EP2615439A1 - Magnetoelastischer Kraftsensor und Verfahren zum Kompensieren einer Abstandsabhängigkeit in einem Messsignal eines derartigen Sensors - Google Patents

Magnetoelastischer Kraftsensor und Verfahren zum Kompensieren einer Abstandsabhängigkeit in einem Messsignal eines derartigen Sensors Download PDF

Info

Publication number
EP2615439A1
EP2615439A1 EP12151083.8A EP12151083A EP2615439A1 EP 2615439 A1 EP2615439 A1 EP 2615439A1 EP 12151083 A EP12151083 A EP 12151083A EP 2615439 A1 EP2615439 A1 EP 2615439A1
Authority
EP
European Patent Office
Prior art keywords
distance
sensor
transmitting coil
magnetic field
force sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12151083.8A
Other languages
German (de)
English (en)
French (fr)
Inventor
Hans-Gerd Brummel
Uwe Linnert
Carl Udo Maier
Jochen Ostermaier
Uwe Pfeifer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12151083.8A priority Critical patent/EP2615439A1/de
Priority to US14/370,563 priority patent/US9645022B2/en
Priority to EP12791125.3A priority patent/EP2769192B1/de
Priority to KR1020147019100A priority patent/KR102027607B1/ko
Priority to PCT/EP2012/071978 priority patent/WO2013104447A1/de
Publication of EP2615439A1 publication Critical patent/EP2615439A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/58Wireless transmission of information between a sensor or probe and a control or evaluation unit

