EP2601713A2 - Dispositif d'amplification à dérive de fréquence pour un laser impulsionnel - Google Patents

Dispositif d'amplification à dérive de fréquence pour un laser impulsionnel

Info

Publication number
EP2601713A2
EP2601713A2 EP11755395.8A EP11755395A EP2601713A2 EP 2601713 A2 EP2601713 A2 EP 2601713A2 EP 11755395 A EP11755395 A EP 11755395A EP 2601713 A2 EP2601713 A2 EP 2601713A2
Authority
EP
European Patent Office
Prior art keywords
compressor
pulse
laser pulse
amplifying medium
amplification device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11755395.8A
Other languages
German (de)
English (en)
Inventor
Gilles Cheriaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Polytechnique
Ecole National Superieure dArts et Metiers ENSAM
Ecole Nationale Superieure des Techniques Avancees Bretagne
Original Assignee
Ecole Polytechnique
Ecole National Superieure dArts et Metiers ENSAM
Ecole Nationale Superieure des Techniques Avancees Bretagne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique, Ecole National Superieure dArts et Metiers ENSAM, Ecole Nationale Superieure des Techniques Avancees Bretagne filed Critical Ecole Polytechnique
Publication of EP2601713A2 publication Critical patent/EP2601713A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers

Definitions

  • the present invention relates to a frequency drift amplification device for an intense pulsed laser, using the so-called frequency drift amplification technology.
  • This technology is used to produce laser pulses of very short duration, for example of the order of a few femtoseconds, and very high peak power.
  • Pulse lasers make it possible to reach large instantaneous powers for a very short time, of the order of a few picoseconds (10 "12 s) or a few femtoseconds (10 " 15 s).
  • an ultra-short laser pulse is generated in an oscillator before being amplified in an amplifying medium.
  • the laser pulse initially produced, even of low energy, generates a great instantaneous power since the energy of the pulse is delivered in an extremely short time.
  • Mourou "Compression of amplified chirped optical pulses," (Common Opt 56, 219-221 1985) uses a spectral decomposition of the pulse, making it possible to impose a path of a different length at different wavelengths to shift them temporally.
  • FIG. 1 schematically represents the amplification of a laser pulse by this frequency drift amplification method.
  • An oscillator 1 emits a laser pulse 91, called an input pulse, of very short duration ⁇ , for example 10 femtoseconds, and relatively low energy E, for example of the order of a few nanoj ounces.
  • This input pulse 91 passes through a stretcher 2 which distributes over time the different spectral components as a function of their wavelength.
  • FIG. 3 thus represents the arrangement of a stretcher 2 implementing diffraction gratings reflecting the incident light rays with a different orientation according to the wavelength.
  • the structure of such a stretcher is described in particular in the article by O.E. Martinez, "3000 times grating compressor with positive velocity dispersion: application to fiber compensation in 1.3-1.6 ⁇ region.” (IEEE Journal of Quantum Electronics, Vol.e-23, pp. 59, 1987.)
  • the input pulse 91 is sent to a first network 21 which disperses it spectrally.
  • a first network 21 which disperses it spectrally.
  • the beam composed by the spectral components, in particular 911, 912 and 913, constituting the laser pulse then passes through an optical system 22 having the effect of converging these different optical components.
  • the optical system 22 has a first focal point F1 placed at the rear of the network 21 and a second focal point F '1 placed behind a second network 23, placed at the same distance from the focus F' 1 as the network 21 of home Fl.
  • the different spectral components of the laser pulse are returned by this second grating 23 parallel to each other and spread spatially towards a third network 24, symmetrical with the grating 23, which disperses the pulse towards the optical system 25, symmetrical with the optical system 22.
  • This optical system 25 having the focal points F2 and F '2 focuses all the spectral components, in particular 911, 912 and 913 on the same point of a fourth network 26, symmetrical of the network 21, which returns all the spectral components in the same direction to form a new laser pulse 92.
  • the subsets formed on the one hand by the grating 21, the optical system 22 and the grating 23 and, on the other hand, by the grating 24, the optical system 25 and the grating 26, are symmetrical to each other. 'other. It is therefore possible, according to a conventional embodiment, to use only one of these subassemblies to form the stretcher by placing a dihedral fold between the networks 23 and 24.
  • the networks 21 and 23 and the optical system 22 can then respectively play the role of the networks 26 and 24 and the optical system 25.
  • the different spectral components, notably 911, 912 and 913, forming the input pulse 91 do not travel the same path in the stretcher 2.
  • This difference in path length causes a time shift of the spectral components as a function of their wavelength in the pulse 92, which is called the stretched pulse.
  • This stretched pulse 92 consequently has a longer duration than the duration ⁇ of the input pulse 91, which can be for example of the order of 10 5 ⁇ . This greater duration causes a very significant decrease in the instantaneous power of this pulse 92 relative to that of the input pulse 91, which allows its amplification under better conditions.
  • Another method used to stretch laser pulses is the propagation of these pulses in optical fibers over long distances.
  • the group velocity dispersion of the spectral components of the pulse in the material at the heart of the fiber makes it possible to obtain the desired time elongation.
  • This solution is preferably used for relatively long pulses. Indeed, during compression by a compression system implementing diffraction gratings of a very short pulse and stretched, aberrations due to different dispersion laws networks and optical fibers may appear.
  • Yet another known method of stretching consists of a Bragg diffraction grating made of a photosensitive material whose pitch is not constant according to the thickness.
  • the different spectral components of the laser pulse are then reflected at different depths, which creates a delay in some of the spectral components compared to others and thus stretches the impulse.
  • the stretched pulse 92 emerging from the stretcher 2 is then amplified using conventional amplifying media, which increase its power.
  • conventional amplifying media which increase its power.
  • three amplifying media are shown in FIG.
  • the first amplifying medium 3 increases the power of the stretched pulse 92 to give it an energy of the order of 10 6 times the energy E of the incident pulse 91, for example a few millij ou ⁇ es.
  • the second amplifying medium 4 and the third amplifying medium 5 each increase the power of the laser pulse so that the amplified stretched pulse 93 has an energy of the order of 10 10 times the energy E of the pulse. input 91, for example 25 joules.
  • the pulse has a relatively high energy, its duration is relatively long, so that its peak power is sufficiently low to avoid nonlinear effects in the amplifying media 3, 4 and 5.
  • the amplification in the amplifiers 3, 4 and 5 requires a large pumping energy input in these amplifiers. Indeed, the energy gained by the laser pulse during its passage in an amplifying medium is only about 45% of the pumping energy supplied to this amplifying medium.
  • the amplifying medium used is most often a stimulated emission amplifying medium, such as, for example, a doped titanium-sapphire crystal.
  • the amplification of the laser pulse can be carried out according to a method commonly known in English as "Optical Parametric Chirped Pulse Amplification", which combines the parametric laser pulse amplification with the technique of drift amplification. frequency.
  • the amplification of the stretched pulse is made in a material having significant non-linear properties, for example "KDP" (Potassium Dihydrogen Phosphate) "BBO” (Beta Barium Borate) or “LBO” type crystals. (Lithium Triborate).
  • the amplification consists of a transfer of energy from the photons of the optical pumping pulse to the photons of the pulse to be amplified.
  • the wave vectors of the amplified pulse and the optical pumping pulse must therefore be in phase agreement, and the two pulses must be synchronous.
  • Amplifiers employing stimulated emission amplification or parametric amplification are indifferently referred to as "amplifying media" in the rest of the patent application.
  • the return of the pulse to a short duration, close to the duration ⁇ of the input pulse, is performed by an optical device called compressor 6 comprising four diffraction gratings 61, 62, 63 and 64 reflecting the light rays. incidents with a different orientation depending on the wavelength.
  • a first grating 61 disperses spectrally the stretched pulse 93.
  • the three radii 911, 912 and 913, corresponding to two extreme wavelengths of the pulse 910 and at a median wavelength are shown in Figure 1.
  • a second grating 62 parallels the spectral components, in particular 911, 912 and 913, constituting the laser pulse, which are thus spatially spread.
  • the third network 63 makes it possible to gather these different spectral components on the same point of the fourth network 64, which returns all these spectral components, in particular 911, 912 and 913, in the same direction, to form a new laser pulse 94.
  • the compressor 6 is constructed so that the spectral components that have a longer path in the 2, this path length difference causes a time shift of the spectral components as a function of their wavelength opposite to the spectral shift generated by the stretcher 2,
