EP2614693A1 - Method for coating an optoelectronic chip-on-board module and optoelectronic chip-on-board-module - Google Patents

Method for coating an optoelectronic chip-on-board module and optoelectronic chip-on-board-module

Info

Publication number
EP2614693A1
EP2614693A1 EP11757165.3A EP11757165A EP2614693A1 EP 2614693 A1 EP2614693 A1 EP 2614693A1 EP 11757165 A EP11757165 A EP 11757165A EP 2614693 A1 EP2614693 A1 EP 2614693A1
Authority
EP
European Patent Office
Prior art keywords
silicone
dam
carrier
optoelectronic
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11757165.3A
Other languages
German (de)
French (fr)
Other versions
EP2614693B1 (en
Inventor
Michael Peil
Florin Oswald
Harald Maiweg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP2614693A1 publication Critical patent/EP2614693A1/en
Application granted granted Critical
Publication of EP2614693B1 publication Critical patent/EP2614693B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09909Special local insulating pattern, e.g. as dam around component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0126Dispenser, e.g. for solder paste, for supplying conductive paste for screen printing or for filling holes

Definitions

  • the invention relates to a method for coating an optoelectronic chip-on-board module, which comprises a flat carrier, which is equipped with one or more optoelectronic components, with a transparent, UV and temperature-resistant coating of one or more silicones, a corresponding Opto-electronic chip-on-board module and a system with several optoelectronic chip-on-board modules.
  • Generic optoelectronic chip-on-board modules are used, for example, as luminous bodies, as high-power UV LED lamps, as photovoltaic modules, sensors or the like.
  • the optoelectronic components used in this case are, for example, but not exclusively, LEDs or photodiodes in the form of chips or other components which, in the chip-on-board module, are mounted on a flat carrier, ie a metal, Ceramic or silicon substrate, a metal core or FR4 circuit board, a glass substrate, a plastic support o. ⁇ . Are arranged.
  • These chip-on-board modules must be protected against mechanical damage and corrosion. For this purpose, the most compact and lightweight solutions are sought.
  • a practical alternative to the protection of chip-on-board modules is a surface encapsulation of the components with a plastic-based potting material. Together with other functional components, such as interconnects and contacting elements, the optoelectronic components are embedded in chip-on-board devices. Modules together with a laminar support protected by coatings from mechanical damage and corrosion.
  • epoxy resins are used for this purpose. These are first applied liquid as potting material and then cured thermally and / or radiation-induced. Since the potting material is initially liquid, a flow of the potting compound must be avoided. This is usually done by a form or a fixed frame.
  • a plastic dam is applied to the support of the chip-on-board module, which encloses a surface of the carrier, in which subsequently a liquid filling compound of epoxy resin The dam and filling compound together form the coating of the module
  • a viscous polymer with a dispensing device is applied or pulled in this process and then cured so that potting material is poured onto the surface enclosed by the dam
  • the plastic dam produced in this way is not transparent, which is why opto-electronic chip-on-board modules coated in this way are used with optoelectronic components, such as LEDs or photodiodes, for example.
  • thixotropic epoxy resins are used for this purpose, for example in the chip card manufacturing.
  • Thixotropic epoxy resins are treated so that their viscosity depends on the mechanical force and its duration. In the case of thixotropic epoxy resins, therefore, liquefaction takes place due to the action of force when applying the dam and subsequent solidification due to the expansion of the material after it leaves the nozzle.
  • epoxy resins are not UV-stable and therefore in a high-performance UV-LED module or in intense sunlight with UV components, as they are in photovoltaics, not stable, they age quickly under UV exposure and are destroyed.
  • a surface casting which avoids the disadvantages mentioned, is more advantageous.
  • the encapsulation should be transparent both in areas and in the edge area.
  • high temperature and UV stability are relevant both for the production of corresponding optoelectronic components and for long-term stable functionality.
  • the present invention has the object to provide a method for coating an optoelectronic chip-on-board module and a corresponding coated optoelectronic chip on-board module available in which a UV and temperature-resistant coating is realized and the most efficient use of the available on the chip-on-board module surface is achieved.
  • this object is achieved by a method for coating an optoelectronic ring, which comprises a planar carrier, which is provided with one or more ren optoelectronic components is equipped, with a transparent, UV and temperature-resistant coating of one or more silicones, solved, which is characterized by the following process steps: a) preheating the substrate to be coated to a first temperature, b) applying a to be coated Surface or partial area of the support enclosing dam from a first, thermosetting, highly reactive silicone which cures at the first temperature to the preheated support, c) filling the area enclosed by the dam or surface of the support with a liquid second silicone, and d ) Curing the second silicone.
  • the process according to the invention is based on the idea that silicones are used as a dam material in a modified "dam-and-fill" process, which has hitherto not been possible since silicones can not be thixotroped without losing their transparency
  • Silicones are used according to the invention highly reactive silicones which are applied to the preheated carrier.As the carrier is preheated to a temperature at which the highly reactive silicone cures and also the volume and mass of the highly reactive silicone used as a dam material is very low, the applied cures Damming up material very quickly, before it can flow away, in order to realize raised geometries.
  • Highly reactive silicone is understood as meaning a silicone which crosslinks rapidly or thermosetting at the first temperature and forms a transparent dam when it strikes the carrier in the process according to the invention, without deliquescing.
  • the curing time is preferably in the range up to 10 seconds, preferably less than 5 seconds.
  • Such silicones are known.
  • An acceleration of the curing can also be achieved if the first silicone contains radiation-sensitive initiators and is irradiated after application with radiation, in particular visible or ultraviolet light, so that a pre-crosslinking is initiated, while the crosslinking occurs mainly thermally.
  • the basin defined by the dam can subsequently be filled with liquid silicone in a "dam-and-fiH" process, which is subsequently filled in Curing by means of radiation can also be used as an alternative or in addition to this
  • the application of the dam takes place in a relative movement of the dispensing device or nozzle and module, wherein the dispensing device can be stationary and the module is moved vice versa.
  • the silicone strain is just as transparent as the silicone filling, so that no optical impairment occurs through the silicone strain.
  • the surface casting is thus fully functional.
  • the efficiency of the coating is substantially increased and it is possible to make further use of the area available on the carrier than has hitherto been the case, since conventional dams were not transparent and the area covered by the dams was not available for optoelectronic components.
  • the first temperature in process step a) is a temperature of usually between 100 ° C and 150 ° C or above, adapted to allow rapid curing of the highly reactive silicone for the dam, without the optoelectronic components on the Carrier damage.
  • the carrier is cooled to a second temperature and / or allowed to cool is, which is below the first temperature, in particular below a curing temperature of the second silicone.
  • the second silicone can distribute evenly without curing and curing after the uniform and gapless distribution in the next step. This can in turn be done by increasing the temperature and / or by radiation curing.
  • the second silicone is equally reactive or less reactive than the first silicone used to form a dam, or the same silicone is used as the first silicone and as the second silicone. If the second silicone is less reactive, a gapless and even replenishment of the Dam enclosed area take place even if the temperature of the carrier has not or only slightly reduced.
  • the dam is applied via optoelectronic components, bond wires or other components, so that the surface utilization of the coating is not limited by the fact that the arrangement of optical chips, bonding wires or other components must be taken into account. Rather, the dam can be arranged in any way on the carrier.
  • An advantageous development undergoes the method when the dam is applied with a cross-sectional profile, which causes an optical focusing or scattering of light. As a result, the luminous efficacy in the edge region can be modeled as desired. This also improves the alignability of adjacent modules, since shadows in the edge area are avoided.
  • the shape of the dam is made possible by the spontaneous hardening of the silicone material for the dam and the influence of its hardening properties by the coordination of the process parameters.
  • the corresponding process parameters are in particular the reactivity of the silicone material used, the temperature of the carrier and the application speed of the dam and the shape of the nozzle used, as well as a distance between the nozzle used and the carrier.
  • optically functional materials in particular phosphorescent and / or scattering materials or particles, are or are mixed into the first silicone and / or the second silicone.
  • Phosphorescent materials provide a wavelength shift, so that a desired adjustment of the emitted wavelength u. a. is possible with LED modules.
  • Scattering particles and materials ensure that a uniform illumination or light emission, especially in lamp modules, is generated.
  • Other miscible materials are, for example, color-absorbing or color-active materials.
  • a likewise advantageous embodiment undergoes the method according to the invention when drops of the first silicone are applied as fast-curing lenses to individual optoelectronic components.
  • Particularly flawless coatings result when the first and / or the second silicone under a vacuum, in particular at about 10 mbar, is pretreated. As a result, gas trapped in the liquid silicone is extracted from the silicone.
  • the application and / or the curing of the first and / or the second silicone can advantageously be carried out under an atmospheric overpressure, in particular between 4 and 10 bar, in particular at about 5 to 7 bar. As a result, gas bubbles generated during casting and enclosed in the silicone are reduced to such an extent that they disappear and the gas contained therein diffuses into the silicone and through the silicone without disturbance.
  • an optoelectronic chip on-board module comprising a planar carrier, which is equipped with one or more optoelectronic components, with a transparent, UV and temperature-resistant coating of one or more silicones characterized in that the coating comprises an embankment of a cured first silicone enclosing a surface or partial surface of the support and a second silicone filled and hardened into the surface or partial surface.
  • an optoelectronic chip-on-board module according to the invention is provided with a transparent, UV and temperature-resistant coating in any desired manner, in particular over the entire surface, so that optionally the entire surface of a support for optical components is available.
  • the arrangement of the opto-electro ⁇ African components on the carrier is thus not limited by requirements and constraints of the Be ⁇ coating.
  • a UV-stable protection up to intensities of a few 10 W / cm 2 is given up to a temperature of typically about 200 ° C.
  • This protection includes both the surface area and the edge area of the carrier or of the chip-on-board module below the coating and also protects the module and the connecting components mechanically.
  • the optoelectronic chip-on-board module according to the invention can be produced or produced by the method according to the invention described above. Thus, it also has the properties and advantages already described in connection with the method according to the invention.
  • the dam extends at least in sections at an edge of the carrier (2, 2 '). This makes it possible to optimally exploit the area provided on the carrier for optoelectronic components as desired. A production-related reasons of a coating left free edge is unnecessary.
  • the first silicone and the second silicone preferably consist of the same material or have the same optical properties in the cured state, in particular with regard to transparency, color and / or refractive index.
  • the coating of the chip-on-board module as a whole preferably has the same or similar optical properties at every point.
  • the dam can advantageously be shaped in cross-section so as to have beam-bundling or scattering properties.
  • the carrier is equipped with optoelectronic components up to an edge or until shortly before an edge, so that the area available on the carrier is optimally utilized and the optoelectronic components are protected.
  • the object on which the invention is based is also achieved by a system having two or more optoelectronic chip-on-board modules according to the invention described above, wherein the carriers of the optoelectronic chip-on-board modules are arranged flush with one another, wherein in particular due to marginal placement of the carrier with optoelectronic components results in a regular arrangement and spacing of optoelectronic components beyond the boundaries between adjacent carriers.
  • a uniform and borderless utilization of the available surface with optical components, such as LEDs or photodiodes, is also possible when assembling several chip-on-board modules.
  • the subject of the invention ie the method according to the invention, the optoelectronic chip-on-board module according to the invention and the system according to the invention, have in common that the hardness of the silicone can be chosen, typically between a gel and a Shore hardness close to 100, so that thermally induced voltages are attenuated can occur due to different coefficients of expansion between carrier, chip-on-board components and connection materials.
  • FIG. 1 shows a schematic representation of a chip-on-board LED module
  • FIG. 2 shows a schematic illustration of a system with two chip-on-board LED modules
  • Fig. 3 is a schematic representation of a conventionally coated
  • FIG. 4 is a schematic representation of a chip-on-chip coated according to the invention.
  • the invention is explained on the basis of chip-on-board LED modules, that is to say with reference to luminous bodies, as an example of optoelectronic chip-on-board modules.
  • photodiodes in solar cells or other components can be used instead of LED modules as optoelectronic components.
  • a chip-on-board LED module 1 is shown without coating in cross-section schematically, in which on two parallel carriers 2, 2 'or substrates printed conductors 3, 3' and designed as unbehauste LED chips LEDs 4, 4 'arranged at regular intervals EP2011 / 004327
  • FIG. 10 are net. For reasons of clarity, not all recurring elements of FIG. 1 and the following figures are provided with reference numerals, but these relate to all similar elements. Thus, in FIG. 1, only one LED 4, 4 'is provided with a reference number for each of the two chip-on-board LED modules 1, 1'. The other components are identical.
  • the LEDs are approximately Lamertian emitters, which radiate about 75% of the total radiated light output within an opening angle of 120 °. If the surface equipped with LEDs 4, 4 'is expanded with respect to the measuring distance and the distance is sufficiently greater than the distance of the LED chips, also called "pitch", then a homogeneous intensity distribution is measured with similar properties to those of a homogeneous, diffusely luminous one Area.
  • the homogeneous intensity distribution also continues via the abutment 6 between adjacent modules 1, 1 ', since the overlapping region 7 of the light cones 5, 5' at this point due to the regular and marginal placement of the carriers 2, 2 is well formed with LEDs 4, 4 'and the absence of optical obstacles.
  • the conventional dams 12, 12 ' can not be installed on the LEDs 4, 4', but need their own space.
  • the edge region of the carriers 2, 2 'must therefore remain free on the chip-on-board LED modules 11, 11' in FIG. 2 of LEDs 4, 4 '.
  • a chip-on-board LED module 1 1 is schematically shown, as shown in Fig. 2, but in this case without the light cone 5, 5 ', but with the representation of the filling material thirteenth made of epoxy resin.
  • the coating of the dams 12 and the epoxy 13 protect the opto-electronic components, i. the LEDs 4 and the tracks and the carrier 2 of the chip-on-board LED module 1 1 mechanically, but they are not UV-resistant.
  • the dam 12 is not transparent.
  • an inventive chip-on-board LED module 21 is shown schematically, in addition to the usual components carrier 2, conductors 3 and LEDs 4, a coating 24 of a dam 22 made of a highly reactive silicone and a filling material 23 from a Silicone has.
  • This coating 24 is transparent both in the filling compound 23 and in the dam 22, so that the LEDs 4 can be distributed uniformly up to the edge of the carrier 2.
  • the dam 22 is partially applied across the LEDs 4 on the carrier 2, shaded because of its transparency, however, their light emission does not.
  • the production takes place in which first the carrier 2 with the components arranged thereon, i. the conductor tracks 3 and the LED chips 4, is heated and then the dam 22 is applied from a highly reactive silicone in the desired manner to the carrier 2. Since it is a very small mass and the temperature of the carrier 2 is at or above the evaluation temperature of the silicone, the silicone of the dam 22 hardens before it can creep or flow. Radiation-induced precuring can also be carried out if the silicone contains corresponding initiators. Subsequently, after the dam, which projects beyond the height of the LEDs 4 above the carrier 2, filled with liquid silicone 23, and then cured.
  • this modified "dam and fill” process allows a transparent, UV and temperature-resistant coating of optoelectronic chip-on-board modules.

