EP2830934B1 - Underwater system and method for its operation - Google Patents

Underwater system and method for its operation Download PDF

Info

Publication number
EP2830934B1
EP2830934B1 EP13710283.6A EP13710283A EP2830934B1 EP 2830934 B1 EP2830934 B1 EP 2830934B1 EP 13710283 A EP13710283 A EP 13710283A EP 2830934 B1 EP2830934 B1 EP 2830934B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
underwater
relay
relay vehicle
underwater vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13710283.6A
Other languages
German (de)
French (fr)
Other versions
EP2830934A1 (en
Inventor
Sven-Christian Hesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP2830934A1 publication Critical patent/EP2830934A1/en
Application granted granted Critical
Publication of EP2830934B1 publication Critical patent/EP2830934B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/42Towed underwater vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating

Definitions

  • the invention relates to a Unterwasserarbeitssystem with at least one autonomous underwater vehicle and an unmanned, floating on the water surface, relay vehicle, according to the preamble of claim 1.
  • the invention also relates to a method for operating an underwater waterworking system, wherein at least one autonomous underwater vehicle internally with an unmanned, at the water surface floating and driven relay vehicle communicates and the relay vehicle communicates externally via a radio antenna.
  • Unmanned underwater vehicles open up a variety of underwater capabilities and, compared to manned submersibles, can reach greater working depths and work in environments too dangerous for manned systems or divers.
  • Autonomous underwater vehicles include their own power supply and do not require communication with a human operator during a mission. Rather, they follow a predetermined mission program. After carrying out the mission program, the autonomous underwater vehicle also emerges on its own and is salvaged, for example by a mothership.
  • the autonomous underwater vehicle is usually equipped with suitable sensors, for example sonar sensors.
  • suitable sensors for example sonar sensors.
  • ROVs remotely operated vehicles
  • autonomous Underwater vehicles usually driven by a tail propeller and are particularly suitable for large-scale or large-scale reconnaissance under water.
  • autonomous underwater vehicles are advantageously used for cable and pipeline inspection or for mine search.
  • ROV remote controlled underwater vehicles
  • an underwater working system in which a supply and control line of an unmanned remote controlled underwater vehicle (ROV) is connected to a floating on the water surface radio buoy.
  • the radio buoy is equipped with a radio antenna and a receiving and transmitting unit.
  • the underwater vehicle can be remotely controlled by the mothership via the radio link of the radio buoy and the supply line between the radio buoy and the underwater vehicle.
  • the ATV By communicating the connection between the mothership and the RCM via the radio buoy, the ATV can operate in its localized working space at a greater distance from the mothership than would be possible with a direct connection from the submersible to the mothership.
  • WO 91/13800 discloses a system for underwater explorations with autonomous underwater vehicles, which are of identical construction and one each Internal combustion engine and an electric motor and a battery.
  • One of the underwater vehicles is located on the water surface, with the internal combustion engine charging the battery.
  • the subsurface underwater vehicle is in radio communication with a mothership.
  • the other underwater vehicle works underwater and is powered by its electric motor.
  • the two underwater vehicles communicate wirelessly via an acoustic or optical connection. Once the battery of the active submersible submersible is exhausted, the submersibles change places.
  • the wireless connection transmits images from the active underwater vehicle to the mothership, first via the wireless connection to the surfaced underwater vehicle and then via the radio link of the submarine vessel that has appeared.
  • the known underwater work system is intended for local investigation of the underwater world, for example, to explore a wreck.
  • a large-scale reconnaissance under water for example, to clarify an underwater area in the context of mine control or for the inspection of long pipelines, the stationary operating known underwater work system is unsuitable.
  • the WO 2012/037174 A2 discloses a buoy and system for monitoring divers and other underwater objects.
  • the buoy may monitor a diver and obtain position information about the diver and use that information to position themselves for further monitoring.
  • the buoy may use an acoustic communication device to communicate with the diver and determine the diver position, biometric and other data.