  • the spectral components that were temporally delayed in the pulse 92 or 93 catch up, so that all the spectral components are collected temporally in an output pulse 94 having a duration similar to the duration ⁇ of the pulse.
  • input 91 for example 20 femtoseconds, and a very large peak power, for example of the order of 10 14 W.
  • the different diffraction gratings 61, 62, 63 and 64 composing the compressor 6 each have an energy efficiency in the limited dispersive order, for example of the order of 90%.
  • the passage of the pulse 93 by these four networks leads therefore a significant loss of energy. For example, if the energy of the pulse 93 before compression is 25 Joules, the energy of the output pulse 94 may be about 15 Joules.
  • the technique of amplification by frequency drift thus allows the production of laser pulses of very high instantaneous power, but generates very high energy loss.
  • the present invention aims to overcome these disadvantages of the prior art.
  • the object of the invention is to increase the energy efficiency of the frequency-drift laser pulse amplification, so as to make it possible to obtain a high-energy laser pulse with a lower pumping energy.
  • the object of the invention is therefore to obtain pulses having the same energy as in the prior art with less important and less expensive installations and less energy consumption.
  • Another objective of the invention is to enable the obtaining of laser pulses presenting an energy higher than those obtained in the prior art, without increasing the pumping power, and therefore the size and cost of pumping installations.
  • a frequency drift amplification device for a pulse laser comprising successively:
  • a stretcher capable of temporally stretching an incident laser pulse
  • At least one amplifying medium capable of amplifying the stretched laser pulse capable of amplifying the stretched laser pulse
  • a compressor capable of temporally compressing the stretched and amplified laser pulse
  • the compressor comprises an amplifying medium, so as to amplify the laser pulse partially temporally compressed.
  • the compressor elements placed before the amplifier placed in the compressor must withstand a much lower energy pulse than if the pulse was fully amplified before compression.
  • the amplifying medium placed in the compressor is placed at a position where the duration of the laser pulse is substantially half the duration of the pulse entering the compressor.
  • the amplifying medium is thus placed between two subsets of the compressor, each performing half of the time compression of the previously strongly stretched pulse.
  • the pulse is, at this position, spread spatially.
  • the compressor comprises four successive dispersive systems and the amplifying medium which is placed between the second and the third dispersive system.
  • the dispersive systems are dispersion networks.
  • the first and second dispersive systems of the compressor are placed in the open air, and the third and fourth dispersive systems of the compressor are placed in a vacuum chamber.
  • Such a compressor is easier to implement and cheaper than the compressors of the prior art to fully resist the significant energy of a fully amplified pulse before compression, all elements of which should be contained in a chamber. empty.
  • the stretcher implements at least one dispersion network.
  • the amplifying medium placed in the compressor is constituted by a doped crystal allowing amplification by stimulated emission.
  • the amplifying medium placed in the compressor has a doping gradient, so that the different spectral components comprising the laser pulse pass through portions of the amplifying medium having different doping levels.
  • At least one of the amplifying media used is constituted by a nonlinear crystal allowing a parametric amplification of the laser pulse.
  • the invention also relates to an optical compressor capable of temporally compressing a previously stretched laser pulse, characterized in that it comprises an amplifying medium, so as to amplify the laser pulse partially compressed in time.
  • FIG. 1 is a simplified diagram of an amplification device with frequency drift of a laser pulse, according to the prior art
  • FIG. 2 is a simplified diagram of an amplification device with frequency drift of a laser pulse according to one embodiment of the invention
  • FIG. 3 is a simplified diagram of a stretcher used for frequency drift amplification of a laser pulse.
  • FIG. 2 schematically represents a frequency drift amplification device according to one embodiment of the invention.
  • the elements of this amplification device which are identical to that of the prior art described in FIG. 1 bear the same references.
  • an oscillator 1 emits an input laser pulse 91 which passes through a stretcher 2.
  • the pulse 92 stretched temporally, coming out of the stretcher 2, can pass through one or more amplifying media 2 and 3.
  • the modification provided by the present invention relates to the compressor 7.
  • This compressor comprises, like the compressor 6 of the prior art, four diffraction gratings 71, 72, 73 and 74 having respectively the same roles as the networks 61, 62, 63 and 64 of the prior art.
  • an amplifying medium 8 is placed in the compressor 7, between the second diffraction grating 72 and the third diffraction grating 73 constituting this compressor. This amplifier could compensate the energy lost in the diffraction gratings 71 and 72.
  • the pulse 96 passing through this amplifying medium 8 has different characteristics of the pulse 95 leaving the amplifier 4 and entering the compressor 7, because of its passage through the first two diffraction gratings 71 and 72. has a duration about half of the duration of the pulse 95, for example of the order of 250 picoseconds if the duration of the pulse 95 is of the order of 500 picoseconds. Moreover, this pulse 96 is spread spatially, the shortest wavelengths being on one side and the longer wavelengths on the other.
  • the passage of the pulse 96 in the amplifying medium 8 produces the amplified pulse 97 having the same characteristics of temporal stretching and spatial spreading as the pulse 96.
  • This pulse 96 then continues its compression through the networks 73 and 74, spatially recompressing the pulse and completing its compression time, to form the output pulse 98 of short duration and high peak power. Due to the middle position of the amplifier 8 in the compressor, the pulse 97 exiting this amplifying medium undergoes, during its passage through the diffraction gratings 73 and 74, a lower energy loss than if it were passed through the four networks forming the compressor.
  • the energy loss of the pulse due to the passage through the two gratings 73 and 74 is 19%.
  • obtaining an output pulse 98 of Joules requires a pulse 97 at the output of the amplifying medium 8 of about 18.5 Joules.
  • the energy loss of the order of 19% due to the passage of the pulse by the two networks 71 and 72 is very low, of the order of 0.5 joules, because of the low energy of the front beam its passage in the amplifying medium.
  • the amplifying media having an energy efficiency of the order of 45%, the total pumping energy to be supplied to these amplifying media is of the order of 40 Joules.
  • the compressor 6 may have a structure slightly different from that described. It is possible, for example, in a particular embodiment, for the subsets formed on the one hand by the networks 71 and 72 and, on the other hand, by the networks 73 and 74, to be folded in a conventional manner, putting in a dihedral fold, so that only one subset is traveled twice by the laser pulse.
  • the two networks 71 and 72 may have a smaller dimension than the networks 61 and 62 of the compressor of the prior art. It is therefore possible to use less expensive networks, and under more flexible conditions. It is for example conceivable for these two networks 71 and 72 to be in the open air, whereas all the networks composing the compressors of the prior art were to be placed in a vacuum chamber.
  • the wavelengths forming this pulse are spatially distributed according to their wavelength.
  • the amplifying medium 8 can offer constant amplification in all points, which is obtained when the doping is radially uniform in the crystal.
  • the amplifying medium it is possible to implement a variable amplification according to the passage position of each component of the laser pulse in the amplifying medium.
  • This different amplification can be done, for example, with an amplifying medium having a doping gradient in a direction perpendicular to the direction of passage of the laser pulse.
  • Such a doping gradient exists naturally, for example, in sapphire titanium crystals. It is possible, if necessary, to accentuate this natural radial doping gradient, for example by using large crystals (for example greater than 80 mm in diameter). The doping is then weaker in the center than at the edge of the crystal which generates a less important energy storage in the center than on the edges and thus a lower potential gain in the center.
  • This amplification varies according to the spatial position, makes it possible to implement, for spatially spread laser pulses as a function of the wavelength that pass through the amplifying medium 8, a variable amplification as a function of the wavelength.
  • the spectral gain of the pulse can indeed be greater for the wavelengths passing in the center of the crystal which is more heavily doped.
  • Such a different amplification for the different spectral components of the pulse can be implemented in all cases where the spectral components of the laser pulse are spatially spread. It may be useful, for example, to compensate for the difference in gain of a laser pulse in a titanium sapphire crystal as a function of wavelengths.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

