EP2601441A2 - Zwangdurchlaufdampferzeuger - Google Patents

Zwangdurchlaufdampferzeuger

Info

Publication number
EP2601441A2
EP2601441A2 EP11725739.4A EP11725739A EP2601441A2 EP 2601441 A2 EP2601441 A2 EP 2601441A2 EP 11725739 A EP11725739 A EP 11725739A EP 2601441 A2 EP2601441 A2 EP 2601441A2
Authority
EP
European Patent Office
Prior art keywords
steam generator
tubes
forced
steam
generator tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11725739.4A
Other languages
English (en)
French (fr)
Other versions
EP2601441B1 (de
Inventor
Joachim Brodesser
Jan BRÜCKNER
Martin Effert
Joachim Franke
Tobias Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2601441A2 publication Critical patent/EP2601441A2/de
Application granted granted Critical
Publication of EP2601441B1 publication Critical patent/EP2601441B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/36Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers involving an upper drum or headers mounted at the top of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/36Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers involving an upper drum or headers mounted at the top of the combustion chamber
    • F22B21/366Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers involving an upper drum or headers mounted at the top of the combustion chamber involving a horizontal drum mounted in the middle of the boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/02Steam boilers of forced-flow type of forced-circulation type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/62Component parts or details of steam boilers specially adapted for steam boilers of forced-flow type
    • F22B37/70Arrangements for distributing water into water tubes
    • F22B37/74Throttling arrangements for tubes or sets of tubes

