EP2616650B1 - Coolant circuit for an internal combustion engine - Google Patents

Coolant circuit for an internal combustion engine Download PDF

Info

Publication number
EP2616650B1
EP2616650B1 EP11740569.6A EP11740569A EP2616650B1 EP 2616650 B1 EP2616650 B1 EP 2616650B1 EP 11740569 A EP11740569 A EP 11740569A EP 2616650 B1 EP2616650 B1 EP 2616650B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
coolant
internal combustion
combustion engine
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11740569.6A
Other languages
German (de)
French (fr)
Other versions
EP2616650A1 (en
Inventor
Matthias Honzen
Sebastian Riedl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP2616650A1 publication Critical patent/EP2616650A1/en
Application granted granted Critical
Publication of EP2616650B1 publication Critical patent/EP2616650B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • F02F7/0012Crankcases of V-engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • Coolant circuit for an internal combustion engine in particular designed as a two-circuit cooling coolant circuit for internal combustion engines with at least two parallel cylinder banks, preferably in V or W design.
  • Such coolant circuits are used in internal combustion engine construction for motor vehicles for cooling assemblies of the internal combustion engine, in particular of cylinder heads and cylinder crankcases, at a different temperature level.
  • Coolant circuits for internal combustion engines with a cylinder crankcase having opposite cylinder banks are among others from the DE 103 18 744 A1 or the DE 10 2006 044 680 A1 known.
  • V-engine Coolant circuits for internal combustion engines with a cylinder crankcase having opposite cylinder banks, that is designed as a so-called "V-engineā€ are among others from the DE 103 18 744 A1 or the DE 10 2006 044 680 A1 known.
  • there is always a fluidic connection between the coolant jacket of the cylinder crankcase and the coolant jacket in the overlying cylinder heads so that no separate flow at different temperature levels is possible.
  • Such a dual-circuit cooling as is known from the DE 198 03 885 A1 or the JP 600 199 12 A shows, in which the cylinder crankcase and the cylinder head are internally fluidically separated from each other and involved in parallel to each other subcircuits of the coolant circuit are so far mainly used in inline engines with a single cylinder bank.
  • the DE 100 21 525 A1 shows a cooling circuit for a multi-cylinder V-engine with a, a cylinder head housing and a cylinder block surrounding cooling jacket, which is supplied via a pump with coolant, at least one cylinder cooling jacket and at least one cylinder head cooling chamber provided with a connection for the supply of the cooling liquid are and wherein the flow through the cylinder head housing and cylinder block with coolant takes place in parallel.
  • the disadvantage is that a blockage of the outflow of the cylinder cooling jacket, for faster heating of the therein cooling liquid, while cooling liquid flow through the cylinder head cooling chamber, an undesirable cooling liquid movement in the cylinder cooling jacket by cross flows to result, which slows the heating of the cylinder block.
  • the generic US 5,497,734 A and JP 10 184358 A each show a coolant circuit for an internal combustion engine, comprising a cylinder crankcase with at least two cylinder banks, and associated cylinder heads, wherein the cylinder crankcase and the cylinder heads can be acted upon by parallel running partial circuits of the coolant circuit of a coolant pump with coolant, wherein a first control valve with at least two synchronously switchable first connections and a second connection in a cylinder crankcase partial circuit is arranged and wherein the first terminals are connected in pairs with each one of the cylinder banks in fluid communication.
  • the disadvantage is that the control valves shown for combining the coolant from the cylinder banks constructed consuming and difficult to control synchronously.
  • the object of the present invention is therefore to provide a coolant circuit for an internal combustion engine having a plurality of cylinder banks. This object is solved by the features of patent claim 1.
  • Coolant circuit for an internal combustion engine comprising a cylinder crankcase with at least two cylinder banks, and associated cylinder heads, wherein the cylinder crankcase and the cylinder heads can be acted upon by separate and parallel partial circuits of the coolant circuit of a coolant pump with coolant, wherein a first control valve with at least two synchronously switchable first Terminals and a second port in a cylinder crankcase subcircuit is arranged, wherein the first ports are each connected in fluid communication with one of the cylinder banks and wherein the first control valve is designed as a rotatable about a rotation ball valve, wherein the first terminals radially and the second terminal axially arranged thereon.
  • a coolant flow in the cylinder crankcase subcircuit can also be set in internal combustion engines with a plurality of cylinder banks lying opposite each other, independently of the coolant flow in the cylinder head subcircuit become.
  • the cylinder crankcase generally has a single coolant jacket, which surrounds the two cylinder banks, so that a coolant exchange between the cylinder banks is in principle possible at any time.
  • the cylinder crankcase subcircuit and the cylinder head subcircuit run in sections parallel within the coolant circuit.
  • the synchronous switchability of the paired with the cylinder banks fluidly connected first Ports prevent unwanted cross-flow of the coolant in the cylinder crankcase between the cylinder banks, regardless of the coolant flow in the cylinder head partial circuit. If the first connections of the first control valve are closed synchronously, for example, then a coolant flow in the parallel cylinder head partial circuit can not stimulate any cross-flow of the coolant between the cylinder banks. The cylinder crankcase can thereby heat up faster.
  • This operating principle can be applied analogously for internal combustion engines in V or W construction or boxer engines. Due to the design as a ball valve with radial first ports and axial second port, a first control valve can be provided particularly favorable.
  • the ball valve consists of a housing with rotatably mounted therein Querterrorismsverstellglied.
  • the cross-section adjustment is formed as a spherical hollow body, with an axial opening in the region of the axis of rotation of the Querterrorismsverstellglieds and two, preferably symmetrically opposed, radial openings in a radial peripheral region of the Querterrorismsverstellglieds.
  • the axial opening is in almost every rotational position of the Quer4.000sverstellglieds in almost complete coverage with the second port.
  • the radial openings can be continuously overlapped in synchronism with the first terminals. The overlap of each first terminal with the complementary radial opening in each switching position is the same size.
  • the rotary actuation of the cross section adjustment member is preferably carried out via an electric drive or a pressure cell with electropneumatic pressure transducer.
  • the amount of coolant to be supplied to the first control valve is to be distributed uniformly in all switching positions of the first control valve to all first connections. This ensures that the same amount of coolant flows through all the cylinder banks or that the coolant flow through the cylinder banks can be prevented at the same time. Thus, unwanted cross flows between the cylinder banks are avoided in each switching position of the first control valve.
  • the cylinder banks are each acted upon by a separate cylinder crankcase flow parallel with coolant.
  • the first control valve is disposed downstream of the cylinder crankcase, wherein the second port is fluidly connected to a cylinder crankcase return.
  • the first control valve is acted upon by the first ports with coolant from the cylinder banks.
  • the coolant is discharged via the second connection in a cylinder crankcase return, depending on the switching position of the control valve.
  • the first control valve is arranged upstream of the cylinder crankcase, wherein the second connection is fluidly connected to a common cylinder crankcase flow.
  • the first control valve is acted upon via the second connection with coolant from a common cylinder crankcase flow.
  • the coolant is distributed via the first connections to the parallel cylinder crankcase heaters associated with the cylinder banks. From the cylinder banks, the coolant is discharged via a cylinder crankcase return.
  • the coolant can be circulated by the coolant pump at least temporarily between a main heat exchanger and the cylinder heads and / or the cylinder crankcase.
  • the coolant flow between said components can be temporarily prevented by valves or a coolant pump which can be switched on and off, as a result of which a controlled temperature control of the components is possible independently of one another.
  • each cylinder head has its own cylinder head lead and own cylinder head return, with the cylinder crankcase headers and the cylinder head headers being fed from a common flow section downstream of the coolant pump.
  • the cylinder crankcase return is merge at a junction with the cylinder head recirculations to a common return section.
  • the common return section leads to the main heat exchanger and the common flow section goes from the main heat exchanger.
  • a second control valve between the main heat exchanger and the coolant pump is arranged in the common flow section, in addition to a branch of the common return section, bypassing the main heat exchanger, opens. Due to the branch, the main heat exchanger, if appropriate, the second control valve, if necessary, be bypassed. In this so-called bypass mode, a coolant flow in the cylinder heads, and in dependence on the first control valve in the cylinder crankcase, possible without the heated coolant in the main heat exchanger is cooled. This allows a particularly rapid and uniform heating of the internal combustion engine at an elevated temperature level.
  • the second control valve may direct the coolant through the main heat exchanger by closing the branch.
  • a second control valve in this case is preferably a continuously controllable control valve and more preferably a map thermostat, which can be energized when needed for map change.
  • the coolant circuit described does not extend exclusively to the examples set forth; in particular, further heat exchangers can be added as desired in further sub-circuits.
  • connection of a known ventilation system is provided with a surge tank to the coolant circuit.
  • Fig. 1 has a coolant circuit 1 for an internal combustion engine 2, a main heat exchanger 8 for heat exchange between him flowing around
  • the internal combustion engine 2 consists essentially of a cylinder crankcase 3, which contains the displacements of the working cylinder in two parallel and mutually opposite cylinder banks 3a and is penetrated by a single coolant jacket, as well as, the cylinder banks 3a associated, cylinder heads 4, which accommodate essentially gas exchange devices for the working cylinder and are also penetrated by a coolant jacket.
  • the coolant jackets of the cylinder heads 4 and the cylinder crankcase 3 are not internally fluidically connected, but involved in separate and parallel to each other subcircuits 5 and 6 of the coolant circuit 1.
  • each cylinder head 4, and each cylinder bank 3a of the cylinder crankcase 3 via its own flow connection 6a and 5a, which are acted upon by a cooling medium pump 7 having common flow section 14 with coolant.
  • the common flow section 14 branches at a branch point 12, at which the coolant is distributed to the two sides of the V-shaped internal combustion engine 2, on. Further downstream takes place a further division between the cylinder head 4 or cylinder bank 3a.
  • the coolant from the cylinder banks 3a flows via a respective first port 9a to a first control valve 10.
  • the first control valve 10 is as a in Fig.
  • the first control valve 10 can completely separate the two first connections 9a from a cylinder crankcase return 5b connected to a second connection 9b of the first control valve 10.
  • the cylinder heads 4, however, have their own cylinder head returns 6b, which are merged at a junction 13 with the cylinder crankcase return 5b to a common return section 15.
  • the common return section 15 extends to the input side of the main heat exchanger 8, while the common flow section 14 from the output side of the main heat exchanger 8 springs.
  • the common flow section 14 contains, in addition to the central coolant pump 7, a second control valve 11 arranged upstream of the coolant pump 7, which is additionally contacted by a branch 16 branching off from the common return section 15, bypassing the main heat exchanger 8.
  • the second control valve 11 is designed as an energizable map thermostat, which closes the branch 16 in response to variable by means of energizationdeffentemperaturschwell culture and passes the coolant through the main heat exchanger 8. Otherwise, the coolant is passed via the branch 16 on the main heat exchanger 8 to the coolant pump 7. From one of the cylinder heads 4, a heating circuit 17 with a heating heat exchanger 18 located therein for heating ambient air for a vehicle interior, which opens upstream of the coolant pump 7 and downstream of the second control valve 11 again in the common flow section 14.
  • a coolant circuit 1 for an internal combustion engine 2 has a main heat exchanger 8 for heat exchange between the surrounding air flowing around it and the coolant flowing through it from the coolant circuit 1, and a coolant pump 7 for generating a coolant circulation in the coolant circuit 1.
  • the internal combustion engine 2 consists essentially of a cylinder crankcase 3, which contains the displacements of the working cylinder in two parallel and opposite cylinder banks 3a and is penetrated by a single coolant jacket, and the cylinder banks 3a associated, cylinder heads 4, which accommodate essentially devices for gas exchange for the working cylinder and also from a coolant jacket are interspersed.
  • the coolant jackets of the cylinder heads 4 and the cylinder crankcase 3 are not internally fluidically connected, but in separate and mutually parallel partial circuits 5 and 6 of the Integrated coolant circuit 1.
  • each cylinder head 4, and each cylinder bank 3a of the cylinder crankcase 3 via its own flow connection 6a and 5a, which are acted upon by a cooling medium pump 7 having common flow section 14 with coolant.
  • the common flow section 14 branches at a branch point 12, at which the coolant is distributed to the cylinder heads 4 or the cylinder banks 3, on.
  • a common cylinder crankcase flow 5c opens to a second port 9b of a, in Fig.
  • the first control valve 10 distributes the coolant via synchronously switchable first ports 9a to the parallel cylinder crankcase advances 5a, which lead to the cylinder banks 3a.
  • the first control valve 10 synchronously switches the first ports 9a such that the coolant amount to be supplied to the first control valve 10 is uniformly distributed in each shift position to the first two ports 9a.
  • the first control valve 10 can completely separate the two first connections 9a from the common cylinder crankcase flow 5c.
  • the common return section 15 extends to the input side of the main heat exchanger 8, while the common flow section 14 from the output side of the main heat exchanger 8 springs.
  • the common flow section 14 contains, in addition to the central coolant pump 7, a second control valve 11 arranged upstream of the coolant pump 7, which is additionally contacted by a branch 16 branching off from the common return section 15, bypassing the main heat exchanger 8.
  • the second control valve 11 is designed as an energizable map thermostat, which closes the branch 16 in response to variable by means of energizationdeschtemperaturschwell paper and passes the coolant through the main heat exchanger 8. Otherwise, the coolant is passed via the branch 16 on the main heat exchanger 8 to the coolant pump 7. From one of the cylinder heads 4, a heating circuit 17 with a heating heat exchanger 18 located therein for heating ambient air for a vehicle interior, which opens upstream of the coolant pump 7 and downstream of the second control valve 11 again in the common flow section 14.
  • Fig. 3 has a ball valve 10 for a coolant circuit of an internal combustion engine, a housing 10 b, in which a Querterrorismsverstellglied 10 a is rotatably mounted about a rotation axis A.
  • the housing 10b has an axial second terminal 9b and two radially opposite first radial terminals 9a.
  • the cross-section adjustment member 10a is formed as a spherical hollow body with corresponding openings 10d and 10e.
  • the axial opening 10e is independent of the current position of the Querterrorismsverstellglieds 10a always approximately congruent with the second terminal 9b.
  • the radial openings 10d are distributed symmetrically over the radial circumference of the Querterrorismsverstellglieds, so that the first terminals 9a occupy the same coverage with the complementary radial openings 10d in each rotational position of the Querterrorismsverstellglieds 10a. In the position shown, the first terminals 9a are fully opened. If the Querterrorismsverstellglied 10 a rotated at an angle of 90 Ā° about the axis of rotation A, the first terminals 9 a are closed. In addition to these two edge positions, all possible intermediate positions are conceivable. For this purpose, to actuate the Queritesverstellglieds 10a, for example, a non-illustrated pressure cell attack with electropneumatic pressure transducer. To prevent leakage, the gap between the cross-section adjustment member 10a and the housing 10b is sealed by seals 10c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