Definitions

  • the present invention relates to a magnetoelastic force sensor, which can be used in particular in a magnetoelastic torsional or torque sensor.
  • the invention relates to a method for compensating a distance dependence in a measurement signal of a magnetoelastic force sensor, which can be used in particular in the context of a method for determining a torsion or a torque using a magnetoelastic force sensor.
  • the permeability of ferromagnetic materials is influenced by mechanical stresses.
  • This physical effect known as a magnetoelastic effect
  • the article is provided with a ferromagnetic layer, provided that the object does not itself consist of a ferromagnetic material or includes a ferromagnetic layer.
  • Magnetoelastic force sensors can then measure the stresses caused by an applied force by means of the magnetoelastic effect, whereby the force causing the stresses can be determined from the measurement result.
  • Magnetoelastic force sensors based on the magnetoelastic effect can be used i.a. be used for measuring torques in a rotating object, as a torque generates stresses in the rotating object.
  • the magnetoelastic sensors are characterized by high accuracy, with a Recalibration is just as little required as the approach of reference marks.
  • a magnetoelastic torque sensor used to measure the torque of drive shafts is off DE 10 2009 008 074 A1 known.
  • This document describes a measuring arrangement for detecting the torque of a shaft which comprises a torque sensor positioned at a predetermined gap distance from the surface of the shaft.
  • an electromagnetic coil is arranged without contact at a small distance from the surface of the shaft, which reacts to the change of the permeability in a ferromagnetic layer on the shaft or a per se ferromagnetic wave with a signal change.
  • the shaft must be subjected to torsional stresses, i. the magnetoelastic torque sensor must be disposed along the shaft between a driving torque and the reaction torque acting thereon. The wave formed from the ferromagnetic material is thereby part of the measuring device.
  • a first object of the present invention to provide an advantageous magnetoelastic force sensor.
  • a second object of the invention is to provide an advantageous torque sensor.
  • a third object is to provide a method for compensating a distance dependence in a measurement signal of a magnetoelastic force sensor.
  • a fourth object of the invention to provide an advantageous method for determining a torque by means of a magnetoelastic force sensor.
  • the third object is achieved by a method for compensating a distance dependence in a measurement signal of a magnetoelastic force sensor according to claim 7 and the fourth object by a A method for determining a torque according to claim 10.
  • the dependent claims contain advantageous embodiments of the invention.
  • a magnetoelastic force sensor comprises a sensor head with a transmission coil generating a magnetic field and at least one magnetic field sensor for measuring a magnetic flux caused by the magnetic field of the transmission coil in a measurement object.
  • the magnetoelastic force sensor comprises a detection device for detecting a the inductance of the transmitting coil reproducing or with this uniquely associated electrical quantity, for example the amplitude of the coil voltage.
  • the detection device can be configured analog or digital.
  • the detection of the inductance of the transmitting coil reproducing or clearly associated with this electrical variable using the detection device allows determining the distance of the transmitting coil - and thus the sensor head - of the measuring object, without an additional distance sensor needs to be present.
  • the inventive design of the magnetoelastic force sensor makes it possible to use the magnetoelastic force sensor itself as a distance sensor.
  • the unit of the force sensor with the distance sensor can avoid sources of error that can occur during the installation of an additional distance sensor, such as angle errors, which can be caused by an unequal adjustment of the two sensors.
  • the magnetoelastic force sensor also comprises a device for determining the distance of this sensor head from the measured object from the electrical variable .
  • the magnetoelastic force sensor can then also be used as a pure distance sensor.
  • the device for determining the distance of the sensor head from the measurement object may in particular comprise a memory with a stored relationship in which the values of the electrical output of the transmission coil that reflect the inductance of the transmission coil or are uniquely associated with it are those for the distance between the transmitter coil or the sensor head are related by the measurement object.
  • the memory may, for example, contain a look-up table representing a relationship or a functional relationship in the form of an equation.
  • the device for determination comprises the distance of the sensor head from the measurement object in this embodiment, an allocation unit which is directly or indirectly in communication both with the detection device and with the memory. Based on the stored relationship, the allocation unit assigns a distance of the transmission coil or of the sensor head from the measured object to the detected electrical quantity and generates a distance variable representing the assigned distance.
  • the latter additionally comprises a correction unit, which is connected directly or indirectly to the at least one magnetic field sensor and to receive the distance variable with the allocation unit. Based on the received distance size corrects the correction unit.
  • the measurement results of the at least one magnetic field sensor when measuring a caused by the magnetic field of the transmitting coil in the measurement object magnetic flux.
  • a torque sensor according to the invention is equipped with at least one magnetoelastic force sensor according to the invention.
  • a method for compensating a distance dependence in a measurement signal of a magnetoelastic force sensor with a magnetic coil generating a magnetic coil and at least one magnetic field sensor for measuring a caused by the magnetic field of the transmitting coil in a measurement object magnetic flux provided.
  • the measurement signal represents the magnetic flux caused in the measurement object.
  • an electrical quantity of the transmitting coil reproducing the inductance of the transmitting coil or clearly associated with this is detected.
  • the detection can be done, for example, analog or digital.