Definitions

  • the invention relates to a forced once-through steam generator with a surrounding gas-tight welded, formed in the vertical direction steam generator tubes wall, in which a fürgangs ⁇ collector is arranged within the enclosure, the first plurality of parallel switched steam generator tubes outlet side with a two ⁇ th, the first A plurality of series connected downstream plurality of steam generator tubes connected on the inlet side flow medium side. It further relates to a power plant with such a steam generator.
  • a steam generator is a plant for producing steam from a flow medium.
  • a fluid medium typically water is heated, and vice ⁇ converts into steam.
  • the steam is then used to drive machinery or generate electrical energy.
  • a steam generator comprises an evaporator for generating the steam and a superheater, in which the steam is heated to the temperature required for the consumer.
  • the evaporator is preceded by a preheater for the use of waste heat, which further increases the efficiency of the overall system.
  • Steam generators are industrially today usually designed as ⁇ serrohrkessel, ie, the flow medium is guided in steam generator tubes.
  • the steam generator tubes can be welded gas-tight with each other and thus form a order ⁇ supervisedswand, within which the heat-supplying hot gas is guided.
  • Steam generators can be designed either in a vertical or horizontal design, ie, the hot gas is guided in the vertical or horizontal direction.
  • Steam generators can furthermore be designed as forced-circulation steam generators, the passage of the flow medium being forced by a feed pump. The flow medium is conveyed by the feed pump into the boiler and successively the preheater, the evaporator and the superheater are flowed through.
  • the tubing of the containment is subdivided into a unte ⁇ ren and an upper section, said lower section includes a first plurality of parallel-connected steam ⁇ generator tubes and the upper portion of a second, the first plurality serially downstream Plural parallel connected steam generator tubes.
  • the lower and upper From ⁇ section are connected by a passage collectors.
  • the invention proceeds from the consideration that the overheating of individual steam generator tubes is due to a unzurei ⁇ sponding derivative of the incoming heat by flow medium. Inadequate heat removal occurs when the steam generator tube in question has too low a mass flow. With a pronounced natural circulation characteristic, with very low inlet steam content and very low heat input, the hydrostatic pressure drop in these tubes is already approximately as large or equal to the total pressure difference between the inlet and outlet of the steam generator tube. The remaining pressure difference as a driving force of the flow is therefore very low or disappears completely, so that in the worst case the flow stagnates.
  • the through-flow collector effects a complete equalization of the pressure, it does not effect complete mixing of the incoming flow medium, which would lead to a compensation of water and vapor content in the steam generator tubes connected downstream of it. Due to the low vapor content of the lower-heated steam generator tubes of the lower section and additional local segregation phenomena in the collector, the steam content can thus still approach zero at certain individual operating conditions when entering individual tubes of the upper vertical bore. Thus, this phenomenon should be be avoided by a sufficient attenuation of NaturumlaufCharakte ⁇ rrick. This can be achieved by increasing the friction pressure loss in the respective steam generator tube. For this purpose, in each case a throttle device should be provided in the steam generator tubes downstream of the throughput collector.
  • the respective throttle device is arranged at the upper outlet of the surrounding wall.
  • the throttle device is simple
  • the surrounding wall of a steam generator in a vertical construction can have different horizontal cross sections. A particularly simple construction is possible if the
  • Cross section is substantially rectangular.
  • the steam generator tubes arranged in the corner regions are heated particularly weakly, since they are furthest away from the center of the hot gas duct and at the same time have a particularly small heat input surface.
  • the vapor content of individual corner tubes of the lower section of the vertical bore can approach zero, so that an unevenly distributed water-vapor mixture enters the intermediate header here. Since the interim 1er also does not cause sufficient mixing here, the mass flow in the downstream corner pipes can come to a standstill and the heat dissipation thus be insufficient.
  • teilhaft note the downstream of the flow collector steam generator tubes on a throttle device.
  • the passage collector may be continuous circumferentially arranged horizontally, that is, it connects all be below ⁇ relationship as above arranged steam generator tubes of the surrounding wall with each other. Despite the complete pressure equalization over all pipes, segregation of water and steam can still occur. Accordingly, such a forced-circulation steam generator also advantageously has a throttle device in each of the steam generator tubes connected downstream of the through-flow collector.
  • the tubing below the passage collector can be configured in a spiral shape.
  • the tubes run circumferentially around the entire enclosure wall. Although this causes a more complex construction and also a smaller number of steam generator tubes in the lower area, but this heating differences in various areas of the enclosure wall are largely compensated. Nevertheless, he was ⁇ known that even with such a construction in the through-collector to random local segregation can occur, which cause the above-described problems of too low a mass flow in the pipes downstream of the through-collector. Therefore, even with such a construction, advantageously the steam generator tubes connected downstream of the throughflow collector each have a throttle device.
  • the forced-circulation steam generator is followed by a steam turbine, for example for generating electricity, downstream of the flow medium.
  • a power plant advantageously has such a steam ⁇ generator.
  • insbesonde re the arrangement of a throttle device in the passage collector downstream steam generator tubes a forced flow steam generator sufficient heat dissipation in each tube is guaranteed and thus inadmissible high temperatures that can damage the pipe wall, be avoided.
  • This measure is based on the realization that even in a forced continuous steam generator a non-negligible natural circulation characteristic is present, which is weakened by the arrangement of throttles. Ultimately, this restriction in the operation of a power plant avoided.
  • FIG. 2 shows a graphical representation of the mass flow density and the fluid temperature at the outlet of a comparatively weakly heated corner tube of the once-through steam generator with and without throttle device.
  • FIG. 1 schematically shows a fossil-fired, vertically bored forced once-through steam generator 1 according to the invention.
  • the once-through steam generator 1 comprises an enclosing wall 4 formed from gas-tightly welded steam generator tubes 2.
  • the enclosing wall 4 has a substantially rectangular horizontal cross-section 6.
  • a combustion chamber 8 is arranged with a number of burners not shown in detail for the combustion of a fossil fuel, which provide the heat supply to the steam generator tubes 4.
  • the enclosure wall 4 is divided into an upper portion 10 and ei ⁇ NEN lower portion 12, wherein the portions 10 and 12 are connected to each other via a through-collector 14.
  • the tubing in the lower portion 12 is arranged vertically here, but may also be arranged spirally around the Um chargedswand circumferentially.
  • the passage collector 14 collects all of the flow medium exiting from the steam generator tubes 2 of the lower section 12 and thus enables a pressure equalization between the parallel connected
  • the heat generated by the burner is largely absorbed by heat radiation through the steam generator tubes 2.
  • the passage collector 14 now effects a complete pressure equalization, however, no complete mixing of the incoming flow medium. Due to the described low vapor content at the exit from the corner tubes 16 of the lower section 12 as well as additional local segregation phenomena in the passage header 14, the vapor content at the entrance to individual steam generator tubes 2 of the upper section 10 can become very small.
  • throttling devices 18 are arranged in the exemplary embodiment at the outlet of all the steam generator tubes of the upper region 10, with only individual throttle devices 18 being shown by way of example in order to simplify the illustration.
  • the throttle devices 18 are each designed as a diaphragm, whereby the total pressure loss is increased for all parallel tubes. This results in that the hydrostatic pressure drop in the jewei ⁇ then steam generator tubes 2, in particular in the corner tubes 16 is reduced in relative terms. Thus, a reaching out ⁇ pressure difference always remains available as a driving force of the flow. This effect is illustrated by FIG. 2:
  • FIG. 2 shows a graphical representation of the parameters of the flow medium in a corner pipe 16 of the upper portion 10 with and without throttle device 18 at comparatively low ger supply of heat and for a partial load operation of Dampferzeu ⁇ gers 1.
  • the left-hand scale shows the mass flow density in the corner ⁇ pipe 16 in kilograms per square meter and second (kg / m2s), in the right scale shows the fluid temperature at the outlet of the Corner tube 16 in degrees Celsius (° C), each plotted against the vapor content of the flow medium at the tube inlet.
  • Curve 20 shows the mass flow density in the corner tube 16 without a separate throttle device 18.
  • the drop of the curve 20 to the left of the graph clearly shows how toward lower Dampfanfeilen the mass flow density in the corner tube 16 decreases.
  • the mass flow density drops to a value of 40 kg / m2s, which practically equates to a stagnation of the flow in the pipe.
  • a sufficient heat dissipation in the pipe is no longer guaranteed and accordingly increases the temperature of the flow medium and thus of the corner tube 16 from a Dampfan ⁇ part of about 0.2 significantly, as curve 22 represents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

Ein Zwangdurchlaufdampferzeuger (1) mit einer aus gasdicht verschweißten, in vertikaler Richtung durchströmbaren Dampferzeugerrohren (2) gebildeten Umfassungswand (4), bei dem innerhalb der Umfassungswand (4) ein Durchgangssammler (14) angeordnet ist, der eine erste Mehrzahl parallel geschalteter Dampferzeugerrohre (2) austrittsseitig mit einer zweiten, der ersten Mehrzahl seriell nachgeschalteten Mehrzahl parallel geschalteter Dampferzeugerrohre (2) eintrittsseitig strömungsmediumsseitig verbindet, soll unabhängig vom Betriebszustand eine besonders lange Lebensdauer und eine besonders geringe Reparaturanfälligkeit aufweisen. Dazu weisen die dem Durchgangssammler (14) nachgeschalteten Dampferzeugerrohre (16) jeweils eine Drosseleinrichtung (18) auf.