KĆ¼hlmittelkreislauf fĆ¼r eine Brennkraftmaschine, insbesondere als ZweikreiskĆ¼hlung ausgebildeter KĆ¼hlmittelkreislauf fĆ¼r Brennkraftmaschinen mit mindestens zwei parallel liegenden ZylinderbƤnken, vorzugsweise in V- oder W-Bauform.Coolant circuit for an internal combustion engine, in particular designed as a two-circuit cooling coolant circuit for internal combustion engines with at least two parallel cylinder banks, preferably in V or W design.

Derartige KĆ¼hlmittelkreislƤufe werden im Brennkraftmaschinenbau fĆ¼r Kraftfahrzeuge zur KĆ¼hlung von Baugruppen der Brennkraftmaschine, insbesondere von Zylinderkƶpfen und ZylinderkurbelgehƤuse, auf einem unterschiedlichen Temperaturniveau genutzt.Such coolant circuits are used in internal combustion engine construction for motor vehicles for cooling assemblies of the internal combustion engine, in particular of cylinder heads and cylinder crankcases, at a different temperature level.

KĆ¼hlmittelkreislƤufe fĆ¼r Brennkraftmaschinen mit einem ZylinderkurbelgehƤuse, das gegenĆ¼berliegende ZylinderbƤnke aufweist, also als sogenannter "V-Motor" ausgebildet ist, sind unter anderem aus der DE 103 18 744 A1 oder der DE 10 2006 044 680 A1 bekannt. Hierbei besteht jedoch stets eine strƶmungstechnische Verbindung zwischen dem KĆ¼hlmittelmantel des ZylinderkurbelgehƤuses und dem KĆ¼hlmittelmantel in den darĆ¼ber liegenden Zylinderkƶpfen, so dass keine getrennte Durchstrƶmung auf unterschiedlichem Temperaturniveau mƶglich ist.Coolant circuits for internal combustion engines with a cylinder crankcase having opposite cylinder banks, that is designed as a so-called "V-engine" are among others from the DE 103 18 744 A1 or the DE 10 2006 044 680 A1 known. However, there is always a fluidic connection between the coolant jacket of the cylinder crankcase and the coolant jacket in the overlying cylinder heads, so that no separate flow at different temperature levels is possible.