L'invention concerne un dispositif d'amplification à dérive de fréquence pour un laser impulsionnel, comprenant successivement: un étireur (2) apte à étirer temporellement une impulsion laser incidente (91); au moins un milieu amplificateur (3, 4) apte à amplifier l'impulsion laser étirée (92); un compresseur (7) apte à compresser temporellement l'impulsion laser étirée et amplifiée (95); dans lequel le compresseur (7) comprend, selon l'invention, un milieu amplificateur (8), de façon à amplifier l'impulsion laser partiellement compressée temporellement, pour augmenter le rendement énergétique de l'amplificateur.

Description

"Dispositif d'amplification à dérive de fréquence pour un laser impulsionnel"
1. Domaine de l'invention
La présente invention concerne un dispositif d'amplification à dérive de fréquence pour un laser impulsionel intense, utilisant la technologie dite d'amplification à dérive de fréquence.
Cette technologie sert à produire des impulsions laser de très faible durée, par exemple de l'ordre de quelques femtosecondes , et de très forte puissance de crête .
2. Art antérieur
Les lasers impulsionnels, ou lasers à impulsions, permettent d'atteindre de grandes puissances instantanées pendant une durée très brève, de l'ordre de quelques picosecondes (10"12s) ou de quelques femtosecondes (10" 15s). Dans ces lasers, une impulsion laser ultra-brève est générée dans un oscillateur avant d'être amplifiée dans un milieu amplificateur. L'impulsion laser initialement produite, même de faible énergie, engendre une grande puissance instantanée puisque l'énergie de l'impulsion est délivrée en un temps extrêmement bref.
Pour permettre l'augmentation de l'énergie de l'impulsion laser sans que la puissance instantanée très élevée ne génère des effets non linéaires, il a été imaginé d'étirer temporellement l'impulsion avant son amplification, puis de la recompresser après son amplification. Les puissances instantanées mises en œuvre dans le milieu amplificateur peuvent ainsi être diminuées. Cette méthode appelée « amplification à dérive de fréquences » (souvent désignée « CPA », de l'anglais "Chirped Puises Amplification"), permet d'augmenter la durée d'une impulsion d'un facteur de l'ordre de 103 à 105, puis de la recompresser afin qu'elle retrouve sa durée initiale. Cette méthode « CPA », décrite dans l'article de D. Strickland et G. Mourou, "Compression of amplified chirped optical puises," (Opt. Commun. 56, 219-221 1985) utilise une décomposition spectrale de l'impulsion, permettant d'imposer un trajet d'une longueur différente aux différentes longueurs d'ondes pour les décaler temporellement .
La figure 1 représente de façon schématique l'amplification d'une impulsion laser par cette méthode amplification à dérive de fréquences.
Un oscillateur 1 émet une impulsion laser 91, appelée impulsion d'entrée, de très faible durée ΔΤ, par exemple de 10 femtosecondes , et de relativement faible énergie E, par exemple de l'ordre de quelques nanoj ouïes. Cette impulsion d'entrée 91 passe par un étireur 2 qui répartie dans le temps les différentes composantes spectrales en fonction de leur longueur d'onde.
Plusieurs méthodes peuvent être utilisées pour réaliser l'étireur 2.
La figure 3 représente ainsi l'agencement d'un étireur 2 mettant en œuvre des réseaux de diffraction réfléchissant les rayons lumineux incidents avec une orientation différente selon la longueur d'ondes. La structure d'un tel étireur est notamment décrite dans l'article de O.E. Martinez, "3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 μτα région." (IEEE Journal of quantum Electronics, Vol. qe-23, p. 59, 1987. )
L'impulsion d'entrée 91 est envoyée sur un premier réseau 21 qui la disperse spectralement . A titre illustratif, trois rayons 911, 913 et 912 correspondants respectivement à deux composantes spectrales de longueurs d'ondes extrêmes de l'impulsion 91 et à une composante spectrale de longueur d'ondes médiane, sont représentés sur la figure 3. Le faisceau composé par les composantes spectrales, notamment 911, 912 et 913, composant l'impulsion laser, traverse ensuite un système optique 22 ayant pour effet de faire converger ces différentes composantes optiques. Le système optique 22 présente un premier point focal Fl placé à l'arrière du réseau 21 et un second point focal F' 1 placé à l'arrière d'un second réseau 23, placé à la même distance du foyer F' 1 que le réseau 21 du foyer Fl .
Les différentes composantes spectrales de l'impulsion laser, notamment 911, 912 et 913, sont renvoyées par ce second réseau 23 parallèlement les unes aux autres et étalées spatialement, vers un troisième réseau 24, symétrique du réseau 23, qui disperse l'impulsion vers le système optique 25, symétrique du système optique 22. Ce système optique 25 présentant les points focaux F2 et F' 2 focalise toutes les composantes spectrales, notamment 911, 912 et 913 sur un même point d'un quatrième réseau 26, symétrique du réseau 21, qui renvoie toutes les composantes spectrales dans une même direction pour former une nouvelle impulsion laser 92.
Les sous-ensembles formés d'une part par le réseau 21, le système optique 22 et le réseau 23 et, d'autre part, par le réseau 24, le système optique 25 et le réseau 26, sont symétriques l'un de l'autre. Il est donc possible, selon un mode de réalisation usuel, de n'utiliser qu'un seul de ces sous-ensembles pour former l'étireur en plaçant un dièdre de repli entre les réseaux 23 et 24. Les réseaux 21 et 23 et le système optique 22 peuvent alors exercer respectivement le rôle des réseaux 26 et 24 et du système optique 25.
Les différentes composantes spectrales, notamment 911, 912 et 913, formant l'impulsion d'entrée 91 ne parcourent pas le même trajet dans l'étireur 2. En fonction de la construction de cet étireur 2, les composantes de longueur d'onde plus courte peuvent ainsi parcourir un trajet plus long, ou au contraire moins long, que les composantes de longueur d'onde plus élevée. Cette différence de longueur de trajet entraine un décalage temporel des composantes spectrales en fonction de leur longueur d'onde dans l'impulsion 92, qui est appelée impulsion étirée.
Cette impulsion étirée 92 présente en conséquence une durée plus importante que la durée ΔΤ de l'impulsion d'entrée 91, pouvant être par exemple de l'ordre de 105 ΔΤ . Cette plus grande durée entraine une diminution très importante de la puissance instantanée de cette impulsion 92 par rapport à celle de l'impulsion d'entrée 91, ce qui permet son amplification dans de meilleures conditions.
