EP2614173A1 - Revêtement céramique microporeux appliqué par spps - Google Patents

Revêtement céramique microporeux appliqué par spps

Info

Publication number
EP2614173A1
EP2614173A1 EP11775935.7A EP11775935A EP2614173A1 EP 2614173 A1 EP2614173 A1 EP 2614173A1 EP 11775935 A EP11775935 A EP 11775935A EP 2614173 A1 EP2614173 A1 EP 2614173A1
Authority
EP
European Patent Office
Prior art keywords
layer
gadolinium
ytterbium
europium
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11775935.7A
Other languages
German (de)
English (en)
Inventor
Ludger Quick
Werner Stamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11775935.7A priority Critical patent/EP2614173A1/fr
Publication of EP2614173A1 publication Critical patent/EP2614173A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a thermal barrier coating, which is applied by an SPPS process (Solution Precursor Plasma Spray).
  • SPPS process Solution Precursor Plasma Spray
  • Ceramic thermal barrier coatings are often applied to thermally highly stressed components to the
  • the porosity plays an important role in the lifetime of the ceramic protective layer.
  • the object is achieved by a method according to claim 1.
  • FIG. 5 shows a list of superalloys.
  • FIG. 1 shows a layer system with a ceramic
  • Such a layer system 1 is preferably one
  • the layer system 1 has a substrate 4.
  • the substrate is made of a nickel-base superalloy ( Figure 5).
  • a metallic adhesion promoter layer 7 is preferably applied to an outer ceramic layer 10.
  • the ceramic layer 10 is applied directly to the substrate 4, which then preferably also has a diffusion layer in the substrate 4.
  • a metallic adhesion promoter layer and corrosion protection layer 7 is present, which preferably has an MCrAl (Y) alloy.
  • the outer, in particular the outermost layer of the layer system 1 represents the ceramic layer 10, which is present in one or two layers with or without chemical gradients.
  • the ceramic layer zirconium oxide or gadolinium zirconate or ytterbium zirconate,
  • Such a ceramic layer 10 is by means of a
  • SPPS plasma
  • the porosity between 8vol% and 25vol% is adjusted by using different dose salt solutions.
  • Zirconium nitrate pentahydrate Zr (NÜ 3 ) 4 5H2 O
  • Zirconium sulfate Zr (SÜ4) 2
  • Gadolinium chloride hexahydrate GdCl 3 6H 2 O gadolinium bromide hexahydrate: GdBr 3 6H 2 O gadolinium iodide: Gdl 3
  • Gadolinium nitrate hexahydrate Gd (NO 3 ) 3 6H 2 O for ytterbium ytterbium (II) chloride: YbCl 2
  • Ytterbium (III) iodide Ybl 3 for europium europium (II) chloride: EUCI2
  • Lanthanum bromide heptahydrate LaBr 3 7H 2 O
  • Lanthanum iodide Lal 3
  • zirconium oxide take one or more of the salts for zirconium.
  • zirconate use is made of one or more salts for zirconium and one or more corresponding salts for Gd, La, Eu or Yb or mixtures (for mixed crystals) thereof.
  • zirconium tetracloride for example, zirconium tetracloride and
  • hafnium oxide or hafnates may also be used to produce hafnium oxide or hafnates with Gd, La, Eu or Yb.
  • FIG. 2 shows a perspective view of a rotor blade 120 or guide vane show ⁇ 130 of a turbomachine, which extends along a longitudinal axis of the 121st
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
  • the vane 130 As a guide vane 130, the vane 130 having at its blade tip 415 have a further platform (not Darge ⁇ asserted).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has for a medium which flows past the scene ⁇ felblatt 406 on a leading edge 409 and a trailing edge 412th
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blade 120, 130 can hereby be produced by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole workpiece be ⁇ is made of a single crystal.
  • a columnar grain structure columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified
  • a monocrystalline structure ie the whole workpiece be ⁇ is made of a single crystal.
  • directionally solidified structures generally refers to single crystals that have no grain boundaries or at most small angle grain boundaries, as well as stem crystal structures that have grain boundaries running in the longitudinal direction but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
  • Nickel (Ni) is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • the density is preferably 95% of the theoretical
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • a thermal barrier coating which is preferably the outermost layer, and consists for example of ZrC> 2, Y203-ZrC> 2, ie it is not, partially ⁇ or fully stabilized by yttrium oxide
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the
  • Refurbishment means that components 120, 130 may have to be freed of protective layers after use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. Thereafter, a ⁇ As the coating of the component 120, 130, after which the component 120, the 130th
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 3 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as so-called an annular combustion chamber, in which a plurality of in the circumferential direction about an axis of rotation 102 arranged burners 107 open into a common combustion chamber space 154 and generate flames 156th
  • the combustion chamber 110 is in their entirety designed as an annular structure which is positioned around the rotation axis 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M facing side with a formed from heat shield elements 155. liner.
  • Each heat shield element 155 made of an alloy is equipped on the working fluid side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • a ceramic Wär ⁇ medämm Anlagen be present and consists for example of ZrÜ2, Y203-ZrC> 2, ie it is not, partially or fully ⁇ dig stabilized by yttrium and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
  • Reprocessing means that heat shield elements may need to be removed 155 after use of protective layers (for example by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, cracks in the heat shield element 155 are also repaired.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • FIG. 4 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has a rotatably mounted about a rotational axis 102 ⁇ rotor 103 having a shaft 101, which is also referred to as the turbine rotor.
  • a compressor 105 for example, a torus-like
  • Combustion chamber 110 in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings .
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • air 105 is sucked in by the compressor 105 through the intake housing 104 and compressed.
  • the 105 ⁇ be compressed air provided at the turbine end of the compressor is ge ⁇ leads to the burners 107, where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as a material for the components, in particular for the turbine blade or vane 120, 130 and components of the combustion chamber 110.
  • iron-, nickel- or cobalt-based superalloys are used as a material for the components.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium.
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • MCrAlX may still be present a thermal barrier coating, and consists for example of r02, Y203-Zr02, ie it is not, partially or completely stabilized by Ytt ⁇ riumoxid and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the guide vane 130 has an inner housing 138 of the turbine 108 facing guide vane root (not Darge here provides ⁇ ) and a side opposite the guide-blade root vane root.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

