EP2598396B1 - Method and system for reconnoitering a region under water - Google Patents
Method and system for reconnoitering a region under water Download PDFInfo
- Publication number
- EP2598396B1 EP2598396B1 EP10750026.6A EP10750026A EP2598396B1 EP 2598396 B1 EP2598396 B1 EP 2598396B1 EP 10750026 A EP10750026 A EP 10750026A EP 2598396 B1 EP2598396 B1 EP 2598396B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- torpedo
- uuv
- underwater vehicle
- reconnaissance
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 81
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 34
- 230000032258 transport Effects 0.000 claims description 49
- 238000004891 communication Methods 0.000 claims description 26
- 230000005540 biological transmission Effects 0.000 claims description 6
- 241000251729 Elasmobranchii Species 0.000 claims description 3
- SJIMZWZHTDHXRI-UHFFFAOYSA-N 4-bromo-1-(2-methoxyethyl)pyrazole Chemical compound COCCN1C=C(Br)C=N1 SJIMZWZHTDHXRI-UHFFFAOYSA-N 0.000 claims 12
- 238000011156 evaluation Methods 0.000 description 13
- 238000011084 recovery Methods 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- 239000002360 explosive Substances 0.000 description 3
- 238000005422 blasting Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- XZPVPNZTYPUODG-UHFFFAOYSA-M sodium;chloride;dihydrate Chemical compound O.O.[Na+].[Cl-] XZPVPNZTYPUODG-UHFFFAOYSA-M 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005527 soil sampling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G7/00—Mine-sweeping; Vessels characterised thereby
- B63G7/02—Mine-sweeping means, Means for destroying mines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
- B63G2008/002—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
- B63G2008/004—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
- B63G2008/002—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
- B63G2008/008—Docking stations for unmanned underwater vessels, or the like
Definitions
- US 6,854,410 B1 discloses a method and apparatus according to the preambles of claims 1 and 8.
- US 5,235,931 A and EP 2 003 053 A1 disclose devices and methods for suspending underwater vehicles by submarines.
- the invention relates to a method for reconnaissance of a ruler under water by means of a torpedo-shaped underwater vehicle. Furthermore, the invention relates to a system which can be used according to this method.
- reconnaissance areas have been elucidated underwater by means of underwater sensors or underwater vehicles or by means of aircraft with submergible sensors.
- the vehicles drive through the reconnaissance area and at the same time capture their surroundings by means of their sensors.
- sensor data of the area surrounding the sensors are generated.
- the generated sensor data are evaluated to clarify the reconnaissance area.
- US 6,11 8,066 describes an underwater vehicle that is designed as an autonomously operating unmanned underwater vehicle, hereinafter referred to as AUV, which has sensors on board to generate sensor data. Furthermore, the AUV has its own drive to drive through an area under water. The distance to be traveled to or from the area to be cleared is limited by energy reserves arranged on board the AUV for driving the AUV. Therefore, the AUV requires a launch location located in a nearby area of the reconnaissance area, with the nearby area being defined by the energy reserves of the self-propelled AUV.
- a disadvantage of reconnaissance of an underwater area by means of such an underwater vehicle is the limited distance that can be traveled from the starting position to the reconnaissance area and a subsequent distance to cover the reconnaissance area.
- DE 44 40 150 C2 describes a remotely steered reconnaissance vehicle having sensors in its head section for reconnaissance of an underwater area.
- the remotely steered reconnaissance vehicle is launched from a submarine, travels underwater to a destination and uses its sensors to generate sensor data that is forwarded to the submarine.
- the invention is based on the problem of providing a method for time-efficient reconnaissance of an underwater area.
- the invention solves this problem by means of the method according to claim 1.
- the invention is based on the finding that torpedo-shaped underwater vehicles not only have their own sensors, but can also transport UUVs, which in turn have their own sensors on board. In this way, reconnaissance underwater in the reconnaissance area is carried out by means of two-sensor underwater vehicles. In accordance with the invention, this saves time, since an underwater vehicle having a second sensor is already located in the torpedo-shaped underwater vehicle in the reconnaissance area. Thanks to the second transporting underwater vehicle, the reconnaissance in the reconnaissance area can be parallelized.
- the torpedo-shaped underwater vehicle has a transport space from which one or more UUVs can be exposed at a UUV exposure location.
- the UUV suspension location corresponds, for example, to a destination in the reconnaissance area, which is advantageously located outside the area of a launch platform that transports the underwater vehicle.
- time is saved by the UUV no longer having to travel from the spaced launch platform to the destination, but the UUV is already at the destination.
- the underwater vehicle has a torpedo-shaped outer shell.
- the underwater vehicle by means of a launch platform, which is suitable for conventional torpedoes, in particular by means of a torpedo tube, startable.
- the sensor data of the area of the torpedo-shaped underwater vehicle to be cleared are evaluated by means of a computing unit, in particular a remote computing unit of a control center.
- a computing unit in particular a remote computing unit of a control center.
- at least one UUV will be exposed from the torpedo-shaped underwater vehicle.
- the torpedo reconnaissance data can already be assessed while driving through the reconnaissance area. For example, an object that is considered conspicuous corresponds to a positive rating, which results in the suspension of one or more UUVs in the area of the conspicuous object.
- a UUV exposure location of the UUVs can not only be defined prior to performing the reconnaissance procedure according to the invention but also during the ongoing reconnaissance procedure.
- the UUV exposure location is thus determined dynamically.
- the arithmetic unit for evaluating the torpedo reconnaissance data is arranged in the torpedo-shaped underwater vehicle. In this way, the evaluation is carried out by means of an automatically generated decision using previously defined rules.
- the arithmetic unit is arranged to evaluate the torpedo reconnaissance data at a distance from the torpedo-shaped underwater vehicle in a control center. As a result, the evaluation of the torpedo reconnaissance data can be done either by personnel of the control center or automatically based on previously defined rules.
- the sensor data of the area surrounding the UUV, to be cleared up are transmitted to the torpedo-shaped underwater vehicle.
- the torpedo-shaped underwater vehicle transmits the UUV reconnaissance data to the arithmetic unit and / or the UUV receives data from the torpedo-shaped submarine vehicle.
- the data includes information and / or commands for controlling the UUV, in particular the Data of the torpedo-shaped underwater vehicle for the UUV were previously received from the remote computing unit of the control center.
- the UUV is connected to the arithmetic unit of the control center and / or the arithmetic unit of the torpedo-shaped underwater vehicle.
- the UUV reconnaissance data are thus preferably not evaluated on board the UUV, but by means of the remote computing unit of the control center.
- the UUV data can thus be evaluated before salvaging the UUV.
- data from the torpedo-shaped underwater vehicle is received at the UUV.
- the data for the UUV torpedo-shaped underwater vehicle has preferably been previously received by the remote computing unit of the control center.
- the data includes information and / or commands for controlling the UUV, such as UUV propulsion speed data, UUV's rudder direction data, UUV ballast tank depth data, and / or destination position navigation data.
- the UUV is controllable by means of the control center.
- the UUV reconnaissance data are evaluated by means of the spaced-apart computing unit of the control center or of another arithmetic unit, in particular of a computing unit on board the torpedo-shaped underwater vehicle. If there is a positive assessment of the UUV reconnaissance data, the UUV performs actions to manipulate one or more reconnaissance objects, in particular chain disconnection, mine blasting, underwater buoys, and / or soil sampling.
- the UUV reconnaissance data are already evaluated while driving through the reconnaissance area of the UUV. The evaluation is carried out by means of the arithmetic unit of the spaced control center, the arithmetic unit of the torpedo-shaped underwater vehicle and / or a computing unit arranged on board the UUV.
- an object in the Enlightenment area is not only detectable, but also editable by actions.
- this information can already be interrupted during the investigation of the UUV on the basis of the assessed UUV reconnaissance data and one or more actions can be carried out.
- a ride with an underwater vehicle having further tools is therefore unnecessary.
- the UUV autonomously passes through the reconnaissance area, in particular a subarea of the reconnaissance area, and stores the UUV reconnaissance data for a time-shifted transmission to a computing unit.
- the suspended UUV is from the torpedo-shaped underwater vehicle independently.
- the arithmetic unit of the torpedo-shaped underwater vehicle and / or the arithmetic unit of the remote control center can be continued.
- the length of a reconnaissance path in the reconnaissance area is independent of the length of any communications line between the UUV and the torpedo-shaped submersible.
- the UUV carries out the reconnaissance therefore parallel to the reconnaissance of the torpedo-shaped underwater vehicle. After the suspended UUV is recovered, the stored sensor data is transferable.
- the travel speed of the torpedo-shaped underwater vehicle for the suspension and / or recovery of the UUV is limited or the travel of the torpedo-shaped underwater vehicle is stopped.
- the suspension of the UUV is simplified, since due to the vehicle speed pending flow forces on the outside of the torpedo-shaped underwater vehicle are lower. The risk of a collision of UUV and torpedo-shaped underwater vehicle is thus lower.
- the drive of the torpedo-shaped underwater vehicle is stopped. In this way, the torpedo-shaped underwater vehicle can wait in the area of the stopped position until the UUV is exposed and / or salvaged.
- UUV reconnaissance data in the region of the exposure location can be generated for the torpedo reconnaissance data.
- the torpedo-shaped underwater vehicle is recovered after the reconnaissance area has been traversed, at the same time by means of one or more sensors arranged on board the torpedo-shaped underwater vehicle the environment of the torpedo-shaped underwater vehicle is detected and torpedo reconnaissance data are generated - hereinafter referred to as Torpedo reconnaissance method - and after the torpedo-shaped underwater vehicle has carried one or more UUVs and has been exposed from the torpedo-shaped underwater vehicle at least one UUV, which has generated UUV reconnaissance data by means of one or more sensors arranged on board the UUV - hereinafter referred to as UUV reconnaissance method , Subsequently, again with the same torpedo-shaped underwater vehicle, a torpedo reconnaissance method is performed, wherein possibly during or after the torpedo reconnaissance method, the UUV reconnaissance method is performed.
- the torpedo-shaped underwater vehicle has a UUV control converter which is designed to establish a communication link between the UUV and a computing unit connected to the torpedo-shaped underwater vehicle, in particular the spaced-apart computing unit of a control center.
- the arithmetic unit of the torpedo-shaped underwater vehicle is connected to the UUV for message transmission.
- the communication link between the UUV and the torpedo-shaped underwater vehicle can be formed as a line-bound, electromagnetically based and / or hydroacoustically based communication link.
- the communication link is, for example, a fiber optic cable or an underwater modem. In this way, the UUV is controllable by means of the UUV control converter from the remote computing unit of the control center.
- the torpedo-shaped underwater vehicle which is formed in sections, one or more transport sections, in each of which a transport space is arranged.
- the transport section is a further section that can be inexpensively integrated according to a modular principle into other section-shaped torpedo-shaped underwater vehicles.
- the UUV has sensors which, however, differ at least in one sensor from the sensors arranged on board the torpedo-shaped underwater vehicle.
- the sensors of the torpedo thus differ from those of the UUV.
- the reconnaissance area is more differentiated, i. by means of other information and / or further details, informable.
- the torpedo-shaped underwater vehicle has sensors that are designed as sonars.
- the UUV transported by the torpedo-shaped underwater vehicle has, for example, in contrast to the torpedo-shaped underwater vehicle, a sonar and in addition an optical camera.
- the torpedo reconnaissance method differs from the UUV reconnaissance method in terms of the nature and / or resolution of the information of the environment.
- the torpedo-shaped underwater vehicle on an opening device in the region of the transport space, which is designed to suspend the transported UUV and / or recover an exposed UUV.
- the opening device has, for example, a flap with which the UUV is exposed or recovered in an open state.
- a closed state after opening to suspend the UUVs can be restored. In this way, the UUV is suspendable and the reconnaissance using the externally unchanged torpedo-shaped underwater vehicle can be continued.
- the opening device of the torpedo-shaped underwater vehicle is designed so as to suspend the UUV only once.
- the opening device on a detachable, in particular absprengbare, shell of the transport space.
- the UUV is exposed by dissolving the transport space into the water.
- the torpedo-shaped underwater vehicle thus has an incomplete shell. This is advantageous if the UUV promptly, i. without further preparation, should be exposed to water.