  • the distance of the transmitting coil or of the sensor head, which carries the transmitting coil, from the measured object is then determined from the detected electrical variable. Based on the determined distance then the distance dependence is compensated in the measurement signal.
  • the distance of the transmitting coil or of the sensor head from the measured object can be determined from the detected electrical quantity, in particular by means of a predetermined relationship between values of the electrical coil of the transmitting coil reproducing the inductance of the transmitting coil or unambiguously linked thereto, and values for the distance between the transmitting coil and the sensor head of FIG the measured object on the other hand determined
  • the predetermined relationship may be in the form of a look-up table or algebraic equation.
  • the predetermined relationship between values of the electrical output of the transmitting coil reproducing or unambiguously associated with the inductance of the transmitting coil and the values of the distance between the transmitting coil or the sensor head from the measuring object can be determined, for example, by a calibration measurement. By making a calibration measurement, local peculiarities at the location of the measurement in the given relationship can also be taken into account in the given relationship.
  • the method according to the invention for compensating a distance dependence in the measurement signal of a magnetoelastic force sensor can in particular be part of a method for determining a torque by means of a magnetoelastic force sensor.
  • a magnetoelastic sensor relies on the inverse magnetostrictive effect, that is, the effect that ferromagnetic materials experience a change in magnetic permeability when mechanical stresses occur. Since mechanical stresses are induced by tensile and compressive forces as well as by torsion, the inverse magnetostrictive effect can be used for force and torque measurement and is therefore versatile.
  • Sensor heads for measuring the inverse magnetostrictive effect include a transmit or excitation coil that induces an alternating magnetic field in the ferromagnetic layer.
  • a response signal is generated in the layer whose magnetic flux density depends on the permeability of the layer. This in turn is determined by the mechanical stresses prevailing in the layer.
  • the magnetic flux density of the response signal is measured with a magnetic field sensor, which may be, for example, a receiving coil.
  • the magnetic flux density of the response signal determines the current intensity of the current induced in the receiving coil due to the magnetic flux density passing through it. From the current strength, the mechanical stresses in the ferromagnetic layer can then be calculated, from which in turn the stress-inducing force can be determined.
  • magnetic field sensors based on the Hall effect magnetic field sensors based on the GMR effect (English: giant magnetoresistance) or magnetic field sensors based on the AMR effect (anisotropic magnetoresistive effect) are also suitable as magnetic field sensors ,
  • FIG. 1 A first exemplary embodiment of a force sensor according to the invention is shown in FIG FIG. 1 shown.
  • the force sensor comprises a sensor head 1 with a U-shaped ferrite core 3, which two parallel aligned legs 5 and 7 has.
  • a transmitting or excitation coil 9 is applied, with which a magnetic field can be generated.
  • a magnetic field sensor 11 is arranged, which is formed in the present embodiment as a Hall sensor, but may also be another of the above-mentioned magnetic field sensors.
  • a magnetic field is generated by means of the transmitting coil 9, the magnetic flux density in FIG. 1 represented by the field lines B.
  • the field lines pass through a ferromagnetic layer 13 of a measurement object and are closed via the ferrite core 3.
  • the layer 13 can be applied to the object to be measured or introduced into this.
  • the measurement object itself can also consist of a ferromagnetic material.
  • the magnetic flux density of the magnetic field can be measured.
  • the measured value depends on the magnetic permeability in the ferromagnetic layer 13, which in turn is influenced by the stresses prevailing in the ferromagnetic layer. Therefore, the voltages prevailing in the ferromagnetic layer 13 can be calculated from the magnetic flux density measurement result obtained with the magnetic field sensor 11. Since the ferromagnetic layer 13 either represents the object itself or is connected to the object, the stresses prevailing in the ferromagnetic layer 13 also represent the stresses prevailing in the test object.
  • another electrical variable can be detected within the scope of the invention which is suitable for representing the inductance of the excitation coil.
  • the distance of the transmission coil 9 from the ferromagnetic layer 13, ie from the measurement object can be determined. Namely, if the air gap between the measuring object 13 and the sensor head 1 changes, the inductance of the transmitting coil 9 changes and this without the influence of the mechanical stresses in the measured object. Therefore, an electrical quantity representing the inductance of the transmitting coil 9, such as the amplitude of the transmitting coil voltage, may be used to determine the distance of the transmitting coil 9 from the measuring object. From the spatial arrangement of the transmission coil 9 on the sensor head, therefore, the distance of any point of the sensor head from the measurement object can be determined, in particular the distance of the magnetic field sensor 11 from the measurement object 13.
  • the force sensor has a device 15 for Determining the distance of the sensor head 1 from the measurement object 13 from the detected electrical variable.
  • this device 15 comprises a memory 16 and an allocation unit 17 which is connected to the detection device 14 and to the memory 16.
  • a relationship is stored in the memory 16 in which values of the inductance of the transmission coil 9 are reproduced or unambiguous linked electrical quantity (in the present embodiment, the amplitude the transmission coil voltage) are related to values for the distance of the transmitting coil 9 or the sensor head 1 from the measuring object 13.
  • a look-up table is stored in the memory 16 for this purpose, which contains an unambiguous assignment of values for the amplitude of the transmission coil voltage (or another suitable electrical variable) to values of the distance between the sensor head 1 and the measurement object 13.
  • the table can be created, for example, by calibrating the amplitude of the transmission coil voltage to the distance of the sensor head 1 from the measurement object 13.