Abstract

The invention relates to a method for coating an optoelectronic chip-on-board module (21) that comprises a flat support (2, 2') fitted with one or several optoelectronic components (4) and has a transparent, UV- and temperature-resistant coating (24) consisting of one or more silicones, to a corresponding optoelectronic chip-on-board module (21) and to a system comprising several optoelectronic chip-on-board modules (21). The method according to the invention comprises the following method steps: a) preheating the support to be coated (2, 2') to a first temperature, b) applying a dam, (22) which encloses a surface or partial surface to be coated of the support (2, 2') and is made of a first thermally curable, highly reactive silicone that cures at the first temperature, onto the preheated support (2, 2'), c) filling the surface or partial surface of the support (2, 2'), which is enclosed by the dam (22), with a liquid second silicone (23), and d) curing the second silicone (23).

Description

Patentanmeldung  Patent application
Heraeus Noblelight GmbH  Heraeus Noblelight GmbH
Verfahren zur Beschichtung eines optoelektronischen Chip-On-Board-Moduls  Method for coating an optoelectronic chip-on-board module
und optoelektronisches Chip-on-Board-Modul  and opto-electronic chip-on-board module
Die Erfindung betrifft ein Verfahren zur Beschichtung eines optoelektronischen Chip-On-Board- Moduls, das einen flächigen Träger umfasst, der mit einer oder mehreren optoelektronischen Komponenten bestückt ist, mit einer transparenten, UV- und temperaturbeständigen Beschichtung aus einem oder mehreren Silikonen, ein entsprechendes optoelektronisches Chip-On- Board-Modul und ein System mit mehreren optoelektronischen Chip-On-Board-Modulen. The invention relates to a method for coating an optoelectronic chip-on-board module, which comprises a flat carrier, which is equipped with one or more optoelectronic components, with a transparent, UV and temperature-resistant coating of one or more silicones, a corresponding Opto-electronic chip-on-board module and a system with several optoelectronic chip-on-board modules.
Gattungsgemäße optoelektronische Chip-On-Board-Module werden beispielsweise als Leuchtkörper, als Hochleistungs-UV-LED-Lampen, als Photovoltaik-Module, Sensoren o. ä. verwendet. Bei den dabei verwendeten optoelektronischen Komponenten handelt es sich im Rahmen der Erfindung beispielsweise, aber nicht ausschließlich, um LEDs oder Photodioden in Form von Chips oder anderen Bauteilen, die im Chip-On-Board-Modul auf einem flächigen Träger, also einem Metall-, Keramik- oder Siliziumsubstrat, einer Metallkern- oder FR4-Leiterplatte, einem Glasträger, einem Kunststoffträger o. ä. angeordnet sind. Diese Chip-On-Board-Module müssen vor mechanischen Schäden und Korrosion geschützt werden. Hierzu werden möglichst kompakte und leichte Lösungen gesucht. Generic optoelectronic chip-on-board modules are used, for example, as luminous bodies, as high-power UV LED lamps, as photovoltaic modules, sensors or the like. In the context of the invention, the optoelectronic components used in this case are, for example, but not exclusively, LEDs or photodiodes in the form of chips or other components which, in the chip-on-board module, are mounted on a flat carrier, ie a metal, Ceramic or silicon substrate, a metal core or FR4 circuit board, a glass substrate, a plastic support o. Ä. Are arranged. These chip-on-board modules must be protected against mechanical damage and corrosion. For this purpose, the most compact and lightweight solutions are sought.
Ein Schutz in der Form von Gehäusen auf Chip-On-Board-Modulen ist oft kostenaufwändig und technologisch aufwändig. Eine praktikable Alternative zum Schutz von Chip-On-Board-Modulen stellt ein flächiger Verguss der Komponenten mit einem kunststoffbasierten Vergussmaterial dar. Zusammen mit weiteren funktionalen Komponenten, wie etwa Leiterbahnen und Kontaktie- rungselementen, werden die optoelektronischen Komponenten in Chip-On-Board-Modulen zusammen mit einem flächigen Träger durch Beschichtungen vor mechanischen Schäden und Korrosion geschützt. Protection in the form of packages on chip-on-board modules is often costly and technologically complex. A practical alternative to the protection of chip-on-board modules is a surface encapsulation of the components with a plastic-based potting material. Together with other functional components, such as interconnects and contacting elements, the optoelectronic components are embedded in chip-on-board devices. Modules together with a laminar support protected by coatings from mechanical damage and corrosion.
BESTÄTIGUNGSKOPIE 011 004327 CONFIRMATION COPY 011 004327
2 2
Üblicherweise werden hierfür Epoxidharze verwendet. Diese werden als Vergussmaterial zunächst flüssig aufgebracht und dann thermisch und/oder strahlungsinduziert ausgehärtet. Da das Vergussmaterial zunächst flüssig ist, muss ein Wegfließen der Vergussmasse vermieden werden. Dies geschieht üblicherweise durch eine Form oder einen festen Rahmen. Usually, epoxy resins are used for this purpose. These are first applied liquid as potting material and then cured thermally and / or radiation-induced. Since the potting material is initially liquid, a flow of the potting compound must be avoided. This is usually done by a form or a fixed frame.
Eine Alternative hierfür bildet das so genannte„Dam-and-FiH"-Verfahren, worin zunächst ein Kunststoffdamm auf den Träger des Chip-On-Board-Moduls aufgebracht wird, der eine Fläche des Trägers umschließt, in die anschließend eine flüssige Füllmasse aus Epoxidharz eingefüllt wird. Diese wird ausgehärtet. Damm und Füllmasse bilden zusammen die Beschichtung des Moduls. Zur Erzeugung des Damms wird bei diesem Verfahren ein zähflüssiges Polymer mit einer Dispensvorrichtung aufgebracht bzw. gezogen und danach ausgehärtet, so dass auf die von dem Damm eingeschlossene Fläche Vergussmaterial vergossen werden kann, ohne dass dieses wegfließt. Der so erzeugte Kunststoffdamm ist allerdings nicht transparent. Daher sind derart beschichtete optoelektronische Chip-On-Board-Module, also Chip-On-Board-Module, die mit optoelektronischen Komponenten, wie beispielsweise LEDs oder Photodioden, bestückt sind, zum Rand hin in ihrer Lichtstrahlungsstärke bzw. ihrer Lichtempfindlichkeit beeinträchtigt. Eine Klasse weiterer Materialien, die als Damm in einem„Dam-and-FiH"-Verfahren verwendbar sind, sind thixotropierte Epoxidharze. Diese werden für diesen Zweck beispielsweise in der Chip-Karten-Herstellung eingesetzt. Thixotropierte Epoxidharze sind so behandelt, dass ihre Viskosität von der mechanischen Krafteinwirkung und deren Dauer abhängt. Bei thixotropen Epoxidharzen erfolgt daher eine Verflüssigung durch die Krafteinwirkung beim Aufbringen des Dammes und eine anschließende Verfestigung durch die Entspannung des Materials nach dem Austritt aus einer Düse. Damit sind sie zur Erzeugung eines stabilen Dammes in einem„Dam- and-Fill"-Verfahren gut geeignet. Epoxidharze sind jedoch nicht UV-stabil und deshalb in einem Hochleistungs-UV-LED-Modul oder auch bei intensiver Sonneneinstrahlung mit UV-Anteilen, wie sie in der Photovoltaik vorkommen, nicht stabil. Sie altern bei UV-Belastung schnell und werden zerstört. An alternative to this is the so-called "Dam-and-FiH" method, wherein first a plastic dam is applied to the support of the chip-on-board module, which encloses a surface of the carrier, in which subsequently a liquid filling compound of epoxy resin The dam and filling compound together form the coating of the module In order to create the dam, a viscous polymer with a dispensing device is applied or pulled in this process and then cured so that potting material is poured onto the surface enclosed by the dam However, the plastic dam produced in this way is not transparent, which is why opto-electronic chip-on-board modules coated in this way are used with optoelectronic components, such as LEDs or photodiodes, for example. are equipped to the edge in their light intensity or their photosensitivity bee One class of other materials that can be used as a dam in a "dam-and-fiH" process are thixotropic epoxy resins. These are used for this purpose, for example in the chip card manufacturing. Thixotropic epoxy resins are treated so that their viscosity depends on the mechanical force and its duration. In the case of thixotropic epoxy resins, therefore, liquefaction takes place due to the action of force when applying the dam and subsequent solidification due to the expansion of the material after it leaves the nozzle. Thus, they are well suited for the production of a stable dam in a "dam-and-fill" process, but epoxy resins are not UV-stable and therefore in a high-performance UV-LED module or in intense sunlight with UV components, as they are in photovoltaics, not stable, they age quickly under UV exposure and are destroyed.
Bislang ist kein Verfahren zur Realisierung einer flächigen Beschichtung für Chip-On-Board- Module bekannt, in dem sowohl im Flächen- als auch im Randbereich des Vergusses Materia¬ lien eingesetzt werden, die sowohl UV-stabil als auch temperaturstabil sind und die darüber hinaus ebenso für elektromagnetische Strahlung vom ultravioletten bis zum infraroten Spektralbereich transparent sind. So far, no method for the realization of a surface coating for chip-on-board modules is known, in which both in the surface and in the edge region of the potting Materia ¬ lien are used, which are both UV-stable and temperature stable and the above also transparent to electromagnetic radiation from the ultraviolet to the infrared spectral range.
Andere Lösungen, wie beispielsweise das Aufkleben eines Glasrahmens oder einer Glaskuppe, die transparent, UV- und temperaturstabil sind, erfordern eine sehr aufwändige Montage des Rahmens und eine schwierig herzustellende Kompaktheit des Rahmens. Zudem ist eine solche Lösung mit einem höheren Gewicht verbunden als eine„Dam-and-FiH"-Lösung. Für starre Glasmaterialien stellt eine meist notwendige Anpassung der thermischen Ausdehnungskoeffizienten der Verbundmaterialien zudem eine weitere Hürde dar, insbesondere wenn die späte- ren Produkte thermischen Zyklen ausgesetzt sind. Other solutions, such as the gluing of a glass frame or a glass pan, which are transparent, UV and temperature stable, require a very complex installation of the frame and a difficult to manufacture compactness of the frame. In addition, such a solution is associated with a higher weight than a "dam-and-FiH" solution For rigid glass materials, a usually necessary adaptation of the thermal expansion coefficients of the composite materials is another hurdle, especially if the later products are thermal cycles are exposed.