Description

Beschreibung
Zwangdurchlaufdampferzeuger Die Erfindung betrifft einen Zwangdurchlaufdampferzeuger mit einer aus gasdicht verschweißten, in vertikaler Richtung durchströmbaren Dampferzeugerrohren gebildeten Umfassungswand, bei dem innerhalb der Umfassungswand ein Durchgangs¬ sammler angeordnet ist, der eine erste Mehrzahl parallel ge- schalteter Dampferzeugerrohre austrittsseitig mit einer zwei¬ ten, der ersten Mehrzahl seriell nachgeschalteten Mehrzahl parallel geschalteter Dampferzeugerrohre eintrittsseitig strömungsmediumsseitig verbindet. Sie betrifft weiter eine Kraftwerksanlage mit einem derartigen Dampferzeuger.
Ein Dampferzeuger ist eine Anlage zur Erzeugung von Dampf aus einem Strömungsmedium. In einer solchen Anlage wird ein Strömungsmedium, typischerweise Wasser erhitzt und in Dampf umge¬ wandelt. Der Dampf wird dann für den Antrieb von Maschinen oder zur Erzeugung elektrischer Energie verwendet. Üblicherweise umfasst ein Dampferzeuger einen Verdampfer zur Erzeugung des Dampfes sowie einen Überhitzer, in dem der Dampf auf die für den Verbraucher benötigte Temperatur erhitzt wird. Häufig ist dem Verdampfer ein Vorwärmer zur Nutzung von Ab- wärme vorgeschaltet, der den Wirkungsgrad der Gesamtanlage weiter erhöht.
Dampferzeuger sind industriell heute üblicherweise als Was¬ serrohrkessel ausgeführt, d. h., das Strömungsmedium ist in Dampferzeugerrohren geführt. Die Dampferzeugerrohre können dabei miteinander gasdicht verschweißt werden und so eine Um¬ fassungswand bilden, innerhalb derer das die Wärme zuführende Heißgas geführt wird. Dampferzeuger können entweder in stehender oder liegender Bauweise ausgeführt sein, d. h., das Heißgas wird in vertikaler bzw. horizontaler Richtung geführt . Dampferzeuger können weiterhin als Zwangdurchlaufdampferzeu- ger ausgelegt sein, wobei der Durchlauf des Strömungsmediums von einer Speisepumpe erzwungen wird. Das Strömungsmedium wird dabei von der Speisepumpe in den Kessel gefördert und nacheinander werden der Vorwärmer, der Verdampfer und der Überhitzer durchströmt. Die Erwärmung des Speisewassers bis zur Sattdampftemperatur, die Verdampfung und Überhitzung erfolgen kontinuierlich in einem Durchlauf, so dass - zumindest im Volllastbetrieb - keine gesonderte Abscheideeinrichtung für Wasser und Dampf erforderlich ist. Durchlaufdampferzeuger können auch bei überkritischen Drücken betrieben werden. Die Definitionen der einzelnen Heizflächen Vorwärmer, Verdampfer und Überhitzer sind streng genommen bei dieser Betriebsweise nicht mehr sinnvoll, da ein kontinuierlicher Phasenübergang stattfindet .
In einer Variante des senkrecht berohrten Durchlaufdampf- erzeugers ist die Berohrung der Umfassungswand in einen unte¬ ren und einen oberen Abschnitt unterteilt, wobei der untere Abschnitt eine erste Mehrzahl parallel geschalteter Dampf¬ erzeugerrohre umfasst und der obere Abschnitt eine zweite, der ersten Mehrzahl seriell nachgeschaltete Mehrzahl parallel geschalteter Dampferzeugerrohre . Der untere und der obere Ab¬ schnitt sind durch einen Durchgangssammler miteinander verbunden. Dadurch wird einerseits ein Druckausgleich zwischen den parallel geschalteten Dampferzeugerrohren erreicht, andererseits auch eine zumindest partielle Durchmischung des Strömungsmediums aus unterschiedlichen Dampferzeugerrohren .
Bei derartigen Durchlaufdampferzeugern mit in vertikaler Richtung durchströmbaren Dampferzeugerrohren und Durchgangssammler wurde nunmehr festgestellt, dass einzelne Rohre des oberen Abschnitts der Umfassungswand unzulässig hohe Tempera¬ turen annehmen können, was unter Umständen zu einer Zerstörung der Rohrwand führen kann. Dabei ist das Auftreten dieser überhöhten Temperaturen an bestimmte Betriebsparameter geknüpft . Der Erfindung liegt daher die Aufgabe zu Grunde, einen Zwangdurchlaufdampferzeuger der oben genannten Art anzugeben, der unabhängig vom Betriebszustand eine besonders lange Lebens¬ dauer und eine besonders geringe Reparaturanfälligkeit auf- weist.
Diese Aufgabe wird erfindungsgemäß gelöst, indem die dem Durchgangssammler nachgeschalteten Dampferzeugerrohre jeweils eine Drosseleinrichtung aufweisen.