  • the allocation unit 17 receives from the detection device 14 the detected amplitude of the transmission coil voltage (or, if another electrical variable representing the inductance of the transmission coil 9 is selected, the detected value of this quantity) and determines the distance of the sensor head 1 from the measurement object 13, in FIG it assigns a distance to the detected amplitude value based on the look-up table stored in memory 16. The assigned distance is then output by the allocation unit 17 in the form of a suitable distance variable representing the distance. This size can be output via an output to the outside, so that the magnetoelastic force sensor can also be operated as a pure distance sensor.
  • the distance variable is also output to a correction unit 18.
  • This receives in addition to the distance size and a measured variable, which is determined by a connected to the magnetic field sensor 1 evaluation unit 19 on the basis of the measurement signal of the magnetic field sensor 11.
  • the correction unit 18 then corrects the measured variable based on the distance signal and outputs a corrected measured variable as the measurement result of the magnetoelastic force sensor.
  • a distance dependence of the original measured variable is then compensated.
  • the magnetoelastic force sensor is therefore insensitive to variations in the distance between the sensor head 1 and the measurement object 13.
  • FIGS. 2 and 3 A second embodiment of a sensor head according to the invention 21 and a magnetoelastic torsion or torque sensor constructed therewith is in the FIGS. 2 and 3 shown. Elements corresponding to those of the first embodiment are denoted by the same reference numerals as in FIG FIG. 1 and will not be explained again to avoid repetition. The explanation of the second embodiment is therefore limited to the differences from the first embodiment.
  • FIG. 2 shows a side view through the sensor head 21 along the line II-II in FIG. 3 ,
  • FIG. 3 shows a plan view of the ferromagnetic material facing the side of the sensor head 21st
  • the sensor head 21 of the second embodiment has a ferrite core 23 with a middle leg 25 and four outer legs surrounding the middle leg 25 on 27. On the middle leg 25, the transmitting coil 9 is arranged.
  • the magnetic field sensors 11 are located on the outer legs 27.
  • the geometry of the ferrite core 21 is selected in the present embodiment so that the legs form two pairs of legs, in each of which two legs are opposite each other on opposite sides of the central leg 25.
  • the two pairs of legs have a 90 ° to each other twisted orientation, so that a point symmetry in the arrangement of the outer legs 27 with respect to the middle leg 25 is present.
  • This embodiment of the sensor head 21 allows a two-dimensional detection of forces, such as, for example, for measuring torsions in a shaft 33 or torques of a shaft advantageous is.
  • the shaft 33 can either consist of a ferromagnetic material or be coated with such.
  • the sensor head For determining the torsion on the shaft 33, the sensor head is aligned with the connecting line between opposing outer legs 27 of a pair of legs along the torsional forces occurring in the torsion, which are perpendicular to each other.
  • a tensile force prevails in one direction and a compressive force in the direction perpendicular thereto.
  • the magnetic permeability of the ferromagnetic material of the shaft 33 becomes larger in one direction and smaller in the other direction.
  • the permeabilities in the two directions can be detected separately from each other, so that, for example, by a subtraction, the torsion of the shaft from the detected permeabilities and the resulting tensile or compressive stresses can be determined. Since a torsion arises in a rotating shaft due to the driving torque and the opposite reaction torque acting thereon, whose magnitude depends on the torque, the torsion causing torque can be determined from the detected torsion.
  • the in the FIGS. 2 and 3 shown sensor head 21 is part of a magnetoelastic torsion or torque sensor, as in FIG. 1 shown electromagnetic force sensor of the first embodiment comprises a detection device, a device for determining the distance of the sensor head of the measurement object and a correction unit.
  • the detection device, the device for determining the distance of the sensor head from the measurement object and the correction unit correspond in their design and arrangement of those FIG. 1 and are therefore for the sake of clarity in the FIGS. 2 and 3 not shown.
  • an algebraic equation can be used to assign the measured values for the electrical variable representing the inductance of the transmitting coil to the respective distance values.
  • the symmetry described with reference to the second exemplary embodiment is advantageous, but not absolutely necessary, since the influences of the measuring signals occurring in the case of a non-symmetrical arrangement can in principle be taken into account during the processing of the measuring signals.
  • the leg, which carries the transmitting coil is equipped with a magnetic field sensor, two legs are sufficient.
  • the evaluation of the signals of a sensor head equipped with four symmetrically arranged legs is simpler, especially if this is done in the FIGS. 2 and 3 having shown geometry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
EP12151083.8A 2012-01-13 2012-01-13 Magnetoelastischer Kraftsensor und Verfahren zum Kompensieren einer Abstandsabhängigkeit in einem Messsignal eines derartigen Sensors Withdrawn EP2615439A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12151083.8A EP2615439A1 (de) 2012-01-13 2012-01-13 Magnetoelastischer Kraftsensor und Verfahren zum Kompensieren einer Abstandsabhängigkeit in einem Messsignal eines derartigen Sensors
US14/370,563 US9645022B2 (en) 2012-01-13 2012-11-07 Magneto-elastic force sensor and method for compensating distance dependency in a measurement signal of such a sensor
EP12791125.3A EP2769192B1 (de) 2012-01-13 2012-11-07 Magnetoelastischer torsions- oder drehmomentsensor und verfahren zum ermitteln einer torsion oder eines drehmomentes mit hilfe eines derartigen sensors.
KR1020147019100A KR102027607B1 (ko) 2012-01-13 2012-11-07 자기 탄성식 힘센서 및 상기 유형의 센서의 측정 신호 내의 거리 종속성을 보상하기 위한 방법
PCT/EP2012/071978 WO2013104447A1 (de) 2012-01-13 2012-11-07 Magnetoelastischer kraftsensor und verfahren zum kompensieren einer abstandsabhängigkeit in einem messsignal eines derartigen sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12151083.8A EP2615439A1 (de) 2012-01-13 2012-01-13 Magnetoelastischer Kraftsensor und Verfahren zum Kompensieren einer Abstandsabhängigkeit in einem Messsignal eines derartigen Sensors