Bei einer Kombinationslösung aus einem Glasrahmen und einem Verguss mit einem geeigneten nicht-epoxidbasiertem Material, wie z.B. einem temperatur- und UV-stabilen Silikon können kleinste Spalten zwischen Rahmen und Substrat dazu führen, dass das stark kriechfähige Sili- kon beim Vergießen auslaufen könnte. Außerdem muss auf dem Substrat Platz für den Rahmen vorgesehen werden. Dies beeinträchtigt eine bestmögliche Ausnutzung der Substratfläche und/oder eine gewünschte Anreihbarkeit. In a combination solution of a glass frame and a casting with a suitable non-epoxide-based material, such. With a temperature and UV-stable silicone, the smallest gaps between the frame and the substrate can cause the highly creep-capable silicon to leak out during casting. In addition, space must be provided for the frame on the substrate. This impairs the best possible utilization of the substrate surface and / or a desired alignability.
Für den Einsatz von Chip-On-Board-Technologie zur Herstellung von Hochleistungs-UV-LED- Modulen, die flächig abstrahlen, oder von Photodioden-Arrays, ist ein flächiger Verguss, der die genannten Nachteile vermeidet, vorteilhafter. Aus Gründen der optischen Effizienz und einer bestmöglichen Anreihbarkeit von Modulen sollte der Verguss sowohl in Flächen als auch im Randbereich transparent sein. Ebenso sind eine hohe Temperatur- und UV-Stabilität sowohl für die Fertigung entsprechender optoelektronischer Bauteile als auch für langzeitstabile Funktiona- lität relevant. For the use of chip-on-board technology for the production of high-performance UV-LED modules that radiate surface, or photodiode arrays, a surface casting, which avoids the disadvantages mentioned, is more advantageous. For reasons of optical efficiency and the best possible modularity of modules, the encapsulation should be transparent both in areas and in the edge area. Likewise, high temperature and UV stability are relevant both for the production of corresponding optoelectronic components and for long-term stable functionality.
Ausgehend von diesem Stand der Technik und diesen Anforderungen liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zur Beschichtung eines optoelektronischen Chip-On-Board-Moduls sowie ein entsprechendes beschichtetes optoelektronisches Chip-On- Board-Modul zur Verfügung zu stellen, bei denen eine UV- und temperaturbeständige Beschichtung realisiert wird und eine möglichst effiziente Ausnutzung der auf dem Chip-On-Board- Modul verfügbaren Fläche erreicht wird. Based on this prior art and these requirements, the present invention has the object to provide a method for coating an optoelectronic chip-on-board module and a corresponding coated optoelectronic chip on-board module available in which a UV and temperature-resistant coating is realized and the most efficient use of the available on the chip-on-board module surface is achieved.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zur Beschichtung eines Optoelektronicrhen nhin-On-Rnarri-MnHuis das einen flächiaen Träger umfasst, der mit einer oder mehre- ren optoelektronischen Komponenten bestückt ist, mit einer transparenten, UV- und temperaturbeständigen Beschichtung aus einem oder mehreren Silikonen, gelöst, das sich durch die folgenden Verfahrensschritte auszeichnet: a) Vorwärmen des zu beschichtenden Trägers auf eine erste Temperatur, b) Auftragen eines eine zu beschichtende Fläche oder Teilfläche des Trägers einschließenden Dammes aus einem ersten, thermisch aushärtenden, hochreaktiven Silikon, das bei der ersten Temperatur aushärtet, auf den vorgewärmten Träger, c) Auffüllen der von dem Damm eingeschlossenen Fläche oder Teilfläche des Trägers mit einem flüssigen zweiten Silikon, und d) Aushärten des zweiten Silikons. According to the invention, this object is achieved by a method for coating an optoelectronic ring, which comprises a planar carrier, which is provided with one or more ren optoelectronic components is equipped, with a transparent, UV and temperature-resistant coating of one or more silicones, solved, which is characterized by the following process steps: a) preheating the substrate to be coated to a first temperature, b) applying a to be coated Surface or partial area of the support enclosing dam from a first, thermosetting, highly reactive silicone which cures at the first temperature to the preheated support, c) filling the area enclosed by the dam or surface of the support with a liquid second silicone, and d ) Curing the second silicone.
Das erfindungsgemäße Verfahren beruht auf dem Grundgedanken, dass Silikone als Dammmaterial in einem modifizierten„Dam-and-Fill"-Verfahren verwendet werden. Dies war bisher nicht möglich, da Silikone nicht thixotropiert werden können, ohne ihre Transparenz zu verlieren. Anstelle einer Thixotropierung der Silikone werden erfindungsgemäß hochreaktive Silikone verwendet, die auf den vorgewärmten Träger appliziert werden. Da der Träger auf eine Temperatur vorgewärmt ist, bei der das hochreaktive Silikon aushärtet und außerdem das Volumen und die Masse des als Dammmaterial verwendeten hochreaktiven Silikons sehr gering ist, härtet das applizierte Dammmaterial sehr schnell aus, bevor es verfließen kann. Auf diese Weise lassen sich erhabene Geometrien verwirklichen. The process according to the invention is based on the idea that silicones are used as a dam material in a modified "dam-and-fill" process, which has hitherto not been possible since silicones can not be thixotroped without losing their transparency Silicones are used according to the invention highly reactive silicones which are applied to the preheated carrier.As the carrier is preheated to a temperature at which the highly reactive silicone cures and also the volume and mass of the highly reactive silicone used as a dam material is very low, the applied cures Damming up material very quickly, before it can flow away, in order to realize raised geometries.
Als hochreaktives Silikon wird ein bei der ersten Temperatur schnell vernetzendes bzw. aushärtendes Silikon verstanden, das in dem erfindungsgemäßen Verfahren beim Auftreffen auf den Träger einen transparenten Damm bildet, ohne zu zerfließen. Die Aushärtezeit liegt vorzugsweise im Bereich bis zu 10 Sekunden, vorzugsweise weniger als 5 Sekunden. Derartige Siliko- ne sind bekannt. Eine Beschleunigung der Aushärtung kann auch erzielt werden, wenn das erste Silikon strahlungsempfindliche Initiatoren enthält und nach dem Applizieren mit Strahlung, insbesondere sichtbarem oder ultraviolettem Licht, bestrahlt wird, so dass eine Vorvernetzung initiiert wird, während die Vernetzung in der Hauptsache thermisch geschieht. Da auf diese Art und Weise ein Damm aus Silikon in Form eines Beckens oder Rahmens auf den Träger appliziert wird, kann das durch den Damm vorgegebene Becken anschließend in einem„Dam-and-FiH"-Prozess mit flüssigem Silikon ausgefüllt werden, das danach in der Regel thermisch ausgehärtet wird. Auch eine Aushärtung mittels Strahlung kann alternativ oder zu- sätzlich dazu verwendet werden. Die Applikation des Dammes erfolgt in einer Relativbewegung von Dispensvorrichtung bzw. Düse und Modul, wobei die Dispensvorrichtung ortsfest sein kann und das Modul bewegt wird/oder umgekehrt. Highly reactive silicone is understood as meaning a silicone which crosslinks rapidly or thermosetting at the first temperature and forms a transparent dam when it strikes the carrier in the process according to the invention, without deliquescing. The curing time is preferably in the range up to 10 seconds, preferably less than 5 seconds. Such silicones are known. An acceleration of the curing can also be achieved if the first silicone contains radiation-sensitive initiators and is irradiated after application with radiation, in particular visible or ultraviolet light, so that a pre-crosslinking is initiated, while the crosslinking occurs mainly thermally. Since in this way a dam made of silicone in the form of a pelvis or frame is applied to the carrier, the basin defined by the dam can subsequently be filled with liquid silicone in a "dam-and-fiH" process, which is subsequently filled in Curing by means of radiation can also be used as an alternative or in addition to this The application of the dam takes place in a relative movement of the dispensing device or nozzle and module, wherein the dispensing device can be stationary and the module is moved vice versa.
Der Silikondamm ist erfindungsgemäß ebenso transparent wie die Silikonfüllung, so dass kei- nerlei optische Beeinträchtigung durch den Silikondamm eintritt. Der flächige Verguss ist somit voll funktional. Hierdurch wird die Effizienz der Beschichtung wesentlich erhöht und es ist möglich, die auf dem Träger verfügbare Fläche weiter auszunutzen, als dies bisher der Fall war, da herkömmliche Dämme intransparent waren und die von den Dämmen überdeckte Fläche nicht für optoelektronische Komponenten verfügbar war. According to the invention, the silicone strain is just as transparent as the silicone filling, so that no optical impairment occurs through the silicone strain. The surface casting is thus fully functional. As a result, the efficiency of the coating is substantially increased and it is possible to make further use of the area available on the carrier than has hitherto been the case, since conventional dams were not transparent and the area covered by the dams was not available for optoelectronic components.
Bei dem erfindungsgemäßen Verfahren ist die erste Temperatur im Verfahrensschritt a) eine Temperatur von üblicherweise zwischen 100°C und 150°C oder darüber, die angepasst ist, um ein schnelles Aushärten des hochreaktiven Silikons für den Damm zu ermöglichen, ohne die optoelektronischen Komponenten auf dem Träger zu beschädigen. In the method according to the invention, the first temperature in process step a) is a temperature of usually between 100 ° C and 150 ° C or above, adapted to allow rapid curing of the highly reactive silicone for the dam, without the optoelectronic components on the Carrier damage.