- the UUV and / or the torpedo-shaped underwater vehicle has a transport device which is designed to transport one or more UUVs secured against damage in the transport space of the torpedo-shaped underwater vehicle.
- a transport device which is designed to transport one or more UUVs secured against damage in the transport space of the torpedo-shaped underwater vehicle.
- the UUV is transported in a position which is advantageous for the opening device. In this way, the suspension or recovery of the UUVs is facilitated.
- the torpedo-shaped underwater vehicle has one or more control cells, in particular trim tanks and / or ballast tanks, which are designed such that when the torpedo-shaped underwater vehicle is stopped, the position and / or the buoyancy or downforce of the torpedo-shaped Underwater vehicle underwater to balance.
- the control cells have in their interior a medium which causes a buoyancy or downforce.
- the control cells have air which can be discharged or fed into or out of the control cells.
- the torpedo-shaped underwater vehicle in its front and rear area and / or to its longitudinal axis opposite control cells. In this way, the position and / or the lift or the output of the torpedo-shaped underwater vehicle can be controlled.
- a position can be maintained in a controlled manner in order to deposit or recover the UUV.
- Fig. 1 shows a system according to the invention comprising a torpedo-shaped underwater vehicle 10 and an unmanned underwater vehicle, hereinafter referred to as UUV 12 ("Unmanned Underwater Vehicle").
- the torpedo-shaped underwater vehicle 10 has several sections. The sections comprise a power supply section 14, a sensor section 16, which in particular has a sonar head, and a drive section 18.
- the torpedo-shaped underwater vehicle 10 has a further section which can be used to transport one or more UUVs 12, namely one in a transport section 20 arranged inventive transport space 22.
- the transport space 22 has according to Fig. 1 a transportable UUV 12 on.
- the UUV 12 has its own sensors 24 and / or own tools / tools 26.
- the sensors 24 of the UUV 12 are, for example, sonars, camera systems, hydrophones, magnetometers and other sensors that are suitable for reconnaissance of objects under water.
- the tools / tools 26 of the UUV 12 are, for example, explosive charges and / or auxiliaries capable of handling an object, i. to move, mark or otherwise edit.
- the transport section 20 is arranged between the power supply section 14 and the sensor section 16.
- the inventive idea is not limited to this arrangement, but provides an arrangement of the transport space 22 at any point of the torpedo-shaped underwater vehicle before.
- Fig. 2 shows an advantageous opening device 28, which is designed to spend transported UUVs 12 (not shown) from the interior of the torpedo space 22 to the exterior of the torpedo-shaped underwater vehicle 10, ie to suspend into the water.
- the opening device 28 has at least one closable opening which is designed to expose the interior of the transport space 22 lying UUVs 12.
- the transport space 22 can advantageously be flooded with (sea) water when the torpedo-shaped underwater vehicle 10 is moved, so that no air trapped in the transport space 22 rises when the transport space 22 is opened, thus changing the position of the torpedo-shaped underwater vehicle 10 in an uncontrolled manner.
- the opening device 28 has a recovery arm for recovering suspended UUVs. In this way, exposed UUVs are recoverable.
- Fig. 3 shows a further embodiment of the inventive system comprising the torpedo-shaped underwater vehicle 10 and the two UUVs 12.
- the torpedo-shaped underwater vehicle 10 has inside its transport space 22 two UUVs 12.
- the UUVs 12 are transported by means of a transport device 30, which is arranged in the transport space 22, stabilized with respect to their relative position in the transport space 22. In this way, the UUVs 12 are protected from mechanical collisions with the transport space 22 or with the opening device 28.
- the UUVs 12 are thus secured in the torpedo-shaped underwater vehicle 10 transportable.
- the torpedo-shaped underwater vehicle 10 according to Fig. 3 a computing unit 32.
- the arithmetic unit 32 is connectable by means of a communication link 34 to a remote computing unit of a control center 36.
- the torpedo-shaped underwater vehicle 10 can be controlled and, in addition, further data can be exchanged.
- the further data can be transmitted and / or received by the arithmetic unit 32 of the torpedo-shaped underwater vehicle 10 to the spaced-apart computing unit of the control center 36.
- the further data preferably includes command and information data for the drive section 18 and / or the sensor section 16.
- the arithmetic unit 32 of the torpedo-shaped underwater vehicle 10 is according to Fig. 3 connected to a UUV control converter 38.
- the UUV control converter 38 can be connected to the UUVs 12 by means of a communication link 40.
- sensor data of the sensors 24 of the UUVs 12 can be transmitted to the arithmetic unit 32.
- the sensor data of the UUVs 12 can be transmitted by means of the arithmetic unit 32 to the remote computing unit of the control center 36.
- the sensor data of the UUV can thus be received by means of the arithmetic unit of the control center 36 and therefore also be evaluated.
- data for controlling the UUVs 12 can be sent by the arithmetic unit of the control center 36 to the UUVs 12. Further, by means of the UUV control converter 38, both data for the torpedo-shaped underwater vehicle 10 and data for the UUVs 12 can be transmitted via the communication link 34 from the arithmetic unit of the control center 36. In this way, a communication link between the UUV 12 and the arithmetic unit of the control center 36 is unnecessary.
- the communication link 34 between the arithmetic unit of the control center 36 and the arithmetic unit 32 of the torpedo-shaped underwater vehicle 10 and the communication link 40 between the arithmetic unit 32 and the UUVs 12, however, are not limited to a communication link with physical lines, in particular fiber optic lines or copper lines.
- the communication links by means of acoustic waves, electromagnetic waves and / or optical waves can be produced.
- Fig. 4 shows an embodiment of a method according to the invention for clearing an area under water using a flowchart.
- the flowchart starts in a start block 50 from which branch 52 leads to an enlightenment definition block 54.
- a reconnaissance area and / or an enlightenment destination object are defined for a reconnaissance process.
- a torpedo start block 58 follows via a branch 56.
- the torpedo-shaped underwater vehicle 10 is brought into the water with the UUVs 12 contained in its transport space 22 from a launch platform at a torpedo exposure location.
- a branch 60 leads to a transit trip block 62.
- the torpedo-shaped underwater vehicle 10 travels to the reconnaissance area. After the torpedo-shaped underwater vehicle 10 reaches the reconnaissance area, a branch 64 leads to a torpedo reconnaissance process block 66.
- the torpedo-shaped underwater vehicle 10 passes through the reconnaissance area and simultaneously detects the surroundings of the torpedo-shaped underwater vehicle 10 by means of one or more sensors aboard the torpedo-shaped underwater vehicle 10 and generates sensor data of the reconnaissance area surrounding the torpedo-shaped underwater vehicle 10. While the reconnaissance area is being traversed, one or more UUVs 12 are also being transported.
- a branch 68 leads to a stop decision block 70.
- the stop decision block 70 it is checked if there is an abort condition.
- the termination condition is given if the reconnaissance area has been completely traversed or the energy of the power supply section 14 is exhausted for travel to a predefined torpedo rescue location. If so, then via a branch 72 the torpedo salvage block 74 follows.
- the torpedo-shaped underwater vehicle 10 travels back to the torpedo exposure location or, alternatively, relocates to another location.
- a branch 76 leads to an end block 78 marking the end of the process.
- the UUV reconnaissance decision block 82 it is checked whether the sensor data of the reconnaissance area surrounding the torpedo underwater vehicle 10, hereinafter referred to as torpedo reconnaissance data, has abnormalities.
- the torpedo reconnaissance data will evaluate and result in a positive rating if the target to be reconcentrated appears to be included in the torpedo reconnaissance data. If the evaluation of the torpedo reconnaissance data is negative, the branch returns to the torpedo reconnaissance procedure block 66 via a branch 84.
- UUV reconnaissance data If the evaluation of the torpedo reconnaissance data is positive, a branch is made to a UUV reconnaissance procedure block 88 via a branch 86.
- the UUV 12 carried by the turret underwater vehicle 10 is exposed from the torpedo-shaped underwater vehicle 10. After exposure of the UUV 12, the UUV 12 detects its surroundings by means of one or more sensors arranged on its board. In this way, the UUV 12 generates sensor data of the area surrounding the UUV 12, hereinafter referred to as UUV reconnaissance data.
- a branch 90 leads to a return to the torpedo reconnaissance process block 66.
- the process according to the invention is ended as described above.
- Fig. 5 1 shows a reconnaissance area 100 and a section of a trajectory 102 of the torpedo-shaped underwater vehicle 10, the trajectory 102 being identified as vertical lines. Orthogonal to the lines of the trajectory 102 further horizontal lines are located. The vertical and horizontal lines together form a grid representing, based on the density of the lines, a coarse resolution 104 of the sensors of the torpedo-shaped underwater vehicle 10. In contrast to the coarse resolution 104, the finer grid of a fine resolution 106 indicates a fine resolution of the sensors of the UUVs 12.
- the finer resolution of the sensors of the UUV 12 is characterized in that the UUV 12 has sensors which differ at least in one sensor from the sensors arranged on board the torpedo-shaped underwater vehicle 10.
- Fig. 5 a UUV deployment location 108 where the torpedo-shaped underwater vehicle 10 suspends one or more UUVs 12. Due to the smaller design of the UUV 12 relatively to the torpedo-shaped underwater vehicle 10, the range under water is usually also lower.
- An action radius 110 of the UUVs 12 identifies a subarea of the reconnaissance area. In this way, the reconnaissance area 100 is detected in a differentiated manner, ie, the finer resolution is used only with respect to a certain area, an underwater vehicle having other sensors, namely the UUV 12, being simultaneously transported along with it.
- the method for reconnaissance of an area under water is faster to carry out than with two successively to be launched sensors having underwater vehicles.
- Fig. 6 shows a scenario to explain the system according to the invention for the elucidation of an underwater area.
- the inventive system includes the torpedo-shaped underwater vehicle 10 and the UUV 12.
- the system is in accordance with Fig. 6 Underwater 120.
- the target object is a mine 122 which is mounted on a body of water 124 by means of an anchor 126.
- the mine 122 consists of an explosive charge 128, which is connected by a chain 130 to the armature 126.
- the torpedo-shaped underwater vehicle 10 has already exposed the UUV 12 to the water 120 in this scenario.
- the UUV reconnaissance data of the sensors 24 of the UUV 12 can be transmitted via the communication link 40 and by means of the UUV control converter 38 via the communication link 34 to the arithmetic unit of the control center 32.
- the sensors 24 of the UUV 12 in this scenario include, for example, a camera system according to Fig. 6 is characterized by a light cone 132.
- the control of the UUV 12 to the mine 122 is provided by means of the communication link 34 and 40 as well as by the UUV control converter 38. In this way, both the travel of the UUV 12 and the sensors 24 and / or the tools / tools 26 of the UUVs can be controlled or assessed.
- data can be received by the UUV 12 by means of the communication link 34 and 40 and by means of the UUV control converter 38 and / or can be sent to the UUV 12.
- Fig. 7 shows an embodiment of the inventive method for performing actions on objects under water using a flowchart. The method starts at a start block 140, from which a branch 142 leads to a destination transmission block 144.
- the subarea for reconnaissance and / or reconnaissance objectives is transferable to the UUV 12.
- the inventive method is autonomous, ie without connection to the arithmetic unit of the control center 36 and without connection to the UUV control converter 38, feasible.
- a branch 146 leads to a UUV suspension block 148.
- the turret-shaped underwater vehicle 10 reduces its speed, in particular to zero, and by means of the opening device 28 releases the transported UUV 12 into the water surrounding the torpedo-shaped underwater vehicle.
- a branch 150 leads to a UUV trip block 152.
- the UUV passes through the previously transmitted reconnaissance area and generates by means of one or more sensors arranged on board the UUV sensor data of the area surrounding the UUV to be cleared up.
- the UUV trip block 152 passes the process via a branch 154 to a UUV evaluation block 156.
- the UUV reconnaissance data can be evaluated in the UUV evaluation block. After evaluating the UUV reconnaissance data in the UUV evaluation block 156, the method passes via a branch 158 to an action decision block 160. In the action decision block, it is checked whether further actions are to be taken to process one or more objects in the reconnaissance area. If there is a negative score, a branch is made via a branch 162 to a UUV salvage block 164.
- UUV salvage block 164 the UUV 12 returns to the UUV salvage location and is salvageable by a torpedo-shaped underwater vehicle 10.