Publications (1)

Publication Number Publication Date
EP2615439A1 true EP2615439A1 (de) 2013-07-17

Family

ID=47226123

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12151083.8A Withdrawn EP2615439A1 (de) 2012-01-13 2012-01-13 Magnetoelastischer Kraftsensor und Verfahren zum Kompensieren einer Abstandsabhängigkeit in einem Messsignal eines derartigen Sensors
EP12791125.3A Active EP2769192B1 (de) 2012-01-13 2012-11-07 Magnetoelastischer torsions- oder drehmomentsensor und verfahren zum ermitteln einer torsion oder eines drehmomentes mit hilfe eines derartigen sensors.

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12791125.3A Active EP2769192B1 (de) 2012-01-13 2012-11-07 Magnetoelastischer torsions- oder drehmomentsensor und verfahren zum ermitteln einer torsion oder eines drehmomentes mit hilfe eines derartigen sensors.

Country Status (4)

Country Link
US (1) US9645022B2 (ko)
EP (2) EP2615439A1 (ko)
KR (1) KR102027607B1 (ko)
WO (1) WO2013104447A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205291A1 (de) 2014-03-21 2015-09-24 Siemens Aktiengesellschaft Verfahren zum Ermitteln der axialen Position des Sensorkopfes eines magnetoelastischen Sensors in Bezug auf eine rotierende Welle
WO2015144456A1 (de) * 2014-03-27 2015-10-01 Siemens Aktiengesellschaft Sensor auf magnetoelastischer basis
EP2927646A1 (de) * 2014-03-31 2015-10-07 Siemens Aktiengesellschaft Verfahren zur Korrektur von Messfehlern
WO2015156962A1 (en) * 2014-04-10 2015-10-15 General Electric Company System and method of magnetic shielding for sensors
US10094720B2 (en) 2014-04-10 2018-10-09 General Electric Company System and method of magnetic shielding for sensors
WO2018215167A1 (de) * 2017-05-22 2018-11-29 Helmholtz-Zentrum Dresden - Rossendorf E. V. Vorrichtung, anordnung und verfahren zum charakterisieren der torsion, der rotation und/oder der positionierung einer welle
DE102017112913A1 (de) * 2017-06-12 2018-12-13 Trafag Ag Belastungsmessverfahren, Belastungsmessvorrichtung und Belastungsmessanordnung
EP3855025A1 (de) * 2020-01-23 2021-07-28 Weber-Hydraulik GmbH Zylinderkolbenaggregat mit integriertem kraftmesssystem