Um das Auffüllen der von dem Damm eingeschlossenen Fläche oder Teilfläche des Träger gleichmäßig und lückenlos sicherzustellen, ist in einer vorteilhaften Weiterbildung vorgesehen, dass nach dem Schritt b) und vor dem Schritt c) der Träger auf eine zweite Temperatur abgekühlt wird und/oder abkühlen gelassen wird, die unterhalb der ersten Temperatur, insbesondere auch unterhalb einer Aushärtetemperatur des zweiten Silikons, liegt. Dies ist insbesondere dann vorteilhaft, wenn das zweite Silikon bei der ersten Temperatur ebenfalls aushärtet. Bei dem auf die zweite Temperatur abgekühlten Träger kann sich das zweite Silikon gleichmäßig verteilen, ohne auszuhärten und nach der gleichmäßigen und lückenlosen Verteilung im nächsten Schritt ausgehärtet werden. Dies kann wiederum durch Erhöhung der Temperatur und/oder durch Strahlungsaushärtung geschehen. In order to ensure the filling of the area enclosed by the dam surface or partial surface of the carrier uniformly and completely, is provided in an advantageous development that after step b) and before step c), the carrier is cooled to a second temperature and / or allowed to cool is, which is below the first temperature, in particular below a curing temperature of the second silicone. This is particularly advantageous when the second silicone also cures at the first temperature. In the case of the carrier cooled to the second temperature, the second silicone can distribute evenly without curing and curing after the uniform and gapless distribution in the next step. This can in turn be done by increasing the temperature and / or by radiation curing.
Zusätzlich oder alternativ ist vorzugsweise vorgesehen, dass das zweite Silikon gleich reaktiv oder weniger reaktiv ist als das zur Erzeugung eines Dammes verwendete erste Silikon, oder das gleiche Silikon als erstes Silikon und als zweites Silikon verwendet wird. Wenn das zweite Silikon weniger reaktiv ist, kann eine lückenlose und gleichmäßige Auffüllung der von dem Damm umschlossenen Fläche auch dann erfolgen, wenn die Temperatur des Trägers nicht oder nur geringfügig herabgesetzt worden ist. Additionally or alternatively, it is preferably provided that the second silicone is equally reactive or less reactive than the first silicone used to form a dam, or the same silicone is used as the first silicone and as the second silicone. If the second silicone is less reactive, a gapless and even replenishment of the Dam enclosed area take place even if the temperature of the carrier has not or only slightly reduced.
Eine vorteilhafte, besonders effiziente Ausnutzung der auf dem Träger vorhandenen Fläche ist möglich, wenn der Damm wenigstens abschnittsweise am Rand des Trägers aufgetragen wird. Somit ist es möglich, die Designfreiheit zu erhöhen und insbesondere die gesamte Fläche des Trägers transparent und UV- und temperaturbeständig zu beschichten. An advantageous, particularly efficient utilization of the surface present on the carrier is possible if the dam is at least partially applied to the edge of the carrier. Thus, it is possible to increase the freedom of design and in particular to coat the entire surface of the carrier transparent and UV and temperature resistant.
Weiter vorzugsweise wird der Damm über optoelektronische Komponenten, Bond-Drähte oder andere Bauteile aufgetragen, so dass die Flächenausnutzung der Beschichtung nicht davon begrenzt wird, dass auf die Anordnung von optischen Chips, Bond-Drähten oder anderen Bauteilen Rücksicht genommen werden muss. Vielmehr kann der Damm in beliebiger Weise auf dem Träger angeordnet werden. Eine vorteilhafte Weiterbildung erfährt das Verfahren, wenn der Damm mit einem Querschnittsprofil aufgetragen wird, das eine optische Bündelung oder Zerstreuung von Licht bewirkt. Dadurch kann die Lichtausbeute im Randbereich nach Wunsch modelliert werden. Dies verbessert auch die Anreihbarkeit benachbarter Module, da Abschattungen im Randbereich vermieden werden. Die Form des Dammes wird durch das spontane Aushärten des Silikonma- terials für den Damm und die Beeinflussung von dessen Härtungseigenschaften durch die Abstimmung der Prozessparameter ermöglicht. Die entsprechenden Prozessparameter sind insbesondere die Reaktivität des verwendeten Silikonmaterials, die Temperatur des Trägers und die Auftragsgeschwindigkeit des Dammes sowie die Form der verwendeten Düse, sowie ein Abstand zwischen der verwendeten Düse und dem Träger. Further preferably, the dam is applied via optoelectronic components, bond wires or other components, so that the surface utilization of the coating is not limited by the fact that the arrangement of optical chips, bonding wires or other components must be taken into account. Rather, the dam can be arranged in any way on the carrier. An advantageous development undergoes the method when the dam is applied with a cross-sectional profile, which causes an optical focusing or scattering of light. As a result, the luminous efficacy in the edge region can be modeled as desired. This also improves the alignability of adjacent modules, since shadows in the edge area are avoided. The shape of the dam is made possible by the spontaneous hardening of the silicone material for the dam and the influence of its hardening properties by the coordination of the process parameters. The corresponding process parameters are in particular the reactivity of the silicone material used, the temperature of the carrier and the application speed of the dam and the shape of the nozzle used, as well as a distance between the nozzle used and the carrier.
Vorzugsweise sind oder werden in das erste Silikon und/oder das zweite Silikon optisch funktionale Materialien, insbesondere phosphoreszierende und/oder streuende Materialien oder Partikel, eingemischt. Phosphoreszierende Materialien sorgen für eine Wellenlängenverschiebung, so dass eine gewünschte Einstellung der emittierten Wellenlänge u. a. bei LED-Modulen möglich ist. Streuende Partikel und Materialien sorgen dafür, dass eine gleichmäßige Beleuchtung bzw. Lichtausstrahlung, insbesondere bei Lampenmodulen, erzeugt wird. Andere beimischbare Materialien sind beispielsweise farbabsorbierende bzw. farbaktive Materialien. Preferably, optically functional materials, in particular phosphorescent and / or scattering materials or particles, are or are mixed into the first silicone and / or the second silicone. Phosphorescent materials provide a wavelength shift, so that a desired adjustment of the emitted wavelength u. a. is possible with LED modules. Scattering particles and materials ensure that a uniform illumination or light emission, especially in lamp modules, is generated. Other miscible materials are, for example, color-absorbing or color-active materials.
Eine ebenfalls vorteilhafte Weiterbildung erfährt das erfindungsgemäße Verfahren, wenn Trop- fen des ersten Silikons als schnell aushärtende Linsen auf einzelne optoelektronische Kompo- 004327 A likewise advantageous embodiment undergoes the method according to the invention when drops of the first silicone are applied as fast-curing lenses to individual optoelectronic components. 004327
7 nenten des Trägers aufgetragen werden. Diese Tropfen bilden in diesem Fall Inseln innerhalb des von dem Damm umschlossenen Bereiches und bestimmen die optischen Eigenschaften der Beschichtung oberhalb der optoelektronischen Komponenten auf dem Träger. Um diese tropfenförmigen Linsen herum wird anschließend die von dem Damm umschlossene Fläche mit dem zweiten Silikon verfüllt. Dabei ragen die Linsen vorzugsweise aus dem zweiten Silikon heraus. 7 nents of the carrier are applied. These drops in this case form islands within the area enclosed by the dam and determine the optical properties of the coating above the optoelectronic components on the support. Around these drop-shaped lenses around the area enclosed by the dam is then filled with the second silicone. The lenses preferably project out of the second silicone.
Besonders fehlstellenfreie Beschichtungen ergeben sich, wenn das erste und/oder das zweite Silikon unter einem Vakuum, insbesondere bei etwa 10 mbar, vorbehandelt wird. Hierdurch wird im flüssigen Silikon eingeschlossenes Gas aus dem Silikon extrahiert. Die Applikation und/oder das Aushärten des ersten und/oder des zweiten Silikons kann vorteilhafterweise unter einem atmosphärischen Überdruck, insbesondere zwischen 4 bis 10 bar, insbesondere bei etwa 5 bis 7 bar, erfolgen. Hierdurch werden beim Vergießen erzeugte und im Silikon eingeschlossene Gasblasen so weit verkleinert, dass sie verschwinden und das darin enthaltene Gas störungs- stellenfrei in das Silikon und durch das Silikon hindurch diffundiert. Particularly flawless coatings result when the first and / or the second silicone under a vacuum, in particular at about 10 mbar, is pretreated. As a result, gas trapped in the liquid silicone is extracted from the silicone. The application and / or the curing of the first and / or the second silicone can advantageously be carried out under an atmospheric overpressure, in particular between 4 and 10 bar, in particular at about 5 to 7 bar. As a result, gas bubbles generated during casting and enclosed in the silicone are reduced to such an extent that they disappear and the gas contained therein diffuses into the silicone and through the silicone without disturbance.
