon Materials, Inc. Silicium polycristallin
DE4137521A1 (de) * 1990-11-15 1992-05-21 Hemlock Semiconductor Corp Analytisches verfahren fuer teilchenfoermiges silicium
DE102006035081A1 (de) * 2006-07-28 2008-01-31 Wacker Chemie Ag Verfahren und Vorrichtung zur Herstellung von klassiertem polykristallinen Siliciumbruch in hoher Reinheit
DE102008040231A1 (de) * 2008-07-07 2008-12-18 Wacker Chemie Ag Polykristalliner Siliciumbruch hoher Reinheit und Reinigungsverfahren zu seiner Herstellung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3007377A1 (de) 1980-02-27 1981-09-03 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zum tiegelfreien zonenschmelzen eines siliciumstabes
JPH0758261B2 (ja) * 1987-08-21 1995-06-21 松下電子工業株式会社 シリコン中の不純物濃度の測定方法
US5361128A (en) * 1992-09-10 1994-11-01 Hemlock Semiconductor Corporation Method for analyzing irregular shaped chunked silicon for contaminates
DE19741465A1 (de) 1997-09-19 1999-03-25 Wacker Chemie Gmbh Polykristallines Silicium
JP3984865B2 (ja) * 2002-05-22 2007-10-03 住友チタニウム株式会社 多結晶シリコン製造方法
US6874713B2 (en) * 2002-08-22 2005-04-05 Dow Corning Corporation Method and apparatus for improving silicon processing efficiency
US7141114B2 (en) * 2004-06-30 2006-11-28 Rec Silicon Inc Process for producing a crystalline silicon ingot
US7270706B2 (en) * 2004-10-04 2007-09-18 Dow Corning Corporation Roll crusher to produce high purity polycrystalline silicon chips
DE102006031105A1 (de) * 2006-07-05 2008-01-10 Wacker Chemie Ag Verfahren zur Reinigung von Polysilicium-Bruch
DE102007027110A1 (de) * 2007-06-13 2008-12-18 Wacker Chemie Ag Verfahren und Vorrichtung zum Verpacken von polykristallinem Siliciumbruch
DE102008026811B4 (de) * 2008-06-05 2012-04-12 Centrotherm Sitec Gmbh Verfahren und Anordnung zum Aufschmelzen von Silizium
JP5083089B2 (ja) * 2008-07-23 2012-11-28 株式会社Sumco シリコン材料表層における金属不純物分析方法
JP5751748B2 (ja) * 2009-09-16 2015-07-22 信越化学工業株式会社 多結晶シリコン塊群および多結晶シリコン塊群の製造方法
DE102009045538A1 (de) 2009-10-09 2011-04-14 Wacker Chemie Ag Atmungsaktiver Handschuh zur Verwendung beim Verpacken und Sortieren von hochreinem Silicium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0345618A2 (fr) * 1988-06-01 1989-12-13 Advanced Silicon Materials, Inc. Silicium polycristallin
DE4137521A1 (de) * 1990-11-15 1992-05-21 Hemlock Semiconductor Corp Analytisches verfahren fuer teilchenfoermiges silicium
DE102006035081A1 (de) * 2006-07-28 2008-01-31 Wacker Chemie Ag Verfahren und Vorrichtung zur Herstellung von klassiertem polykristallinen Siliciumbruch in hoher Reinheit
DE102008040231A1 (de) * 2008-07-07 2008-12-18 Wacker Chemie Ag Polykristalliner Siliciumbruch hoher Reinheit und Reinigungsverfahren zu seiner Herstellung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173596A1 (fr) * 2013-04-22 2014-10-30 Wacker Chemie Ag Procédé de production de silicium polycristallin

Also Published As

Publication number Publication date
US20130186325A1 (en) 2013-07-25
EP2620412B1 (fr) 2015-11-25
JP5722361B2 (ja) 2015-05-20
ES2561004T3 (es) 2016-02-23
DE102012200994A1 (de) 2013-07-25
JP2013151412A (ja) 2013-08-08
CA2799075A1 (fr) 2013-07-24
KR101460144B1 (ko) 2014-11-11
KR20130086305A (ko) 2013-08-01
CN103217396A (zh) 2013-07-24
US10605659B2 (en) 2020-03-31
CA2799075C (fr) 2014-06-03
CN103217396B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
EP2620411B1 (fr) Pièce de silicium polycristallin pauvre en dopant
EP2426085B1 (fr) Procédé de fabrication de silicium polycristallin
EP2607310B1 (fr) Silicium polycristallin
EP2453042B1 (fr) Procédé de détermination d'impuretés dans du silicium
EP2620412B1 (fr) Procédé de détermination d'une impureté de surface de silicium polycristallin
DE102011077455A1 (de) Verfahren zur Bestimmung von Verunreinigungen in Silicium
EP3554999B1 (fr) Procédé de production de silicium polycristallin
WO2018108258A1 (fr) Procédé de production de silicium polycristallin
DE102011080866A1 (de) Verfahren zur Herstellung eines einkristallinen Stabes aus Silicium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C01B 33/035 20060101ALI20150428BHEP

Ipc: G01J 3/28 20060101ALI20150428BHEP

Ipc: C01B 33/021 20060101ALI20150428BHEP

Ipc: G01N 21/64 20060101ALI20150428BHEP

Ipc: C23C 16/24 20060101ALI20150428BHEP

Ipc: C01B 33/02 20060101AFI20150428BHEP

Ipc: C30B 13/00 20060101ALI20150428BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 762488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001528

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2561004

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160223

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001528

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

26N No opposition filed

Effective date: 20160826

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130116

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 762488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200131

Year of fee payment: 8

Ref country code: ES

Payment date: 20200221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200121

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 12