Il est à noter que les différents réseaux de diffraction 21, 23, 24 et 26 composant l'étireur 2 présentent chacun un rendement énergétique dans l'ordre dispersif limité. Le passage de l'impulsion d'entrée 91 par ces quatre réseaux entraine donc une perte d'énergie importante .
Une autre méthode utilisée pour étirer des impulsions laser est la propagation de ces impulsions dans des fibres optiques sur de longues distances. La dispersion de vitesse de groupe des composantes spectrales de l'impulsion dans le matériau au cœur de la fibre permet d'obtenir l'allongement temporel souhaité. Cette solution est utilisée de préférence pour les impulsions relativement longues. En effet, lors de la compression par un système de compression mettant en œuvre des réseaux de diffraction d'une impulsion très courte ainsi étirée, des aberrations dues aux lois de dispersion différentes des réseaux et des fibres optiques peuvent apparaître.
Encore une autre méthode d'étirement connue consiste en un réseau de diffraction de Bragg réalisé dans un matériau photosensible, dont le pas n'est pas constant selon l'épaisseur. Les différentes composantes spectrales de l'impulsion laser sont alors réfléchies à différentes profondeurs, ce qui crée un retard de certaines des composantes spectrales par rapport à d'autres et étire ainsi l'impulsion.
Une telle méthode est notamment décrite dans 1' articles de Vadim Smirnov, Emilie Flécher, Leonid Glebov, Kai-Hsiu Liao, et Aimantas Galvanauskas , « Chirped bulk Bragg gratings in PTR glass for ultrashort puise stretching and compression » (Proceedings of Solid State and Diode Lasers Technical Review. Los Angeles 2005, SS2-1. ) .
L'impulsion étirée 92 sortant de l'étireur 2 est ensuite amplifiée à l'aide de milieux amplificateurs classiques, qui augmentent sa puissance. A titre d'exemple, trois milieux amplificateurs sont représentés sur la figure 1.
Le premier milieu amplificateur 3 augmente la puissance de l'impulsion étirée 92 jusqu'à lui conférer une énergie de l'ordre de 106 fois l'énergie E de l'impulsion incidente 91, par exemple de quelques milij ouïes .
Le deuxième milieu amplificateur 4 et le troisième milieu amplificateur 5 augmentent chacun la puissance de l'impulsion laser de telle sorte que l'impulsion étirée amplifiée 93 présente une énergie de l'ordre de 1010 fois l'énergie E de l'impulsion d'entrée 91, par exemple de 25 joules.
Bien que l'impulsion présente une énergie relativement importante, sa durée est relativement longue, ce qui fait que sa puissance de crête est suffisamment faible pour éviter les effets non linéaires dans les milieux amplificateurs 3, 4 et 5.
Il est à noter que l'amplification dans les amplificateurs 3, 4 et 5 nécessite un apport d'énergie de pompage important dans ces amplificateurs. En effet, l'énergie gagnée par l'impulsion laser lors de son passage dans un milieu amplificateur ne correspond qu'à environ 45% de l'énergie de pompage fournie à ce milieu amplificateur . Le milieu amplificateur utilisé est le plus souvent un milieu amplificateur par émission stimulée, comme par exemple un cristal de Titane-Saphir dopé.
Selon une variante possible, l'amplification de l'impulsion laser peut se faire suivant une méthode usuellement appelée en anglais « Optical Parametric Chirped Puise Amplification », qui allie l'amplification paramétrique d' impulsion laser à la technique d'amplification à dérive de fréquence. Dans ce cas, l'amplification de l'impulsion étirée se fait dans un matériau possédant des propriétés non linéaires importantes, par exemple des cristaux de type « KDP » (Potassium Dihydrogen Phosphate) « BBO » (Beta Barium Borate) ou « LBO » (Lithium Triborate) .
Dans ce cas, l'amplification consiste en un transfert d'énergie depuis les photons de l'impulsion de pompage optique vers les photons de l'impulsion à amplifier. Les vecteurs d'onde de l'impulsion amplifiée et de l'impulsion de pompage optique doivent donc être en accord de phase, et les deux impulsions doivent être synchrones .
Une telle méthode d'amplification est notamment décrite dans l'article de A. Dubietis et al. "Powerful femtosecond puise génération by chirped and stretched puise parametric amplification in BBO crystal" (Opt. Commun. 88, 433 (1992) ) .
Les amplificateurs mettant en œuvre une amplification par émission stimulée ou une amplification paramétrique sont indifféremment désignés comme des « milieux amplificateurs » dans la suite de la demande de brevet .
Le retour de l'impulsion à une durée courte, proche de la durée ΔΤ de l'impulsion d'entrée, s'effectue par un dispositif optique appelé compresseur 6 comprenant quatre réseaux de diffraction 61, 62, 63 et 64 réfléchissant les rayons lumineux incidents avec une orientation différente selon la longueur d'onde. Ainsi, un premier réseau 61 disperse spectralement l'impulsion étirée 93. A titre illustratif, les trois rayons 911, 912 et 913, correspondant à deux longueurs d'onde extrêmes de l'impulsion 910 et à une longueur d'onde médiane, sont représentés sur la figure 1.
Un second réseau 62 renvoi parallèlement les composantes spectrales, notamment 911, 912 et 913, composant l'impulsion laser, qui sont ainsi étalées spatialement. Le troisième réseau 63 permet de rassembler ces différentes composantes spectrales sur un même point du quatrième réseau 64, qui renvoie toutes ces composantes spectrales, notamment 911, 912 et 913, dans une même direction, pour former une nouvelle impulsion laser 94.
Les différentes composantes spectrales, notamment
911, 912 et 913, formant l'impulsion d'entrée 91 ne parcourent pas le même trajet dans le compresseur 6. Plus précisément, le compresseur 6 est construit de façon à ce que les composantes spectrales qui ont un trajet plus long dans l'étireur 2 aient un trajet plus court dans le compresseur 6. Cette différence de longueur de trajet entraine un décalage temporel des composantes spectrales en fonction de leur longueur d'onde s' opposant au décalage spectral généré par l'étireur 2,
Ainsi, les composantes spectrales qui étaient retardées temporellement dans l'impulsion 92 ou 93 rattrapent leur retard, de telle sorte que toutes les composantes spectrales soient rassemblées temporellement dans une impulsion de sortie 94 présentant une durée semblable à la durée ΔΤ de l'impulsion d'entrée 91, par exemple de 20 femtosecondes , et une puissance de crête très importante, par exemple de l'ordre de 1014 W.
Il est à noter que les différents réseaux de diffraction 61, 62, 63 et 64 composant le compresseur 6 présentent chacun un rendement énergétique dans l'ordre dispersif limité, par exemple de l'ordre de 90%. Le passage de l'impulsion 93 par ces quatre réseaux entraine donc une perte d'énergie importante. A titre d'exemple, si l'énergie de l'impulsion 93 avant la compression est de 25 Joules, l'énergie de l'impulsion de sortie 94 pourra être d'environ 15 Joules.