Die der Erfindung zugrunde liegende Aufgabe wird auch durch ein optoelektronisches Chip-On- Board-Modul, umfassend einen flächigen Träger, der mit einer oder mehreren optoelektronischen Komponenten bestückt ist, mit einer transparenten, UV- und temperaturbeständigen Be- Schichtung aus einem oder mehreren Silikonen gelöst, das sich dadurch auszeichnet, dass die Beschichtung einen eine Fläche oder Teilfläche des Trägers einschließenden Damm aus einem ausgehärteten ersten Silikon und ein in die Fläche oder Teilfläche eingefülltes und ausgehärtetes zweites Silikon umfasst. Ein solches erfindungsgemäßes optoelektronisches Chip-On- Board-Modul ist in beliebiger Weise, insbesondere vollflächig, mit einer transparenten, UV- und temperaturbeständigen Beschichtung versehen, so dass gegebenenfalls die gesamte Fläche eines Trägers für optische Komponenten zur Verfügung steht. Die Anordnung der optoelektro¬ nischen Komponenten auf dem Träger ist somit nicht durch Vorgaben und Zwänge der Be¬ schichtung begrenzt. Mit entsprechenden Silikonen ist ein UV-stabiler Schutz bis hin zu Intensitäten zu einigen 10 W/cm2 bis zu einer Temperatur von typischerweise ca. 200°C gegeben. Dieser Schutz umfasst sowohl den Flächenbereich als auch den Randbereich des Trägers bzw. des Chip-On-Board- Moduls unterhalb der Beschichtung und schützt das Modul und die Verbindungsbauteile auch mechanisch. Vorteilhafterweise ist das erfindungsgemäße optoelektronische Chip-On-Board-Modul nach dem oben beschriebenen erfindungsgemäßen Verfahren hergestellt oder herstellbar. Damit weist es auch die bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren beschriebenen Eigenschaften und Vorteile auf. The object underlying the invention is also achieved by an optoelectronic chip on-board module, comprising a planar carrier, which is equipped with one or more optoelectronic components, with a transparent, UV and temperature-resistant coating of one or more silicones characterized in that the coating comprises an embankment of a cured first silicone enclosing a surface or partial surface of the support and a second silicone filled and hardened into the surface or partial surface. Such an optoelectronic chip-on-board module according to the invention is provided with a transparent, UV and temperature-resistant coating in any desired manner, in particular over the entire surface, so that optionally the entire surface of a support for optical components is available. The arrangement of the opto-electro ¬ African components on the carrier is thus not limited by requirements and constraints of the Be ¬ coating. With appropriate silicones a UV-stable protection up to intensities of a few 10 W / cm 2 is given up to a temperature of typically about 200 ° C. This protection includes both the surface area and the edge area of the carrier or of the chip-on-board module below the coating and also protects the module and the connecting components mechanically. Advantageously, the optoelectronic chip-on-board module according to the invention can be produced or produced by the method according to the invention described above. Thus, it also has the properties and advantages already described in connection with the method according to the invention.
Vorzugsweise verläuft der Damm wenigstens abschnittsweise an einem Rand des Trägers (2, 2'). Damit ist es möglich, die auf dem Träger vorhandene Fläche optimal für optoelektronische Komponenten nach Wunsch auszunutzen. Ein aus produktionstechnischen Gründen von einer Beschichtung frei gelassener Rand ist entbehrlich. Preferably, the dam extends at least in sections at an edge of the carrier (2, 2 '). This makes it possible to optimally exploit the area provided on the carrier for optoelectronic components as desired. A production-related reasons of a coating left free edge is unnecessary.
Vorzugsweise bestehen das erste Silikon und das zweite Silikon aus dem gleichen Material oder weisen im ausgehärteten Zustand gleiche optische Eigenschaften, insbesondere in Bezug auf Transparenz, Farbe und/oder Brechungsindex, auf. Damit weist die Beschichtung des Chip- On-Board-Moduls insgesamt vorzugsweise in jedem Punkt gleiche oder gleichartige optische Eigenschaften auf. Zusätzlich kann der Damm im Querschnitt vorteilhafterweise so geformt sein, dass er strahlbündelnde oder -zerstreuende Eigenschaften aufweist. The first silicone and the second silicone preferably consist of the same material or have the same optical properties in the cured state, in particular with regard to transparency, color and / or refractive index. As a result, the coating of the chip-on-board module as a whole preferably has the same or similar optical properties at every point. In addition, the dam can advantageously be shaped in cross-section so as to have beam-bundling or scattering properties.
Vorzugsweise ist der Träger bis an einen Rand oder bis kurz vor einen Rand mit optoelektronischen Komponenten bestückt, so dass die auf dem Träger zur Verfügung stehende Fläche op- timal ausgenutzt wird und die optoelektronischen Komponenten geschützt sind. Preferably, the carrier is equipped with optoelectronic components up to an edge or until shortly before an edge, so that the area available on the carrier is optimally utilized and the optoelectronic components are protected.
Die der Erfindung zugrunde liegende Aufgabe wird außerdem durch ein System mit zwei oder mehreren erfindungsgemäßen oben beschriebenen optoelektronischen Chip-On-Board- Modulen gelöst, wobei die Träger der optoelektronischen Chip-On-Board-Module bündig nebe- neinander angeordnet sind, wobei sich insbesondere aufgrund einer randständigen Bestückung der Träger mit optoelektronischen Komponenten eine auch über die Grenzen zwischen benachbarten Trägern hinweg regelmäßige Anordnung und Beabstandung von optoelektronischen Komponenten ergibt. Damit ist auch bei der Zusammenfügung mehrerer Chip-On-Board- Module eine gleichmäßige und randlose Ausnutzung der zur Verfügung stehenden Fläche mit optischen Komponenten, beispielsweise LEDs oder Photodioden, möglich. The object on which the invention is based is also achieved by a system having two or more optoelectronic chip-on-board modules according to the invention described above, wherein the carriers of the optoelectronic chip-on-board modules are arranged flush with one another, wherein in particular due to marginal placement of the carrier with optoelectronic components results in a regular arrangement and spacing of optoelectronic components beyond the boundaries between adjacent carriers. Thus, a uniform and borderless utilization of the available surface with optical components, such as LEDs or photodiodes, is also possible when assembling several chip-on-board modules.
Den Erfindungsgegenständen, also dem erfindungsgemäßen Verfahren, dem erfindungsgemäßen optoelektronischen Chip-On-Board-Modul und dem erfindungsgemäßen System, ist gemeinsam, dass die Härte des Silikon gewählt werden kann, typischerweise zwischen einem Gel und einer Shore-Härte nahe 100, so dass thermisch induzierte Spannungen gedämpft werden können, die durch unterschiedliche Ausdehnungskoeffizienten zwischen Träger, Chip-On- Board-Bauteilen und Verbindungsmaterialien auftreten. The subject of the invention, ie the method according to the invention, the optoelectronic chip-on-board module according to the invention and the system according to the invention, have in common that the hardness of the silicone can be chosen, typically between a gel and a Shore hardness close to 100, so that thermally induced voltages are attenuated can occur due to different coefficients of expansion between carrier, chip-on-board components and connection materials.
Auch die weiteren zu den einzelnen Erfindungsgegenständen oben genannten Merkmale, Eigenschaften und Vorteile gelten ohne Einschränkung auch für die jeweils anderen Erfindungsgegenstände. The other features, properties and advantages mentioned above for the individual invention objects also apply without restriction to the respective other subjects of the invention.
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen beschrieben, wo- bei bezüglich aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich auf die Zeichnungen verwiesen wird. Es zeigen: The invention will be described below without limiting the general inventive concept by means of exemplary embodiments with reference to the drawings, reference being expressly made to the drawings with respect to all details of the invention which are not explained in greater detail in the text. Show it:
Fig.1 eine schematische Darstellung eines Chip-On-Board-LED-Moduls, Fig. 2 eine schematische Darstellung eines Systems mit zwei Chip-On-Board-LED-1 shows a schematic representation of a chip-on-board LED module, FIG. 2 shows a schematic illustration of a system with two chip-on-board LED modules;
Modulen mit herkömmlichen Dämmen, Modules with conventional dams,
Fig. 3 eine schematische Darstellung eines auf herkömmliche Weise beschichteten Fig. 3 is a schematic representation of a conventionally coated
Chip-On-Board-LED-Moduls und  Chip-on-board LED module and
Fig. 4 eine schematische Darstellung eines erfindungsgemäß beschichteten Chip-On-4 is a schematic representation of a chip-on-chip coated according to the invention;
Board-LED-Moduls. Board LED module.
In den folgenden Figuren sind jeweils gleiche oder gleichartige Elemente bzw. entsprechende Teile mit denselben Bezugsziffern versehen, so dass von einer entsprechenden erneuten Vorstellung abgesehen wird. In the following figures, identical or similar elements or corresponding parts are provided with the same reference numerals, so that a corresponding renewed idea is dispensed with.
Die Erfindung wird anhand von Chip-On-Board-LED-Modulen, also anhand von Leuchtkörpern, als Beispiel für optoelektronische Chip-On-Board-Module erläutert. Im Rahmen der Erfindung können anstatt von LED-Modulen als optoelektronische Komponenten auch Photodioden in Solarzellen oder andere Komponenten Anwendung finden. The invention is explained on the basis of chip-on-board LED modules, that is to say with reference to luminous bodies, as an example of optoelectronic chip-on-board modules. In the context of the invention, photodiodes in solar cells or other components can be used instead of LED modules as optoelectronic components.
In Fig. 1 ist ein Chip-On-Board-LED-Modul 1 ohne Beschichtung im Querschnitt schematisch gezeigt, bei dem auf zwei parallel angeordneten Trägern 2, 2' bzw. Substraten Leiterbahnen 3, 3' und als unbehauste LED-Chips ausgebildete LEDs 4, 4' in regelmäßigem Abstand angeord- EP2011/004327 In Fig. 1, a chip-on-board LED module 1 is shown without coating in cross-section schematically, in which on two parallel carriers 2, 2 'or substrates printed conductors 3, 3' and designed as unbehauste LED chips LEDs 4, 4 'arranged at regular intervals EP2011 / 004327