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983073B2 (en) * 2013-07-05 2018-05-29 Torque And More (Tam) Gmbh Solid borne sound wave phase delay comparison
DE102014213747A1 (de) * 2014-07-15 2016-01-21 Siemens Aktiengesellschaft Sensorvorrichtung mit einem auf dem magnetoelastischen Effekt beruhenden Sensorelement und Kugelführung
US10736621B2 (en) * 2015-02-27 2020-08-11 Mayo Foundation For Medical Education And Research System and method for monitoring of a mechanical force
DE102016205784A1 (de) * 2016-04-07 2017-10-12 Robert Bosch Gmbh Drehmomenterfassungseinrichtung und Fahrzeug
US10113921B2 (en) * 2016-05-20 2018-10-30 General Electric Company Systems and methods for determining mechanical stress of machinery
US10267693B2 (en) * 2016-08-26 2019-04-23 General Electric Company System and method for measuring torque on a rotating component
EP3507579A1 (en) * 2016-08-30 2019-07-10 Torque And More GmbH Force measurement device
US10184846B2 (en) * 2016-08-31 2019-01-22 General Electric Company Systems and methods for compensating for air gap sensitivity in torque sensors
CN107884099B (zh) * 2016-09-30 2020-08-11 通用电气公司 校正装置、校正方法及测量系统
US10185021B2 (en) 2016-12-14 2019-01-22 General Electric Company Non-contact magnetostrictive sensor alignment methods and systems
US10473535B2 (en) 2017-01-27 2019-11-12 General Electric Company Methods and systems for non-contact magnetostrictive sensor runout compensation
DE102017202589A1 (de) 2017-02-17 2018-08-23 TÜV Nord Systems GmbH & Co. KG Verfahren und Vorrichtung zur Ermittlung der Treibfähigkeit einer Förderanlage über eine Drehmomentmessung
US10557758B2 (en) * 2017-05-17 2020-02-11 General Electric Company Non-contact magnetostrictive sensor with gap compensation field
US10502642B2 (en) * 2017-05-17 2019-12-10 General Electric Company Non-contact magnetostrictive stress sensor with gap compensation field
US10473536B2 (en) * 2017-08-11 2019-11-12 Bently Nevada, Llc Gap compensation for magnetostrictive torque sensors
US10677676B2 (en) 2017-09-06 2020-06-09 Bently Nevada, Llc Non-contact magnetostrictive sensor alignment
US11428589B2 (en) 2017-10-16 2022-08-30 Saf-Holland, Inc. Displacement sensor utilizing ronchi grating interference
DE102019108898B4 (de) * 2019-04-04 2022-08-04 Trafag Ag Vorrichtung und Anordnung zur Belastungsmessung an einem Testobjekt, insbesondere einer Fahrwerkskomponente
US11287337B2 (en) * 2019-07-16 2022-03-29 Bently Nevada, Llc Reference signal compensation for magnetostrictive sensor
DE102019119278A1 (de) * 2019-07-16 2021-01-21 Stefan Kubina Messvorrichtung und Verfahren zur Messung von Kräften und/oder Drehmomenten in einem Untersuchungsobjekt aus ferromagnetischem Material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144846A (en) * 1988-07-21 1992-09-08 Sensortech, L.P. Minimal structure magnetostrictive stress and torque sensor
DE9304629U1 (de) * 1993-03-24 1993-08-19 Killat, Dirk, Dipl.-Ing., 64289 Darmstadt Berührungsloser magnetischer Drehmomentsensor
DE102009008074A1 (de) 2009-02-10 2010-08-12 Siemens Aktiengesellschaft Messanordnung und Verwendung zum Erfassen des Drehmomentes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8902330D0 (sv) * 1989-06-28 1989-06-28 Carl H Tyren Frequency carried mechanical stress information
US5195377A (en) * 1990-04-17 1993-03-23 Garshelis Ivan J Magnetoelastic force transducer for sensing force applied to a ferromagnetic member using leakage flux measurement
DE4333199C2 (de) * 1993-09-29 1995-08-31 Daimler Benz Ag Sensor zur berührungslosen Drehmomentmessung an einer Welle sowie Meßschicht für einen solchen Sensor
US5565773A (en) * 1993-11-05 1996-10-15 Nippon Steel Corporation Arrangement of excitation and detection heads for detecting the magnetic properties of an object
US6073493A (en) * 1997-01-10 2000-06-13 Nippon Steel Corporation Method of diagnosing fatigue life of structural steelwork and a member of steelwork having life diagnostic function
US6494102B2 (en) * 2001-01-12 2002-12-17 Trw Inc. Magnetostrictive stress sensor
DE10161803A1 (de) 2001-12-15 2003-07-10 Hilti Ag Elektromagnetischer Drehmomentsensor
GB2383417B (en) * 2001-12-20 2005-10-05 Weston Aerospace Sensing method and apparatus
JP2004198292A (ja) * 2002-12-19 2004-07-15 Kura Gijutsu Kenkyusho:Kk インダクタンス検出回路及びそれを用いた位置検出装置及び導体の欠陥或いは有無の識別検査装置及びトルクセンサ
DE102006017727A1 (de) * 2006-04-15 2007-10-25 Daimlerchrysler Ag Berührungslose Sensorvorrichtung und Verfahren zur Bestimmung von Eigenschaften einer Welle
DE102008044125A1 (de) * 2008-11-27 2010-06-02 Robert Bosch Gmbh Sensoranordnung mit einem magnetoelastischen Verformungselement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144846A (en) * 1988-07-21 1992-09-08 Sensortech, L.P. Minimal structure magnetostrictive stress and torque sensor
DE9304629U1 (de) * 1993-03-24 1993-08-19 Killat, Dirk, Dipl.-Ing., 64289 Darmstadt Berührungsloser magnetischer Drehmomentsensor
DE102009008074A1 (de) 2009-02-10 2010-08-12 Siemens Aktiengesellschaft Messanordnung und Verwendung zum Erfassen des Drehmomentes