- a branch 166 leads to an end block 168 which marks the end of the process.
- the branch in the action decision block 160 branches to a UUV action block 174 via a branch 170.
- the UUV action block 174 one or more actions are taken to manipulate objects scored as conspicuous, e.g. Breaking a chain of a mine, blasting a mine, moving underwater buoys or taking soil samples.
- the UUV salvage block 164 is taken over a branch 176. According to the above description, the UUV salvage block 164 is the UUV 12 recovered. The process eventually passes via branch 166 to end block 168, which marks the end of this process.
- This embodiment of the method according to the invention Fig. 7 corresponds, for example, to the UUV reconnaissance procedure block 88 according to FIG Fig. 4 ,
- Fig. 8 shows another scenario to explain the method for clearing an area under water.
- the UUV 12 has no communication link to the torpedo-shaped underwater vehicle 10 and therefore acts autonomously in a previously defined reconnaissance area with established reconnaissance targets.
- the previously defined reconnaissance area and the previously defined destinations can be transferred to the UUV 12 prior to insertion into the transport space of the torpedo-shaped underwater vehicle 10 or upon exposure of the UUV 12 from the torpedo-shaped underwater vehicle 10.
- the autonomously operating UUV 12 is referred to below as AUV ("Autonomous Underwater Vehicle"). While the AUV passes through a trajectory 200 autonomously, its UUV reconnaissance data can be generated and stored.
- the autonomously completed trajectory 200 is thus not subject to any restriction imposed by physical communication lines. For example.
- the UUV reconnaissance data of the AUV can, due to the autonomously completed movement path 200, comprise a plurality of objects of interest, for example the mine 122 and a mine 202 buried in the water brine 124.
- the salvage is definable by a predetermined time and by the UUV salvage location 206 prior to suspending the UUV 12.
- the torpedo-shaped underwater vehicle 10 can continue the torpedo reconnaissance process while the UUV 12 simultaneously performs the UUV reconnaissance procedure in parallel.
- the UUV 12 can be retrieved by means of the torpedo-shaped underwater vehicle 10 which has exposed the UUV 12 or by another torpedo-shaped underwater vehicle 208 at the UUV rescue location 206.
- an exemplary embodiment of the method according to the invention provides the torpedo-shaped underwater vehicle 10, which can expose and / or recover one or more UUVs 12 in parallel or sequentially.
- Parallel deployment / recovery means that the torpedo-shaped underwater vehicle 10 may deploy both one or more UUVs 12 at the UUV deployment location 204 at the same time or may reside at the UUV recovery location 206.
- the sequential suspend / salvage means a time-spaced sequence of suspensions and / or salvage operations, where the UUV suspend locations 204 and / or UUV salvage locations 206 may each be different from each other.
- the UUV reconnaissance data can be transmitted to the UUV control converter 38 of a torpedo-shaped underwater vehicle 208 if a UUV 210 is located in a receiving and / or transmitting area of the UUV control converter 38 of the torpedo-shaped underwater vehicle 208.
- a communication link 212 is temporary, ie exclusively for the time of transmission of the UUV reconnaissance data, by means of electromagnetic waves or hydroacoustic waves produced.
- the communication link 212 can be produced by the torpedo-shaped underwater vehicle 208 and / or the UUV 210, in particular after recovery of the UUV 210.
- Fig. 9 shows a further scenario for explaining the method according to the invention for reconnaissance of a reconnaissance area under water.
- a watercraft 220 has a transfer device 222 for transporting the torpedo-shaped underwater vehicle 10. Furthermore, the watercraft 220 has a recovery device 224 for recovering the torpedo-shaped underwater vehicle 10.
- the torpedo-shaped underwater vehicle 10 can be brought into the water by the watercraft 220. Furthermore, the torpedo-shaped underwater vehicle 10 on its transport space 22 on the UUV 12. The torpedo-shaped underwater vehicle 10 traverses the reconnaissance area 100 along the trajectory 102 and meanwhile generates the torpedo reconnaissance data. Analogous to Fig.
- the transported UUV 12 can be exposed to the UUV exposure site 108 into the water.
- the torpedo-shaped underwater vehicle 10 waits in the area of the UUV suspension location 108 to subsequently retrieve the UUV 12 or alternatively continues along the movement path 102.
- the salvage of the torpedo-shaped underwater vehicle 10 takes place by means of the salvage facility 224. In this way, the torpedo-shaped underwater vehicle 10 can be used by the vessel 220 having multiple transports using the retrieval device.
- This embodiment of the method according to the invention is not limited to the transportation and recovery by means of only one vessel and salvage vessel, but rather reveals any salvage and / or suspension by means of a salvage device and / or on-board boarding device on one or more vessels.
- Fig. 10 shows an embodiment of the inventive method for reconnaissance of an underwater area by means of a torpedo-shaped underwater vehicle 10.
- the method starts in a start block 230, from which a branch 232 leads to a torpedo drive block 234.
- a reconnaissance target and / or a reconnaissance area can be defined. Further, the torpedo-shaped underwater vehicle 10 passes through the reconnaissance area. The torpedo-shaped underwater vehicle 10 travels by means of the drive section 18, which receives control commands for driving through the reconnaissance area 100 from the arithmetic unit 32 of the torpedo-shaped underwater vehicle 10.
- a branch 236 leads to a torpedo evaluation block 238.
- the torpedo reconnaissance data is evaluated. The evaluations in the torpedo evaluation block 238 pass via a branch 240 to a torpedo interrupt block 242.
- the torpedo interruption block 242 it is checked whether the UUV 12 carried in the underwater towing vehicle 10 is to be discharged into the water due to the evaluation. If this is not the case, a branch via a branch 244 leads to the torpedo drive block 234. Therefore, the method is not interrupted, but continued.
- the branch of the torpedo interrupt block 242 via a branch 246 leads to a torpedo reconnaissance stop block 248.
- the cruising speed of the torpedo-shaped submersible for suspending and / or recovering the UUV 12 is limited or the ride of the torpedo-shaped submersible 10 is stopped.
- a branch 250 is followed by an end block 252 which marks the end of this process.
- This embodiment of the method according to the invention Fig. 10 corresponds, for example, to the torpedo reconnaissance process block 66 of the method according to the invention Fig. 4 ,
- Fig. 11 shows another scenario to explain the elucidation of an area under water by means of the system according to the invention in the area of a coastal area.
- the vessel 220 comprises a torpedo transfer device, in particular a torpedo tube 222, up. From the torpedo tube 222 leads the communication link 34 to the torpedo-shaped underwater vehicle 10.
- the torpedo-shaped underwater vehicle 10 in turn has the communication link 40 to the UUV 12.
- the UUV 12 is located in the area of the mine 122, which is arranged in the area of the water brine 124. Further, the water 120 is logically divided into two sections by means of a vertical dashed line.
- a section of sufficient depth, which is suitable for passing through the vessel 220 hereinafter referred to as the permitted section 260.
- a section that is not passable by the watercraft hereinafter referred to as forbidden section 262.
- the mine 122 is located in the forbidden section 262.
- the mine 122 is treatable under water, in particular explosive.
- Both the torpedo-shaped underwater vehicle 10 and the watercraft 220 are advantageously positionable outside an explosive-force acting area.
- the reconnaissance by means of the torpedo-shaped underwater vehicle 10 subsequently, ie after demolition of the mine 122 by means of the UUVs 12, can be continued.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Aufklären eines Gebieters unter Wasser mittels eines torpedoförmigen Unterwasserfahrzeugs. Ferner betrifft die Erfindung ein gemäß diesem Verfahren verwendbares System.The invention relates to a method for reconnaissance of a ruler under water by means of a torpedo-shaped underwater vehicle. Furthermore, the invention relates to a system which can be used according to this method.
Herkömmlicherweise werden Aufklärungsgebiete unter Wasser mittels Unterwassersensoren aufweisenden Überwasserfahrzeugen oder Unterwasserfahrzeugen oder mittels Flugzeugen mit eintauchbaren Sensoren aufgeklärt. Zu diesem Zweck durchfahren die Fahrzeuge das Aufklärungsgebiet und erfassen zeitgleich mittels deren Sensoren ihre Umgebung. Hierdurch werden Sensordaten des die Sensoren umgebenden aufzuklärenden Gebietes erzeugt. Die erzeugten Sensordaten werden zur Aufklärung des Aufklärungsgebietes bewertet.Traditionally, reconnaissance areas have been elucidated underwater by means of underwater sensors or underwater vehicles or by means of aircraft with submergible sensors. For this purpose, the vehicles drive through the reconnaissance area and at the same time capture their surroundings by means of their sensors. As a result, sensor data of the area surrounding the sensors are generated. The generated sensor data are evaluated to clarify the reconnaissance area.
Ein Nachteil einer Aufklärung eines Gebietes unter Wasser mittels eines derartigen Unterwasserfahrzeugs besteht in der begrenzten zurücklegbaren Distanz von der Startposition zu dem Aufklärungsgebiet und einer anschließenden zurückzulegenden Wegstrecke für die Aufklärung des Aufklärungsgebietes.A disadvantage of reconnaissance of an underwater area by means of such an underwater vehicle is the limited distance that can be traveled from the starting position to the reconnaissance area and a subsequent distance to cover the reconnaissance area.
Dieses bekannte Aufklärungsfahrzeug für ein U-Boot hat den Nachteil, dass ausschließlich am Zielort mittels seiner Sensoren die Umgebung aufklärbar ist. Falls am Zielort weitere Sensoren unter Wasser zur Aufklärung benötigt werden, ist ein weiteres Aufklärungsfahrzeug von dem U-Boot aus zu starten. Das weitere Aufklärungsfahrzeug benötigt wiederum Zeit, um zum Zielort zu fahren.This known Aufklärungsfahrzeug for a submarine has the disadvantage that only at the destination by means of its sensors, the environment can be explained. If additional sensors underwater are needed for reconnaissance at the destination, another reconnaissance vehicle must be launched from the submarine. The further reconnaissance vehicle in turn needs time to drive to the destination.
Der Erfindung liegt nach alledem das Problem zugrunde, ein Verfahren zum zeiteffizienten Aufklären eines Unterwassergebietes bereitzustellen.After all, the invention is based on the problem of providing a method for time-efficient reconnaissance of an underwater area.
Die Erfindung löst dieses Problem mittels des Verfahrens gemäß Anspruch 1.The invention solves this problem by means of the method according to
Ferner löst die Erfindung das Problem mittels des Systems gemäß Anspruuch 8.Furthermore, the invention solves the problem by means of the system according to claim 8.
Der Erfindung liegt die Erkenntnis zugrunde, dass torpedoförmige Unterwasserfahrzeuge nicht nur eigene Sensoren aufweisen, sondern auch UUVs transportieren können, die wiederum eigene Sensoren an Bord aufweisen. Auf diese Weise wird eine Aufklärung unter Wasser im Aufklärungsgebiet mittels zwei Sensoren aufweisenden Unterwasserfahrzeugen durchgeführt. Erfindungsgemäß wird hierdurch Zeit eingespart, da sich bereits ein zweites Sensoren aufweisendes Unterwasserfahrzeug in dem torpedoförmigen Unterwasserfahrzeug in dem Aufklärungsgebiet befindet. Dank des zweiten mittransportierten Unterwasserfahrzeugs ist die Aufklärung in dem Aufklärungsgebiet parallelisierbar.The invention is based on the finding that torpedo-shaped underwater vehicles not only have their own sensors, but can also transport UUVs, which in turn have their own sensors on board. In this way, reconnaissance underwater in the reconnaissance area is carried out by means of two-sensor underwater vehicles. In accordance with the invention, this saves time, since an underwater vehicle having a second sensor is already located in the torpedo-shaped underwater vehicle in the reconnaissance area. Thanks to the second transporting underwater vehicle, the reconnaissance in the reconnaissance area can be parallelized.
Erfindungsgemäß weist das torpedoförmige Unterwasserfahrzeug einen Transportraum auf, aus dem ein oder mehrere UUVs an einem UUV-Aussetzungsort aussetzbar sind. Der UUV-Aussetzungsort entspricht bspw. einem Zielort im Aufklärungsgebiet, der sich vorteilhafterweise außerhalb des Bereichs einer das Unterwasserfahrzeug verbringenden Startplattform befindet.According to the invention, the torpedo-shaped underwater vehicle has a transport space from which one or more UUVs can be exposed at a UUV exposure location. The UUV suspension location corresponds, for example, to a destination in the reconnaissance area, which is advantageously located outside the area of a launch platform that transports the underwater vehicle.