10 net sind. Aus Gründen der Übersichtlichkeit sind nicht alle wiederkehrenden Elemente der Fig. 1 und der folgenden Figuren mit Bezugszeichen versehen, diese beziehen sich jedoch auf alle gleichartigen Elemente. Es ist somit in Fig. 1 jeweils nur eine LED 4, 4' für jedes der beiden Chip-On-Board-LED-Module 1 , 1 ' mit einer Bezugsziffer versehen. Die anderen Komponenten sind jeweils gleichartig. 10 are net. For reasons of clarity, not all recurring elements of FIG. 1 and the following figures are provided with reference numerals, but these relate to all similar elements. Thus, in FIG. 1, only one LED 4, 4 'is provided with a reference number for each of the two chip-on-board LED modules 1, 1'. The other components are identical.
Ein Träger 2, 2' kann beispielsweise ein in starrer, halbflexibler oder flexibler Substrattechnologie aufgebautes Metall-, Keramik- oder Siliziumsubstrat, eine Metallkern- oder FR4-Leiterplatte, ein Glasträger oder ein Kunststoffträger Metallkernleiterplatte sein. A carrier 2, 2 'can be, for example, a metal, ceramic or silicon substrate constructed in rigid, semi-flexible or flexible substrate technology, a metal core or FR4 circuit board, a glass carrier or a plastic carrier metal core circuit board.
Mit Linien sind Lichtkegel 5, 5' der LEDs 4, 4'dargestellt. Die LEDs sind näherungsweise Lam- bert'sche Strahler, die ca. 75% der gesamten abgestrahlten Lichtleistung innerhalb eines Öffnungswinkels von 120° abstrahlen. Ist die mit LEDs 4, 4' bestückte Fläche gegenüber dem Messabstand ausgedehnt und der Abstand hinreichend größer als der Abstand der LEDs- Chips, auch„Pitch" genannt, dann wird eine homogene Intensitätsverteilung mit ähnlichen Eigenschaften gemessen, wie die einer homogenen, diffus leuchtenden Fläche. With lines light cone 5, 5 'of the LEDs 4, 4'dargestellt. The LEDs are approximately Lamertian emitters, which radiate about 75% of the total radiated light output within an opening angle of 120 °. If the surface equipped with LEDs 4, 4 'is expanded with respect to the measuring distance and the distance is sufficiently greater than the distance of the LED chips, also called "pitch", then a homogeneous intensity distribution is measured with similar properties to those of a homogeneous, diffusely luminous one Area.
Im in Fig. 1 dargestellten Fall setzt sich die homogene Intensitätsverteilung auch über die Stoßstelle 6 zwischen benachbarten Modulen 1 , 1 ' fort, da der Überlappungsbereich 7 der Lichtkegel 5, 5' an dieser Stelle aufgrund der regelmäßigen und randständigen Bestückung der Träger 2, 2' mit LEDs 4, 4' und dem Fehlen von optischen Hindernissen gut ausgebildet ist. In the case illustrated in FIG. 1, the homogeneous intensity distribution also continues via the abutment 6 between adjacent modules 1, 1 ', since the overlapping region 7 of the light cones 5, 5' at this point due to the regular and marginal placement of the carriers 2, 2 is well formed with LEDs 4, 4 'and the absence of optical obstacles.
In Fig. 2 ist schematisch dargestellt, wie ein System aus mehreren Chip-On-Board-Modulen 2, 2', die nebeneinander gesetzt sind, abstrahlt, wenn diese mit einem herkömmlichen„Dam-and- Fill"-Verfahren beschichtet sind. Aus Gründen der Übersichtlichkeit wird von der Beschichtung jeweils nur der Damm 12, 12' aus einem intransparenten Material dargestellt. Wegen der In- transparenz der Dämme 12, 12' werden die Emissionskegel 5, 5' der LEDs 4, 4' an diesen Dämmen 12, 12' abgeschnitten. Entsprechend ergibt sich an der Stoßstelle 6 ein eingeschränkter Überlappungsbereich 7', an dem die Leuchtdichte gegenüber dem in Fig. 1 gezeigten Bei- spiel deutlich reduziert ist. 2 shows schematically how a system of several chip-on-board modules 2, 2 ', which are placed side by side, radiates when they are coated with a conventional "dam-and-fill" method For reasons of clarity, only the dam 12, 12 'of an intransparent material is represented by the coating, Because of the transparency of the dams 12, 12', the emission cones 5, 5 'of the LEDs 4, 4' on these dams 12, Correspondingly, a limited overlap region 7 'results at the joint 6, at which the luminance is markedly reduced compared with the example shown in FIG.
Hinzu kommt, dass die herkömmlichen Dämme 12, 12' nicht auf den LEDs 4, 4' verlegt werden können, sondern einen eigenen Platz benötigen. Der Randbereich der Träge 2, 2' ist muss daher auf den Chip-On-Board-LED-Modulen 11 , 11' in Fig. 2 von LEDs 4, 4' freibleiben. Diese 27 In addition, the conventional dams 12, 12 'can not be installed on the LEDs 4, 4', but need their own space. The edge region of the carriers 2, 2 'must therefore remain free on the chip-on-board LED modules 11, 11' in FIG. 2 of LEDs 4, 4 '. These 27
11 vergrößerte Beabstandung an den Rändern der Träger 2, 2' führt zu einer weiteren Verschlechterung der Homogenität der Lichtabstrahlung an der Stoßstelle 6. 11 increased spacing at the edges of the carrier 2, 2 'leads to a further deterioration of the homogeneity of the light emission at the joint 6th
In Fig. 3 ist schematisch ein Chip-On-Board-LED-Modul 1 1 dargestellt, wie es auch in Fig. 2 dargestellt ist, allerdings in diesem Fall ohne die Lichtkegel 5, 5', dafür aber mit der Darstellung der Füllmasse 13 aus Epoxidharz. Die Beschichtung aus den Dämmen 12 und dem Epoxidharz 13 schützen die optoelektronischen Komponenten, d.h. die LEDs 4 und die Leiterbahnen sowie den Träger 2 des Chip-On-Board-LED-Moduls 1 1 mechanisch, sie sind jedoch nicht UV-fest. Außerdem ist der Damm 12 nicht transparent. In Fig. 3, a chip-on-board LED module 1 1 is schematically shown, as shown in Fig. 2, but in this case without the light cone 5, 5 ', but with the representation of the filling material thirteenth made of epoxy resin. The coating of the dams 12 and the epoxy 13 protect the opto-electronic components, i. the LEDs 4 and the tracks and the carrier 2 of the chip-on-board LED module 1 1 mechanically, but they are not UV-resistant. In addition, the dam 12 is not transparent.
In Fig. 4 ist schematisch ein erfindungsgemäßes Chip-On-Board-LED-Modul 21 gezeigt, das neben den üblichen Komponenten Träger 2, Leiterbahnen 3 und LEDs 4 eine Beschichtung 24 aus einem Damm 22 aus einen hochreaktiven Silikon und einer Füllmasse 23 aus einem Silikon aufweist. Diese Beschichtung 24 ist sowohl in der Füllmasse 23 als auch im Damm 22 transpa- rent, so dass die LEDs 4 bis an den Rand des Trägers 2 gleichmäßig verteilt angeordnet sein können. Der Damm 22 ist teilweise über die LEDs 4 hinweg auf den Träger 2 aufgetragen, schattet wegen seiner Transparenz allerdings deren Lichtausstrahlung nicht ab. In Fig. 4, an inventive chip-on-board LED module 21 is shown schematically, in addition to the usual components carrier 2, conductors 3 and LEDs 4, a coating 24 of a dam 22 made of a highly reactive silicone and a filling material 23 from a Silicone has. This coating 24 is transparent both in the filling compound 23 and in the dam 22, so that the LEDs 4 can be distributed uniformly up to the edge of the carrier 2. The dam 22 is partially applied across the LEDs 4 on the carrier 2, shaded because of its transparency, however, their light emission does not.
Die Herstellung erfolgt, in dem zunächst der Träger 2 mit den darauf angeordneten Komponen- ten, d.h. den Leiterbahnen 3 und den LED-Chips 4, erwärmt wird und anschließend der Damm 22 aus einem hochreaktiven Silikon in gewünschter Weise auf den Träger 2 aufgetragen wird. Da es sich um eine sehr geringe Masse handelt und die Temperatur des Trägers 2 bei oder oberhalb der Auswertetemperatur des Silikon liegt, härtet das Silikon des Dammes 22 aus, bevor es kriechen oder verfließen kann. Auch eine strahlungsinduzierte Vorhärtung kann vorge- nommen werden, wenn das Silikon entsprechende Initiatoren enthält. Anschließend wird, nachdem der Damm, der die Höhe der LEDs 4 über dem Träger 2 überragt, mit flüssigem Silikon 23 verfüllt, und anschließend ausgehärtet. The production takes place in which first the carrier 2 with the components arranged thereon, i. the conductor tracks 3 and the LED chips 4, is heated and then the dam 22 is applied from a highly reactive silicone in the desired manner to the carrier 2. Since it is a very small mass and the temperature of the carrier 2 is at or above the evaluation temperature of the silicone, the silicone of the dam 22 hardens before it can creep or flow. Radiation-induced precuring can also be carried out if the silicone contains corresponding initiators. Subsequently, after the dam, which projects beyond the height of the LEDs 4 above the carrier 2, filled with liquid silicone 23, and then cured.
Dieses modifizierte„Dam and Fill"-Verfahren erlaubt erstmals eine transparente, UV- und tem- peraturbeständige Beschichtung von optoelektronischen Chip-On-Board-Modulen. For the first time, this modified "dam and fill" process allows a transparent, UV and temperature-resistant coating of optoelectronic chip-on-board modules.
Alle genannten Merkmale, auch die den Zeichnungen allein zu entnehmenden sowie auch ein¬ zelne Merkmale, die in Kombination mit anderen Merkmalen offenbart sind, werden allein und in Kombination als erfindungswesentlich angesehen. Erfindungsgemäße Ausführungsformen kön- nen durch einzelne Merkmale oder eine Kombination mehrerer Merkmale erfüllt sein. Bezuqszeichenliste All these features, including the drawings alone to be taken as well as a ¬ individual features that are disclosed in combination with other features are considered alone and in combination as essential to the invention. Embodiments of the invention may be accomplished by individual features or a combination of several features. LIST OF REFERENCES
1 , V Chip-On-Board-LED-Modul 1, V chip-on-board LED module
2, 2' Träger  2, 2 'carrier
3, 3' Leiterbahn  3, 3 'conductor track
4, 4' LED  4, 4 'LED
5, 5' Lichtkegel  5, 5 'light cone
6 Stoßstelle  6 joint
7 Überlappungsbereich  7 overlap area
7' eingeschränkter Überlappungsbereich 7 'limited overlap area
1 1 , 1 V Chip-On-Board-LED-Modul 1 1, 1 V chip-on-board LED module
12, 12' Damm aus thixotropiertem Epoxidharz 12, 12 'dam made of thixotropic epoxy resin
13 Füllmasse aus Epoxidharz 13 filling compound made of epoxy resin
14 Beschichtung  14 coating
21 Chip-On-Board-LED-Modul  21 chip-on-board LED module
22 Damm aus einem hochreaktiven Silikon 22 dam made of a highly reactive silicone
23 Füllmasse aus Silikon 23 filling material made of silicone
24 Beschichtung  24 coating