  • the buoy comprises a propulsion system and via an acoustic communication module, the diver can control the buoy to an effective range.
  • acoustic communication is mandatory, as a possible physical connection, for example by means of a rope or hose for reasons of risk is not allowed.
  • a data transmission rate is limited by the acoustic communication, so that real-time capability can not be ensured.
  • the JP S57 196309 A discloses an indirect control system for an underwater vehicle for the monitoring and treatment of explosive materials in which a mother overwater vessel first detects the position of an explosive substance in the sea and then directs a second surface watercraft to that position. By means of a winch at the stern of the surface boat, a remote-controlled underwater vehicle (ROV) on a cable is lowered to a specified depth close to the explosive substance into the sea. Control signals are transmitted wirelessly from the mother's overwater vessel to the overwater boat and from the overwater boat via the cable to the remote-controlled underwater vehicle.
  • ROV underwater vehicle
  • the US 5,396,859 A discloses a submarine system for connecting fiber optic cables, in which a submarine is connected at the rear via a first fiber optic cable to the stern of a remote-controlled underwater vehicle.
  • a second fiber optic cable is connected between an anchor buoy and a torpedo in the water. Controlled by the submarine, the underwater vehicle can approach the anchor buoy in such a way that the two fiber optic cables are connected to start the torpedo.
  • the DE 10 2004 062 124 B3 discloses a device for tracking an underwater vehicle by means of a submerged vehicle Platform using an acoustic positioning system.
  • steering signals can be transmitted from the platform via a steering wire to the drive and control device of the underwater vehicle.
  • the WO 03/045776 A1 discloses a remote mine-hunting system consisting of an underwater vehicle with a surface-extendable antenna and a remote-controlled underwater vehicle (ROV) which are remotely controlled by an external control station on a surface vessel, the remote controlled underwater vehicle (ROV) being powered by a propulsion system Remote monitoring cable is connected to the underwater vehicle.
  • ROV remote-controlled underwater vehicle
  • the present invention is based on the problem to provide an underwater work system with at least one autonomous unmanned underwater vehicle and an unmanned, floating on the water surface relay vehicle and a method of operating such a Unterwasserarbeitssystems, which increased performance of the large-scale underwater reconnaissance with short mission times and a Provide real-time data transmission.
  • an underwater work system with at least one autonomous unmanned underwater vehicle and an unmanned, floating on the water surface relay vehicle having a radio antenna for external communication and a drive
  • the autonomous unmanned underwater vehicle is physically connected via a coupling connection with the relay vehicle
  • said the coupling connection comprises an internal communication device or the coupling connection is a component of the communication device
  • the relay vehicle, the autonomous underwater vehicle and / or the coupling connection are configured such that the relay vehicle by means of a control unit, in particular taking into account navigation information, on the autonomous underwater vehicle is feasible.
  • data can be transmitted bidirectionally between the relay vehicle and the underwater vehicle at higher data rates than with acoustic data transmission.
  • an acoustics-free communication or data transmission can be provided.
  • sudden events can be quickly responded to by, for example, occurring in front of the underwater vehicle, natural (e.g., fish) or technical (submarine) object.
  • natural e.g., fish
  • technical submarine
  • the "coupling link” physically connects the underwater vehicle to the relay vehicle.
  • This coupling connection can be made by a hose or a cable. Physically is to be understood in particular as a contrast to radio or sound.
  • the underwater vehicle can be accessed physically at any time, so that in case of "loss" of the underwater vehicle, time-consuming search maneuvers of the relay vehicle can be omitted.
  • the unmanned relay vehicle floating on the water surface is guided by a control unit taking into account navigation information about the at least one autonomous unmanned underwater vehicle, whereby the autonomous unmanned underwater vehicle operate with virtually unlimited range underwater.
  • the control unit may determine a course for the relay vehicle and may drive its drive accordingly, so that the vehicles of the underwater work system are always in a desired position relative to each other.
  • the relay vehicle and the at least one associated underwater vehicle thus form in particular an autonomous underwater work system, which are navigated as an autonomous group.