Erfindungsgemäß wird Zeit eingespart, indem das UUV nicht mehr von der beabstandeten Startplattform zum Zielort fahren muss, sondern sich das UUV bereits am Zielort befindet.According to the invention, time is saved by the UUV no longer having to travel from the spaced launch platform to the destination, but the UUV is already at the destination.
Lösungsgemäß weist das Unterwasserfahrzeug eine torpedoförmige äußere Hülle auf. Auf diese Weise ist das Unterwasserfahrzeug mittels einer Startplattform, die für herkömmliche Torpedos geeignet ist, insbesondere mittels eines Torpedorohrs, startbar.According to the solution, the underwater vehicle has a torpedo-shaped outer shell. In this way, the underwater vehicle by means of a launch platform, which is suitable for conventional torpedoes, in particular by means of a torpedo tube, startable.
Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die Sensordaten des das torpedoförmigen Unterwasserfahrzeugs umgebenden, aufzuklärenden Gebietes, nachfolgend als Torpedo-Aufklärungsdaten bezeichnet, mittels einer Recheneinheit, insbesondere einer beabstandeten Recheneinheit eines Kontrollzentrums, bewertet. Abhängig von einer positiven Bewertung der Torpedo-Aufklärungsdaten wird mindestens ein UUV aus dem torpedoförmigen Unterwasserfahrzeug ausgesetzt. Erfindungsgemäß sind die Torpedo-Aufklärungsdaten bereits während der Fahrt durch das Aufklärungsgebiet bewertbar. Ein als auffällig bewertetes Objekt entspricht bspw. einer positiven Bewertung, die zum Aussetzen eines oder mehreren UUVs im Bereich des auffälligen Objekts führt. Auf diese Weise ist ein UUV-Aussetzungsort der UUVs nicht nur vor dem Durchführen des erfindungsgemäßen Aufklärungsverfahrens definierbar sondern auch noch während des laufenden Aufklärungsverfahrens. Vorteilhafterweise wird der UUV-Aussetzungsort somit dynamisch bestimmt. Auf diese Weise wird die Fahrstrecke zum UUV-Aussetzungsort für ein weiteres Sensoren aufweisendes Unterwasserfahrzeug, wie bspw. dem UUV, nicht nochmals zurückgelegt und damit Zeit und Energie für das Zurücklegen der Fahrstrecke eingespart.In a preferred embodiment of the method according to the invention, the sensor data of the area of the torpedo-shaped underwater vehicle to be cleared, hereinafter referred to as torpedo reconnaissance data, are evaluated by means of a computing unit, in particular a remote computing unit of a control center. Depending on a positive rating of the torpedo reconnaissance data, at least one UUV will be exposed from the torpedo-shaped underwater vehicle. According to the invention, the torpedo reconnaissance data can already be assessed while driving through the reconnaissance area. For example, an object that is considered conspicuous corresponds to a positive rating, which results in the suspension of one or more UUVs in the area of the conspicuous object. In this way, a UUV exposure location of the UUVs can not only be defined prior to performing the reconnaissance procedure according to the invention but also during the ongoing reconnaissance procedure. Advantageously, the UUV exposure location is thus determined dynamically. In this way, the route to UUV-Aussetzungsort for another sensors having underwater vehicle, such as. The UUV, not covered again and thus saves time and energy for covering the route.
Vorteilhafterweise ist die Recheneinheit zur Bewertung der Torpedo-Aufklärungsdaten in dem torpedoförmigen Unterwasserfahrzeug angeordnet. Auf diese Weise erfolgt die Bewertung mittels einer automatisch generierten Entscheidung anhand vorher definierter Regeln. Alternativ ist die Recheneinheit zur Bewertung der Torpedo-Aufklärungsdaten beabstandet von dem torpedoförmigen Unterwasserfahrzeug in einem Kontrollzentrum angeordnet. Hierdurch kann die Bewertung der Torpedo-Aufklärungsdaten entweder durch Personal des Kontrollzentrums erfolgen oder automatisch anhand vorher definierter Regeln.Advantageously, the arithmetic unit for evaluating the torpedo reconnaissance data is arranged in the torpedo-shaped underwater vehicle. In this way, the evaluation is carried out by means of an automatically generated decision using previously defined rules. Alternatively, the arithmetic unit is arranged to evaluate the torpedo reconnaissance data at a distance from the torpedo-shaped underwater vehicle in a control center. As a result, the evaluation of the torpedo reconnaissance data can be done either by personnel of the control center or automatically based on previously defined rules.
Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die Sensordaten des das UUV umgebenden, aufzuklärenden Gebietes, nachfolgend als UUV-Aufklärungsdaten bezeichnet, an das torpedoförmige Unterwasserfahrzeug übertragen. Das torpedoförmige Unterwasserfahrzeug sendet die UUV-Aufklärungsdaten an die Recheneinheit und/oder das UUV empfängt von dem torpedoförmigen Unterwasserfahrzeug Daten. Die Daten weisen Informationen und/oder Befehle zum Steuern des UUVs auf, wobei insbesondere die Daten des torpedoförmigen Unterwasserfahrzeugs für das UUV zuvor von der beabstandeten Recheneinheit des Kontrollzentrums empfangen wurden. Auf diese Weise ist das UUV mit der Recheneinheit des Kontrollzentrums und/oder der Recheneinheit des torpedoförmigen Unterwasserfahrzeugs verbunden. Die UUV-Aufklärungsdaten werden somit vorzugsweise nicht an Bord des UUVs bewertet, sondern mittels der beabstandeten Recheneinheit des Kontrollzentrums. Vorteilhafterweise sind die UUV-Daten somit vor Bergung des UUVs auswertbar.In a further preferred embodiment of the method according to the invention, the sensor data of the area surrounding the UUV, to be cleared up, hereinafter referred to as UUV reconnaissance data, are transmitted to the torpedo-shaped underwater vehicle. The torpedo-shaped underwater vehicle transmits the UUV reconnaissance data to the arithmetic unit and / or the UUV receives data from the torpedo-shaped submarine vehicle. The data includes information and / or commands for controlling the UUV, in particular the Data of the torpedo-shaped underwater vehicle for the UUV were previously received from the remote computing unit of the control center. In this way, the UUV is connected to the arithmetic unit of the control center and / or the arithmetic unit of the torpedo-shaped underwater vehicle. The UUV reconnaissance data are thus preferably not evaluated on board the UUV, but by means of the remote computing unit of the control center. Advantageously, the UUV data can thus be evaluated before salvaging the UUV.
Ferner werden Daten vom torpedoförmigen Unterwasserfahrzeug am UUV empfangen. Die Daten des torpedoförmigen Unterwasserfahrzeugs für das UUV sind vorzugsweise von der beabstandeten Recheneinheit des Kontrollzentrums vorher empfangen worden. Die Daten umfassen Informationen und/oder Befehle zum Steuern des UUVs, bspw. Geschwindigkeitsdaten für einen Antrieb des UUVs, Richtungsdaten für ein Ruder des UUVs, Tiefendaten für Ballasttanks des UUVs und/oder Navigationsdaten für Zielpositionen. Hierdurch ist das UUV mittels des Kontrollzentrums steuerbar.In addition, data from the torpedo-shaped underwater vehicle is received at the UUV. The data for the UUV torpedo-shaped underwater vehicle has preferably been previously received by the remote computing unit of the control center. The data includes information and / or commands for controlling the UUV, such as UUV propulsion speed data, UUV's rudder direction data, UUV ballast tank depth data, and / or destination position navigation data. As a result, the UUV is controllable by means of the control center.
Bei einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens werden die UUV-Aufklärungsdaten mittels der beabstandeten Recheneinheit des Kontrollzentrums oder einer weiteren Recheneinheit, insbesondere einer Recheneinheit an Bord des torpedoförmigen Unterwasserfahrzeugs, bewertet. Falls eine positive Bewertung der UUV-Aufklärungsdaten vorliegt, führt das UUV Aktionen zum Bearbeiten von einem oder mehreren im Aufklärungsgebiet befindlichen Objekten durch, insbesondere das Trennen von Ketten, das Sprengen von Minen, das Bewegen von Unterwasserbojen und/oder die Entnahme von Erdproben. Vorteilhafterweise werden die UUV-Aufklärungsdaten bereits während der Fahrt durch das Aufklärungsgebiet des UUVs bewertet. Die Bewertung erfolgt mittels der Recheneinheit des beabstandeten Kontrollzentrums, der Recheneinheit des torpedoförmigen Unterwasserfahrzeugs und/oder einer an Bord des UUVs angeordneten Recheneinheit. Auf diese Weise ist ein Objekt im Aufklärungsgebiet nicht nur erfassbar, sondern auch durch Aktionen bearbeitbar. Vorteilhafterweise ist das Bearbeiten des Objektes im Aufklärungsgebiet mit demselben UUV durchführbar, falls das UUV für das Bearbeiten notwendige Werkzeuge aufweist. Hierdurch ist bereits während der Aufklärung des UUVs aufgrund der bewerteten UUV-Aufklärungsdaten diese Aufklärung unterbrechbar und eine oder mehrere Aktionen ausführbar. Vorteilhafterweise ist eine Fahrt mit einem weitere Werkzeuge aufweisenden Unterwasserfahrzeug daher unnötig.In a further embodiment of the method according to the invention, the UUV reconnaissance data are evaluated by means of the spaced-apart computing unit of the control center or of another arithmetic unit, in particular of a computing unit on board the torpedo-shaped underwater vehicle. If there is a positive assessment of the UUV reconnaissance data, the UUV performs actions to manipulate one or more reconnaissance objects, in particular chain disconnection, mine blasting, underwater buoys, and / or soil sampling. Advantageously, the UUV reconnaissance data are already evaluated while driving through the reconnaissance area of the UUV. The evaluation is carried out by means of the arithmetic unit of the spaced control center, the arithmetic unit of the torpedo-shaped underwater vehicle and / or a computing unit arranged on board the UUV. In this way, an object in the Enlightenment area is not only detectable, but also editable by actions. Advantageously, the processing of the object in the reconnaissance area with the same UUV feasible if the UUV has the necessary tools for editing. As a result, this information can already be interrupted during the investigation of the UUV on the basis of the assessed UUV reconnaissance data and one or more actions can be carried out. Advantageously, a ride with an underwater vehicle having further tools is therefore unnecessary.
Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens durchfährt das UUV autonom das Aufklärungsgebiet, insbesondere ein Teilgebiet des Aufklärungsgebietes, und speichert die UUV-Aufklärungsdaten für eine zeitversetzte Übertragung zu einer Recheneinheit. Auf diese Weise ist das ausgesetzte UUV von dem torpedoförmigen Unterwasserfahrzeug unabhängig. Nach dem Aussetzen des UUVs besteht somit keine Verbindung zu der Recheneinheit des torpedoförmigen Unterwasserfahrzeugs und/oder der Recheneinheit des beabstandeten Kontrollzentrums. Vorteilhafterweise ist die Aufklärung mittels des torpedoförmigen Unterwasserfahrzeugs fortführbar. Ferner ist die Länge einer Aufklärungsstrecke in dem Aufklärungsgebiet von der Länge einer etwaigen Nachrichtenleitung zwischen dem UUV und dem torpedoförmigen Unterwasserfahrzeug unabhängig. Vorteilhafterweise führt das UUV die Aufklärung daher parallel zur Aufklärung des torpedoförmigen Unterwasserfahrzeugs aus. Nachdem das ausgesetzte UUV geborgen ist, sind die gespeicherten Sensordaten übertragbar.In a further preferred embodiment of the method according to the invention, the UUV autonomously passes through the reconnaissance area, in particular a subarea of the reconnaissance area, and stores the UUV reconnaissance data for a time-shifted transmission to a computing unit. In this way, the suspended UUV is from the torpedo-shaped underwater vehicle independently. After the suspension of the UUVs, there is thus no connection to the arithmetic unit of the torpedo-shaped underwater vehicle and / or the arithmetic unit of the remote control center. Advantageously, reconnaissance by means of the torpedo-shaped underwater vehicle can be continued. Further, the length of a reconnaissance path in the reconnaissance area is independent of the length of any communications line between the UUV and the torpedo-shaped submersible. Advantageously, the UUV carries out the reconnaissance therefore parallel to the reconnaissance of the torpedo-shaped underwater vehicle. After the suspended UUV is recovered, the stored sensor data is transferable.