Die Erfindung geht dabei von der Überlegung aus, dass die Überhitzung einzelner Dampferzeugerrohre auf eine unzurei¬ chende Ableitung der eintretenden Wärme durch Strömungsmedium zurückzuführen ist. Eine unzureichende Wärmeabfuhr tritt dann auf, wenn das betreffende Dampferzeugerrohr einen zu niedrigen Massenstrom aufweist. Bei einer ausgeprägten Naturumlauf- Charakteristik ist bei sehr niedrigem Eintrittsdampfgehalt und sehr geringer Wärmezufuhr der hydrostatische Druckabfall in diesen Rohren bereits annähernd so groß oder gleich groß wie die gesamte Druckdifferenz zwischen Eintritt und Austritt des Dampferzeugerrohrs . Die verbleibende Druckdifferenz als treibende Kraft der Strömung ist demnach sehr gering oder verschwindet ganz, so dass im schlimmsten Fall die Strömung stagniert .
Zwar sollte der Durchgangssammler einen gewissen Ausgleich zwischen den ihm nachgeschalteten Rohren bewirken, um diesen Effekt abzuschwächen. Es wurde jedoch erkannt, dass der
Durchgangssammler zwar einen vollständigen Druckausgleich be- wirkt, jedoch keine vollständige Durchmischung des eintretenden Strömungsmediums, die zu einem Ausgleich von Wasser- und Dampfanteil in den ihm nachgeschalteten Dampferzeugerrohren führen würde. Aufgrund des niedrigen Dampfgehalts aus den schwächer beheizten Dampferzeugerrohren des unteren Ab- Schnitts sowie zusätzlicher lokaler Entmischungsphänomene im Sammler kann somit trotzdem am Eintritt in einzelne Rohre der oberen Senkrechtbohrung in bestimmten Betriebszuständen der Dampfgehalt gegen Null gehen. Somit sollte dieses Phänomen durch eine ausreichende Abschwächung der NaturumlaufCharakte¬ ristik vermieden werden. Dies ist erreichbar, indem der Reibungsdruckverlust in dem jeweiligen Dampferzeugerrohr erhöht wird. Dazu sollte in den dem Durchgangssammler nachgeschalte- ten Dampferzeugerrohren jeweils eine Drosseleinrichtung vorgesehen sein.
In vorteilhafter Ausgestaltung ist die jeweilige Drosseleinrichtung am oberen Austritt der Umfassungswand angeordnet. Eine derartige Anordnung ermöglicht eine besonders einfache
Konstruktion des Dampferzeugers und erlaubt gleichzeitig eine Nachrüstung bereits bestehender Anlagen, die das oben beschriebene Problem aufweisen. Vorteilhafterweise ist die Drosseleinrichtung als einfache
Blende ausgestaltet. Dies erlaubt eine besonders einfache lo¬ kale Reduzierung der Nennweite des betreffenden Dampferzeu¬ gerrohrs und somit eine einfache Erhöhung des Reibungsdruck¬ verlustes. Auch diese Maßnahme erlaubt eine besonders einfa- che Installation der Drosseleinrichtung zur Reduzierung der NaturumlaufCharakteristik .
Die Umfassungswand eines Dampferzeugers in stehender Bauweise kann unterschiedliche horizontale Querschnitte aufweisen. Ei- ne besonders einfache Konstruktion ist möglich, wenn der
Querschnitt im Wesentlichen rechteckig ist. Bei derartigen Dampferzeugern sind insbesondere die in den Eckbereichen angeordneten Dampferzeugerrohre besonders schwach beheizt, da sie am weitesten vom Zentrum des Heißgaskanals entfernt sind und gleichzeitig eine besonders geringe Wärmeeintragsfläche aufweisen. Dadurch kann der Dampfgehalt einzelner Eckrohre des unteren Abschnitts der Senkrechtberohrung gegen Null gehen, so dass hier ein ungleichmäßig verteiltes Wasser-Dampf- Gemisch in den Zwischensammler eintritt. Da der Zwischensamm- 1er auch hier keine ausreichende Durchmischung bewirkt, kann der Massenstrom in den nachgeschalteten Eckrohren zum Erliegen kommen und der Wärmeabtransport damit unzureichend sein. Gerade bei einem derartigen Dampferzeuger weisen daher vor- teilhafterweise die dem Durchgangssammler nachgeschalteten Dampferzeugerrohre eine Drosseleinrichtung auf.
Der Durchgangssammler kann durchgängig horizontal umlaufend angeordnet sein, d. h., er verbindet sämtliche unterhalb be¬ ziehungsweise oberhalb angeordneten Dampferzeugerrohre der Umfassungswand miteinander. Trotz des vollständigen Druckausgleichs über alle Rohre können dennoch Entmischungen von Wasser- und Dampfanteil auftreten. Vorteilhafterweise weist da- her auch ein derartiger Zwangdurchlaufdampferzeuger in den dem Durchgangssammler nachgeschalteten Dampferzeugerrohren jeweils eine Drosseleinrichtung auf.