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205291A1 (de) 2014-03-21 2015-09-24 Siemens Aktiengesellschaft Verfahren zum Ermitteln der axialen Position des Sensorkopfes eines magnetoelastischen Sensors in Bezug auf eine rotierende Welle
WO2015144456A1 (de) * 2014-03-27 2015-10-01 Siemens Aktiengesellschaft Sensor auf magnetoelastischer basis
EP2927646A1 (de) * 2014-03-31 2015-10-07 Siemens Aktiengesellschaft Verfahren zur Korrektur von Messfehlern
WO2015150090A1 (de) * 2014-03-31 2015-10-08 Siemens Aktiengesellschaft Verfahren zur korrektur von messfehlern
US10094720B2 (en) 2014-04-10 2018-10-09 General Electric Company System and method of magnetic shielding for sensors
US9429488B2 (en) 2014-04-10 2016-08-30 General Electric Company System and method of magnetic shielding for sensors
WO2015156962A1 (en) * 2014-04-10 2015-10-15 General Electric Company System and method of magnetic shielding for sensors
US10444086B2 (en) 2014-04-10 2019-10-15 General Electric Company System and method of magnetic shielding for sensors
WO2018215167A1 (de) * 2017-05-22 2018-11-29 Helmholtz-Zentrum Dresden - Rossendorf E. V. Vorrichtung, anordnung und verfahren zum charakterisieren der torsion, der rotation und/oder der positionierung einer welle
EP3631394B1 (de) * 2017-05-22 2020-08-26 Helmholtz-Zentrum Dresden - Rossendorf e.V. Vorrichtung, anordnung und verfahren zum charakterisieren der torsion, der rotation und/oder der positionierung einer welle
US11402237B2 (en) 2017-05-22 2022-08-02 Helmholtz-Zentrum Dresden-Rossendorf E.V. Device, arrangement and method for characterizing the torsion, rotation and/or positioning of a shaft
DE102017112913A1 (de) * 2017-06-12 2018-12-13 Trafag Ag Belastungsmessverfahren, Belastungsmessvorrichtung und Belastungsmessanordnung
US11585708B2 (en) 2017-06-12 2023-02-21 Trafag Ag Load measuring method, load measuring device and load measuring arrangement
EP3855025A1 (de) * 2020-01-23 2021-07-28 Weber-Hydraulik GmbH Zylinderkolbenaggregat mit integriertem kraftmesssystem