  • the unmanned underwater vehicle acquires the mission information acquired during the mission by the sensors of the autonomous underwater vehicle in real time to the relay vehicle.
  • Under navigation information of the autonomous underwater vehicle is to understand information about the driving behavior and the position of the autonomous unmanned underwater vehicle, such as the absolute speed, speed over ground, the orientation of the underwater vehicle, the depth and distance from the relay vehicle and / or sonar information.
  • navigation information which are detected by navigation sensors of the submerged autonomous underwater vehicle and fed to the control unit. Additional navigation information about the relay vehicle and also the autonomous underwater vehicle can be detected by sensors on board the relay vehicle and used for navigation.
  • control unit which guides the relay vehicle is arranged on board the relay vehicle, wherein the navigation information acquired in the submerged marine vehicle is communicated to the relay vehicle via the internal communication device.
  • control unit which controls the relay vehicle, on board the relay vehicle
  • the arrangement of power-consuming systems that process information from and for the autonomous underwater vehicle on board the relay vehicle reduces the energy requirements of the underwater vehicle.
  • the control unit determines a course for the relay vehicle, taking into account the navigation information of all submarines involved, in which the relay vehicle is optimally positioned given to the connected underwater vehicles.
  • the communication device is designed such that it is real-time capable.
  • Real-time capability is especially given when the propagation speed of the transmission is greater than in an acoustic communication. In particular, propagation speeds above 2000 m per second are included. In particular, then real-time capability is ensured when sonar information below the Refresh rates of the sonar can be transmitted to the relay vehicle.
  • a control unit of the relay vehicle and a control unit of the autonomous underwater vehicle are designed such that via the internal communication device navigation information in the direction of the relay vehicle and in the other direction control commands for the underwater vehicle is interchangeable.
  • the underwater work system according to the invention can be directly controlled by a human operator as needed, if desired.
  • the underwater work system with the possibility of continuous information transmission in both directions between the underwater vehicle and a carrier platform allows monitoring of the autonomously operating underwater work system, wherein at any time a control intervention by the operator can take place (“supervised autonomous system").
  • the supervised autonomous underwater work system reduces the mission time and increases the mission's effectiveness by allowing an operator to detect when the underwater vehicle has followed a wrong lane. In this case, a controlled intervention in the autonomous mission program prevents the loss of mission time, which would result in following non-targeting and erroneous investigations.
  • the underwater vehicle information about its current position forwarded is advantageously the underwater vehicle information about its current position forwarded.
  • Reliable information about the position is available in the relay vehicle, which provides precise position data about its position Radio antenna can refer, for example by GPS.
  • the autonomous underwater vehicle can be informed of this GPS position of the relay vehicle, so that the underwater vehicle navigates with the knowledge of the position of the relay vehicle.
  • processing of the GPS data on board the relay vehicle can take place and the underwater vehicle can be informed of its exact position, taking into account the navigation information of the underwater vehicle available in the relay vehicle.
  • the internal communication device comprises an optical fiber cable which connects the relay vehicle with the underwater vehicle.
  • the fiber-optic cable enables powerful data transmission.
  • the control unit of the relay vehicle guides the relay vehicle in consideration of navigation information of the autonomous underwater vehicle such that a tensile load on the optical fiber cable is avoided. It may be advantageous if the control unit, which carries the relay vehicle, can rely on information about the tensile load in the optical fiber cable and controls the relay vehicle according to excessive tensile load. For this purpose, a device for measuring the tensile load can be assigned to the optical waveguide cable.
  • the relay vehicle is tracked to the underwater vehicle, whereby the tensile load of the optical fiber cable is reduced or eliminated.
  • the relay vehicle is controlled with the same course as the underwater vehicle whose course results from the transmitted navigation information.
  • the relay vehicle has means for determining the distance of the Underwater vehicle from the relay vehicle.
  • the relay vehicle is guided on the basis of the navigational information of the underwater vehicle, which can be delivered during the mission of the underwater vehicle, and the current distance.