La technique d'amplification par dérive de fréquence permet donc la production d' impulsions laser de très forte puissance instantanée, mais génère de très forte perte d'énergie.
Ainsi, l'obtention d'une impulsion de sortie de 15 Joules nécessite une impulsion avant compression de 25 Joules, dont la quasi-totalité de l'énergie est fournie par les amplificateurs. Les amplificateurs ayant un rendement énergétique de l'ordre de 45%, il est nécessaire de fournir une énergie de pompage de l'ordre de 55 Joules pour obtenir l'impulsion de sortie de 15 Joules. Le rendement énergétique global de l'amplificateur à dérive de fréquence est donc inférieur à 30%.
La production d' impulsion laser de forte énergie demande donc un apport d'énergie très important, qui rend nécessaire des installations, notamment pour le pompage, très importantes et très coûteuses.
3. Objectif de 1 'invention
La présente invention a pour objectif de pallier à ces inconvénients de l'art antérieur.
En particulier, l'invention a pour objectif d'augmenter le rendement énergétique de l'amplification d'impulsion laser à dérive de fréquence, de façon à permettre l'obtention d'impulsion laser de forte énergie avec une énergie de pompage inférieure.
L'invention a ainsi pour objectif de permettre l'obtention d'impulsions présentant la même énergie que dans l'art antérieur avec des installations moins importantes et moins coûteuse et une consommation énergétique moindre.
Un autre objectif de l'invention est de permettre l'obtention d'impulsions laser présentant une énergie supérieure à celles obtenues dans l'art antérieur, sans augmentation de la puissance de pompage, et donc de l'importance et du coût des installations de pompage.
4. Exposé de l'invention
Ces objectifs, ainsi que d'autres qui apparaîtront plus clairement par la suite, sont atteints par un dispositif d'amplification à dérive de fréquence pour un laser impulsionel, comprenant successivement :
un étireur apte à étirer temporellement une impulsion laser incidente ;
- au moins un milieu amplificateur apte à amplifier l'impulsion laser étirée ;
- un compresseur apte à compresser temporellement l'impulsion laser étirée et amplifiée ;
dans lequel, selon l'invention, le compresseur comprend un milieu amplificateur, de façon à amplifier l'impulsion laser partiellement compressée temporellement .
Les pertes d'énergie de l'impulsion ainsi amplifiée lors de la fin de sa compression temporelle sont ainsi réduites, par rapport aux pertes d'énergie d'une impulsion qui serait amplifiée avant de subir une compression temporelle.
Par ailleurs, les éléments du compresseur placés avant l'amplificateur placé dans le compresseur doivent résister à une impulsion d'énergie beaucoup plus faible que si l'impulsion était complètement amplifiée avant sa compression .
De façon avantageuse, le milieu amplificateur placé dans le compresseur est placé à une position où la durée de l'impulsion laser est sensiblement la moitié de la durée de l'impulsion pénétrant dans le compresseur.
Le milieu amplificateur est ainsi placé entre deux sous ensembles du compresseur, réalisant chacun la moitié de la compression temporelle de l'impulsion préalablement fortement étirée. Dans les amplificateurs connus, l'impulsion est, à cette position, étalée spatialement. Préférentiellement , le compresseur comprend quatre systèmes dispersifs successifs et le milieu amplificateur qui est placé entre le deuxième et le troisième système dispersif .
De préférence, les systèmes dispersifs sont des réseaux de dispersion.
Selon un mode de réalisation avantageux de l'invention, les premier et deuxième systèmes dispersifs du compresseur sont placés à l'air libre, et les troisième et quatrième systèmes dispersifs du compresseur sont placés dans une chambre à vide.
Un tel compresseur est plus facile à mettre en œuvre et moins cher que les compresseurs de l'art antérieur devant entièrement résister à l'énergie importante d'une impulsion complètement amplifiée avant sa compression, dont tous les éléments devaient être contenus dans une chambre à vide.
Avantageusement, l'étireur met en œuvre au moins un réseau de dispersion.
De façon avantageuse, le milieu amplificateur placé dans le compresseur est constitué par un cristal dopé permettant une amplification par émission stimulée.
Selon un mode de réalisation avantageux de l'invention, le milieu amplificateur placé dans le compresseur présente un gradient de dopage, de façon que les différentes composantes spectrales composant l'impulsion laser traversent des portions du milieu amplificateur présentant des niveaux de dopage différents .
Quand l'impulsion laser est étalée spatialement en fonction de sa longueur d'onde, comme c'est le cas dans les compresseurs optiques connus, il est ainsi possible de réaliser une amplification variable en fonction de la longueur d'onde. Cette caractéristique peut permettre, par exemple, de compenser la différence de gain d'une impulsion laser en fonction des longueurs d'onde dans certains matériaux amplificateurs. Selon un mode de réalisation avantageux de l'invention, au moins un des milieux amplificateurs mis en œuvre est constitué par un cristal non linéaire permettant une amplification paramétrique de l'impulsion laser.
L'invention concerne également un compresseur optique apte à compresser temporellement une impulsion laser préalablement étirée, caractérisé en ce gu' il comprend un milieu amplificateur, de façon à amplifier l'impulsion laser partiellement compressée temporellement .
5. Liste des figures
La présente invention sera mieux comprise à la lecture de la description gui suit de modes de réalisation préférés de l'invention, pris à titre d'exemples illustratifs et non limitatifs, et accompagnée des dessins parmi lesguels :
la figure 1, déjà décrite ci-dessus, est un schéma simplifié d'un dispositif d'amplification à dérive de fréguence d'une impulsion laser, selon l'art antérieur ;
la figure 2 est un schéma simplifié d'un dispositif d'amplification à dérive de fréguence d'une impulsion laser selon un mode de réalisation de l'invention ;
- la figure 3 est un schéma simplifié d'un étireur utilisé pour l'amplification à dérive de fréguence d'une impulsion laser.
6. Description de modes de réalisation de 1 'invention