Claims

Patentanmeldung Heraeus Noblelight GmbH Verfahren zur Beschichtung eines optoelektronischen Chip-On-Board-Moduls und optoelektronisches Chip-on-Board-Modul Patentansprüche Patent application Heraeus Noblelight GmbH Process for coating an optoelectronic chip-on-board module and optoelectronic chip-on-board module. Claims
Verfahren zur Beschichtung eines optoelektronischen Chip-On-Board-Moduls (1 , 1 ', 21), das einen flächigen Träger (2, 2') umfasst, der mit einer oder mehreren optoelektronischen Komponenten (4) bestückt ist, mit einer transparenten, UV- und temperaturbeständigen Beschichtung (24) aus einem oder mehreren Silikonen, gekennzeichnet durch die folgenden Verfahrensschritte: a) Vorwärmen des zu beschichtenden Trägers (2, 2') auf eine erste Temperatur, b) Auftragen eines eine zu beschichtende Fläche oder Teilfläche des Trägers (2, 2') einschließenden Dammes (22) aus einem ersten, thermisch aushärtenden, hochreaktiven Silikon, das bei der ersten Temperatur aushärtet, auf den vorgewärmten Träger (2, 2'), c) Auffüllen der von dem Damm (22) eingeschlossenen Fläche oder Teilfläche des Trägers (2, 2') mit einem flüssigen zweiten Silikon (23), und d) Aushärten des zweiten Silikons (23). Method for coating an optoelectronic chip-on-board module (1, 1 ', 21) comprising a planar carrier (2, 2') equipped with one or more optoelectronic components (4) with a transparent, UV and temperature-resistant coating (24) of one or more silicones, characterized by the following method steps: a) preheating the support (2, 2 ') to be coated to a first temperature, b) applying a surface or partial surface of the support to be coated (2, 2 ') dam (22) of a first, thermosetting, highly reactive silicone which cures at the first temperature, on the preheated support (2, 2'), c) filling the enclosed by the dam (22) Surface or partial surface of the carrier (2, 2 ') with a liquid second silicone (23), and d) curing of the second silicone (23).
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass nach dem Schritt b) und vor dem Schritt c) der Träger (2, 2') auf eine zweite Temperatur abgekühlt wird und/oder abkühlen gelassen wird, die unterhalb der ersten Temperatur, insbesondere auch unterhalb einer Aushärtetemperatur des zweiten Silikons (23), liegt. A method according to claim 1, characterized in that after step b) and before step c), the carrier (2, 2 ') is cooled to a second temperature and / or allowed to cool, the below the first temperature, in particular also below a curing temperature of the second silicone (23) lies.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das zweite Silikon (23) gleich reaktiv oder weniger reaktiv ist als das zur Erzeugung eines Dammes (22) verwendete erste Silikon, oder das gleiche Silikon als erstes Silikon und als zweites Silikon (23) verwendet wird. A method according to claim 1 or 2, characterized in that the second silicone (23) is equally reactive or less reactive than the first silicone used to form a dam (22), or the same silicone as the first silicone and as the second silicone (23). is used.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Damm (22) wenigstens abschnittsweise am Rand des Trägers (2, 2') aufgetragen wird. Method according to one of claims 1 to 3, characterized in that the dam (22) is at least partially applied to the edge of the carrier (2, 2 ').
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Damm (22) über optoelektronische Komponenten (4), Bond-Drähte oder andere Bauteile aufgetragen wird. Method according to one of claims 1 to 4, characterized in that the dam (22) via optoelectronic components (4), bonding wires or other components is applied.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Damm (22) mit einem Querschnittsprofil aufgetragen wird, das eine optische Bündelung oder Zerstreuung von Licht bewirkt. Method according to one of claims 1 to 5, characterized in that the dam (22) is applied with a cross-sectional profile, which causes an optical focusing or dispersion of light.
Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in das erste Silikon und/oder das zweite Silikon (23) optisch funktionale Materialien, insbesondere phosphoreszierende und/oder streuende Materialien oder Partikel, eingemischt sind oder werden. Method according to one of claims 1 to 6, characterized in that in the first silicone and / or the second silicone (23) optically functional materials, in particular phosphorescent and / or scattering materials or particles are mixed or become.
Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Tropfen des ersten Silikons als schnell aushärtende Linsen auf einzelne optoelektronische Komponenten (4) des Trägers (2, 2') aufgetragen werden. Method according to one of claims 1 to 7, characterized in that drops of the first silicone are applied as fast curing lenses on individual optoelectronic components (4) of the carrier (2, 2 ').
Optoelektronisches Chip-On-Board-Modul (21), umfassend einen flächigen Träger (2, 2'), der mit einer oder mehreren optoelektronischen Komponenten (4) bestückt ist, mit einer transparenten, UV- und temperaturbeständigen Beschichtung (24) aus einem oder mehreren Silikonen (22, 23), dadurch gekennzeichnet, dass die Beschichtung einen eine Fläche oder Teilfläche des Trägers (2, 2') einschließenden Damm (22) aus einem ausgehärteten ersten Silikon und ein in die Fläche oder Teilfläche eingefülltes und ausgehärtetes zweites Silikon (23) umfasst. Optoelectronic chip-on-board module (21), comprising a planar support (2, 2 '), which is equipped with one or more optoelectronic components (4), with a transparent, UV and temperature-resistant coating (24) of a or a plurality of silicones (22, 23), characterized in that the coating comprises a dam (22) comprising a surface or partial surface of the support (2, 2 ') of a hardened first silicone and a second silicone filled and hardened into the surface or partial surface (23).
10. Optoelektronisches Chip-On-Board-Modul (21) nach Anspruch 9, dadurch gekennzeichnet, dass es nach einem Verfahren nach einem der Ansprüche 1 bis 8 hergestellt oder herstellbar ist. 10. Optoelectronic chip-on-board module (21) according to claim 9, characterized in that it is produced or producible by a method according to one of claims 1 to 8.
11. Optoelektronisches Chip-On-Board-Modul (21) nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Damm (22) wenigstens abschnittsweise an einem Rand des Trägers (2, 2') verläuft. 11. Optoelectronic chip-on-board module (21) according to claim 9 or 10, characterized in that the dam (22) extends at least in sections at an edge of the carrier (2, 2 ').
12. Optoelektronisches Chip-On-Board-Modul (21) nach einem der Ansprüche 9 bis 1 1 , da- . durch gekennzeichnet, dass das erste Silikon und das zweite Silikon (23) aus dem gleichen Material bestehen oder im ausgehärteten Zustand gleiche optische Eigenschaften, insbesondere in Bezug auf Transparenz, Farbe und/oder Brechungsindex, aufweisen. 12. Optoelectronic chip-on-board module (21) according to any one of claims 9 to 1 1, da-. characterized in that the first silicone and the second silicone (23) consist of the same material or in the cured state have the same optical properties, in particular with respect to transparency, color and / or refractive index.
13. Optoelektronisches Chip-On-Board-Modul (21) nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass der Träger (2, 2') bis an einen Rand oder bis kurz vor einem Rand mit optoelektronischen Komponenten (4) bestückt ist. 13. Optoelectronic chip-on-board module (21) according to any one of claims 9 to 12, characterized in that the carrier (2, 2 ') to an edge or until just before an edge equipped with optoelectronic components (4) is.
14. System mit zwei oder mehreren optoelektronischen Chip-On-Board-Modulen (21) nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die Träger (2, 2') der optoelektronischen Chip-On-Board-Module (21 ) bündig nebeneinander angeordnet sind, wobei sich insbesondere aufgrund einer randständigen Bestückung der Träger (2, 2') mit optoelektronischen Komponenten (4) eine auch über die Grenzen zwischen benachbarten Trägern (2, 2') hinweg regelmäßige Anordnung und Beabstandung von optoelektronischen Komponenten (4) ergibt. 14. System having two or more optoelectronic chip-on-board modules (21) according to one of claims 9 to 13, characterized in that the carriers (2, 2 ') of the optoelectronic chip-on-board modules (21) are arranged flush with each other, wherein in particular due to marginal placement of the carrier (2, 2 ') with optoelectronic components (4) also over the boundaries between adjacent carriers (2, 2') away periodic arrangement and spacing of optoelectronic components (4 ).
EP11757165.3A 2010-09-06 2011-08-29 Method for coating an optoelectronic chip-on-board module and optoelectronic chip-on-board-module Not-in-force EP2614693B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010044470.7A DE102010044470B4 (en) 2010-09-06 2010-09-06 Method for coating an on-board opto-electronic module, optoelectronic chip-on-board module and system therewith
PCT/EP2011/004327 WO2012031704A1 (en) 2010-09-06 2011-08-29 Method for coating an optoelectronic chip-on-board module and optoelectronic chip-on-board-module

Publications (2)

Publication Number Publication Date
EP2614693A1 true EP2614693A1 (en) 2013-07-17
EP2614693B1 EP2614693B1 (en) 2019-05-08

Family

ID=44651629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11757165.3A Not-in-force EP2614693B1 (en) 2010-09-06 2011-08-29 Method for coating an optoelectronic chip-on-board module and optoelectronic chip-on-board-module

Country Status (6)