Die Berohrung unterhalb des Durchgangssammlers kann spiral- förmig umlaufend ausgestaltet sein. Die Rohre verlaufen dabei umlaufend um die gesamte Umfassungswand. Zwar bedingt dies eine komplexere Konstruktion und auch eine geringere Anzahl von Dampferzeugerrohren im unteren Bereich, allerdings werden dadurch Beheizungsunterschiede in verschiedenen Bereichen der Umfassungswand weitgehend ausgeglichen. Dennoch wurde er¬ kannt, dass es auch bei einer derartigen Konstruktion im Durchgangssammler zu zufälligen lokalen Entmischungen kommen kann, die die oben beschriebenen Probleme des zu geringen Massenstroms in den dem Durchgangssammler nachgeschalteten Rohren verursachen. Daher weisen auch bei einer derartigen Konstruktion vorteilhafterweise die dem Durchgangssammler nachgeschalteten Dampferzeugerrohre jeweils eine Drosselein¬ richtung auf. Bei fossil befeuerten Dampferzeugern erfolgt der Wärmeeintrag in die Dampferzeugerrohre der Brennkammer nicht ausschlie߬ lich konvektiv, sondern ein Großteil des Wärmeanteils wird durch Wärmestrahlung in die Dampferzeugerrohre eingebracht. Insbesondere bei derartigen Dampferzeugern können daher die Unterschiede in der Beheizung einzelner Dampferzeugerrohre besonders groß sein. Daher weist vorteilhafterweise ein
Dampferzeuger mit einer eine Anzahl von Brennern für fossilen Brennstoff aufweisenden Brennkammer eine Drosseleinrichtung in den dem Durchgangssammler nachgeschalteten Dampferzeuger- rohren auf.
In vorteilhafter Ausgestaltung ist dem Zwangdurchlaufdampf- erzeuger eine Dampfturbine beispielsweise zur Stromerzeugung strömungsmediumsseitig nachgeschaltet. Weiterhin weist eine Kraftwerksanlage vorteilhafterweise einen derartigen Dampf¬ erzeuger auf.
Die mit der Erfindung erzielten Vorteile bestehen insbesonde re darin, dass durch die Anordnung einer Drosseleinrichtung in den dem Durchgangssammler nachgeschalteten Dampferzeuger- rohren eines Zwangdurchlaufdampferzeugers ein ausreichender Wärmeabtransport in jedem Rohr gewährleistet ist und somit unzulässig hohe Temperaturen, die zu Beschädigungen der Rohr wand führen können, vermieden werden. Dabei beruht diese Maß nähme auf der Erkenntnis, dass auch in einem Zwangdurchlauf- dampferzeuger eine nicht zu vernachlässigende Naturumlaufcha rakteristik vorhanden ist, die durch die Anordnung von Drosseln abgeschwächt wird. Letztlich werden dadurch Einschränkungen im Betrieb einer Kraftwerksanlage vermieden.
Die Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
FIG 1 schematisch einen senkrecht berohrten
Zwangdurchlaufdampferzeuger mit Durchgangssammler, und
FIG 2 eine grafische Darstellung der Massenstromdichte und der Fluidtemperatur am Austritt eines vergleichsweise schwach beheizten Eckrohres des Zwangdurchlaufdampferzeugers mit und ohne Drosseleinrichtung .
Gleiche Teile sind in allen Figuren mit denselben Bezugszei¬ chen versehen. FIG 1 zeigt schematisch einen fossil befeuerten, senkrecht berohrten Zwangdurchlaufdampferzeuger 1 gemäß der Erfindung. Der Zwangdurchlaufdampferzeuger 1 umfasst eine aus gasdicht verschweißten Dampferzeugerrohren 2 gebildete Umfassungswand 4. Die Umfassungswand 4 weist dabei einen im Wesentlichen rechteckigen horizontalen Querschnitt 6 auf. Im unteren Bereich des Zwangdurchlaufdampferzeugers 1 ist eine Brennkammer 8 mit einer Anzahl von nicht näher dargestellten Brennern zur Verbrennung eines fossilen Brennstoffs angeordnet, die die Wärmezufuhr zu den Dampferzeugerrohren 4 bereitstellen.
Die Umfassungswand 4 ist in einen oberen Abschnitt 10 und ei¬ nen unteren Abschnitt 12 unterteilt, wobei die Abschnitte 10 und 12 über einen Durchgangssammler 14 miteinander verbunden sind. Die Berohrung im unteren Abschnitt 12 ist hier senkrecht angeordnet, kann aber auch spiralförmig um die Umfassungswand umlaufend angeordnet sein. Der Durchgangssammler 14 sammelt das gesamte aus den Dampferzeugerrohren 2 des unteren Abschnitts 12 austretende Strömungsmedium und ermöglicht so einen Druckausgleich zwischen den parallel geschalteten
Dampferzeugerrohren 2. Anschließend wird das Strömungsmedium aus dem Durchgangssammler 14 in die Dampferzeugerrohre 2 des oberen Abschnitts 10 eingeleitet, wo es weiter erwärmt und gegebenenfalls überhitzt wird. Der überhitzte Dampf wird nach weiterer Überhitzung in nicht dargestellten Heizflächen einer nicht näher dargestellten Dampfturbine in einer Kraftwerks¬ anlage zugeführt.