Bei einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Fahrgeschwindigkeit des torpedoförmigen Unterwasserfahrzeugs zum Aussetzen und/oder zum Bergen des UUVs begrenzt oder die Fahrt des torpedoförmigen Unterwasserfahrzeugs wird gestoppt. Durch Begrenzen der Fahrgeschwindigkeit des torpedoförmigen Unterwasserfahrzeugs wird das Aussetzen des UUVs vereinfacht, da aufgrund von der Fahrgeschwindigkeit anhängigen Strömungskräfte an der Außenseite des torpedoförmigen Unterwasserfahrzeugs somit geringer sind. Die Gefahr eines Zusammenstoßes von UUV und torpedoförmigen Unterwasserfahrzeug ist somit geringer. Alternativ wird die Fahrt des torpedoförmigen Unterwasserfahrzeugs gestoppt. Auf diese Weise kann das torpedoförmige Unterwasserfahrzeug im Bereich der gestoppten Position warten, bis das UUV ausgesetzt und/oder geborgen ist. Vorteilhafterweise sind zu den Torpedo-Aufklärungsdaten UUV-Aufklärungsdaten in dem Bereich des Aussetzungsortes erzeugbar.In a further embodiment of the method according to the invention, the travel speed of the torpedo-shaped underwater vehicle for the suspension and / or recovery of the UUV is limited or the travel of the torpedo-shaped underwater vehicle is stopped. By limiting the travel speed of the torpedo-shaped underwater vehicle, the suspension of the UUV is simplified, since due to the vehicle speed pending flow forces on the outside of the torpedo-shaped underwater vehicle are lower. The risk of a collision of UUV and torpedo-shaped underwater vehicle is thus lower. Alternatively, the drive of the torpedo-shaped underwater vehicle is stopped. In this way, the torpedo-shaped underwater vehicle can wait in the area of the stopped position until the UUV is exposed and / or salvaged. Advantageously, UUV reconnaissance data in the region of the exposure location can be generated for the torpedo reconnaissance data.
Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das torpedoförmige Unterwasserfahrzeug geborgen, nachdem das Aufklärungsgebiet durchfahren wurde, bei dem zeitgleich mittels eines oder mehreren an Bord des torpedoförmigen Unterwasserfahrzeugs angeordneten Sensoren die Umgebung des torpedoförmigen Unterwasserfahrzeugs erfasst wird und Torpedo-Aufklärungsdaten erzeugt werden - nachfolgend als Torpedo-Aufklärungsverfahren bezeichnet - und nachdem das torpedoförmige Unterwasserfahrzeugs ein oder mehrere UUVs transportiert hat und aus dem torpedoförmigen Unterwasserfahrzeug mindestens ein UUV ausgesetzt wurde, das mittels eines oder mehreren an Bord des UUVs angeordneten Sensoren UUV-Aufklärungsdaten erzeugt hat - nachfolgend als UUV-Aufklärungsverfahren bezeichnet. Anschließend wird wiederum mit demselben torpedoförmigen Unterwasserfahrzeug ein Torpedo-Aufklärungsverfahren durchgeführt, wobei ggf. während oder nach dem Torpedo-Aufklärungsverfahren das UUV-Aufklärungsverfahren ausgeführt wird. Durch Bergung des torpedoförmigen Unterwasserfahrzeugs ist dieses mehrfach nutzbar. Vorteilhafterweise werden Kosten für das erfindungsgemäße Verfahren gering gehalten, indem für jede weitere Aufklärung dasselbe torpedoförmige Unterwasserfahrzeug verwendbar ist. Nach Bergung des torpedoförmigen Unterwasserfahrzeugs wird vorteilhafterweise die Energieversorgung wieder aufgeladen bzw. erneuert.In a further preferred embodiment of the method according to the invention the torpedo-shaped underwater vehicle is recovered after the reconnaissance area has been traversed, at the same time by means of one or more sensors arranged on board the torpedo-shaped underwater vehicle the environment of the torpedo-shaped underwater vehicle is detected and torpedo reconnaissance data are generated - hereinafter referred to as Torpedo reconnaissance method - and after the torpedo-shaped underwater vehicle has carried one or more UUVs and has been exposed from the torpedo-shaped underwater vehicle at least one UUV, which has generated UUV reconnaissance data by means of one or more sensors arranged on board the UUV - hereinafter referred to as UUV reconnaissance method , Subsequently, again with the same torpedo-shaped underwater vehicle, a torpedo reconnaissance method is performed, wherein possibly during or after the torpedo reconnaissance method, the UUV reconnaissance method is performed. By salvaging the torpedo-shaped underwater vehicle this can be used multiple times. Advantageously, costs for the method according to the invention are kept low by using the same torpedo-shaped underwater vehicle for each further reconnaissance. To Recovery of the torpedo-shaped underwater vehicle, the power supply is advantageously recharged or renewed.
Bei einer weiteren Ausführungsform des erfindungsgemäßen Systems weist das torpedoförmige Unterwasserfahrzeug einen UUV-Kontrollumsetzer auf, der derart ausgebildet ist, um eine Nachrichtenverbindung zwischen dem UUV und einer mit dem torpedoförmigen Unterwasserfahrzeug verbundenen Recheneinheit, insbesondere die beabstandete Recheneinheit eines Kontrollzentrums, herzustellen. Auf diese Weise ist die Recheneinheit des torpedoförmigen Unterwasserfahrzeugs für eine Nachrichtenübertragung mit dem UUV verbunden. Die Nachrichtenverbindung zwischen dem UUV und dem torpedoförmigen Unterwasserfahrzeug ist als leitungsgebundene, elektromagnetisch basierende und/oder als hydroakustisch basierende Nachrichtenverbindung ausbildbar. Die Nachrichtenverbindung ist bspw. eine Glasfaserleitung oder ein Unterwassermodem. Auf diese Weise ist das UUV mittels des UUV-Kontrollumsetzers von der beabstandeten Recheneinheit des Kontrollzentrums steuerbar.In a further embodiment of the system according to the invention, the torpedo-shaped underwater vehicle has a UUV control converter which is designed to establish a communication link between the UUV and a computing unit connected to the torpedo-shaped underwater vehicle, in particular the spaced-apart computing unit of a control center. In this way, the arithmetic unit of the torpedo-shaped underwater vehicle is connected to the UUV for message transmission. The communication link between the UUV and the torpedo-shaped underwater vehicle can be formed as a line-bound, electromagnetically based and / or hydroacoustically based communication link. The communication link is, for example, a fiber optic cable or an underwater modem. In this way, the UUV is controllable by means of the UUV control converter from the remote computing unit of the control center.
Bei einer weiteren Ausführungsform des erfindungsgemäßen Systems weist das torpedoförmige Unterwasserfahrzeug, das sektionsweise ausgebildet ist, eine oder mehrere Transportsektionen auf, in der jeweils ein Transportraum angeordnet ist. Hierdurch sind ein oder mehrere UUVs mittels des torpedoförmigen Unterwasserfahrzeugs transportierbar. Bevorzugterweise ist die Transportsektion eine weitere Sektion, die kostengünstig nach einem Baukastenprinzip in andere sektionsweise ausgebildete torpedoförmige Unterwasserfahrzeuge integrierbar ist.In a further embodiment of the system according to the invention, the torpedo-shaped underwater vehicle, which is formed in sections, one or more transport sections, in each of which a transport space is arranged. As a result, one or more UUVs can be transported by means of the torpedo-shaped underwater vehicle. Preferably, the transport section is a further section that can be inexpensively integrated according to a modular principle into other section-shaped torpedo-shaped underwater vehicles.
Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Systems weist das UUV Sensoren auf, die sich jedoch mindestens in einem Sensor von den an Bord des torpedoförmigen Unterwasserfahrzeugs angeordneten Sensoren unterscheiden. Vorteilhafterweise unterscheiden sich somit die Sensoren des Torpedos zu denen des UUVs. Auf diese Weise ist das Aufklärungsgebiet differenzierter, d.h. mittels anderen Informationen und/oder weiteren Details, aufklärbar. Bspw. weist das torpedoförmige Unterwasserfahrzeug Sensoren auf, die als Sonare ausgebildet sind. Das von dem torpedoförmigen Unterwasserfahrzeug transportierte UUV weist bspw. im Gegensatz zu dem torpedoförmigen Unterwasserfahrzeug ein Sonar und zusätzlich eine optische Kamera auf. Auf diese Weise unterscheidet sich das Torpedo-Aufklärungsverfahren von dem UUV-Aufklärungsverfahren bzgl. der Art und/oder der Auflösung der Informationen der Umgebung.In a preferred embodiment of the system according to the invention, the UUV has sensors which, however, differ at least in one sensor from the sensors arranged on board the torpedo-shaped underwater vehicle. Advantageously, the sensors of the torpedo thus differ from those of the UUV. In this way the reconnaissance area is more differentiated, i. by means of other information and / or further details, informable. For example. The torpedo-shaped underwater vehicle has sensors that are designed as sonars. The UUV transported by the torpedo-shaped underwater vehicle has, for example, in contrast to the torpedo-shaped underwater vehicle, a sonar and in addition an optical camera. In this way, the torpedo reconnaissance method differs from the UUV reconnaissance method in terms of the nature and / or resolution of the information of the environment.
Bei einer bevorzugten Ausführungsform weist das torpedoförmige Unterwasserfahrzeug eine Öffnungsvorrichtung im Bereich des Transportraums auf, die derart ausgebildet ist, um das transportierte UUV auszusetzen und/oder ein ausgesetztes UUV zu bergen. Die Öffnungsvorrichtung weist bspw. eine Klappe auf, mit der in einem geöffneten Zustand das UUV ausgesetzt oder geborgen wird. Vorzugsweise ist ein geschlossener Zustand nach dem Öffnen zum Aussetzen des UUVs wieder herstellbar. Auf diese Weist ist das UUV aussetzbar und die Aufklärung mittels des äußerlich unveränderten torpedoförmigen Unterwasserfahrzeugs fortführbar.In a preferred embodiment, the torpedo-shaped underwater vehicle on an opening device in the region of the transport space, which is designed to suspend the transported UUV and / or recover an exposed UUV. The opening device has, for example, a flap with which the UUV is exposed or recovered in an open state. Preferably, a closed state after opening to suspend the UUVs can be restored. In this way, the UUV is suspendable and the reconnaissance using the externally unchanged torpedo-shaped underwater vehicle can be continued.
Bei einer alternativen Ausführungsform des erfindungsgemäßen Systems ist die Öffnungsvorrichtung des torpedoförmigen Unterwasserfahrzeugs derart ausgebildet, um das UUV nur einmal auszusetzen. Hierfür weist die Öffnungsvorrichtung eine lösbare, insbesondere absprengbare, Hülle des Transportraums auf. Auf diese Weise ist das UUV durch Auflösen des Transportraums ins Wasser ausgesetzt. Bei dieser alternativen Ausführungsform weist das torpedoförmige Unterwasserfahrzeug somit eine unvollständige Hülle auf. Dies ist vorteilhaft, falls das UUV umgehend, d.h. ohne weitere Vorbereitungsmaßnahmen, ins Wasser ausgesetzt werden soll.In an alternative embodiment of the system according to the invention, the opening device of the torpedo-shaped underwater vehicle is designed so as to suspend the UUV only once. For this purpose, the opening device on a detachable, in particular absprengbare, shell of the transport space. In this way, the UUV is exposed by dissolving the transport space into the water. In this alternative embodiment, the torpedo-shaped underwater vehicle thus has an incomplete shell. This is advantageous if the UUV promptly, i. without further preparation, should be exposed to water.
Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Systems weist das UUV und/oder das torpedoförmige Unterwasserfahrzeug eine Transportvorrichtung auf, die derart ausgebildet ist, um im Transportraum des torpedoförmigen Unterwasserfahrzeugs ein oder mehrere UUVs vor Beschädigung gesichert zu transportieren. Durch Sicherung der UUVs im Transportraum des torpedoförmigen Unterwasserfahrzeugs mittels der Transportvorrichtung sind die UUVs und vorteilhafterweise das torpedoförmige Unterwasserfahrzeug vor mechanischen Beschädigungen, die durch Lage- und Positionsänderungen des torpedoförmigen Unterwasserfahrzeugs entstehen können, geschützt. Auf diese Weise ist das torpedoförmige Unterwasserfahrzeug in seinen durchführbaren Manövern nicht eingeschränkt, d.h. genauso manövrierbar wie ohne eine im Transportraum angeordnete Transportladung.In a further preferred embodiment of the system according to the invention, the UUV and / or the torpedo-shaped underwater vehicle has a transport device which is designed to transport one or more UUVs secured against damage in the transport space of the torpedo-shaped underwater vehicle. By securing the UUVs in the transport space of the torpedo-shaped underwater vehicle by means of the transport device, the UUVs and advantageously the torpedo-shaped underwater vehicle are protected against mechanical damage that can result from position and position changes of the torpedo-shaped underwater vehicle. In this way, the torpedo-shaped underwater vehicle is not limited in its feasible maneuvers, i. just as maneuverable as without a transport load arranged in the transport space.
Bevorzugterweise wird mittels der Transportvorrichtung das UUV in einer für die Öffnungsvorrichtung vorteilhaften Lage transportiert. Auf diese Weise wird das Aussetzen bzw. das Bergen des UUVs erleichtert.Preferably, by means of the transport device, the UUV is transported in a position which is advantageous for the opening device. In this way, the suspension or recovery of the UUVs is facilitated.
Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Systems weist das torpedoförmige Unterwasserfahrzeug eine oder mehrere Regelzellen, insbesondere Trimmtanks und/oder Ballasttanks, auf, die derart ausgebildet sind, um bei gestoppter Fahrt des torpedoförmigen Unterwasserfahrzeugs die Lage und/oder den Auftrieb bzw. Abtrieb des torpedoförmigen Unterwasserfahrzeugs unter Wasser auszutarieren. Die Regelzellen weisen in ihrem Inneren ein Medium auf, das ein Auftrieb bzw. Abtrieb bewirkt. Bspw. weisen die Regelzellen Luft auf, die aus bzw. in die Regelzellen abführbar bzw. zuführbar sind. Vorteilhafterweise weist das torpedoförmige Unterwasserfahrzeug in seinem vorderen und hinteren Bereich und/oder zu seiner Längsachse gegenüberliegende Regelzellen auf. Auf diese Weise ist die Lage und/oder der Auftrieb bzw. der Abtrieb des torpedoförmigen Unterwasserfahrzeugs kontrollierbar. Vorteilhafterweise ist bei gestoppter Fahrt eine Position kontrolliert haltbar, um das UUV abzusetzen bzw. zu bergen.In a further preferred embodiment of the system according to the invention, the torpedo-shaped underwater vehicle has one or more control cells, in particular trim tanks and / or ballast tanks, which are designed such that when the torpedo-shaped underwater vehicle is stopped, the position and / or the buoyancy or downforce of the torpedo-shaped Underwater vehicle underwater to balance. The control cells have in their interior a medium which causes a buoyancy or downforce. For example. The control cells have air which can be discharged or fed into or out of the control cells. Advantageously, the torpedo-shaped underwater vehicle in its front and rear area and / or to its longitudinal axis opposite control cells. In this way, the position and / or the lift or the output of the torpedo-shaped underwater vehicle can be controlled. Advantageously, when the ride is stopped, a position can be maintained in a controlled manner in order to deposit or recover the UUV.
Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen sowie aus anhand der beigefügten Zeichnungen erläuterten Ausführungsbeispielen. In der Zeichnung zeigen:
- Fig. 1
- ein Ausführungsbeispiel eines erfindungsgemäßen Systems;
- Fig. 2
- ein weiteres Ausführungsbeispiel des erfindungsgemäßen Systems;
- Fig. 3
- ein weiteres spezielles Ausführungsbeispiel des erfindungsgemäßen Systems mit einer Recheneinheit eines Kontrollzentrums;
- Fig. 4
- ein Ausführungsbeispiel eines erfindungsgemäßen Verfahrens zum Aufklären eines Gebietes unter Wasser;
- Fig. 5
- ein Szenario zur Erläuterung von unterschiedlichen Sensoren des erfindungsgemäßen Systems;
- Fig. 6
- ein Szenario zur Erläuterung der Kontrolle eines unbemannten Unterwasserfahrzeugs des erfindungsgemäßen Systems;
- Fig. 7
- ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens zum Aufklären eines Aufklärungsgebietes mittels des unbemannten Unterwasserfahrzeugs;
- Fig. 8
- ein weiteres Szenario zur Erläuterung der Wiederverwendung eines torpedoförmigen Unterwasserfahrzeugs des erfindungsgemäßen Systems;
- Fig. 9
- ein weiteres besonderes Szenario zur Erläuterung des erfindungsgemäßen Verfahrens;
- Fig. 10
- ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens zum Aussetzen eines unbemannten Unterwasserfahrzeugs und
- Fig. 11
- ein spezielles Ausführungsbeispiel des erfindungsgemäßen Verfahrens zur Aufklärung eines Gebietes unter Wasser.
- Fig. 1
- an embodiment of a system according to the invention;
- Fig. 2
- a further embodiment of the system according to the invention;
- Fig. 3
- a further specific embodiment of the system according to the invention with a computing unit of a control center;
- Fig. 4
- an embodiment of a method according to the invention for clearing an area under water;
- Fig. 5
- a scenario for explaining different sensors of the system according to the invention;
- Fig. 6
- a scenario for explaining the control of an unmanned underwater vehicle of the system according to the invention;
- Fig. 7
- a further embodiment of the method according to the invention for reconnaissance of a reconnaissance area by means of the unmanned underwater vehicle;
- Fig. 8
- a further scenario for explaining the reuse of a torpedo-shaped underwater vehicle of the system according to the invention;
- Fig. 9
- another special scenario for explaining the method according to the invention;
- Fig. 10
- a further embodiment of the inventive method for exposing an unmanned underwater vehicle and
- Fig. 11
- a special embodiment of the inventive method for reconnaissance of an area under water.
Das UUV 12 weist eigene Sensoren 24 und/oder eigene Hilfsmittel/Werkzeuge 26 auf. Die Sensoren 24 des UUVs 12 sind bspw. Sonare, Kamerasysteme, Hydrophone, Magnetometer und weitere Sensoren, die zur Aufklärung von Objekten unter Wasser geeignet sind. Die Hilfsmittel/Werkzeuge 26 des UUVs 12 sind bspw. explosive Ladungen und/oder Hilfsmittel, die geeignet sind, ein Objekt zu behandeln, d.h. zu bewegen, zu markieren oder anderweitig zu bearbeiten.The
Gemäß
Der Transportraum 22 ist vorteilhafterweise beim Verbringen des torpedoförmigen Unterwasserfahrzeugs 10 mit (See-) Wasser flutbar, damit beim Öffnen des Transportraums 22 keine in dem Transportraum 22 eingeschlossene Luft aufsteigt und somit die Lage des torpedoförmigen Unterwasserfahrzeugs 10 unkontrolliert verändert.The
Bevorzugterweise weist die Öffnungsvorrichtung 28 einen Bergungsarm zum Bergen von ausgesetzten UUVs auf. Auf diese Weise sind ausgesetzte UUVs wieder bergbar.Preferably, the
Ferner weist das torpedoförmige Unterwasserfahrzeug 10 gemäß
Die Recheneinheit 32 des torpedoförmigen Unterwasserfahrzeugs 10 ist gemäß
Vorteilhafterweise sind Daten zur Steuerung der UUVs 12 von der Recheneinheit des Kontrollzentrums 36 an die UUVs 12 sendbar. Ferner sind mittels des UUV-Kontrollumsetzers 38 sowohl Daten für das torpedoförmige Unterwasserfahrzeug 10 als auch Daten für die UUVs 12 über die Nachrichtenverbindung 34 von der Recheneinheit des Kontrollzentrums 36 übertragbar. Auf diese Weise ist eine Nachrichtenverbindung zwischen dem UUV 12 und der Recheneinheit des Kontrollzentrums 36 unnötig.Advantageously, data for controlling the UUVs 12 can be sent by the arithmetic unit of the
Die Nachrichtenverbindung 34 zwischen der Recheneinheit des Kontrollzentrums 36 und der Recheneinheit 32 des torpedoförmigen Unterwasserfahrzeugs 10 sowie die Nachrichtenverbindung 40 zwischen der Recheneinheit 32 und den UUVs 12 sind jedoch nicht auf eine Nachrichtenverbindung mit physischen Leitungen, insbesondere Glasfaserleitungen oder Kupferleitungen, beschränkt. Alternativ sind die Nachrichtenverbindungen mittels akustischen Wellen, elektromagnetischen Wellen und/oder optischen Wellen herstellbar.The
In dem Torpedostartblock 58 wird das torpedoförmige Unterwasserfahrzeug 10 mit den in seinem Transportraum 22 enthaltenen UUVs 12 von einer Startplattform an einem Torpedo-Aussetzungsort ins Wasser verbracht. Nach Verbringen des torpedoförmigen Unterwasserfahrzeugs 10 in dem Torpedostartblock 58 führt ein Zweig 60 zu einem Transitfahrtblock 62.In the
In dem Transitfahrtblock 62 fährt das torpedoförmige Unterwasserfahrzeug 10 zu dem Aufklärungsgebiet. Nachdem das torpedoförmige Unterwasserfahrzeug 10 das Aufklärungsgebiet erreicht hat, führt ein Zweig 64 zu einen Torpedo-Aufklärungsverfahrensblock 66.In the
In dem Torpedo-Aufklärungsverfahrensblock 66 durchfährt das torpedoförmige Unterwasserfahrzeug 10 das Aufklärungsgebiet und erfasst zeitgleich mittels eines oder mehreren an Bord des torpedoförmigen Unterwasserfahrzeugs 10 angeordneten Sensoren die Umgebung des torpedoförmigen Unterwasserfahrzeugs 10 und erzeugt Sensordaten des das torpedoförmige Unterwasserfahrzeug 10 umgebenden aufzuklärenden Gebietes. Während das Aufklärungsgebiet durchfahren wird, werden zudem ein oder mehrere UUVs 12 transportiert. Während des Torpedo-Aufklärungsverfahrensblocks 66 führt ein Zweig 68 zu einem Stoppentscheidungsblock 70.In the torpedo
In dem Stoppentscheidungsblock 70 wird geprüft, ob eine Abbruchbedingung vorliegt. Die Abbruchbedingung ist gegeben, falls das Aufklärungsgebiet komplett durchfahren wurde oder die Energie der Energieversorgungssektion 14 für die Fahrt zu einem vordefinierten Torpedo-Bergungsort erschöpft ist. Falls dies der Fall ist, folgt über einen Zweig 72 der Torpedo-Bergungsblock 74.In the
In dem Torpedo-Bergungsblock 74 oder zu dem Torpedo-Aussetzungsort fährt das torpedoförmige Unterwasserfahrzeug 10 zu dem Torpedo-Aussetzungsort zurück oder lässt sich alternativ einem anderen Ort bergen. Nach Bergung des torpedoförmigen Unterwasserfahrzeugs 10 in dem Torpedo-Bergungsblock 74 führt ein Zweig 76 zu einem Endblock 78, der das Ende des Verfahrens kennzeichnet.In the
Falls in dem Stoppentscheidungsblock 70 die Abbruchbedingung nicht gegeben ist, führt eine Verzweigung über einen Zweig 80 zu einem UUV-Aufklärungsentscheidungsblock 82.If the abort condition is not met in the