La figure 2 représente de façon schématigue un dispositif d'amplification à dérive de fréguence selon un mode de réalisation de l'invention. Les éléments de ce dispositif d'amplification gui sont identigues à celui de l'art antérieur décrit à la figure 1 portent les mêmes références . Comme dans l'art antérieur, un oscillateur 1 émet une impulsion laser d'entrée 91 qui passe par un étireur 2. L'impulsion 92, étirée temporellement , sortant de 1' étireur 2, peut passer par un ou plusieurs milieux amplificateurs 2 et 3.
La modification apportée par la présente invention porte sur le compresseur 7. Ce compresseur comporte, comme le compresseur 6 de l'art antérieur, quatre réseaux de diffraction 71, 72, 73 et 74 ayant respectivement les mêmes rôles que les réseaux 61, 62, 63 et 64 de l'art antérieur. Cependant, selon l'invention, un milieu amplificateur 8 est placé dans le compresseur 7, entre le deuxième réseau de diffraction 72 et le troisième réseau de diffraction 73 constituant ce compresseur. Cet amplificateur pourrait compenser l'énergie perdue dans les réseaux de diffraction 71 et 72.
L'impulsion 96 traversant ce milieu amplificateur 8 présente des caractéristiques différentes de l'impulsion 95 sortant de l'amplificateur 4 et pénétrant dans le compresseur 7, du fait de son passage par les deux premiers réseaux de diffraction 71 et 72. Ainsi, elle présente une durée environ deux fois moins longue que la durée de l'impulsion 95, par exemple de l'ordre de 250 picosecondes si la durée de l'impulsion 95 est de l'ordre de 500 picosecondes. Par ailleurs, cette impulsion 96 est étalée spatialement, les longueurs d'onde les plus courtes étant d'un coté et les longueurs d'onde les plus longues de l'autre.
Le passage de l'impulsion 96 dans le milieu amplificateur 8 produit l'impulsion 97 amplifiée présentant les mêmes caractéristiques d'étirement temporel et d'étalement spatial que l'impulsion 96.
Cette impulsion 96 poursuit alors sa compression en passant par les réseaux 73 et 74, recompressant spatialement l'impulsion et achevant sa compression temporelle, pour former l'impulsion de sortie 98 de faible durée et de forte puissance de crête. Du fait de la position du milieu l'amplificateur 8 dans le compresseur, l'impulsion 97 sortant de ce milieu amplificateur subit, lors de son passage par les réseaux de diffraction 73 et 74, une perte d'énergie moins importante que si elle était passée par les quatre réseaux formant le compresseur.
A titre d'exemple, si les réseaux de diffraction utilisés présentent chacun un rendement énergétique dans l'ordre dispersif de 90%, la perte d'énergie de l'impulsion due au passage par les deux réseaux 73 et 74 est de 19%.
Ainsi, l'obtention d'une impulsion de sortie 98 de 15 Joules nécessite une impulsion 97 en sortie du milieu amplificateur 8 d'environ 18,5 Joules. Par ailleurs, la perte d'énergie de l'ordre de 19% due au passage de l'impulsion par les deux réseaux 71 et 72 est très faible, de l'ordre de 0.5 joules, du fait de la faible énergie du faisceau avant son passage dans le milieu amplificateur .
Les milieux amplificateurs ayant un rendement énergétique de l'ordre de 45%, l'énergie totale de pompage à fournir à ces milieux amplificateurs est de l'ordre de 40 Joules.
Il est donc possible, avec le dispositif de compression selon l'invention, de fournir une impulsion laser présentant une puissance donnée en consommant une puissance de pompage inférieure d'environ 30% à celle consommée par un dispositif d'amplification à dérive de fréquence de l'art antérieur, pour fournir une impulsion de même puissance.
Il est à noter que le compresseur 6 peut présenter une structure légèrement différente de celle décrite. Il est possible par exemple, dans un mode particulier de réalisation, que les sous-ensembles formés d'une part par les réseaux 71 et 72 et, d'autre part, par les réseaux 73 et 74, soient repliés de façon classique, en mettant en œuvre un dièdre de repli, afin qu'un seul sous-ensemble soit parcouru deux fois par l'impulsion laser.
Ce mode de réalisation n'est cependant pas préféré pour mettre en œuvre la présente invention. En effet, dans le mode de réalisation représenté par la figure 2, les deux réseaux 71 et 72, recevant une impulsion de faible énergie, peuvent présenter une dimension plus petite que les réseaux 61 et 62 du compresseur de l'art antérieur. Il est possible en conséquence d'utiliser des réseaux moins coûteux, et dans des conditions plus souples. Il est par exemple envisageable que ces deux réseaux 71 et 72 soient à l'air libre, alors que l'ensemble des réseaux composant les compresseurs de l'art antérieurs devaient être placés dans une chambre à vide.
Lors de l'amplification dans le milieu amplificateur 8 de l'impulsion laser 96, les longueurs d'onde formant cette impulsion sont réparties spatialement en fonction de leur longueur d'onde.
Suivant un mode de réalisation de l'invention, le milieu amplificateur 8 peut offrir une amplification constante en tous points, ce qui est obtenu lorsque le dopage est radialement uniforme dans le cristal.
Selon un autre mode de réalisation avantageux de l'invention, il est possible de mettre en œuvre une amplification variable selon la position de passage de chaque composante de l'impulsion laser dans le milieu amplificateur. Cette amplification différente peut être faite, par exemple, avec un milieu amplificateur présentant un gradient de dopage dans une direction perpendiculaire à la direction de passage de l'impulsion laser .
Un tel gradient de dopage existe de façon naturelle, par exemple, dans les cristaux de Titane saphir. Il est possible, au besoin, d'accentuer ce gradient de dopage radial naturel, par exemple en utilisant des cristaux de grande dimension (par exemple supérieur à 80 mm de diamètre) . Le dopage est alors plus faible au centre qu'au bord du cristal ce qui engendre un stockage d'énergie moins important au centre que sur les bords et donc un gain potentiel plus faible au centre.
Cette amplification variable selon la position spatiale, permet de mettre en œuvre, pour les impulsions laser étalées spatialement en fonction de la longueur d'onde qui traversent le milieu amplificateur 8, une amplification variable en fonction de la longueur d'onde. Le gain spectral de l'impulsion peut en effet être plus important pour les longueurs d'onde passant au centre du cristal qui est plus fortement dopé.
Une telle amplification différente pour les différentes composantes spectrales de l'impulsion peut être mise en œuvre dans tous les cas où les composantes spectrales de l'impulsion laser sont étalées spatialement. Elle peut être utile, par exemple, pour compenser la différence de gain d'une impulsion laser dans un cristal de Titane Saphir en fonction des longueurs d'onde.