Country Link
US (2) US9093622B2 (en)
EP (1) EP2614693B1 (en)
JP (1) JP5595593B2 (en)
CN (1) CN103190205A (en)
DE (1) DE102010044470B4 (en)
WO (1) WO2012031704A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044470B4 (en) 2010-09-06 2018-06-28 Heraeus Noblelight Gmbh Method for coating an on-board opto-electronic module, optoelectronic chip-on-board module and system therewith
KR20130043685A (en) 2010-09-06 2013-04-30 헤레우스 노블라이트 게엠베하 Coating method for an optoelectronic chip-on-board module
DE102011107892A1 (en) 2011-07-18 2013-01-24 Heraeus Noblelight Gmbh Method for coating e.g. chip-on-board UV-LED module utilized in solar cell, involves curing and cross-linking liquid silicone with optoelectronic components and carriers, and removing carrier with hardened silicone coating from mold
US9373730B2 (en) * 2011-04-26 2016-06-21 Sanyu Rec Co., Ltd. Method and apparatus for manufacturing optical device
DE102011107895B4 (en) 2011-07-18 2020-11-05 Heraeus Noblelight Gmbh Optoelectronic module with lens system
DE102011107893A1 (en) 2011-07-18 2013-01-24 Heraeus Noblelight Gmbh Optoelectronic module with improved optics
JP5810758B2 (en) * 2011-08-31 2015-11-11 日亜化学工業株式会社 Light emitting device
JP2014022435A (en) * 2012-07-13 2014-02-03 Toyoda Gosei Co Ltd Light-emitting device and method for manufacturing the same
TWI548005B (en) * 2014-01-24 2016-09-01 環旭電子股份有限公司 Manufacturing method of selective electronic packaging device
JP6274943B2 (en) * 2014-03-27 2018-02-07 新日本無線株式会社 LED module and manufacturing method thereof
CN104037097B (en) * 2014-05-23 2016-12-07 南通皋鑫科技开发有限公司 A kind of plastic sealed axial diode glue-line coating method
DE102014112540A1 (en) * 2014-09-01 2016-03-03 Osram Opto Semiconductors Gmbh Optoelectronic component
WO2017013870A1 (en) * 2015-07-22 2017-01-26 パナソニックIpマネジメント株式会社 Light emitting device
DE102016101942B4 (en) 2016-02-04 2022-07-21 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method for producing an optoelectronic lighting device
US10295128B2 (en) 2016-08-01 2019-05-21 Streamlight, Inc. Lighting device including an LED chip-on-board light source and conformal lens
USD814675S1 (en) 2016-08-01 2018-04-03 Streamlight, Inc. Light resembling a key
US10700252B2 (en) 2017-04-18 2020-06-30 Bridgelux Chongqing Co., Ltd. System and method of manufacture for LED packages
US10193042B1 (en) * 2017-12-27 2019-01-29 Innolux Corporation Display device
CA3108074A1 (en) * 2018-07-30 2020-02-06 Knog Pty Ltd Portable light

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790473B2 (en) * 1995-10-26 2004-09-14 International Business Machines Corporation Lead protective coating composition, process and structure thereof
NL1004651C2 (en) 1996-11-29 1998-06-03 Nedcard Method for encapsulating a chip on a support.
DE10024336A1 (en) * 2000-05-17 2001-11-22 Heidenhain Gmbh Dr Johannes Component arrangement on bearer substrate has two barrier layers of identical material joined in contact region with ratio of barrier height and width between 0.5 and one
EP1779421A1 (en) * 2004-08-06 2007-05-02 Hitek Power Corporation Selective encapsulation of electronic components
JP2006114737A (en) * 2004-10-15 2006-04-27 Akita Denshi Systems:Kk Optical semiconductor equipment and manufacturing method thereof
US8835952B2 (en) * 2005-08-04 2014-09-16 Cree, Inc. Submounts for semiconductor light emitting devices and methods of forming packaged light emitting devices including dispensed encapsulants
US7646035B2 (en) * 2006-05-31 2010-01-12 Cree, Inc. Packaged light emitting devices including multiple index lenses and multiple index lenses for packaged light emitting devices
US7521728B2 (en) 2006-01-20 2009-04-21 Cree, Inc. Packages for semiconductor light emitting devices utilizing dispensed reflectors and methods of forming the same
US20080112162A1 (en) 2006-11-09 2008-05-15 Topson Optoelectronics Semi-Conductor Co., Ltd. Backlight Structure Having Embedded LEDs and Fabrication Method Thereof
US7633055B2 (en) * 2007-03-08 2009-12-15 Lumination Llc Sealed light emitting diode assemblies including annular gaskets and methods of making same
US7659531B2 (en) * 2007-04-13 2010-02-09 Fairchild Semiconductor Corporation Optical coupler package
US8883528B2 (en) 2007-10-01 2014-11-11 Intematix Corporation Methods of producing light emitting device with phosphor wavelength conversion
JP2009102574A (en) * 2007-10-25 2009-05-14 Sekisui Chem Co Ltd Curable composition for optical semiconductor element
US8049237B2 (en) * 2007-12-28 2011-11-01 Nichia Corporation Light emitting device
DE102008025491A1 (en) * 2008-05-28 2009-12-03 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and printed circuit board
JP4881358B2 (en) * 2008-08-28 2012-02-22 株式会社東芝 Light emitting device
US8247827B2 (en) 2008-09-30 2012-08-21 Bridgelux, Inc. LED phosphor deposition
JP5673993B2 (en) * 2008-12-26 2015-02-18 東芝ライテック株式会社 Light source module and lighting device
DE102010044470B4 (en) 2010-09-06 2018-06-28 Heraeus Noblelight Gmbh Method for coating an on-board opto-electronic module, optoelectronic chip-on-board module and system therewith

Also Published As

Publication number Publication date
US20150155453A1 (en) 2015-06-04
US20130154130A1 (en) 2013-06-20
JP5595593B2 (en) 2014-09-24
JP2013538458A (en) 2013-10-10
WO2012031704A1 (en) 2012-03-15
DE102010044470B4 (en) 2018-06-28
US9252341B2 (en) 2016-02-02
DE102010044470A1 (en) 2012-03-08
CN103190205A (en) 2013-07-03
EP2614693B1 (en) 2019-05-08
US9093622B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
EP2614693B1 (en) Method for coating an optoelectronic chip-on-board module and optoelectronic chip-on-board-module
EP2844447B1 (en) Process for the manufacture of an optical module with silicone optics, optical module and its use
EP2614694B1 (en) Coating method for an optoelectronic chip-on-board module
DE102006019118B4 (en) Optical marking component and method of manufacture
DE102012212963B4 (en) Process for producing an optoelectronic semiconductor component
WO2010048935A1 (en) Optoelectronic semiconductor component
EP2510558B1 (en) Optoelectronic device
EP3350847B1 (en) Method for forming one or more three-dimensional objects and optoelectronic lighting device
WO2016124632A1 (en) Conversion element, optoelectronic component, and corresponding manufacturing method
DE102010044471A1 (en) Method for coating optoelectronic chip-on-board module for, e.g. high-power UV LED lamp, involves immersing optoelectronic component in carrier into silicone material, and curing and thermally cross-linking silicone material with carrier
WO2008043352A2 (en) Optoelectronic module, and method for the production thereof
WO2020094442A1 (en) Optoelectronic semiconductor component, and method for producing an optoelectronic semiconductor component
EP2844448B1 (en) Process for the manufacture of an optical module with polymer optics
WO2014019988A1 (en) Optoelectronic semiconductor component and method for producing it
WO2017198547A1 (en) Module for a video wall having a film
DE102011107892A1 (en) Method for coating e.g. chip-on-board UV-LED module utilized in solar cell, involves curing and cross-linking liquid silicone with optoelectronic components and carriers, and removing carrier with hardened silicone coating from mold
DE102016103463A1 (en) Optoelectronic component and method for producing an optoelectronic component
DE102008044847A1 (en) Optoelectronic component has support with electrically conductive lead frame, which has two elements, where organic layer is arranged on both elements
DE102010028815A1 (en) Method for encapsulating chip on substrate of chip module, involves hardening filling material and dam material, and adjusting partial hardening of dam material during laying dam materials on radiation device of applicator
DE102018129191B4 (en) METHOD OF MANUFACTURING A LIGHTING DEVICE AND A LIGHTING DEVICE WITH A LIGHT-EMITTING OPTOELECTRONIC COMPONENT
DE112019003660B4 (en) OPTOELECTRONIC COMPONENT AND INDICATOR
DE102010047156A1 (en) Optoelectronic component and method for producing an optoelectronic component
EP3123531B1 (en) Led module having an integrated secondary optical unit
WO2022074044A1 (en) Method for producing a component, and component
DE102017117425A1 (en) Method for producing an optoelectronic component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011015699

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05K0003280000

Ipc: F21K0009900000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 31/0203 20140101ALI20181120BHEP

Ipc: H01L 27/15 20060101ALI20181120BHEP

Ipc: H01L 27/144 20060101ALI20181120BHEP

Ipc: H01L 33/54 20100101ALI20181120BHEP

Ipc: H01L 23/31 20060101ALI20181120BHEP

Ipc: F21Y 115/10 20160101ALI20181120BHEP

Ipc: H05K 3/28 20060101ALI20181120BHEP

Ipc: H01L 33/56 20100101ALI20181120BHEP

Ipc: H01L 23/24 20060101ALI20181120BHEP

Ipc: H01L 21/56 20060101ALI20181120BHEP

Ipc: H01L 31/0232 20140101ALI20181120BHEP

Ipc: F21K 9/90 20160101AFI20181120BHEP

Ipc: H05K 1/02 20060101ALI20181120BHEP

INTG Intention to grant announced

Effective date: 20181221

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 33/56 20100101ALI20181120BHEP

Ipc: F21Y 115/10 20160101ALI20181120BHEP

Ipc: H05K 3/28 20060101ALI20181120BHEP

Ipc: H01L 21/56 20060101ALI20181120BHEP

Ipc: H01L 23/24 20060101ALI20181120BHEP

Ipc: H01L 23/31 20060101ALI20181120BHEP

Ipc: H01L 31/0203 20140101ALI20181120BHEP

Ipc: H01L 27/15 20060101ALI20181120BHEP

Ipc: H01L 33/54 20100101ALI20181120BHEP

Ipc: H01L 27/144 20060101ALI20181120BHEP

Ipc: H05K 1/02 20060101ALI20181120BHEP

Ipc: F21K 9/90 20160101AFI20181120BHEP

Ipc: H01L 31/0232 20140101ALI20181120BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130688

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015699

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011015699

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DR. RER. NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011015699

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015699

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190829

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190829

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1130688

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011015699

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110829

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508