L'utilisation de sels hydrosolubles permet de produire des couches céramiques microporeuses.
EP11775935.7A 2010-11-10 2011-10-19 Revêtement céramique microporeux appliqué par spps Withdrawn EP2614173A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11775935.7A EP2614173A1 (fr) 2010-11-10 2011-10-19 Revêtement céramique microporeux appliqué par spps

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10190672A EP2453036A1 (fr) 2010-11-10 2010-11-10 Revêtement de céramique poreux fin à l'aide de SPPS
EP11775935.7A EP2614173A1 (fr) 2010-11-10 2011-10-19 Revêtement céramique microporeux appliqué par spps
PCT/EP2011/068225 WO2012062547A1 (fr) 2010-11-10 2011-10-19 Revêtement céramique microporeux appliqué par spps

Publications (1)

Publication Number Publication Date
EP2614173A1 true EP2614173A1 (fr) 2013-07-17

Family

ID=43498565

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10190672A Withdrawn EP2453036A1 (fr) 2010-11-10 2010-11-10 Revêtement de céramique poreux fin à l'aide de SPPS
EP11775935.7A Withdrawn EP2614173A1 (fr) 2010-11-10 2011-10-19 Revêtement céramique microporeux appliqué par spps

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10190672A Withdrawn EP2453036A1 (fr) 2010-11-10 2010-11-10 Revêtement de céramique poreux fin à l'aide de SPPS

Country Status (4)

Country Link
US (1) US20130230659A1 (fr)
EP (2) EP2453036A1 (fr)
CN (1) CN103201406A (fr)
WO (1) WO2012062547A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152805A1 (fr) * 2012-04-13 2013-10-17 European Space Agency Procédé et système de production et de fabrication additive de métaux et d'alliages
CN104195499B (zh) * 2014-09-11 2016-09-28 扬州大学 一种液料等离子喷涂制备微纳复合结构涂层的方法
CN106148876B (zh) * 2015-03-27 2019-04-02 绍兴科霆新材料科技有限公司 一种新型的铝合金压铸模具表面强化涂层及其制备方法
CN110241374B (zh) * 2019-06-14 2020-05-05 上海大学 一种掺杂纳米氧化锌涂层及其制备方法和应用
US11819869B2 (en) 2020-06-16 2023-11-21 Rolls-Royce North American Technologies, Inc. Carrier liquid composition control for suspension plasma spraying