Claims

R E V E N D I C A T I O N S
1. Dispositif d'amplification à dérive de fréquence pour un laser impulsionel, comprenant successivement :
- un étireur (2) apte à étirer temporellement une impulsion laser incidente (91) ;
- au moins un milieu amplificateur (3, 4) apte à amplifier l'impulsion laser étirée (92) ;
un compresseur (7) apte à compresser temporellement l'impulsion laser étirée et amplifiée (95) ;
caractérisé en ce que le compresseur (7) comprend un milieu amplificateur (8), de façon à amplifier l'impulsion laser partiellement compressée temporellement, pour augmenter le rendement énergétique de l'amplificateur.
2. Dispositif d'amplification selon la revendication 1, caractérisé en ce que le milieu amplificateur (8) placé dans le compresseur (7) est placé à une position où la durée de l'impulsion laser (96) est sensiblement la moitié de la durée de l'impulsion (95) pénétrant dans le compresseur.
3. Dispositif d'amplification selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le compresseur (7) comprend quatre systèmes dispersifs (71, 72, 73, 74) successifs et le milieu amplificateur (8) qui est placé entre le deuxième (72) et le troisième (73) système dispersif.
4. Dispositif d'amplification selon la revendication 3, caractérisé en ce que les systèmes dispersifs (71, 72, 73, 74) sont des réseaux de dispersion .
5. Dispositif d'amplification selon l'une quelconque des revendications 3 et 4, caractérisé en ce que les premier et deuxième systèmes dispersifs (71, 72) du compresseur (7) sont placés à l'air libre, et les troisième et quatrième systèmes dispersifs (73, 74) du compresseur (7) sont placés dans une chambre à vide.
6. Dispositif d'amplification selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'étireur (2) met en œuvre au moins un réseau de dispersion (21, 23, 24, 26) .
7. Dispositif d'amplification selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le milieu amplificateur (8) placé dans le compresseur (7) est constitué par un cristal dopé permettant une amplification par émission stimulée.
8. Dispositif d'amplification selon la revendication 7 caractérisé en ce que le milieu amplificateur (8) placé dans le compresseur (7) présente un gradient de dopage, de façon que les différentes composantes spectrales composant l'impulsion laser traversent des portions du milieu amplificateur (8) présentant des niveaux de dopage différents.
9. Dispositif d'amplification selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'au moins un des milieux amplificateurs (3, 4, 8) mis en œuvre est constitué par un cristal non linéaire permettant une amplification paramétrique de l'impulsion laser .
10. Compresseur optique (7) apte à compresser temporellement une impulsion laser préalablement étirée, caractérisé en ce qu' il comprend un milieu amplificateur (8), de façon à amplifier l'impulsion laser partiellement compressée temporellement, pour augmenter le rendement énergétique de l'amplificateur.
11. Compresseur optique selon la revendication 10, caractérisé en ce qu'il comprend quatre systèmes dispersifs (71, 72, 73, 74) successifs et en ce que le milieu amplificateur (8) est placé entre le deuxième (72) et le troisième (73) systèmes dispersifs.
12. Compresseur selon l'une des revendications 10 ou 11, caractérisé en ce que les systèmes dispersifs (71, 72, 73, 74) sont des réseaux de dispersion.
13. Compresseur selon l'une des revendications 10 à 12, caractérisé en ce que les premier et deuxième systèmes dispersifs (71, 72) sont placés à l'air libre et les troisième et quatrième systèmes dispersifs (73, 74) sont placés dans une chambre à vide.
EP11755395.8A 2010-08-03 2011-08-02 Dispositif d'amplification à dérive de fréquence pour un laser impulsionnel Withdrawn EP2601713A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1056414A FR2963707B1 (fr) 2010-08-03 2010-08-03 Dispositif d'amplification a derive de frequence pour un laser impulsionel
PCT/FR2011/051861 WO2012017179A2 (fr) 2010-08-03 2011-08-02 Dispositif d'amplification à dérive de fréquence pour un laser impulsionnel