In dem UUV-Aufklärungsentscheidungsblock 82 wird geprüft, ob die Sensordaten des das torpedoförmige Unterwasserfahrzeug 10 umgebenden aufzuklärenden Gebietes, nachfolgend als Torpedo-Aufklärungsdaten bezeichnet, Auffälligkeiten aufweisen. Die Torpedo-Aufklärungsdaten werden bewerten und führen zu einer positiven Bewertung, falls das aufzuklärende Ziel in den Torpedo-Aufklärungsdaten scheinbar enthalten ist. Falls die Bewertung der Torpedo-Aufklärungsdaten negativ ausfällt, erfolgt über einen Zweig 84 der Rücksprung zu dem Torpedo-Aufklärungsverfahrensblock 66.In the UUV
Falls die Bewertung der Torpedo-Aufklärungsdaten positiv ausfällt, erfolgt über einen Zweig 86 eine Verzweigung zu einem UUV-Aufklärungsverfahrensblock 88. In dem UUV-Aufklärungsverfahrensblock 88 wird das mit dem torpedoförmigen Unterwasserfahrzeug 10 transportierte UUV 12 aus dem torpedoförmigen Unterwasserfahrzeug 10 ausgesetzt. Nach Aussetzen des UUVs 12 erfasst das UUV 12 mittels eines oder mehreren an seinem Bord angeordneten Sensoren seine Umgebung. Auf diese Weise erzeugt das UUV 12 Sensordaten des das UUV 12 umgebenden aufzuklärenden Gebietes, nachfolgend als UUV-Aufklärungsdaten bezeichnet.If the evaluation of the torpedo reconnaissance data is positive, a branch is made to a UUV
Nachdem das Verfahren in dem UUV-Aufklärungsverfahrensblock 88 beendet wurde, führt ein Zweig 90 zu einem Rücksprung zum Torpedo-Aufklärungsverfahrensblock 66. Das erfindungsgemäße Verfahren wird entsprechend der vorhergehenden Erläuterung beendet.After the process in the UUV
Ferner zeigt
In dem Zielübertragungsblock 144 sind das Teilgebiet für die Aufklärung und/oder Aufklärungsziele an das UUV 12 übertragbar. Auf diese Weise ist das erfindungsgemäße Verfahren autonom, d.h. ohne Verbindung zu der Recheneinheit des Kontrollzentrums 36 und ohne Verbindung zu dem UUV-Kontrollumsetzer 38, durchführbar. Nach Übertragen des Teilgebiets und/oder des Aufklärungsziels führt ein Zweig 146 zu einem UUV-Aussetzungsblock 148.In the
In dem UUV-Aussetzungsblock 148 verringert das torpedoförmige Unterwasserfahrzeug 10 seine Geschwindigkeit, insbesondere gegen Null, und setzt mittels der Öffnungsvorrichtung 28 das transportierte UUV 12 in das dem torpedoförmigen Unterwasserfahrzeug umgebenden Wasser aus. Nach dem Aussetzen des UUVs 12 in den UUV-Aussetzungsblock 148 führt ein Zweig 150 zu einem UUV-Fahrtblock 152.In the
In dem UUV-Fahrtblock 152 durchfährt das UUV das zuvor übertragende Aufklärungsgebiet und erzeugt mittels eines oder mehreren an Bord des UUVs angeordneten Sensoren Sensordaten des das UUV umgebenden aufzuklärenden Gebietes. Während des Erzeugens der UUV-Aufklärungsdaten führt von dem UUV-Fahrtblock 152 das Verfahren über einen Zweig 154 zu einem UUV-Auswertungsblock 156.In the
In dem UUV-Auswertungsblock sind die UUV-Aufklärungsdaten bewertbar. Nach Bewerten der UUV-Aufklärungsdaten in dem UUV-Auswertungsblock 156 führt das Verfahren über einen Zweig 158 zu einem Aktionsentscheidungsblock 160. In dem Aktionsentscheidungsblock wird geprüft, ob weitere Aktionen zum Bearbeiten von einem oder mehreren im Aufklärungsgebiet befindlichen Objekten durchgeführt werden soll. Falls eine negative Bewertung vorliegt, erfolgt eine Verzweigung über einen Zweig 162 zu einem UUV-Bergungsblock 164.The UUV reconnaissance data can be evaluated in the UUV evaluation block. After evaluating the UUV reconnaissance data in the
In dem UUV-Bergungsblock 164 kehrt das UUV 12 zum UUV-Bergungsort zurück und ist von einem torpedoförmigen Unterwasserfahrzeug 10 bergbar. Nach dem Bergen im UUV-Bergungsblock 164 führt ein Zweig 166 zu einem Endblock 168, der das Ende des Verfahrens kennzeichnet.In the
Falls jedoch eine positive Bewertung der UUV-Aufklärungsdaten vorliegt, führt die Verzweigung in dem Aktionsentscheidungsblock 160 über einen Zweig 170 zu einem UUV-Aktionsblock 174. In dem UUV-Aktionsblock 174 werden ein oder mehrere Aktionen zum Bearbeiten von als auffällig bewerteten Objekten durchgeführt, bspw. Trennen einer Kette einer Mine, Sprengen einer Mine, Bewegen von Unterwasserbojen oder Entnehmen von Erdproben. Nachdem die Aktionen in dem UUV-Aktionsblock 174 durchgeführt wurden, erfolgt falls das UUV 12 noch existiert und/oder noch steuerbar ist, über einen Zweig 176 der UUV-Bergungsblock 164. Entsprechend der vorhergehenden Beschreibung wird in dem UUV-Bergungsblock 164 das UUV 12 geborgen. Das Verfahren führt über Zweig 166 schließlich zu dem Endblock 168, der das Ende dieses Verfahrens kennzeichnet.However, if there is a positive rating of the UUV reconnaissance data, the branch in the action decision block 160 branches to a UUV action block 174 via a
Dieses Ausführungsbeispiel des erfindungsgemäßen Verfahrens gemäß
Bei einem weiteren speziellen Ausführungsbeispiel gemäß
Bevorzugterweise sieht ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens das torpedoförmige Unterwasserfahrzeug 10 vor, das ein oder mehrere UUVs 12 parallel oder sequentiell aussetzen und/oder bergen kann. Paralleles Aussetzen/Bergen bedeutet, dass das torpedoförmige Unterwasserfahrzeug 10 sowohl ein als auch mehrere UUVs 12 zeitgleich an dem UUV-Aussetzungsort 204 aussetzen oder an dem UUV-Bergungsort 206 bergen kann. Die sequentielle Aussetzung/Bergung bedeutet eine zeitliche beabstandete Abfolge der Aussetzungen und/oder Bergungen, wobei die UUV-Aussetzungsorte 204 und/oder UUV-Bergungsorte 206 jeweils voneinander verschieden sein können.Preferably, an exemplary embodiment of the method according to the invention provides the torpedo-shaped
Bei einem weiteren Ausführungsbeispiel gemäß
Diese Ausführungsform des erfindungsgemäßen Verfahrens ist nicht nur auf das Verbringen und Bergen mittels nur eines Verbringungsvorrichtung und Bergungsvorrichtung aufweisenden Wasserfahrzeugs beschränkt, sondern offenbart vielmehr jedwede Bergung und/oder Aussetzung mittels einer Bergungsvorrichtung und/oder einer Verbringungsvorrichtung an Bord nur eines oder an Bord mehrerer Wasserfahrzeuge.This embodiment of the method according to the invention is not limited to the transportation and recovery by means of only one vessel and salvage vessel, but rather reveals any salvage and / or suspension by means of a salvage device and / or on-board boarding device on one or more vessels.
In dem Torpedo-Fahrtblock 234 ist ein Aufklärungsziel und/oder ein Aufklärungsgebiet definierbar. Ferner durchfährt das torpedoförmige Unterwasserfahrzeug 10 das Aufklärungsgebiet. Das torpedoförmige Unterwasserfahrzeugs 10 fährt mittels der Antriebssektion 18, die von der Recheneinheit 32 des torpedoförmigen Unterwasserfahrzeugs 10 Steuerbefehle zum Durchfahren des Aufklärungsgebietes 100 erhält. Während des Durchfahrens des Aufklärungsgebietes 100 in dem Torpedo-Fahrtblock 234 führt ein Zweig 236 zu einem Torpedo-Auswertungsblock 238. In dem Torpedo-Auswertungsblock 238 werden die Torpedo-Aufklärungsdaten bewertet. Die Bewertungen in dem Torpedo-Auswertungsblock 238 führen über einen Zweig 240 zu einem Torpedo-Unterbrechungsblock 242.In the
In dem Torpedo-Unterbrechungsblock 242 wird geprüft, ob das in dem torpedoförmigen Unterwasserfahrzeug 10 transportierte UUV 12 aufgrund der Bewertung in das Wasser zu verbringen ist. Falls dies nicht der Fall ist, führt eine Verzweigung über einen Zweig 244 zu dem Torpedo-Fahrtblock 234. Daher wird das Verfahren nicht unterbrochen, sondern fortgeführt.In the
Falls jedoch das UUV 12 aus dem torpedoförmigen Unterwasserfahrzeug 10 in das Wasser ausgesetzt werden soll, führt die Verzweigung des Torpedo-Unterbrechungsblocks 242 über einen Zweig 246 zu einem Torpedo-Aufklärungsstoppblock 248.However, if the
In dem Torpedo-Aufklärungsstoppblock 248 wird die Fahrgeschwindigkeit des torpedoförmigen Unterwasserfahrzeugs zum Aussetzen und/oder zum Bergen des UUVs 12 begrenzt oder die Fahrt des torpedoförmigen Unterwasserfahrzeugs 10 wird gestoppt. Nach dem Bergen und/oder Aussetzen des UUVs 12 in dem Torpedo-Aufklärungsstoppblock 248 erfolgt über einen Zweig 250 ein Endblock 252, der das Ende dieses Verfahrens kennzeichnet.In the torpedo
Dieses Ausführungsbeispiel des erfindungsgemäßen Verfahrens gemäß
Claims (14)
- Method for reconnoitring a region under water by means of an underwater vehicle (10), which travels through a reconnaissance region (100) under water and at the same time detects the surroundings of the underwater vehicle (10) by means of one or more sensors (16) arranged on board the underwater vehicle (10) and generates sensor data of the region to be reconnoitred that surrounds the underwater vehicle (10), the underwater vehicle (10) transporting one or more unmanned underwater vehicles, designated UUVs (12) below, at least one UUV (12) being released from the underwater vehicle (10) which generates sensor data of the reconnaissance region (100) surrounding the UUV (12) by means of one or more sensors (24) arranged on board the UUV (12),
characterized in that
the underwater vehicle (10) is torpedo-shaped and is started by means of a launch platform for torpedoes and
the underwater vehicle (10) transports the UUV or the UUVs (12) in a transport chamber (22) of the underwater vehicle (10). - Method according to Claim 1, characterized in that the sensor data of the reconnaissance region (100) surrounding the torpedo-shaped underwater vehicle (10), designated torpedo reconnaissance data below, is assessed by means of a computing unit, in particular a remote computing unit of a control centre (36), and, depending on a positive assessment, at least one UUV (12) is released from the torpedo-shaped underwater vehicle (10).
- Method according to either of Claims 1 and 2, characterized in that the sensor data of the reconnaissance region (100) surrounding the UUV (12), designated UUV reconnaissance data below, is transmitted to the torpedo-shaped underwater vehicle (10), and the torpedo-shaped underwater vehicle (10) transmits the UUV reconnaissance data to the computing unit of the control centre (36) and/or the UUV (12) receives data from the torpedo-shaped underwater vehicle (10) which has information and/or commands to control the UUVs (12), wherein in particular the data of the torpedo-shaped underwater vehicle (10) for the UUV (12) has previously been received from the remote computing unit of the control centre (36).
- Method according to one of the preceding claims, characterized in that the UUV reconnaissance data is assessed by means of the computing unit of the control centre (36) or a further computing unit, in particular a computing unit (32) on board the torpedo-shaped underwater vehicle (10), and if there is a positive assessment, the UUV (12) carries out actions to process one or more objects located in the reconnaissance region (100), such as, for example, severing chains (130), exploding mines (122, 202), moving underwater buoys and/or taking ground samples (124).
- Method according to one of the preceding claims, characterized in that the UUV (12) travels autonomously through the reconnaissance region (100), in particular a sub-region (110) of the reconnaissance region (100), and stores the UUV reconnaissance data for time-shifted transmission.
- Method according to one of the preceding claims, characterized in that the speed of travel of the torpedo-shaped underwater vehicle (10) is limited in order to release and/or recover the UUV (12), or the travel of the torpedo-shaped underwater vehicle (10) is stopped.