  • the distance between the underwater vehicle and the relay vehicle is detected by means of an acoustic transmission head ("pinger").
  • the underwater vehicle and / or the relay vehicle on an acoustic transmission head are acoustic transmission heads.
  • the navigation of the underwater vehicle is supported or adopted by the control unit of the relay vehicle, whereby the required computing capacity of the control unit on board the underwater vehicle and thus the power requirements of the underwater vehicle are reduced.
  • the relay vehicle has a sonar connected to its control unit, that is to say devices for locating objects in space and under water by means of emitted sound pulses.
  • the control unit is designed such that evasion maneuvers can be controlled when obstacles are detected by the sonar.
  • the control unit of the relay vehicle recognizes the sonar obstacles in the course of the relay vehicle and initiates evasive maneuvers, for example by a lateral passing of the obstacle, a.
  • the relay vehicle is submersible formed, whereby the relay vehicle, if necessary, evades a very wide object, such as a driving network, by submerging and driving under the obstacle.
  • the relay vehicle comprises a data processing device, which information from the underwater vehicle can be entered. In this case, a preprocessing takes place on board the relay vehicle before the information about the carrier platform is transmitted.
  • the relay vehicle comprises a coding device, by means of which the information to be transmitted or received via the radio antenna can be coded or decoded. The information that transmits the underwater vehicle internally to the relay vehicle is pre-processed before the external communication according to predetermined data processing criteria.
  • the existing data for example, from the existing data, a selection of the information to be sent via the radio link or a compression. Also, the information is protected by a coding on the radio link.
  • Such information which is not required or desired for monitoring the underwater workstation or the mission of the autonomous underwater vehicle by an operator, stored on board the relay vehicle.
  • This information may be read after completion of the mission and salvage of the submersible and, in an advantageous embodiment, will be maintained by radio during the mission on-demand call.
  • the object can be achieved by a method for operating an underwater work system, wherein at least one autonomous, unmanned underwater vehicle internally with an unmanned, at the water surface floating and powered relay vehicle communicates with the relay vehicle communicates externally via a radio antenna, wherein a control unit, the relay vehicle taking into account navigation information on the at least one autonomous unmanned underwater vehicle leads.
  • control unit tracks the relay vehicle to the underwater vehicle.
  • the relay vehicle may be guided on the basis of the navigation information of the underwater vehicle and the current distance between the underwater vehicle and the relay vehicle, the distance being detected in particular by means of an acoustic transmission head on the underwater vehicle and / or on the relay vehicle.
  • the navigation of the underwater vehicle is supported or adopted by a control unit of the relay vehicle.
  • the information transmitted internally by the underwater vehicle to the relay vehicle can be pre-processed according to predetermined criteria, in particular partially stored and partly transmitted.
  • control unit (16) of the relay vehicle (4) detects obstacles (20) in the course of the relay vehicle (4) via a sonar (19) and initiates an avoidance maneuver by passing the obstacle sideways (20) and / or diving in and driving down of the obstacle (20).
  • Fig. 1 shows an underwater working system 1 with an autonomous unmanned underwater vehicle 2 and an unmanned, floating on the water surface 3 relay vehicle 4.
  • the relay vehicle 4 has a radio antenna 5, via which the relay vehicle 4 communicates with a support platform.
  • the carrier platform is a seagoing vessel 6, which likewise carries a radio antenna 7 for communication with the underwater workstation 1.
  • a control console on land or another manned carrier platform can be provided, from which human operators can communicate with the underwater workstation 1 by radio connection even from a greater distance to the relay vehicle 4.
  • the autonomous unmanned underwater vehicle 2 is connected via an internal communication device to the relay vehicle 4, wherein the term "internal" refers to the communication within the underwater work system 1.
  • the communication device comprises both the relay vehicle 4 and the underwater vehicle 2 each have a device for transmitting and receiving data and in the embodiment, a fiber optic cable 8.
  • the optical fiber cable 8 connects the relay vehicle 4 with the underwater vehicle 2 and connects arranged in the respective vehicles facilities for Sending and receiving information.