Eine derartige ZweikreiskĆ¼hlung, wie sie aus der DE 198 03 885 A1 oder der JP 600 199 12 A hervorgeht, bei der das ZylinderkurbelgehƤuse und der Zylinderkopf intern strƶmungstechnisch voneinander getrennt sind und dafĆ¼r in parallel zueinander verlaufende TeilkreislƤufe des KĆ¼hlmittelkreislaufs eingebunden sind, ist bisher hauptsƤchlich bei Reihenmotoren mit einer einzigen Zylinderbank verbreitet.Such a dual-circuit cooling, as is known from the DE 198 03 885 A1 or the JP 600 199 12 A shows, in which the cylinder crankcase and the cylinder head are internally fluidically separated from each other and involved in parallel to each other subcircuits of the coolant circuit are so far mainly used in inline engines with a single cylinder bank.

Die DE 100 21 525 A1 zeigt jedoch einen KĆ¼hlkreislauf fĆ¼r eine mehrzylindrige Brennkraftmaschine in V-Bauform mit einem, ein ZylinderkopfgehƤuse und einen Zylinderblock umgebenden, KĆ¼hlmantel, der Ć¼ber eine Pumpe mit KĆ¼hlflĆ¼ssigkeit versorgt wird, wobei mindestens ein ZylinderkĆ¼hlmantel und mindestens ein ZylinderkopfkĆ¼hlraum mit einem Anschluss fĆ¼r die Zufuhr der KĆ¼hlflĆ¼ssigkeit versehen sind und wobei die Durchstrƶmung von ZylinderkopfgehƤuse und Zylinderblock mit KĆ¼hlflĆ¼ssigkeit parallel erfolgt.The DE 100 21 525 A1 However, shows a cooling circuit for a multi-cylinder V-engine with a, a cylinder head housing and a cylinder block surrounding cooling jacket, which is supplied via a pump with coolant, at least one cylinder cooling jacket and at least one cylinder head cooling chamber provided with a connection for the supply of the cooling liquid are and wherein the flow through the cylinder head housing and cylinder block with coolant takes place in parallel.

Nachteilig ist jedoch, dass eine Sperrung des Abflusses des ZylinderkĆ¼hlmantels, zur schnelleren Aufheizung der darin befindlichen KĆ¼hlflĆ¼ssigkeit, bei gleichzeitiger KĆ¼hlflĆ¼ssigkeitsstrƶmung durch den ZylinderkopfkĆ¼hlraum, eine unerwĆ¼nschte KĆ¼hlflĆ¼ssigkeitsbewegung im ZylinderkĆ¼hlmantel durch Querstrƶmungen zur Folge hat, was die Aufheizung des Zylinderblocks verlangsamt.The disadvantage, however, is that a blockage of the outflow of the cylinder cooling jacket, for faster heating of the therein cooling liquid, while cooling liquid flow through the cylinder head cooling chamber, an undesirable cooling liquid movement in the cylinder cooling jacket by cross flows to result, which slows the heating of the cylinder block.

Die gattungsbildenden US 5,497,734 A und JP 10 184358 A zeigen jeweils einen KĆ¼hlmittelkreislauf fĆ¼r eine Brennkraftmaschine, aufweisend ein ZylinderkurbelgehƤuse mit mindestens zwei ZylinderbƤnken, sowie zugehƶrigen Zylinderkƶpfen, wobei das ZylinderkurbelgehƤuse und die Zylinderkƶpfe Ć¼ber parallel zueinander verlaufende TeilkreislƤufe des KĆ¼hlmittelkreislaufs von einer KĆ¼hlmittelpumpe mit KĆ¼hlmittel beaufschlagbar sind, wobei ein erstes Stellventil mit mindestens zwei synchron schaltbaren ersten AnschlĆ¼ssen und einem zweiten Anschluss in einem ZylinderkurbelgehƤuse-Teilkreislauf angeordnet ist und wobei die ersten AnschlĆ¼sse mit jeweils einer der ZylinderbƤnke paarweise strƶmungstechnisch verbunden sind. Nachteilig ist, dass die gezeigten Stellventile zur ZusammenfĆ¼hrung des KĆ¼hlmittels aus den ZylinderbƤnken aufwendig aufgebaut und nur schwer synchron regelbar sind. Aufgabe der vorliegenden Erfindung ist es daher einen KĆ¼hlmittelkreislauf fĆ¼r eine Brennkraftmaschine mit mehreren ZylinderbƤnken bereitzustellen. Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelƶst.The generic US 5,497,734 A and JP 10 184358 A each show a coolant circuit for an internal combustion engine, comprising a cylinder crankcase with at least two cylinder banks, and associated cylinder heads, wherein the cylinder crankcase and the cylinder heads can be acted upon by parallel running partial circuits of the coolant circuit of a coolant pump with coolant, wherein a first control valve with at least two synchronously switchable first connections and a second connection in a cylinder crankcase partial circuit is arranged and wherein the first terminals are connected in pairs with each one of the cylinder banks in fluid communication. The disadvantage is that the control valves shown for combining the coolant from the cylinder banks constructed consuming and difficult to control synchronously. The object of the present invention is therefore to provide a coolant circuit for an internal combustion engine having a plurality of cylinder banks. This object is solved by the features of patent claim 1.

KĆ¼hlmittelkreislauf fĆ¼r eine Brennkraftmaschine, aufweisend ein ZylinderkurbelgehƤuse mit mindestens zwei ZylinderbƤnken, sowie zugehƶrigen Zylinderkƶpfen, wobei das ZylinderkurbelgehƤuse und die Zylinderkƶpfe Ć¼ber separate und parallel zueinander verlaufende TeilkreislƤufe des KĆ¼hlmittelkreislaufs von einer KĆ¼hlmittelpumpe mit KĆ¼hlmittel beaufschlagbar sind, wobei ein erstes Stellventil mit mindestens zwei synchron schaltbaren ersten AnschlĆ¼ssen und einem zweiten Anschluss in einem ZylinderkurbelgehƤuse-Teilkreislauf angeordnet ist, wobei die ersten AnschlĆ¼sse mit jeweils einer der ZylinderbƤnke paarweise strƶmungstechnisch verbunden sind und wobei das erste Stellventil als um eine Drehachse drehbares Kugelventil ausgebildet ist, wobei die ersten AnschlĆ¼sse radial und der zweite Anschluss axial daran angeordnet sind.Coolant circuit for an internal combustion engine, comprising a cylinder crankcase with at least two cylinder banks, and associated cylinder heads, wherein the cylinder crankcase and the cylinder heads can be acted upon by separate and parallel partial circuits of the coolant circuit of a coolant pump with coolant, wherein a first control valve with at least two synchronously switchable first Terminals and a second port in a cylinder crankcase subcircuit is arranged, wherein the first ports are each connected in fluid communication with one of the cylinder banks and wherein the first control valve is designed as a rotatable about a rotation ball valve, wherein the first terminals radially and the second terminal axially arranged thereon.