Publications (1)

Publication Number Publication Date
EP2601713A2 true EP2601713A2 (fr) 2013-06-12

Family

ID=43754939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11755395.8A Withdrawn EP2601713A2 (fr) 2010-08-03 2011-08-02 Dispositif d'amplification à dérive de fréquence pour un laser impulsionnel

Country Status (5)

Country Link
US (1) US20130208740A1 (fr)
EP (1) EP2601713A2 (fr)
JP (1) JP2013535835A (fr)
FR (1) FR2963707B1 (fr)
WO (1) WO2012017179A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743110A (zh) * 2019-02-26 2019-05-10 浙江大学 一种用于光子时间拉伸系统的频率啁啾修正方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2965673B1 (fr) 2010-09-30 2013-08-23 Ecole Polytech Dispositif d'amplification a derive de frequence pour un laser impulsionnel
FR3061366B1 (fr) * 2016-12-22 2019-04-05 Thales Chaine amplificatrice a derive de frequence et a plusieurs sorties

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655547A (en) * 1985-04-09 1987-04-07 Bell Communications Research, Inc. Shaping optical pulses by amplitude and phase masking
JP2505892B2 (ja) * 1989-08-03 1996-06-12 浜松ホトニクス株式会社 パラメトリツクパルスレ―ザ
US5847863A (en) * 1996-04-25 1998-12-08 Imra America, Inc. Hybrid short-pulse amplifiers with phase-mismatch compensated pulse stretchers and compressors
JP2000101178A (ja) * 1998-09-21 2000-04-07 Nec Corp 固体レーザ材料及び固体レーザ素子
US7394591B2 (en) * 2000-05-23 2008-07-01 Imra America, Inc. Utilization of Yb: and Nd: mode-locked oscillators in solid-state short pulse laser systems
US7804864B2 (en) * 2004-03-31 2010-09-28 Imra America, Inc. High power short pulse fiber laser
JP4526409B2 (ja) * 2005-02-18 2010-08-18 独立行政法人 日本原子力研究開発機構 レーザー光のコントラスト向上法及びレーザー発生装置
US7593434B2 (en) * 2005-06-30 2009-09-22 Polaronyx, Inc. Compression design for high energy short pulse fiber laser
FR2903820B1 (fr) * 2006-07-11 2008-09-05 Thales Sa Procede d'amplification a derive de frequence spatio-temporelle et dispositif de mise en oeuvre
US7777940B1 (en) * 2007-02-09 2010-08-17 University Of Central Florida Research Foundation, Inc. Extreme chirped pulse amplification and phase control
US8154793B2 (en) * 2007-05-25 2012-04-10 Cornell University Nonlinear chirped pulse fiber amplifier with pulse compression
FR2930851B1 (fr) * 2008-05-05 2016-03-18 Amplitude Technologies Dispositif d'amplification d'impulsions lumineuses ultra-breves de forte energie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012017179A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743110A (zh) * 2019-02-26 2019-05-10 浙江大学 一种用于光子时间拉伸系统的频率啁啾修正方法

Also Published As

Publication number Publication date
JP2013535835A (ja) 2013-09-12
WO2012017179A3 (fr) 2012-04-12
US20130208740A1 (en) 2013-08-15
WO2012017179A2 (fr) 2012-02-09
FR2963707B1 (fr) 2013-07-12
FR2963707A1 (fr) 2012-02-10

Similar Documents

Publication Publication Date Title
EP2798710B1 (fr) Source laser a puissance crete superieure a 100 terawatt et haut contraste
EP2929603B1 (fr) Système et procédé de génération d'une salve d'impulsions laser ultracourtes et de forte puissance
FR3076959A1 (fr) Systeme laser et procede de generation d'impulsions laser de tres haute cadence
EP2622694A1 (fr) Dispositif d'amplification à dérive de fréquence pour un laser impulsionnel
WO2013153344A1 (fr) Système et procédé d'amplification optique d'impulsions lumineuses ultra-brèves au-delà de la limite de la bande spectrale de gain
EP2732512A2 (fr) Dispositif et procede passif de combinaison coherente d'une pluralite d'amplificateurs optiques
EP1662306B1 (fr) Filtre non linéaire d'impulsions femtosecondes à contraste élevé
EP3491703B1 (fr) Source laser femtoseconde
EP2601713A2 (fr) Dispositif d'amplification à dérive de fréquence pour un laser impulsionnel
EP2791734B1 (fr) Procede et dispositif d'amplification parametrique optique d'impulsions a derive de frequence
EP3074816A1 (fr) Generateur d'impulsions optiques courtes a tres haut contraste temporel
EP2021827A1 (fr) Source laser pour application lidar
FR3123514A1 (fr) Oscillateur laser a impulsions ultra-courtes de type mamyshev et son dispositif de demarrage
FR3117710A1 (fr) Système pour générer des impulsions lumineuses à fort contraste temporel
WO2016124757A1 (fr) Procédés et dispositifs d'émission laser par combinaison cohérente
EP2283548B1 (fr) Dispositif d'imagerie active intégrant une source d'imagerie à 1,5 micromètre
EP2038970A1 (fr) Dispositif d'etirement et de controle spectral pour lasers impulsionnels a forte puissance crete
EP2345117A1 (fr) Systeme amplificateur optique pour laser impulsionnel a base d'un milieu a gain guidant et laser impulsionnel le comprenant
WO2021009323A1 (fr) Système de génération d'impulsion lumineuse ultra-courte de forte énergie avec module de mise en forme spectrale
WO2022171815A1 (fr) Système et procédé de génération d'impulsion lumineuse de durée sub-picoseconde, ajustable en durée et/ou en fréquence de répétition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130222

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160301