  • the relay vehicle 4 mediates communication between the sea ship and the submerged one Underwater vehicle 2 during the mission.
  • mission information 9 is transmitted from the autonomously operating underwater vehicle 2 via the optical waveguide cable 8 and the radio link of the relay vehicle 4 to the mother ship 6 in real time during the mission.
  • the underwater vehicle 2 is equipped with a camera 10 and other sensors for detecting its environment, in the exemplary embodiment a sonar 11, whose continuously acquired data are transmitted as part of the mission information 9 via the optical fiber cable 8 to the relay vehicle 4.
  • the underwater vehicle 2 further comprises navigation sensors 12, which are input to a control unit 13 of the underwater vehicle 2 and are based on the autonomous navigation of the underwater vehicle 2.
  • the autonomous unmanned underwater vehicle 2 follows a predetermined mission program and can operate under the guidance of its control unit 13 independently in the underwater area. However, via the radio antenna 5 of the relay vehicle 4, an operator of the underwater work system 1 can supply control information 14, which is forwarded by the relay vehicle 4 via the optical waveguide cable 8 to the underwater vehicle 2.
  • the Unterwasserariassysteml can thus work autonomously, but it is constantly monitored by the external communication with the ship 6. In this case, an operator of the underwater work system can always take control of the unmanned underwater vehicle. This is particularly advantageous when monitoring of the underwater workstation 1 proves that the underwater vehicle 2 has been subject to an error based on the given autonomous mission program, for example, has erroneously detected or identified an underwater object.
  • the underwater vehicle control information 14 includes not only the human operator Control commands, but also other information which is prepared on the relay vehicle 4 for use on the autonomous underwater vehicle, in particular information for navigation.
  • a regular transmission of position information is advantageous, which is available on board the relay vehicle 4 and, for example, very accurately determined by GPS via the radio antenna 5.
  • the relay vehicle 4 is designed as a surface vessel to constantly maintain radio contact with the carrier platform and has a drive 15.
  • the relay vehicle 4 further comprises a control unit 16 which guides the relay vehicle 4 and drives the drive 15 according to the intended course and speed.
  • the control unit 16 takes into account navigation information about the autonomous underwater vehicle 2, which is transmitted via the optical waveguide cable 8 in the direction of the mission information 9 to the relay vehicle 4.
  • additional information about the underwater vehicle 2 can be determined by sensors on board the relay vehicle 4.
  • locating means are provided on board the relay vehicle 4 in an advantageous embodiment.
  • an acoustic transmission head 18, a so-called “pinger”, is arranged on one of the two vehicles.
  • the acoustic transmission head 18 is arranged on the unmanned underwater vehicle 2, so that the determination of the distance and the necessary arithmetic operations on board the relay vehicle 4 can take place.
  • On board the underwater vehicle 2 must therefore no additional energy is provided for the distance determination, which is basically limited on board the autonomous underwater vehicle.
  • the relay vehicle 4 also has a sonar 19 in its bow area, with the driving in the water obstacles 20 can be detected in good time.
  • the control unit 16 initiates a corresponding avoidance maneuver by passing sideways or causes the relay vehicle 4 to descend and pass under the obstacle 20.
  • the relay vehicle 4 is in shown embodiment designed for short-term diving maneuvers.
  • the relay vehicle 4 is an underwater vehicle which is used as a relay vehicle 4 on the water surface 3.
  • the relay vehicle 4 By passing under the obstacle 20 can be prevented that wide, underwater obstacles such as nets and the like destroy the sensitive fiber optic cable 8. After driving under the obstacle 20, the relay vehicle 4 immediately reappears and resumes the radio connection to the ship 6.
  • the control unit 16 determines the course of the relay vehicle 4 after evaluation of the navigation information of the unmanned underwater vehicle such that the distance between the two vehicles does not exceed predetermined limits.