Indem ein erstes Stellventil mit mindestens zwei synchron schaltbaren ersten AnschlĆ¼ssen und einem zweiten Anschluss in dem ZylinderkurbelgehƤuse-Teilkreislauf angeordnet ist, kann ein KĆ¼hlmittelfluss im ZylinderkurbelgehƤuse-Teilkreislauf auch in Brennkraftmaschinen mit mehreren, insbesondere einander parallel gegenĆ¼berliegenden, ZylinderbƤnken unabhƤngig vom KĆ¼hlmittelfluss im Zylinderkopf-Teilkreislauf eingestellt werden. Das ZylinderkurbelgehƤuse weist in der Regel einen einzigen KĆ¼hlmittelmantel auf, der die beiden ZylinderbƤnke umgibt, so dass ein KĆ¼hlmittelaustausch zwischen den ZylinderbƤnken prinzipiell jederzeit mƶglich ist. Der ZylinderkurbelgehƤuse-Teilkreislauf und der Zylinderkopf-Teilkreislauf verlaufen innerhalb des KĆ¼hlmittelkreislaufs streckenweise parallel. Die synchrone Schaltbarkeit der mit den ZylinderbƤnken paarweise strƶmungstechnisch verbundenen ersten AnschlĆ¼sse verhindert eine unerwĆ¼nschte Querstrƶmung des KĆ¼hlmittels im ZylinderkurbelgehƤuse zwischen den ZylinderbƤnken, unabhƤngig von der KĆ¼hlmittelstrƶmung im Zylinderkopf-Teilkreislauf. Werden die ersten AnschlĆ¼sse des ersten Stellventils beispielsweise synchron geschlossen, so kann eine KĆ¼hlmittelstrƶmung im parallelen Zylinderkopf-Teilkreislauf keine Querstrƶmung des KĆ¼hlmittels zwischen den ZylinderbƤnken anregen. Das ZylinderkurbelgehƤuse kann sich dadurch schneller erwƤrmen. Dieses Funktionsprinzip lƤsst sich analog fĆ¼r Brennkraftmaschinen in V- oder W-Bauweise oder Boxermotoren anwenden. Durch die Bauform als Kugelventil mit radialen ersten AnschlĆ¼ssen und axialem zweiten Anschluss kann ein erstes Stellventil besonders gĆ¼nstig bereitgestellt werden. Das Kugelventil besteht aus einem GehƤuse mit drehbar darin gelagerten Querschnittsverstellglied. Das Querschnittsverstellglied ist als kugeliger Hohlkƶrper, mit einer axialen Ɩffnung im Bereich der Drehachse des Querschnittsverstellglieds und zwei, vorzugsweise einander symmetrisch gegenĆ¼berliegender, radialer Ɩffnungen in einem radialen Umfangsbereich des Querschnittsverstellglieds, ausgebildet. Die axiale Ɩffnung befindet sich in jeder Drehstellung des Querschnittsverstellglieds in nahezu vollstƤndiger Ɯberdeckung mit dem zweiten Anschluss. Die radialen Ɩffnungen kƶnnen synchron mit den ersten AnschlĆ¼ssen stufenlos Ć¼berschnitten werden. Dabei ist die Ɯberdeckung jedes ersten Anschlusses mit der komplementƤren radialen Ɩffnung in jeder Schaltstellung gleich groƟ. Die DrehbetƤtigung des Querschnittsverstellglieds erfolgt vorzugsweise Ć¼ber einen elektrischen Antrieb oder eine Druckdose mit elektropneumatischem Druckwandler.By arranging a first control valve with at least two synchronously switchable first connections and a second connection in the cylinder crankcase subcircuit, a coolant flow in the cylinder crankcase subcircuit can also be set in internal combustion engines with a plurality of cylinder banks lying opposite each other, independently of the coolant flow in the cylinder head subcircuit become. The cylinder crankcase generally has a single coolant jacket, which surrounds the two cylinder banks, so that a coolant exchange between the cylinder banks is in principle possible at any time. The cylinder crankcase subcircuit and the cylinder head subcircuit run in sections parallel within the coolant circuit. The synchronous switchability of the paired with the cylinder banks fluidly connected first Ports prevent unwanted cross-flow of the coolant in the cylinder crankcase between the cylinder banks, regardless of the coolant flow in the cylinder head partial circuit. If the first connections of the first control valve are closed synchronously, for example, then a coolant flow in the parallel cylinder head partial circuit can not stimulate any cross-flow of the coolant between the cylinder banks. The cylinder crankcase can thereby heat up faster. This operating principle can be applied analogously for internal combustion engines in V or W construction or boxer engines. Due to the design as a ball valve with radial first ports and axial second port, a first control valve can be provided particularly favorable. The ball valve consists of a housing with rotatably mounted therein Querschnittsverstellglied. The cross-section adjustment is formed as a spherical hollow body, with an axial opening in the region of the axis of rotation of the Querschnittsverstellglieds and two, preferably symmetrically opposed, radial openings in a radial peripheral region of the Querschnittsverstellglieds. The axial opening is in almost every rotational position of the Querschnittsverstellglieds in almost complete coverage with the second port. The radial openings can be continuously overlapped in synchronism with the first terminals. The overlap of each first terminal with the complementary radial opening in each switching position is the same size. The rotary actuation of the cross section adjustment member is preferably carried out via an electric drive or a pressure cell with electropneumatic pressure transducer.

In einer bevorzugten AusfĆ¼hrung ist die dem ersten Stellventil zuzufĆ¼hrende KĆ¼hlmittelmenge in jeder Schaltstellung des ersten Stellventils auf alle ersten AnschlĆ¼sse gleichmƤƟig zu verteilen. Dadurch wird sichergestellt, dass durch alle ZylinderbƤnke die gleiche Menge KĆ¼hlmittel flieƟt oder der KĆ¼hlmittelfluss durch die ZylinderbƤnke gleichzeitig unterbunden werden kann. Somit werden unerwĆ¼nschte Querstrƶmungen zwischen den ZylinderbƤnken in jeder Schaltstellung des ersten Stellventils vermieden.In a preferred embodiment, the amount of coolant to be supplied to the first control valve is to be distributed uniformly in all switching positions of the first control valve to all first connections. This ensures that the same amount of coolant flows through all the cylinder banks or that the coolant flow through the cylinder banks can be prevented at the same time. Thus, unwanted cross flows between the cylinder banks are avoided in each switching position of the first control valve.

In einer bevorzugten AusfĆ¼hrung sind die ZylinderbƤnke Ć¼ber jeweils einen eigenen ZylinderkurbelgehƤuse-Vorlauf parallel mit KĆ¼hlmittel beaufschlagbar.In a preferred embodiment, the cylinder banks are each acted upon by a separate cylinder crankcase flow parallel with coolant.

In einer bevorzugten AusfĆ¼hrung ist das erste Stellventil stromab des ZylinderkurbelgehƤuses angeordnet, wobei der zweite Anschluss mit einem ZylinderkurbelgehƤuse-RĆ¼cklauf strƶmungstechnisch verbunden ist. Das erste Stellventil wird Ć¼ber die ersten AnschlĆ¼sse mit KĆ¼hlmittel aus den ZylinderbƤnken beaufschlagt. Das KĆ¼hlmittel wird, je nach Schaltstellung des Stellventils, Ć¼ber den zweiten Anschluss in einem ZylinderkurbelgehƤuse-RĆ¼cklauf abgefĆ¼hrt.In a preferred embodiment, the first control valve is disposed downstream of the cylinder crankcase, wherein the second port is fluidly connected to a cylinder crankcase return. The first control valve is acted upon by the first ports with coolant from the cylinder banks. The coolant is discharged via the second connection in a cylinder crankcase return, depending on the switching position of the control valve.

In einer bevorzugten AusfĆ¼hrung ist das erste Stellventil stromauf des ZylinderkurbelgehƤuses angeordnet, wobei der zweite Anschluss mit einem gemeinsamen ZylinderkurbelgehƤuse-Vorlauf strƶmungstechnisch verbunden ist. Das erste Stellventil wird Ć¼ber den zweiten Anschlusse mit KĆ¼hlmittel aus einem gemeinsamen ZylinderkurbelgehƤuse-Vorlauf beaufschlagt. Das KĆ¼hlmittel wird, je nach Schaltstellung des Stellventils, Ć¼ber die ersten AnschlĆ¼sse auf die, den ZylinderbƤnken zugeordneten, parallelen ZylinderkurbelgehƤuse-VorlƤufe verteilt. Aus den ZylinderbƤnken wird das KĆ¼hlmittel Ć¼ber einen ZylinderkurbelgehƤuse-RĆ¼cklauf abgefĆ¼hrt.In a preferred embodiment, the first control valve is arranged upstream of the cylinder crankcase, wherein the second connection is fluidly connected to a common cylinder crankcase flow. The first control valve is acted upon via the second connection with coolant from a common cylinder crankcase flow. Depending on the switching position of the control valve, the coolant is distributed via the first connections to the parallel cylinder crankcase heaters associated with the cylinder banks. From the cylinder banks, the coolant is discharged via a cylinder crankcase return.

In einer bevorzugten AusfĆ¼hrung kann das KĆ¼hlmittel durch die KĆ¼hlmittelpumpe zumindest zeitweise zwischen einem HauptwƤrmetauscher und den Zylinderkƶpfen und/oder dem ZylinderkurbelgehƤuse zirkuliert werden. Der KĆ¼hlmittelfluss zwischen den genannten Komponenten kann zeitweise durch Ventile oder eine zu- und abschaltbare KĆ¼hlmittelpumpe unterbunden werden, wodurch eine gezielte Temperierung der Komponenten unabhƤngig voneinander mƶglich ist.In a preferred embodiment, the coolant can be circulated by the coolant pump at least temporarily between a main heat exchanger and the cylinder heads and / or the cylinder crankcase. The coolant flow between said components can be temporarily prevented by valves or a coolant pump which can be switched on and off, as a result of which a controlled temperature control of the components is possible independently of one another.

In einer bevorzugten AusfĆ¼hrung weist jeder Zylinderkopf einen eigenen Zylinderkopf-Vorlauf und einen eigenen Zylinderkopf-RĆ¼cklauf auf, wobei sich die ZylinderkurbelgehƤuse-VorlƤufe und die Zylinderkopf-VorlƤufe aus einem gemeinsamen Vorlauf-Abschnitt stromab der KĆ¼hlmittelpumpe gespeist werden.In a preferred embodiment, each cylinder head has its own cylinder head lead and own cylinder head return, with the cylinder crankcase headers and the cylinder head headers being fed from a common flow section downstream of the coolant pump.

In einer bevorzugten AusfĆ¼hrung ist der ZylinderkurbelgehƤuse-RĆ¼cklauf an einer Verbindungsstelle mit den Zylinderkopf-RĆ¼cklƤufen zu einem gemeinsamen RĆ¼cklauf-Abschnitt zusammenfĆ¼hrbar.In a preferred embodiment, the cylinder crankcase return is merge at a junction with the cylinder head recirculations to a common return section.