Die durch die Brenner erzeugte Wärme wird weitestgehend über Wärmestrahlung durch die Dampferzeugerrohre 2 aufgenommen. Insbesondere in den Eckrohren 16 des unteren Abschnitts 12 ist aufgrund ihrer Lage in der größten Entfernung zum Zentrum des Zwangdurchlaufdampferzeugers 1 und aufgrund der geometri¬ schen Anordnung der besonders gering mit Wärme beaufschlagten Oberfläche der Wärmeeintrag so gering, dass das aus den Eck¬ rohren 16 des unteren Abschnitts 12 in den Durchgangssammler 14 eintretende Strömungsmedium einen vergleichsweise geringen Dampfgehalt aufweist. Der Durchgangssammler 14 bewirkt nun zwar einen vollständigen Druckausgleich, jedoch keine vollständige Durchmischung des eintretenden Strömungsmediums. Aufgrund des beschriebenen niedrigen Dampfgehalts am Austritt aus den Eckrohren 16 des unteren Abschnitts 12 sowie zusätzlicher lokaler Entmischungsphänomene im Durchgangssammler 14 kann der Dampfgehalt am Eintritt in einzelne Dampferzeugerrohre 2 des oberen Abschnitts 10 sehr gering werden. Je nach Betriebszustand des Zwangdurchlaufdampferzeugers 1 kann dies bei einer unvorteil¬ haften Auslegung der Berohrung des oberen Abschnitts 10 zu einem deutlichen Einbruch der Durchströmung einzelner Dampferzeugerrohre 2 bis hin zur Stagnation führen. Dies wiederum kann einen unzureichenden Wärmeabtransport und unzulässig hohe Fluidtemperaturen zur Folge haben, so dass letztlich die Rohrwand unzulässig hohe Temperaturen annimmt und zerstört wird .
Zur Vermeidung einer derartigen Beschädigung sind im Ausfüh- rungsbeispiel am Austritt sämtlicher Dampferzeugerrohre des oberen Bereichs 10 Drosseleinrichtungen 18 angeordnet, wobei zur einfacheren Darstellung beispielhaft nur einzelne Drosseleinrichtungen 18 gezeigt sind. Die Drosseleinrichtungen 18 sind jeweils als Blende ausgestaltet, wodurch der Gesamt- druckverlust für alle parallelen Rohre erhöht wird. Dies führt dazu, dass der hydrostatische Druckabfall in den jewei¬ ligen Dampferzeugerrohren 2, insbesondere in den Eckrohren 16 relativ gesehen reduziert wird. Somit bleibt stets eine aus¬ reichende Druckdifferenz als treibende Kraft der Strömung vorhanden. Dieser Effekt wird anhand der FIG 2 verdeutlicht:
FIG 2 zeigt eine grafische Darstellung der Parameter des Strömungsmediums in einem Eckrohr 16 des oberen Bereichs 10 mit und ohne Drosseleinrichtung 18 bei vergleichsweise gerin- ger Wärmezufuhr und für einen Teillastbetrieb des Dampferzeu¬ gers 1. Die linke Skala zeigt die Massenstromdichte im Eck¬ rohr 16 in Kilogramm pro Quadratmeter und Sekunde (kg/m2s) , in die rechte Skala zeigt die Fluidtemperatur am Austritt des Eckrohres 16 in Grad Celsius (°C), jeweils aufgetragen gegen den Dampfanteil des Strömungsmediums am Rohreintritt.
Kurvenzug 20 zeigt die Massenstromdichte im Eckrohr 16 ohne gesonderte Drosseleinrichtung 18. Der Abfall des Kurvenzugs 20 zur linken Seite der grafischen Darstellung zeigt deutlich, wie hin zu geringeren Dampfanfeilen die Massenstrom- dichte im Eckrohr 16 abnimmt. Bei einem Dampfanteil von 0 sinkt die Massenstromdichte auf einen Wert von 40 kg/m2s ab, was praktisch einer Stagnation der Strömung im Rohr gleichkommt. Ein ausreichender Wärmeabtransport im Rohr ist nicht mehr gewährleistet und entsprechend steigt die Temperatur des Strömungsmediums und damit des Eckrohres 16 ab einem Dampfan¬ teil von etwa 0,2 signifikant an, wie Kurvenzug 22 darstellt.
Bei Anordnung einer Drosseleinrichtung 18 im Eckrohr 16 an dessen Austritt erhöht sich jedoch der Reibungsdruckverlust und reduziert damit wie oben beschrieben die NaturumlaufCha¬ rakteristik und vermindert so einen übermäßigen relativen hydrostatischen Druckabfall im Eckrohr 16. Kurvenzug 24 zeigt zwar auch, dass hin zu niedrigeren Dampfgehalten die Massenstromdichte in Eckrohr 16 abnimmt. Dabei bleibt aber der Wert der Massenstromdichte auch bei einem Dampfanteil von 0 auf einem wesentlich höheren Wert (hier 260 kg/m2s) als in einer Anordnung ohne Drosseleinrichtung 18. Wie Kurvenzug 26 verdeutlicht, führt dies dazu, dass bei jedwedem Dampfgehalt ein ausreichender Wärmeabtransport im Eckrohr 16 gewährleistet ist, d. h., die Temperatur nur in geringem Maße ansteigt oder konstant bleibt. Dadurch werden Beschädigungen der Umfas- sungswand 4 im oberen Bereich 10 durch übermäßige Temperatu¬ ren vermieden und es wird eine insgesamt höhere Lebensdauer des Zwangdurchlaufdampferzeugers 1 erreicht.