  • the control unit 16 determines the course of the relay vehicle 4 such that the relay vehicle 4 is tracked to the underwater vehicle 2. If an excessively large distance is determined when determining the distance between the relay vehicle 4 and the underwater vehicle 2, the control unit determines a new course with which the relay vehicle 4 tracks the underwater vehicle 2.
  • the underwater vehicle 2 can thus operate autonomously, while the relay vehicle 4 is tracked on the water surface 3 and always maintains the external communication of the underwater work system 1 with the ship 6.
  • the internal communication between the control unit 16 of the relay vehicle 4 and the control unit 13 of the autonomous unmanned underwater vehicle 2 is described below, including the external communication via the relay vehicle 4 on the basis of Fig. 2 explained in more detail.
  • the internal communication device 21 which the optical fiber cable 8 according to Fig. 1
  • Missions information 9 is transmitted from the control unit 13 of the underwater vehicle 2, which is recorded during the mission of the camera 10 and other sensors for detecting the environment.
  • the control unit 13 transmits navigation information 17 via the autonomous underwater vehicle 2 to the control unit 16 of the relay vehicle 4.
  • the navigation information 17 can comprise both raw data of the navigation sensors 12 of the underwater vehicle 2 and already prepared navigation information which the control unit 13 of the Underwater vehicle 2 for their own autonomous navigation during the mission from the raw data of the navigation sensors 12 has available.
  • the navigation information 17 transmitted to the relay vehicle may also be a combination of raw data and navigation information already determined in the underwater vehicle.
  • the control unit 13 of the underwater vehicle 2 is linked to the control unit 16 of the relay vehicle 4 in such a way that the navigation of the underwater vehicle 2 is supported or taken over by the control unit 16 of the relay vehicle 4.
  • the navigation information or the of the Navigation sensors recorded measured values from the underwater vehicle 2 directly to the control unit 16 of the relay vehicle 4 transmitted.
  • the control unit 16 of the relay vehicle 4 after evaluating the incoming navigation information 17, sends the control unit 13 of the underwater vehicle corresponding control information 14.
  • the relay vehicle 4 receives corresponding commands via the radio link and forwards corresponding control information 14 to the control unit 13 of the underwater vehicle 2.
  • the control unit 16 determines from an evaluation of the ping signal of the acoustic transmission head 18 (FIG. Fig. 1 Knowing the exact distance results in the exact position of the underwater vehicle 2 relative to the relay vehicle 4.
  • the control unit 16 of the relay vehicle 4 also receives via the radio antenna 5 GPS position signals 22 so that the control unit 16 can precisely determine the actual position of the relay vehicle 4.
  • the actual position of the relay vehicle is determined, which is made available to the underwater vehicle as part of the control information 14.
  • the autonomous navigation of the underwater vehicle can rely on the exact position of the underwater vehicle during the course of the mission program, which can not reliably determine the autonomous underwater vehicle during its mission under water.
  • the control unit 16 determines corresponding control commands 23 for the drive 15 of the relay vehicle 4.
  • the control unit 16 takes into account the incoming measured values of the sonar 19 of the relay vehicle 4, where appropriate avoidance maneuvers are controlled with obstacles 20 lying ahead.
  • navigation sensors 24 are arranged in the relay vehicle, which provide the control unit 16 in the management of the relay vehicle 4 more information.
  • the control unit 16 of the relay vehicle 4 is associated with a data processing device 25, in which the information provided for external communication 26 is preprocessed.
  • a selection of the information desired for the external communication 26 can take place, for example exclusively mission information 9 can be transmitted in real time.
  • the data processing device can also be used for the storage of information, so that corresponding devices on board the underwater vehicle 2 are not required or the power supply of the underwater vehicle 2 is relieved.
  • the external communication 26 takes place in the illustrated embodiment via an encoder 27, which encodes the information provided for external communication 26 or decodes the information received via the antenna and provides the control unit 6. In this way, it is ensured that in the external communication 26 of the underwater work system via the radio antenna 5 encrypted information is transmitted.