In einer bevorzugten AusfĆ¼hrung fĆ¼hrt der gemeinsame RĆ¼cklauf-Abschnitt zum HauptwƤrmetauscher und geht der gemeinsame Vorlauf-Abschnitt vom HauptwƤrmetauscher ab.In a preferred embodiment, the common return section leads to the main heat exchanger and the common flow section goes from the main heat exchanger.

Die Aufteilung der Zylinderkopf-VorlƤufe und der ZylinderkurbelgehƤuse-VorlƤufe aus dem gemeinsamen Vorlauf-Abschnitt stromab des HauptwƤrmetauschers ermƶglicht einen mƶglichst geringen Einsatz von Verschlauchungen und die Nutzung eines einzigen HauptwƤrmetauschers und einer einzigen KĆ¼hlmittelpumpe fĆ¼r alle TeilkreislƤufe. Gleiches gilt analog fĆ¼r die ZusammenfĆ¼hrung des ZylinderkurbelgehƤuse-RĆ¼cklaufs und der Zylinderkopf-RĆ¼cklƤufe zu einem gemeinsamen RĆ¼cklauf-Abschnitt stromauf des HauptwƤrmetauschers.The division of the cylinder head headers and the cylinder crankcase headers from the common flow section downstream of the main heat exchanger allows the lowest possible use of tubing and the use of a single main heat exchanger and a single coolant pump for all subcircuits. The same applies analogously for the merger of the cylinder crankcase return and the cylinder head returns to a common return section upstream of the main heat exchanger.

In einer bevorzugten AusfĆ¼hrung ist in dem gemeinsamen Vorlauf-Abschnitt ein zweites Stellventil zwischen HauptwƤrmetauscher und KĆ¼hlmittelpumpe angeordnet, in das zusƤtzlich ein Abzweig des gemeinsamen RĆ¼cklauf-Abschnitts, unter Umgehung des HauptwƤrmetauschers, mĆ¼ndet. Durch den Abzweig kann der HauptwƤrmetauscher, bei entsprechender Stellung des zweiten Stellventils, bedarfsweise umgangen werden. In diesem sogenannten Bypassbetrieb ist eine KĆ¼hlmittelstrƶmung in den Zylinderkƶpfen, und in AbhƤngigkeit des ersten Stellventils auch in dem ZylinderkurbelgehƤuse, mƶglich, ohne dass das erwƤrmte KĆ¼hlmittel im HauptwƤrmetauscher abgekĆ¼hlt wird. Dadurch kann eine besonders schnelle und gleichmƤƟige ErwƤrmung der Brennkraftmaschine auf einem erhƶhten Temperaturniveau erfolgen. Alternativ dazu kann das zweite Stellventil bei Erreichen einer bestimmten Mindesttemperatur das KĆ¼hlmittel durch SchlieƟen des Abzweigs Ć¼ber den HauptwƤrmetauscher leiten. Als zweites Stellventil eignet sich hierbei bevorzugt ein kontinuierlich regelbares Stellventil und besonders bevorzugt ein Kennfeldthermostat, welches bei Bedarf zur KennfeldƤnderung bestromt werden kann.In a preferred embodiment, a second control valve between the main heat exchanger and the coolant pump is arranged in the common flow section, in addition to a branch of the common return section, bypassing the main heat exchanger, opens. Due to the branch, the main heat exchanger, if appropriate, the second control valve, if necessary, be bypassed. In this so-called bypass mode, a coolant flow in the cylinder heads, and in dependence on the first control valve in the cylinder crankcase, possible without the heated coolant in the main heat exchanger is cooled. This allows a particularly rapid and uniform heating of the internal combustion engine at an elevated temperature level. Alternatively, upon reaching a certain minimum temperature, the second control valve may direct the coolant through the main heat exchanger by closing the branch. As a second control valve in this case is preferably a continuously controllable control valve and more preferably a map thermostat, which can be energized when needed for map change.

Der beschriebene KĆ¼hlmittelkreislauf erstreckt sich nicht ausschlieƟlich auf die dargelegten Beispiele, insbesondere kƶnnen nach Belieben weitere WƤrmetauscher in weiteren TeilkreislƤufen hinzugefĆ¼gt werden. Zudem ist der Anschluss eines bekannten EntlĆ¼ftungssystems mit einem AusgleichsbehƤlter an den KĆ¼hlmittelkreislauf vorgesehen.The coolant circuit described does not extend exclusively to the examples set forth; in particular, further heat exchangers can be added as desired in further sub-circuits. In addition, the connection of a known ventilation system is provided with a surge tank to the coolant circuit.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschreibung eines bevorzugten AusfĆ¼hrungsbeispiels unter Bezugnahme auf die Zeichnungen.Further details and advantages of the invention will become apparent from the following description of a preferred embodiment with reference to the drawings.

Darin zeigen:

  • Fig. 1 eine schematische Darstellung einer ersten AusfĆ¼hrungsform eines erfindungsgemƤƟen KĆ¼hlmittelkreislaufs;
  • Fig. 2 eine schematische Darstellung einer zweiten AusfĆ¼hrungsform eines erfindungsgemƤƟen KĆ¼hlmittelkreislaufs;
  • Fig. 3 eine Schnittansicht eines als Kugelventil ausgebildeten ersten Stellventils.
Show:
  • Fig. 1 a schematic representation of a first embodiment of a coolant circuit according to the invention;
  • Fig. 2 a schematic representation of a second embodiment of a coolant circuit according to the invention;
  • Fig. 3 a sectional view of a ball valve designed as a first control valve.