Also Published As

Publication number Publication date
EP2769192A1 (de) 2014-08-27
KR102027607B1 (ko) 2019-11-04
US20140366637A1 (en) 2014-12-18
US9645022B2 (en) 2017-05-09
EP2769192B1 (de) 2017-03-22
KR20140116862A (ko) 2014-10-06
WO2013104447A1 (de) 2013-07-18

Similar Documents

Publication Publication Date Title
EP2769192B1 (de) Magnetoelastischer torsions- oder drehmomentsensor und verfahren zum ermitteln einer torsion oder eines drehmomentes mit hilfe eines derartigen sensors.
DE102015122154B4 (de) Vorrichtung zur Feststellung externer magnetischer Streufelder auf einen Magnetfeldsensor
EP3563116B1 (de) Wegsensor
DE102013219761B3 (de) Anordnung und Verfahren zum Messen eines Drehmomentes an einem Maschinenelement sowie Wankstabilisator
DE102010056271B4 (de) Sensoranordnung zur Erfassung sowohl der Axial- als auch der Drehstellung einer in Längsrichtung verschieblichen und drehbaren Welle
EP3364163A1 (de) Magnetoelastischer drehmomentsensor
EP2979102B1 (de) Fremdmagnetfeld-unempfindlicher hallsensor
EP2729823B1 (de) Messkopf für einen magnetoelastischen sensor
EP3256829B1 (de) Anordnung zur messung einer kraft oder eines momentes mit mindestens vier magnetfeldsensoren
DE102011089605A1 (de) Vorrichtung mit Messeinrichtung zum Messen von Kräften und/ oder Belastungen
WO2016184463A1 (de) Anordnung und verfahren zum messen einer kraft oder eines momentes mit mindestens zwei beabstandeten magnetfeldsensoren
DE102017109114B4 (de) Kraftsensor und Kraftmessverfahren zum Messen axialer Kräfte
DE202015105090U1 (de) Redundanter Drehmomentsensor - Multiple Bandanordnung
DE102014204268A1 (de) Verfahren zur Erfassung der Richtung mechanischer Spannungen in einem ferromagnetischen Werkstück und Sensoranordnung
DE102013205901A1 (de) Schaltelement eines Fahrzeuggangräderwechselgetriebes
DE102015102337B4 (de) Redundanter Drehmomentsensor - Multiple Bandanordnung
WO2020157278A1 (de) Anordnung und verfahren zur messung einer mechanischen belastung eines testobjekts unter erfassung von magnetfeldänderungen
EP2834601B1 (de) Verfahren und anordnung zur positionsbestimmung eines bauteils
EP3090236B1 (de) Sensorvorrichtung zum bestimmen einer verschiebung einer welle
AT504137B1 (de) Einrichtung zur messung
DE102014226604A1 (de) Verfahren und Vorrichtung zum Ausgleichen einer Anordnungstoleranz zwischen zwei Sensorelementen einer Lagesensoranordnung
WO2021052525A1 (de) Sensoranordnung zur erfassung eines drehmomentes und einer drehwinkelstellung einer drehbeweglichen welle
DE102022122599B3 (de) Verfahren zur Erfassung einer Position eines Ziels mittels eines linearen magnetischen Positionssensors
DE102017223477A1 (de) Sensorsystem zur Bestimmung wenigstens einer Rotationseigenschaft eines um eine Rotationsachse rotierenden Elements
EP3109643B1 (de) Drehwinkelmessvorrichtung zum erfassen eines drehwinkels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140118