Description

Die Erfindung betrifft ein Unterwasserarbeitssystem mit mindestens einem autonomen Unterwasserfahrzeug und einem unbemannten, an der Wasseroberfläche schwimmenden, Relaisfahrzeug, gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft außerdem ein Verfahren zum Betrieb eines Unterwasserwasserarbeitssystems, wobei mindestens ein autonomes Unterwasserfahrzeug intern mit einem unbemannten, an der Wasseroberfläche schwimmenden und angetriebenen Relaisfahrzeug kommuniziert und das Relaisfahrzeug über eine Funkantenne extern kommuniziert.The invention relates to a Unterwasserarbeitssystem with at least one autonomous underwater vehicle and an unmanned, floating on the water surface, relay vehicle, according to the preamble of claim 1. The invention also relates to a method for operating an underwater waterworking system, wherein at least one autonomous underwater vehicle internally with an unmanned, at the water surface floating and driven relay vehicle communicates and the relay vehicle communicates externally via a radio antenna.

Unbemannte Unterwasserfahrzeuge eröffnen eine Vielzahl von Möglichkeiten für Unterwasserarbeiten und können im Vergleich zu bemannten Unterwasserfahrzeugen größere Arbeitstiefen erreichen und in Umgebungen arbeiten, die zu gefährlich für bemannte Systeme oder Taucher sind. Autonome Unterwasserfahrzeuge (AUV = "Autonomous Underwater Vehicle") umfassen eine eigene Stromversorgung und erfordern keine Kommunikation mit einer menschlichen Bedienperson während einer Mission. Sie folgen vielmehr einem vorgegebenen Missionsprogramm. Nach Durchführung des Missionsprogramms taucht das autonome Unterwasserfahrzeug ebenfalls selbständig auf und wird geborgen, beispielsweise von einem Mutterschiff.Unmanned underwater vehicles open up a variety of underwater capabilities and, compared to manned submersibles, can reach greater working depths and work in environments too dangerous for manned systems or divers. Autonomous underwater vehicles (AUV) include their own power supply and do not require communication with a human operator during a mission. Rather, they follow a predetermined mission program. After carrying out the mission program, the autonomous underwater vehicle also emerges on its own and is salvaged, for example by a mothership.

Das autonome Unterwasserfahrzeug ist üblicherweise mit geeigneten Sensoren ausgestattet, beispielsweise Sonarsensoren. Im Unterschied zu ferngelenkten Unterwasserfahrzeugen (ROV = "Remotely Operated Vehicle"), die sich insbesondere für Missionen mit örtlich begrenzten Untersuchungen, beispielsweise an konkreten Gegenständen unter Wasser, unter Echtzeitbedingungen eignen, sind autonome Unterwasserfahrzeuge in der Regel von einem Heckpropeller angetrieben und eignen sich insbesondere für großräumige oder großflächige Aufklärung unter Wasser. Beispielsweise werden autonome Unterwasserfahrzeuge vorteilhaft zur Kabel- und Pipeline-Inspektion oder auch zur Minensuche eingesetzt.The autonomous underwater vehicle is usually equipped with suitable sensors, for example sonar sensors. In contrast to remotely operated vehicles (ROVs), which are particularly suitable for missions with localized surveys, such as on concrete objects underwater, under real-time conditions, are autonomous Underwater vehicles usually driven by a tail propeller and are particularly suitable for large-scale or large-scale reconnaissance under water. For example, autonomous underwater vehicles are advantageously used for cable and pipeline inspection or for mine search.

Es ist bekannt, während der Mission eines autonomen unbemannten Unterwasserfahrzeugs die Messergebnisse während der Mission des autonomen Unterwasserfahrzeugs aufzuzeichnen und gegebenenfalls kabellos zum Mutterschiff zu übermitteln. Die Übermittlung von Information während der Mission vom getauchten Unterwasserfahrzeug ist jedoch begrenzt und nur bei geringen Entfernungen des autonomen Unterwasserfahrzeugs zum Mutterschiff möglich.It is known during the mission of an autonomous unmanned underwater vehicle to record the measurement results during the mission of the autonomous underwater vehicle and possibly wirelessly transmitted to the mothership. The transmission of information during the mission from the submerged submerged vehicle is however limited and only possible with small distances of the autonomous underwater vehicle to the mother ship.