GemƤƟ Fig. 1 hat ein KĆ¼hlmittelkreislauf 1 fĆ¼r eine Brennkraftmaschine 2 einen HauptwƤrmetauscher 8 zum WƤrmeaustausch zwischen der ihn umstrƶmenden Umgebungsluft und des ihn durchstrƶmenden KĆ¼hlmittels aus dem KĆ¼hlmittelkreislauf 1, sowie eine KĆ¼hlmittelpumpe 7 zur Erzeugung einer KĆ¼hlmittelzirkulation in dem KĆ¼hlmittelkreislauf 1. Die Brennkraftmaschine 2 besteht im Wesentlichen aus einem ZylinderkurbelgehƤuse 3, welches die HubrƤume der Arbeitszylinder in zwei parallelen und einander gegenĆ¼berliegenden ZylinderbƤnken 3a enthƤlt und von einem einzigen KĆ¼hlmittelmantel durchsetzt ist, sowie den, den ZylinderbƤnken 3a zugeordneten, Zylinderkƶpfen 4, die im Wesentlichen Vorrichtungen zum Gaswechsel fĆ¼r die Arbeitszylinder beherbergen und ebenso von einem KĆ¼hlmittelmantel durchsetzt sind. Die KĆ¼hlmittelmƤntel der Zylinderkƶpfe 4 und des ZylinderkurbelgehƤuses 3 sind nicht intern strƶmungstechnisch verbunden, sondern in separate und parallel zueinander verlaufende TeilkreislƤufe 5 und 6 des KĆ¼hlmittelkreislaufs 1 eingebunden. Dazu verfĆ¼gt jeder Zylinderkopf 4, sowie jede Zylinderbank 3a des ZylinderkurbelgehƤuses 3 Ć¼ber einen eigenen Vorlaufanschluss 6a bzw. 5a, die von einem die KĆ¼hlmittelpumpe 7 aufweisenden gemeinsamen Vorlauf-Abschnitt 14 mit KĆ¼hlmittel beaufschlagbar sind. Dazu zweigt sich der gemeinsame Vorlauf-Abschnitt 14 an einer Verzweigungsstelle 12, an dem das KĆ¼hlmittel auf die beiden Seiten der V-fƶrmigen Brennkraftmaschine 2 verteilt wird, auf. Weiter stromab erfolgt eine weitere Aufteilung zwischen Zylinderkopf 4 oder Zylinderbank 3a. Das KĆ¼hlmittel aus den ZylinderbƤnken 3a flieƟt Ć¼ber jeweils einen ersten Anschluss 9a zu einem ersten Stellventil 10. Das erste Stellventil 10 ist als ein in Fig. 3 nƤher dargestelltes Kugelventil ausgebildet, das die ersten AnschlĆ¼sse 9a derart synchron schaltet, dass die dem ersten Stellventil 10 zuzufĆ¼hrende KĆ¼hlmittelmenge in jeder Schaltstellung gleichmƤƟig auf die beiden ersten AnschlĆ¼sse 9a verteilt wird. Insbesondere kann das erste Stellventil 10 die beiden ersten AnschlĆ¼sse 9a komplett von einem, an einem zweiten Anschluss 9b des ersten Stellventils 10 angeschlossenen, ZylinderkurbelgehƤuse-RĆ¼cklauf 5b strƶmungstechnisch trennen. Die Zylinderkƶpfe 4 verfĆ¼gen indes Ć¼ber eigene Zylinderkopf-RĆ¼cklƤufe 6b, die an einer Verbindungsstelle 13 mit dem ZylinderkurbelgehƤuse-RĆ¼cklauf 5b zu einem gemeinsamen RĆ¼cklauf-Abschnitt 15 zusammengefĆ¼hrt werden. Der gemeinsame RĆ¼cklauf-Abschnitt 15 verlƤuft zur Eingangsseite des HauptwƤrmetauschers 8, wƤhrend der gemeinsame Vorlauf-Abschnitt 14 aus der Ausgangsseite des HauptwƤrmetauschers 8 entspringt. Der gemeinsame Vorlauf-Abschnitt 14 enthƤlt neben der zentralen KĆ¼hlmittelpumpe 7 ein stromauf der KĆ¼hlmittelpumpe 7 angeordnetes zweites Stellventil 11, das zusƤtzlich von einem aus dem gemeinsamen RĆ¼cklauf-Abschnitt 15, unter Umgehung des HauptwƤrmetauschers 8, abzweigenden Abzweig 16 kontaktiert wird. Das zweite Stellventil 11 ist als bestrombares Kennfeldthermostat ausgebildet, welches den Abzweig 16 in AbhƤngigkeit von durch Bestromung verƤnderbaren KĆ¼hlmitteltemperaturschwellwerten schlieƟt und das KĆ¼hlmittel Ć¼ber den HauptwƤrmetauscher 8 leitet. Ansonsten wird das KĆ¼hlmittel Ć¼ber den Abzweig 16 am HauptwƤrmetauscher 8 vorbei zur KĆ¼hlmittelpumpe 7 gefĆ¼hrt. Von einem der Zylinderkƶpfe 4 kann ein Heizkreislauf 17 mit einem darin befindlichen HeizungswƤrmetauscher 18 zur Beheizung von Umgebungsluft fĆ¼r einen Fahrzeuginnenraum abgehen, der stromauf der KĆ¼hlmittelpumpe 7 und stromab des zweiten Stellventils 11 wieder in den gemeinsamen Vorlauf-Abschnitt 14 mĆ¼ndet.According to Fig. 1 has a coolant circuit 1 for an internal combustion engine 2, a main heat exchanger 8 for heat exchange between him flowing around The internal combustion engine 2 consists essentially of a cylinder crankcase 3, which contains the displacements of the working cylinder in two parallel and mutually opposite cylinder banks 3a and is penetrated by a single coolant jacket, as well as, the cylinder banks 3a associated, cylinder heads 4, which accommodate essentially gas exchange devices for the working cylinder and are also penetrated by a coolant jacket. The coolant jackets of the cylinder heads 4 and the cylinder crankcase 3 are not internally fluidically connected, but involved in separate and parallel to each other subcircuits 5 and 6 of the coolant circuit 1. For this purpose, each cylinder head 4, and each cylinder bank 3a of the cylinder crankcase 3 via its own flow connection 6a and 5a, which are acted upon by a cooling medium pump 7 having common flow section 14 with coolant. For this purpose, the common flow section 14 branches at a branch point 12, at which the coolant is distributed to the two sides of the V-shaped internal combustion engine 2, on. Further downstream takes place a further division between the cylinder head 4 or cylinder bank 3a. The coolant from the cylinder banks 3a flows via a respective first port 9a to a first control valve 10. The first control valve 10 is as a in Fig. 3 formed closer ball valve that switches the first terminals 9a so synchronous that the first control valve 10 to be supplied coolant quantity is distributed uniformly in each switching position on the two first terminals 9a. In particular, the first control valve 10 can completely separate the two first connections 9a from a cylinder crankcase return 5b connected to a second connection 9b of the first control valve 10. The cylinder heads 4, however, have their own cylinder head returns 6b, which are merged at a junction 13 with the cylinder crankcase return 5b to a common return section 15. The common return section 15 extends to the input side of the main heat exchanger 8, while the common flow section 14 from the output side of the main heat exchanger 8 springs. The common flow section 14 contains, in addition to the central coolant pump 7, a second control valve 11 arranged upstream of the coolant pump 7, which is additionally contacted by a branch 16 branching off from the common return section 15, bypassing the main heat exchanger 8. The second control valve 11 is designed as an energizable map thermostat, which closes the branch 16 in response to variable by means of energization KĆ¼hlmitteltemperaturschwellwerten and passes the coolant through the main heat exchanger 8. Otherwise, the coolant is passed via the branch 16 on the main heat exchanger 8 to the coolant pump 7. From one of the cylinder heads 4, a heating circuit 17 with a heating heat exchanger 18 located therein for heating ambient air for a vehicle interior, which opens upstream of the coolant pump 7 and downstream of the second control valve 11 again in the common flow section 14.