Claims

Patentansprüche
1. Zwangdurchlaufdampferzeuger (1) mit einer aus gasdicht verschweißten, in vertikaler Richtung durchströmbaren Dampf- erzeugerrohren (2) gebildeten Umfassungswand (4), bei dem innerhalb der Umfassungswand (4) ein Durchgangssammler (14) angeordnet ist, der eine erste Mehrzahl parallel geschalteter Dampferzeugerrohre (2) austrittsseitig mit einer zweiten, der ersten Mehrzahl seriell nachgeschalteten Mehrzahl parallel geschalteter Dampferzeugerrohre (2) eintrittsseitig strö- mungsmediumsseitig verbindet, wobei die dem Durchgangssammler (14) nachgeschalteten Dampferzeugerrohre (2) jeweils eine Drosseleinrichtung (18) aufweisen.
2. Zwangdurchlaufdampferzeuger (1) nach Anspruch 1, bei dem die jeweilige Drosseleinrichtung (18) am oberen Austritt der Umfassungswand (4) angeordnet ist.
3. Zwangdurchlaufdampferzeuger (1) nach einem der vorherge- henden Ansprüche, bei dem die Drosseleinrichtung (18) als
Blende ausgestaltet ist.
4. Zwangdurchlaufdampferzeuger (1) nach einem der vorhergehenden Ansprüche, bei dem die Umfassungswand (4) einen im We- sentlichen rechteckigen horizontalen Querschnitt (6) aufweist.
5. Zwangdurchlaufdampferzeuger (1) nach einem der vorhergehenden Ansprüche, bei dem der Durchgangssammler (14) horizon- tal um die Umfassungswand (4) umlaufend angeordnet ist und die erste Mehrzahl sämtliche unterhalb in der Umfassungswand (4) angeordneten, parallel geschalteten Dampferzeugerrohre (2) umfasst und die zweite Mehrzahl sämtliche oberhalb in der Umfassungswand (4) angeordneten Dampferzeugerrohre (2) um- fasst.
6. Zwangdurchlaufdampferzeuger nach einem der
vorhergehenden Ansprüche, bei dem die dem Durchgangssammler (14) vorgeschalteten Dampferzeugerrohre (2) spiralförmig umlaufend in der Umfassungswand (4) angeordnet sind.
7. Zwangdurchlaufdampferzeuger (1) nach einem der vorherge henden Ansprüche mit einer eine Anzahl von Brennern für fossilen Brennstoff aufweisenden Brennkammer (8).
8. Zwangdurchlaufdampferzeuger (1) nach einem der vorherge henden Ansprüche mit einer strömungsmediumsseitig nachge¬ schalteten Dampfturbine.
9. Kraftwerksanlage mit einem Zwangdurchlaufdampferzeuger (1) nach einem der vorhergehenden Ansprüche.
EP11725739.4A 2010-08-04 2011-06-15 Zwangdurchlaufdampferzeuger Active EP2601441B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010038883.1A DE102010038883C5 (de) 2010-08-04 2010-08-04 Zwangdurchlaufdampferzeuger
PCT/EP2011/059930 WO2012016749A2 (de) 2010-08-04 2011-06-15 Zwangdurchlaufdampferzeuger

Publications (2)

Publication Number Publication Date
EP2601441A2 true EP2601441A2 (de) 2013-06-12
EP2601441B1 EP2601441B1 (de) 2016-08-17

Family

ID=44627108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11725739.4A Active EP2601441B1 (de) 2010-08-04 2011-06-15 Zwangdurchlaufdampferzeuger

Country Status (7)

Country Link
US (1) US9291344B2 (de)
EP (1) EP2601441B1 (de)
KR (1) KR20140003372A (de)
CN (1) CN103154611B (de)
AU (1) AU2011287835B2 (de)
DE (1) DE102010038883C5 (de)
WO (1) WO2012016749A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102013215456A1 (de) * 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Durchlaufdampferzeuger
PL3040638T3 (pl) * 2015-07-23 2018-08-31 Hoval Aktiengesellschaft Rura wymiennika ciepła i kocioł grzewczy z taką rurą wymiennika ciepła