- Method according to one of the preceding claims, characterized in that after the reconnaissance region (100) has been explored, in which at the same time the surroundings of the torpedo-shaped underwater vehicle (10) have been detected by means of one or more sensors (16) arranged on board the torpedo-shaped underwater vehicle (10) and torpedo reconnaissance data has been generated, designated a torpedo reconnaissance process below, and after the torpedo-shaped underwater vehicle (10) has transported one or more UUVs (12) and at least one UUV (12) which has generated UUV reconnaissance data by means of one or more sensors (24) arranged on board the UUV has been released from the torpedo-shaped underwater vehicle (10), designated a UUV reconnaissance process below, the torpedo-shaped underwater vehicle (10) is recovered and a torpedo reconnaissance process is again carried out with the same torpedo-shaped underwater vehicle (10), wherein the UUV reconnaissance process is possibly additionally carried out during or after the torpedo reconnaissance process.
- System for reconnoitring a region under water, comprising an underwater vehicle (10) which has a drive device (18), a power supply device (14) and one or more sensors (16), which are formed in such a way as to travel around a reconnaissance region (100) under water, at the same time to detect the surroundings of the underwater vehicle (10) by means of the sensors (16) and to generate sensor data of the reconnaissance region (100) surrounding the underwater vehicle (10), in particular for carrying out a method according to one of Claims 1 to 7, the system comprising both the underwater vehicle (10) and also one or more unmanned underwater vehicles, designated UUVs (12) below, the underwater vehicle (10) being designed to transport the UUV or UUVs (12) and the UUVs (12) having one or more sensors (24) which are formed in such a way as to generate sensor data of the reconnaissance region (100) surrounding the UUV (12),
characterized in that
the underwater vehicle (10) is torpedo-shaped and can be started by means of a launch platform for torpedoes, and
the underwater vehicle (10) has a transport chamber (22), which is formed in such a way as to transport the UUV or UUVs (12). - System according to Claim 8, characterized in that the torpedo-shaped underwater vehicle (10) has a UUV control converter (38), which is formed in such a way as to produce a communication link (34) between the UUV (12) and a computing unit connected to the torpedo-shaped underwater vehicle (10), in particular a remote computing unit of a control centre (36).
- System according to either of Claims 8 and 9, characterized in that the torpedo-shaped underwater vehicle (10) is formed in sections and has a transport section (20) in which the transport chamber (22) is arranged.
- System according to one of Claims 8 to 10, characterized in that the UUV (12) has the sensors (24) which, however, differ in at least one sensor from the sensors (16) arranged on board the torpedo-shaped underwater vehicle (10).
- System according to one of Claims 8 to 11, characterized by an opening apparatus (28) in the region of the transport chamber (22) of the torpedo-shaped underwater vehicle (10), which apparatus is formed in such a way as to release the transported UUV (12) and/or to recover a released UUV (12).
- System according to one of Claims 8 to 12, characterized in that the UUV (12) and/or the torpedo-shaped underwater vehicle (10) has/have a transport apparatus (30), which is formed in such a way as to transport one or more UUVs (12) secured against damage in the transport chamber (22) of the torpedo-shaped underwater vehicle (10) .
- System according to one of Claims 8 to 13, characterized in that the torpedo-shaped underwater vehicle (10) has one or more control cells, in particular trim tanks and/or ballast tanks, which are formed in such a way as to balance the location and/or the buoyancy or downforce of the torpedo-shaped underwater vehicle (10) under water when the travel of the torpedo-shaped underwater vehicle (10) is stopped.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE2010/000905 WO2012013171A1 (en) | 2010-07-30 | 2010-07-30 | Method and system for reconnoitering a region under water |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2598396A1 EP2598396A1 (en) | 2013-06-05 |
EP2598396B1 true EP2598396B1 (en) | 2018-12-26 |
Family
ID=43877255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10750026.6A Active EP2598396B1 (en) | 2010-07-30 | 2010-07-30 | Method and system for reconnoitering a region under water |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2598396B1 (en) |
WO (1) | WO2012013171A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020124476A1 (en) | 2020-09-20 | 2022-03-24 | Geomar Helmholtz-Zentrum Für Ozeanforschung Kiel | UNDERWATER ROBOTIC DIVING SYSTEM ON A MOTHER SHIP |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9969470B2 (en) | 2011-09-30 | 2018-05-15 | Cgg Services Sas | Deployment and recovery of autonomous underwater vehicles for seismic survey |
US9090319B2 (en) | 2011-09-30 | 2015-07-28 | Seabed Geosolutions As | Autonomous underwater vehicle for marine seismic surveys |
US8881665B2 (en) | 2011-09-30 | 2014-11-11 | Cggveritas Services Sa | Deployment and recovery vessel for autonomous underwater vehicle for seismic survey |
DE102012006566A1 (en) * | 2012-03-30 | 2013-10-02 | Atlas Elektronik Gmbh | Method of detecting sea mines and marine detection system |
US9381986B2 (en) | 2012-11-21 | 2016-07-05 | Seabed Geosolutions B.V. | Jet-pump-based autonomous underwater vehicle and method for coupling to ocean bottom during marine seismic survey |
US9457879B2 (en) | 2012-12-17 | 2016-10-04 | Seabed Geosolutions B.V. | Self-burying autonomous underwater vehicle and method for marine seismic surveys |
WO2014147165A1 (en) | 2013-03-20 | 2014-09-25 | Cgg Services Sa | Methods and underwater bases for using autonomous underwater vehicle for marine seismic surveys |
RU2554640C2 (en) * | 2013-06-18 | 2015-06-27 | Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" (АО "ВПК" "НПО Машиностроения") | Method of detecting sea targets |
IL228660B (en) * | 2013-10-01 | 2020-08-31 | Elta Systems Ltd | Underwater system and method |
US9873496B2 (en) | 2014-10-29 | 2018-01-23 | Seabed Geosolutions B.V. | Deployment and retrieval of seismic autonomous underwater vehicles |
DE102015101914A1 (en) * | 2015-02-10 | 2016-08-11 | Atlas Elektronik Gmbh | Underwater glider, control station and monitoring system, in particular tsunami warning system |
US10322783B2 (en) | 2015-10-16 | 2019-06-18 | Seabed Geosolutions B.V. | Seismic autonomous underwater vehicle |
DE102016103955A1 (en) * | 2016-03-04 | 2017-09-07 | Atlas Elektronik Gmbh | Underwater plug for an underwater vehicle as well as a procedure with it and underwater vehicle |
DE102016222225A1 (en) | 2016-11-11 | 2018-05-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | MOUNTAIN DEVICE AND RELATED METHOD |
WO2018087300A1 (en) * | 2016-11-11 | 2018-05-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Docking station |
EP3577497A1 (en) | 2017-02-06 | 2019-12-11 | Seabed Geosolutions B.V. | Ocean bottom seismic autonomous underwater vehicle |
US11255998B2 (en) | 2018-05-17 | 2022-02-22 | Seabed Geosolutions B.V. | Cathedral body structure for an ocean bottom seismic node |
US11305853B2 (en) | 2020-07-20 | 2022-04-19 | HonuWorx, Ltd. | Methods and systems for conveying, deploying and operating subsea robotic systems |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6376762B1 (en) * | 2000-09-19 | 2002-04-23 | The United States Of America As Represented By The Secretary Of The Navy | Small vehicle launch platform |
US7337741B1 (en) * | 2005-02-18 | 2008-03-04 | The United States Of America As Represented By The Secretary Of The Navy | Pre-positioning deployment system for small unmanned underwater vehicles |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5235931A (en) * | 1992-07-22 | 1993-08-17 | The United States Of America As Represented By The Secretary Of The Navy | Inflatable undersea vehicle system of special utility as a daughter vessel to a mother vessel |
DE4440150C2 (en) | 1994-11-10 | 1997-05-15 | Bundesrep Deutschland | Reconnaissance vehicle for submarines |
FR2757511B1 (en) | 1996-12-23 | 2001-05-04 | Sanofi Sa | PROCESS FOR THE PREPARATION OF A TETRAHYDROPYRIDINE DERIVATIVE |
US6854410B1 (en) * | 2003-11-24 | 2005-02-15 | The United States Of America As Represented By The Secretary Of The Navy | Underwater investigation system using multiple unmanned vehicles |
DE102004062122B3 (en) * | 2004-12-23 | 2005-12-22 | Atlas Elektronik Gmbh | Detecting and neutralizing mines in sea, by steering second underwater vehicle to object marked by first vehicle, and activating neutralizing unit |
DE102007031156B4 (en) * | 2007-06-11 | 2009-04-16 | Diehl Bgt Defence Gmbh & Co. Kg | Device and method for suspending and recovering an underwater vehicle and method for docking an underwater vehicle to such a device |
-
2010
- 2010-07-30 WO PCT/DE2010/000905 patent/WO2012013171A1/en active Application Filing
- 2010-07-30 EP EP10750026.6A patent/EP2598396B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6376762B1 (en) * | 2000-09-19 | 2002-04-23 | The United States Of America As Represented By The Secretary Of The Navy | Small vehicle launch platform |
US7337741B1 (en) * | 2005-02-18 | 2008-03-04 | The United States Of America As Represented By The Secretary Of The Navy | Pre-positioning deployment system for small unmanned underwater vehicles |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020124476A1 (en) | 2020-09-20 | 2022-03-24 | Geomar Helmholtz-Zentrum Für Ozeanforschung Kiel | UNDERWATER ROBOTIC DIVING SYSTEM ON A MOTHER SHIP |
Also Published As
Publication number | Publication date |
---|---|
WO2012013171A1 (en) | 2012-02-02 |
EP2598396A1 (en) | 2013-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2598396B1 (en) | Method and system for reconnoitering a region under water | |
DE102007031156B4 (en) | Device and method for suspending and recovering an underwater vehicle and method for docking an underwater vehicle to such a device | |
EP2830935B1 (en) | Method for detecting sea mines ans sea mine detection system | |
EP2838788B1 (en) | Recovery method for the recovery of an submarine watercraft, recovery arrangement, submarine with recovery arrangement, submarine watercraft therefor and system therewith | |
EP1791754B1 (en) | Method and system for the destruction of a localized mine | |
EP2327622B1 (en) | Unmanned submarine and device for connecting a fibre optic cable to an unmanned submarine | |
EP1827964B1 (en) | Method for detecting and neutralizing submarine objects | |
EP2830934B1 (en) | Underwater system and method for its operation | |
WO2012065875A1 (en) | Underwater vehicle for uncovering submerged objects and underwater system with an underwater vehicle of this type | |
EP3436337B1 (en) | System and method of navigation of an autonomously navigated submersible vehicle at entering a catch station | |
DE102016222225A1 (en) | MOUNTAIN DEVICE AND RELATED METHOD | |
DE69504594T2 (en) | Improved process for the destruction of an underwater object, especially a sea mine | |
DE102018212561A1 (en) | Arrangement and method for wireless data transmission | |
DE202019106412U1 (en) | water craft | |
DE102016210128A1 (en) | Recovery device and associated method | |
DE69202045T2 (en) | Process for the destruction of an underwater object, in particular a sea mine. | |
DE69406029T2 (en) | Improved process for the destruction of a sunk object, especially a sea mine | |
DE102013109191A1 (en) | Coupling device, coupling system and towing system and method for uncoupling and coupling an unmanned underwater vehicle | |
EP4100312B1 (en) | Transport box for launching of a watercraft | |
EP3887244B1 (en) | Method and submarine for the rapid deployment of a group of divers under water | |
EP4424580A1 (en) | Inspection of critical underwater infrastructure | |
DE102014113184A1 (en) | A vehicle system including a mothership and an unmanned watercraft and method of retrieving an unmanned watercraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130108 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170313 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTG | Intention to grant announced |
Effective date: 20180706 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ATLAS ELEKTRONIK GMBH |
|
INTG | Intention to grant announced |
Effective date: 20180822 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1081028 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010015665 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190326 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190327 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190426 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190426 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010015665 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190730 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1081028 Country of ref document: AT Kind code of ref document: T Effective date: 20190730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100730 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20230721 Year of fee payment: 14 Ref country code: IT Payment date: 20230724 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230719 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240719 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240722 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240719 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 15 |