GemƤƟ Fig. 2 hat ein KĆ¼hlmittelkreislauf 1 fĆ¼r eine Brennkraftmaschine 2 einen HauptwƤrmetauscher 8 zum WƤrmeaustausch zwischen der ihn umstrƶmenden Umgebungsluft und des ihn durchstrƶmenden KĆ¼hlmittels aus dem KĆ¼hlmittelkreislauf 1, sowie eine KĆ¼hlmittelpumpe 7 zur Erzeugung einer KĆ¼hlmittelzirkulation in dem KĆ¼hlmittelkreislauf 1. Die Brennkraftmaschine 2 besteht im Wesentlichen aus einem ZylinderkurbelgehƤuse 3, welches die HubrƤume der Arbeitszylinder in zwei parallelen und einander gegenĆ¼berliegenden ZylinderbƤnken 3a enthƤlt und von einem einzigen KĆ¼hlmittelmantel durchsetzt ist, sowie den, den ZylinderbƤnken 3a zugeordneten, Zylinderkƶpfen 4, die im Wesentlichen Vorrichtungen zum Gaswechsel fĆ¼r die Arbeitszylinder beherbergen und ebenso von einem KĆ¼hlmittelmantel durchsetzt sind. Die KĆ¼hlmittelmƤntel der Zylinderkƶpfe 4 und des ZylinderkurbelgehƤuses 3 sind nicht intern strƶmungstechnisch verbunden, sondern in separate und parallel zueinander verlaufende TeilkreislƤufe 5 und 6 des KĆ¼hlmittelkreislaufs 1 eingebunden. Dazu verfĆ¼gt jeder Zylinderkopf 4, sowie jede Zylinderbank 3a des ZylinderkurbelgehƤuses 3 Ć¼ber einen eigenen Vorlaufanschluss 6a bzw. 5a, die von einem die KĆ¼hlmittelpumpe 7 aufweisenden gemeinsamen Vorlauf-Abschnitt 14 mit KĆ¼hlmittel beaufschlagbar sind. Dazu zweigt sich der gemeinsame Vorlauf-Abschnitt 14 an einer Verzweigungsstelle 12, an dem das KĆ¼hlmittel auf die Zylinderkƶpfe 4 oder die ZylinderbƤnke 3 verteilt wird, auf. Ein gemeinsamer ZylinderkurbelgehƤuse-Vorlauf 5c mĆ¼ndet an einen zweiten Anschluss 9b eines, in Fig. 3 nƤher dargestellten, ersten Stellventils 10. Das erste Stellventil 10 verteilt das KĆ¼hlmittel Ć¼ber synchron schaltbare erste AnschlĆ¼sse 9a auf die parallelen ZylinderkurbelgehƤuse-VorlƤufe 5a, die zu den ZylinderbƤnken 3a fĆ¼hren. Das erste Stellventil 10 schaltet die ersten AnschlĆ¼sse 9a derart synchron, dass die dem ersten Stellventil 10 zuzufĆ¼hrende KĆ¼hlmittelmenge in jeder Schaltstellung gleichmƤƟig auf die beiden ersten AnschlĆ¼sse 9a verteilt wird. Insbesondere kann das erste Stellventil 10 die beiden ersten AnschlĆ¼sse 9a komplett von dem gemeinsamen ZylinderkurbelgehƤuse-Vorlauf 5c strƶmungstechnisch trennen. Die Zylinderkƶpfe 4 verfĆ¼gen indes Ć¼ber eigene Zylinderkopf-RĆ¼cklƤufe 6b, die an einer Verbindungsstelle 13 mit dem ZylinderkurbelgehƤuse-RĆ¼cklauf 5b zu einem gemeinsamen RĆ¼cklauf-Abschnitt 15 zusammengefĆ¼hrt werden. Der gemeinsame RĆ¼cklauf-Abschnitt 15 verlƤuft zur Eingangsseite des HauptwƤrmetauschers 8, wƤhrend der gemeinsame Vorlauf-Abschnitt 14 aus der Ausgangsseite des HauptwƤrmetauschers 8 entspringt. Der gemeinsame Vorlauf-Abschnitt 14 enthƤlt neben der zentralen KĆ¼hlmittelpumpe 7 ein stromauf der KĆ¼hlmittelpumpe 7 angeordnetes zweites Stellventil 11, das zusƤtzlich von einem aus dem gemeinsamen RĆ¼cklauf-Abschnitt 15, unter Umgehung des HauptwƤrmetauschers 8, abzweigenden Abzweig 16 kontaktiert wird. Das zweite Stellventil 11 ist als bestrombares Kennfeldthermostat ausgebildet, welches den Abzweig 16 in AbhƤngigkeit von durch Bestromung verƤnderbaren KĆ¼hlmitteltemperaturschwellwerten schlieƟt und das KĆ¼hlmittel Ć¼ber den HauptwƤrmetauscher 8 leitet. Ansonsten wird das KĆ¼hlmittel Ć¼ber den Abzweig 16 am HauptwƤrmetauscher 8 vorbei zur KĆ¼hlmittelpumpe 7 gefĆ¼hrt. Von einem der Zylinderkƶpfe 4 kann ein Heizkreislauf 17 mit einem darin befindlichen HeizungswƤrmetauscher 18 zur Beheizung von Umgebungsluft fĆ¼r einen Fahrzeuginnenraum abgehen, der stromauf der KĆ¼hlmittelpumpe 7 und stromab des zweiten Stellventils 11 wieder in den gemeinsamen Vorlauf-Abschnitt 14 mĆ¼ndet.According to Fig. 2 a coolant circuit 1 for an internal combustion engine 2 has a main heat exchanger 8 for heat exchange between the surrounding air flowing around it and the coolant flowing through it from the coolant circuit 1, and a coolant pump 7 for generating a coolant circulation in the coolant circuit 1. The internal combustion engine 2 consists essentially of a cylinder crankcase 3, which contains the displacements of the working cylinder in two parallel and opposite cylinder banks 3a and is penetrated by a single coolant jacket, and the cylinder banks 3a associated, cylinder heads 4, which accommodate essentially devices for gas exchange for the working cylinder and also from a coolant jacket are interspersed. The coolant jackets of the cylinder heads 4 and the cylinder crankcase 3 are not internally fluidically connected, but in separate and mutually parallel partial circuits 5 and 6 of the Integrated coolant circuit 1. For this purpose, each cylinder head 4, and each cylinder bank 3a of the cylinder crankcase 3 via its own flow connection 6a and 5a, which are acted upon by a cooling medium pump 7 having common flow section 14 with coolant. For this purpose, the common flow section 14 branches at a branch point 12, at which the coolant is distributed to the cylinder heads 4 or the cylinder banks 3, on. A common cylinder crankcase flow 5c opens to a second port 9b of a, in Fig. 3 The first control valve 10 distributes the coolant via synchronously switchable first ports 9a to the parallel cylinder crankcase advances 5a, which lead to the cylinder banks 3a. The first control valve 10 synchronously switches the first ports 9a such that the coolant amount to be supplied to the first control valve 10 is uniformly distributed in each shift position to the first two ports 9a. In particular, the first control valve 10 can completely separate the two first connections 9a from the common cylinder crankcase flow 5c. The cylinder heads 4, however, have their own cylinder head returns 6b, which are merged at a junction 13 with the cylinder crankcase return 5b to a common return section 15. The common return section 15 extends to the input side of the main heat exchanger 8, while the common flow section 14 from the output side of the main heat exchanger 8 springs. The common flow section 14 contains, in addition to the central coolant pump 7, a second control valve 11 arranged upstream of the coolant pump 7, which is additionally contacted by a branch 16 branching off from the common return section 15, bypassing the main heat exchanger 8. The second control valve 11 is designed as an energizable map thermostat, which closes the branch 16 in response to variable by means of energization KĆ¼hlmitteltemperaturschwellwerten and passes the coolant through the main heat exchanger 8. Otherwise, the coolant is passed via the branch 16 on the main heat exchanger 8 to the coolant pump 7. From one of the cylinder heads 4, a heating circuit 17 with a heating heat exchanger 18 located therein for heating ambient air for a vehicle interior, which opens upstream of the coolant pump 7 and downstream of the second control valve 11 again in the common flow section 14.

GemƤƟ Fig. 3 hat ein Kugelventil 10 fĆ¼r einen KĆ¼hlmittelkreislauf einer Brennkraftmaschine ein GehƤuse 10b, in dem ein Querschnittsverstellglied 10a um eine Drehachse A drehbar gelagert ist. Das GehƤuse 10b hat einen axialen zweiten Anschluss 9b und zwei einander symmetrisch gegenĆ¼berliegende, radiale erste AnschlĆ¼sse 9a. Das Querschnittsverstellglied 10a ist als kugeliger Hohlkƶrper mit korrespondierenden Ɩffnungen 10d und 10e ausgebildet. Die axiale Ɩffnung 10e ist unabhƤngig von der aktuellen Stellung des Querschnittsverstellglieds 10a stets annƤhernd deckungsgleich mit dem zweiten Anschluss 9b. Die radialen Ɩffnungen 10d sind symmetrisch Ć¼ber den radialen Umfang des Querschnittsverstellglieds verteilt, so dass die ersten AnschlĆ¼sse 9a in jeder Drehstellung des Querschnittsverstellglieds 10a die gleiche Ɯberdeckung mit den komplementƤren radialen Ɩffnungen 10d einnehmen. In der gezeigten Stellung sind die ersten AnschlĆ¼sse 9a vollstƤndig geƶffnet. Wird das Querschnittsverstellglied 10a in einem Winkel von 90Ā° um die Drehachse A verdreht, so sind die ersten AnschlĆ¼sse 9a geschlossen. Neben diesen beiden Randstellungen sind alle mƶglichen Zwischenstellungen denkbar. Dazu kann zur BetƤtigung des Querschnittsverstellglieds 10a beispielsweise eine nicht dargestellte Druckdose mit elektropneumatischem Druckwandler angreifen. Zur Vermeidung von Leckagen wird der Spalt zwischen Querschnittsverstellglied 10a und GehƤuse 10b von Dichtungen 10c abgedichtet.According to Fig. 3 has a ball valve 10 for a coolant circuit of an internal combustion engine, a housing 10 b, in which a Querschnittsverstellglied 10 a is rotatably mounted about a rotation axis A. The housing 10b has an axial second terminal 9b and two radially opposite first radial terminals 9a. The cross-section adjustment member 10a is formed as a spherical hollow body with corresponding openings 10d and 10e. The axial opening 10e is independent of the current position of the Querschnittsverstellglieds 10a always approximately congruent with the second terminal 9b. The radial openings 10d are distributed symmetrically over the radial circumference of the Querschnittsverstellglieds, so that the first terminals 9a occupy the same coverage with the complementary radial openings 10d in each rotational position of the Querschnittsverstellglieds 10a. In the position shown, the first terminals 9a are fully opened. If the Querschnittsverstellglied 10 a rotated at an angle of 90 Ā° about the axis of rotation A, the first terminals 9 a are closed. In addition to these two edge positions, all possible intermediate positions are conceivable. For this purpose, to actuate the Querschnittsverstellglieds 10a, for example, a non-illustrated pressure cell attack with electropneumatic pressure transducer. To prevent leakage, the gap between the cross-section adjustment member 10a and the housing 10b is sealed by seals 10c.