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1401360B2 (de) 1961-02-08 1970-10-01 La Mont-Kessel Herpen & Co KG, 1000 Berlin Zwangumlauf-Dampferzeuger zur Verwertung von Abwärme
DE1969151U (de) * 1964-08-11 1967-09-28 Siemens Ag Dampferzeuger fuer kernkraftwerke.
DE1935509A1 (de) * 1966-02-04 1971-01-14 Babcock & Wilcox Ag Zwangdurchlauf-Dampferzeuger
DE1969515U (de) * 1967-02-21 1967-09-28 Melsunger Metallwerk Erwin Dre Nockengeschweisstes metallgehaeuse fuer geld-, dokumentenkassetten und schluesselschrank.
DE2144675C3 (de) * 1971-09-07 1981-05-27 Kraftwerk Union AG, 4330 Mülheim Durchlauf-Großdampferzeuger
FI68458C (fi) * 1980-12-23 1985-09-10 Sulzer Ag Tvaongsstyrdaonggeneratoranlaeggning
US4577593A (en) * 1984-11-08 1986-03-25 Combustion Engineering, Inc. Waterwall tube orifice mounting assembly
CH666532A5 (de) * 1984-12-27 1988-07-29 Mustafa Youssef Dr Ing Brennkammer-rohranordnung in zwangdurchlauf-dampferzeugern.
DE4227457A1 (de) * 1992-08-19 1994-02-24 Siemens Ag Dampferzeuger
DE19528438C2 (de) * 1995-08-02 1998-01-22 Siemens Ag Verfahren und System zum Anfahren eines Durchlaufdampferzeugers
DE19600004C2 (de) * 1996-01-02 1998-11-19 Siemens Ag Durchlaufdampferzeuger mit spiralförmig angeordneten Verdampferrohren
DE19651678A1 (de) 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger
DE19901621A1 (de) 1999-01-18 2000-07-27 Siemens Ag Fossilbeheizter Dampferzeuger
DE10127830B4 (de) 2001-06-08 2007-01-11 Siemens Ag Dampferzeuger
KR100597429B1 (ko) 2004-07-13 2006-07-05 (주)청명씨에스 관류 보일러
US7878157B2 (en) 2004-09-23 2011-02-01 Siemens Aktiengesellschaft Fossil-fuel heated continuous steam generator
US7814742B2 (en) * 2006-12-13 2010-10-19 Mitsubishi Heavy Industries, Ltd. Integrated coal gasification combined cycle plant
JP5193006B2 (ja) 2008-12-03 2013-05-08 三菱重工業株式会社 ボイラ構造
DE102009012320A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012016749A2 *

Also Published As

Publication number Publication date
US20130205784A1 (en) 2013-08-15
DE102010038883B4 (de) 2017-05-24
AU2011287835A1 (en) 2013-02-21
AU2011287835B2 (en) 2014-03-20
DE102010038883A1 (de) 2012-02-09
CN103154611B (zh) 2016-03-16
EP2601441B1 (de) 2016-08-17
KR20140003372A (ko) 2014-01-09
US9291344B2 (en) 2016-03-22
DE102010038883C5 (de) 2021-05-20
WO2012016749A3 (de) 2013-02-07
CN103154611A (zh) 2013-06-12
WO2012016749A2 (de) 2012-02-09

Similar Documents

Publication Publication Date Title
EP0944801B1 (de) Dampferzeuger
EP1588095B1 (de) Dampferzeuger
EP2438351B1 (de) Durchlaufverdampfer
EP2324285B1 (de) Abhitzedampferzeuger
EP2321578B1 (de) Durchlaufdampferzeuger
EP2324287B1 (de) Durchlaufdampferzeuger
EP2601441B1 (de) Zwangdurchlaufdampferzeuger
WO2010142495A2 (de) Durchlaufverdampfer
EP0937218B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers und durchlaufdampferzeuger zur durchführung des verfahrens
EP2324286B1 (de) Durchlaufdampferzeuger
EP1166015B1 (de) Fossilbeheizter durchlaufdampferzeuger
EP1141625B1 (de) Fossilbeheizter durchlaufdampferzeuger
EP3014177B1 (de) Durchlaufdampferzeuger in zweizugkesselbauweise
DE102010038885B4 (de) Zwangdurchlaufdampferzeuger
WO2015039831A2 (de) Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger
DE4321619C2 (de) Verfahren zum Anfahren von Kraftwerksanlagen nach einem totalen Ausfall der Dampferzeugung
EP2564117B1 (de) Dampferzeuger
WO2005050089A1 (de) Durchlaufdampferzeuger
DE3408981A1 (de) Dampferzeuger mit parallelgeschalteten verdampferrohren
DE102010040214A1 (de) Berohrung einer Verdampferheizfläche für Durchlaufdampferzeuger in Solarturm-Kraftwerken mit direkter Verdampfung und Naturumlauf-Charakteristik

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F22B 29/02 20060101ALI20160125BHEP

Ipc: F22B 29/06 20060101ALI20160125BHEP

Ipc: F22B 21/36 20060101ALI20160125BHEP

Ipc: F22B 21/34 20060101AFI20160125BHEP

Ipc: F22B 37/74 20060101ALI20160125BHEP

Ipc: F01K 7/16 20060101ALI20160125BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 821473

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010437

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161117

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010437

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011010437

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 821473

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 13