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
DE58908611D1 (de) 1989-08-10 1994-12-08 Siemens Ag Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile.
WO1996012049A1 (fr) 1994-10-14 1996-04-25 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
US6447848B1 (en) * 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
EP0861927A1 (fr) 1997-02-24 1998-09-02 Sulzer Innotec Ag Procédé de fabrication de structures monocristallines
EP0892090B1 (fr) 1997-02-24 2008-04-23 Sulzer Innotec Ag Procédé de fabrication de structure monocristallines
EP1306454B1 (fr) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
WO2001009403A1 (fr) 1999-07-29 2001-02-08 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
US6491967B1 (en) * 2000-10-24 2002-12-10 General Electric Company Plasma spray high throughput screening method and system
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
DE10200803A1 (de) * 2002-01-11 2003-07-31 Forschungszentrum Juelich Gmbh Herstellung eines keramischen Werkstoffes für eine Wärmedämmschicht sowie eine den Werkstoff enthaltene Wärmedämmschicht
US7563503B2 (en) * 2003-01-10 2009-07-21 The University Of Connecticut Coatings, materials, articles, and methods of making thereof
US20100176524A1 (en) * 2006-03-29 2010-07-15 Northwest Mettech Corporation Method and apparatus for nanopowder and micropowder production using axial injection plasma spray
GB0806614D0 (en) * 2008-04-11 2008-05-14 Southside Thermal Sciences Sts Composite structures for improved thermal stability/durability
US20100015350A1 (en) * 2008-07-16 2010-01-21 Siemens Power Generation, Inc. Process of producing an abradable thermal barrier coating with solid lubricant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA X ET AL: "Low thermal conductivity thermal barrier coating deposited by the solution plasma spray process", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 201, no. 7, 20 December 2006 (2006-12-20), pages 4447 - 4452, XP024996008, ISSN: 0257-8972, [retrieved on 20061220], DOI: 10.1016/J.SURFCOAT.2006.08.095 *

Also Published As

Publication number Publication date
US20130230659A1 (en) 2013-09-05
CN103201406A (zh) 2013-07-10
WO2012062547A1 (fr) 2012-05-18
EP2453036A1 (fr) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2012007320A1 (fr) Système stratifié céramique poreux
EP2614174A1 (fr) Système à couches poreux, muni d'une couche interne poreuse
EP2330230A1 (fr) Matériel de masquage, couche de masquage, procédé de masquage d'un substrat et procédé de revêtement d'un substrat
WO2009138299A1 (fr) Procédé de réalisation d'une couche promotrice d'adhésion optimisée par évaporation partielle de la couche promotrice d'adhésion et système de revêtement
EP2614173A1 (fr) Revêtement céramique microporeux appliqué par spps
WO2011141429A1 (fr) Analyse de surface pour détecter des trous fermés et procédé de réouverture
EP1834004A1 (fr) Alliage, couche de protection destinee a proteger un composant contre la corrosion et l'oxydation a haute temperature, et composant
EP2802742A1 (fr) Procédé de fabrication et de restauration de revêtements de barrière thermique en céramique dans des turbines à gaz et turbine à gaz correspondante
WO2014053185A1 (fr) Procédé de reconditionnement d'une aube de turbine à gaz ainsi que turbine à gaz pourvue d'une telle aube
EP2379252A1 (fr) Composant à structure différenciée et procédé de fabrication
EP2742171B1 (fr) Couche double céramique à base d'oxyde de zirconium
EP2802677A1 (fr) Système à couche de barrière thermique céramique doté d'une couche externe riche en aluminium
EP2584067A1 (fr) Composant avec graphène et procédé de fabrication de composants avec graphène
WO2011107167A1 (fr) Système de couche d'isolation thermique céramique à couche de liaison modifiée
EP2845924A1 (fr) Système poreux de couches en céramique
WO2007090711A1 (fr) Procédé de fabrication d'une couche avec substance luminescente thermographique et système de couches
WO2009053154A1 (fr) Procédé pour éliminer une couche métallique au moyen du procédé fic au cours d'une étape intermédiaire
EP2655683A1 (fr) Matériau ayant une structure pyrochlore contenant du tantale, utilisation du matériau, système de couches et procédé de fabrication d'un système de couches
WO2015071015A1 (fr) Système stratifié en céramique poreuse
WO2009109199A1 (fr) Alliage, couche protectrice contre la corrosion à haute température et système stratifié
WO2011104276A1 (fr) Procédé permettant d'ajuster la consommation de réfrigérant dans un élément structural refroidi activement, et élément structural
WO2008068069A1 (fr) Procédé de fabrication d'une aube de turbine qui présente un oxyde sur une couche métallique, utilisation de cette aube de turbine, turbine et procédé d'utilisation d'une turbine
WO2011057661A1 (fr) Composant comportant des zones de ductilité différente et procédé de fabrication d'un composant
EP2589681A1 (fr) Combinaison de structures colonnaires et globulaires
EP2177643A1 (fr) Procédé de réparation d'un superalliage à l'aide de la même poudre de superalliage et de céramique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20131218

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170503