Liste der Bezugszeichen:List of reference numbers:

AA
Drehachseaxis of rotation
11
KĆ¼hlmittelkreislaufCoolant circuit
22
BrennkraftmaschineInternal combustion engine
33
ZylinderkurbelgehƤusecylinder crankcase
3a3a
Zylinderbankcylinder bank
44
Zylinderkopfcylinder head
55
ZylinderkurbelgehƤuse-TeilkreislaufCylinder crankcase partial circuit
5a5a
ZylinderkurbelgehƤuse-VorlaufCylinder crankcase lead
5b5b
ZylinderkurbelgehƤuse-RĆ¼cklaufCylinder crankcase return
5c5c
gemeinsamer ZylinderkurbelgehƤuse-Vorlaufcommon cylinder crankcase flow
66
Zylinderkopf-TeilkreislaufCylinder head sub-circuit
6a6a
Zylinderkopf-VorlaufCylinder head forward
6b6b
Zylinderkopf-RĆ¼cklaufCylinder Head return
77
KĆ¼hlmittelpumpeCoolant pump
88th
HauptwƤrmetauscherMain heat exchanger
9a9a
erster Anschlussfirst connection
9b9b
zweiter Anschlusssecond connection
1010
erstes Stellventilfirst control valve
10a10a
Querschnittsverstellgliedcross section adjustment
10b10b
GehƤusecasing
10c10c
Dichtungpoetry
10d10d
radiale Ɩffnungradial opening
10e10e
axiale Ɩffnungaxial opening
1111
zweites Stellventilsecond control valve
1212
Verzweigungsstellebranching point
1313
Verbindungsstellejunction
1414
gemeinsamer Vorlauf-Abschnittcommon forerun section
1515
gemeinsamer RĆ¼cklauf-Abschnittcommon return section
1616
Abzweigjunction
1717
Heizkreislaufheating circuit
1818
HeizungswƤrmetauscherHeater core

Claims (10)

  1. Coolant circuit (1) for an internal combustion engine (2), which has a cylinder crankcase (3) having at least two cylinder banks (3a), and associated cylinder heads (4), wherein the cylinder crankcase (3) and the cylinder heads (4) can be supplied with coolant by a coolant pump (7) by means of separate sub-circuits (5, 6) of the coolant circuit (1) extending parallel to each other, wherein a first control valve (10) having at least two synchronously switchable first connections (9a) and a second connection (9b) is arranged in a cylinder crankcase sub-circuit (5) and wherein the first connections (9a) each have a flow connection with one of the cylinder banks (3a) in pairs, characterised in that the first control valve (10) is configured as ball valve rotatable about an axis of rotation (A), wherein the first connections (9a) are arranged radially thereon and the second connection (9b) is arranged axially thereon.
  2. Coolant circuit for an internal combustion engine according to claim 1, characterised in that the quantity of coolant to be fed to the first control valve (10) in each switch position of the first control valve (10) is to be distributed evenly over all the first connections (9a).
  3. Coolant circuit for an internal combustion engine according to claim 1 or 2, characterised in that each of the cylinder banks (3a) can be supplied with coolant in parallel via its own cylinder crankcase feed (5a).
  4. Coolant circuit for an internal combustion engine according to any one of claims 1 to 3, characterised in that the first control valve (10) is arranged downstream of the cylinder crankcase (3), wherein the second connection (9b) has a flow connection with a cylinder crankcase return (5b).
  5. Coolant circuit for an internal combustion engine according to any one of claims 1 to 3, characterised in that the first control valve (10) is arranged upstream of the cylinder crankcase (3), wherein the second connection (9b) has a flow connection with a shared cylinder crankcase feed (5c).
  6. Coolant circuit for an internal combustion engine according to any one of claims 1 to 5, characterised in that the coolant can be circulated by the coolant pump (7) at least at times between a main heat exchanger (8) and the cylinder heads (4) and/or the cylinder crankcase (3).
  7. Coolant circuit for an internal combustion engine according to any one of claims 1 to 6, characterised in that each cylinder head (4) has its own cylinder head feed (6a) and its own cylinder head return (6b), wherein the cylinder crankcase feeds (5a) and the cylinder head feeds (6a) are fed from a shared feed section (14) downstream of the coolant pump (7).
  8. Coolant circuit for an internal combustion engine according to claim 7, characterised in that the cylinder crankcase return (5b) can be merged with the cylinder head returns (6b) at a connection point (13), to form a shared return section (15).
  9. Coolant circuit for an internal combustion engine according to claim 8, characterised in that the shared return section (15) leads to the main heat exchanger (8) and the shared feed section (14) leaves the main heat exchanger (8).
  10. Coolant circuit for an internal combustion engine according to any one of claims 7 to 9, characterised in that in the shared feed section (14) there is arranged between main heat exchanger (8) and coolant pump (7) a second control valve (11), into which additionally a branch (16) of the shared return section (15) leads, bypassing the main heat exchanger (8).
EP11740569.6A 2010-09-13 2011-07-28 Coolant circuit for an internal combustion engine Not-in-force EP2616650B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010045217A DE102010045217A1 (en) 2010-09-13 2010-09-13 Coolant circuit for an internal combustion engine
PCT/EP2011/003780 WO2012034617A1 (en) 2010-09-13 2011-07-28 Coolant circuit for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2616650A1 EP2616650A1 (en) 2013-07-24
EP2616650B1 true EP2616650B1 (en) 2018-07-18

Family

ID=44629630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11740569.6A Not-in-force EP2616650B1 (en) 2010-09-13 2011-07-28 Coolant circuit for an internal combustion engine

Country Status (3)

Country Link
EP (1) EP2616650B1 (en)
DE (1) DE102010045217A1 (en)
WO (1) WO2012034617A1 (en)

Families Citing this family (2)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015213879A1 (en) 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine with split cooling system
DE102016011070A1 (en) 2016-09-14 2018-03-15 Audi Ag Method for operating a drive device and corresponding drive device

Family Cites Families (10)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019912A (en) 1983-07-11 1985-02-01 Daihatsu Motor Co Ltd Cooling device for internal-combustion engine
US5497734A (en) * 1993-12-22 1996-03-12 Nissan Motor Co., Ltd. Cooling system for liquid-cooled engine
JP3872151B2 (en) * 1996-12-27 2007-01-24 åÆŒå£«é‡å·„ę„­ę Ŗ式会ē¤¾ Water-cooled engine cooling system
DE19803885B4 (en) 1998-01-31 2013-02-07 Bayerische Motoren Werke Aktiengesellschaft Cooling circuit arrangement for a liquid-cooled internal combustion engine
DE10021525A1 (en) 2000-05-03 2001-11-15 Porsche Ag Cooling circuit for a multi-cylinder internal combustion engine
DE10101826B4 (en) * 2001-01-17 2006-12-21 Daimlerchrysler Ag Control device for the cooling circuit of an internal combustion engine
DE10127219A1 (en) * 2001-05-23 2002-11-28 Behr Thermot Tronik Gmbh Cooling system for internal combustion engine has coolant outlet of one row of cylinders connected to radiator inlet, that of another connected to thermostatic valve short circuit inlet
DE10318744B4 (en) 2003-04-25 2006-04-27 Audi Ag cooling system
DE102006044680A1 (en) 2006-09-21 2008-04-10 GM Global Technology Operations, Inc., Detroit Internal combustion engine for use in motor vehicle, has auxiliary pump for simultaneously discharging coolant through turbocharger and through cylinder block, where auxiliary pump is attached at cooling circuit
DE502007001624D1 (en) * 2007-01-17 2009-11-12 Ford Global Tech Llc Integrated engine cooling system

Non-Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2012034617A1 (en) 2012-03-22
DE102010045217A1 (en) 2012-03-15
EP2616650A1 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
EP2427639B1 (en) Fail-safe rotary actuator for a coolant circuit
DE19606202B4 (en) Cooling system for an internal combustion engine
AT515143B1 (en) Liquid-cooled internal combustion engine
DE10061546A1 (en) Cooling system for an internal combustion engine of a motor vehicle cooled with liquid coolant
WO2000025007A1 (en) Control device for the cooling circuit of an internal combustion engine
DE102013209582A1 (en) Rotary slide ball for a thermal management module
DE102014206480A1 (en) Thermal management module combined with a thermostatic control
DE102019107190A1 (en) Valve and heating system with such a valve
EP2562379A1 (en) Coolant circuit
DE10306695A1 (en) Internal combustion engine with a coolant circuit
DE102010018624B4 (en) Coolant circuit for an internal combustion engine
DE10127219A1 (en) Cooling system for internal combustion engine has coolant outlet of one row of cylinders connected to radiator inlet, that of another connected to thermostatic valve short circuit inlet
AT514793A1 (en) Cooling system for an internal combustion engine
EP2616650B1 (en) Coolant circuit for an internal combustion engine
DE4308002C1 (en) Distributor device for the cooling and/or heating system of vehicles with internal combustion engines
EP3252359A1 (en) Rotary nozzle valve
DE102019128897A1 (en) Multi-way valve, fluid circuit and cooling fluid circuit
DE4432292B4 (en) Distribution device for the cooling or heating system of vehicles with internal combustion engines
DE10021526C2 (en) Arrangement for cooling a multi-cylinder internal combustion engine
DE102017218834B4 (en) Coolant channel arrangement for an internal combustion engine
WO2014016177A1 (en) Liquid cooling system for an internal combustion engine of a vehicle
DE102008013675B4 (en) Internal design of the housing of a coolant pump with multiple outlet channels
DE102004030153A1 (en) Cooling cycle for internal combustion engine has coolant circulating pump and valve, arranged in coolant bypass-line for its opening and closing whereby coolant bypass-line transmits part of coolant from cooling circuit to coolant radiator
DE19711030A1 (en) Independent heating regulation of vehicle compartment sides
DE102017205150B4 (en) Fluid regulator and arrangement with such a fluid regulator and a pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1019619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014471

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180718

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181118

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181019

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180728

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014471

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

26N No opposition filed

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1019619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200731

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210723

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210722

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011014471

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220728

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530