Um die Reichweite der Datenübertragung zum Mutterschiff zu erhöhen, ist für ferngesteuerte Unterwasserfahrzeuge (ROV) aus der JP 62008895 A ein Unterwasserarbeitssystem bekannt, bei dem eine Versorgungs- und Steuerleitung eines unbemannten ferngelenkten Unterwasserfahrzeugs (ROV) mit einer an der Wasseroberfläche schwimmenden Funkboje verbunden ist. Die Funkboje ist mit einer Funkantenne sowie einer Empfangs- und Sendeeinheit ausgestattet. Über die Funkverbindung der Funkboje und die Versorgungsleitung zwischen der Funkboje und dem Unterwasserfahrzeug ist das Unterwasserfahrzeug von dem Mutterschiff fernsteuerbar.To increase the range of data transmission to the mothership, is for remote controlled underwater vehicles (ROV) from the JP 62008895 A an underwater working system is known in which a supply and control line of an unmanned remote controlled underwater vehicle (ROV) is connected to a floating on the water surface radio buoy. The radio buoy is equipped with a radio antenna and a receiving and transmitting unit. The underwater vehicle can be remotely controlled by the mothership via the radio link of the radio buoy and the supply line between the radio buoy and the underwater vehicle.

Durch die Vermittlung der Verbindung zwischen Mutterschiff und dem ferngelenkten Unterwasserfahrzeug über die Funkboje kann das ferngelenkte Unterwasserfahrzeug in seinem örtlich begrenzten Arbeitsraum in größerer Entfernung vom Mutterschiff arbeiten, als bei einer direkten Verbindung vom Unterwasserfahrzeug zum Mutterschiff möglich wäre.By communicating the connection between the mothership and the RCM via the radio buoy, the ATV can operate in its localized working space at a greater distance from the mothership than would be possible with a direct connection from the submersible to the mothership.

WO 91/13800 offenbart ein System für Unterwassererkundungen mit autonomen Unterwasserfahrzeugen, welche baugleich ausgebildet sind und jeweils einen Verbrennungsmotor und einen elektrischen Motor sowie eine Batterie aufweisen. Eines der Unterwasserfahrzeuge befindet sich an der Wasseroberfläche, wobei der Verbrennungsmotor die Batterie auflädt. Während dieser Phase ist das an der Oberfläche befindliche Unterwasserfahrzeug in Funkverbindung mit einem Mutterschiff. Das andere Unterwasserfahrzeug arbeitet unter Wasser und wird über seinen elektrischen Motor angetrieben. Die beiden Unterwasserfahrzeuge kommunizieren kabellos über eine akustische oder optische Verbindung. Sobald die Batterie des aktiven, abgetauchten Unterwasserfahrzeugs erschöpft ist, tauschen die Unterwasserfahrzeuge ihre Plätze. Über die kabellose Verbindung werden Bilder vom aktiven Unterwasserfahrzeug zum Mutterschiff übertragen, nämlich zunächst über die kabellose Verbindung zum aufgetauchten Unterwasserfahrzeug und anschließend über die Funkverbindung des aufgetauchten Unterwasserfahrzeugs. WO 91/13800 discloses a system for underwater explorations with autonomous underwater vehicles, which are of identical construction and one each Internal combustion engine and an electric motor and a battery. One of the underwater vehicles is located on the water surface, with the internal combustion engine charging the battery. During this phase, the subsurface underwater vehicle is in radio communication with a mothership. The other underwater vehicle works underwater and is powered by its electric motor. The two underwater vehicles communicate wirelessly via an acoustic or optical connection. Once the battery of the active submersible submersible is exhausted, the submersibles change places. The wireless connection transmits images from the active underwater vehicle to the mothership, first via the wireless connection to the surfaced underwater vehicle and then via the radio link of the submarine vessel that has appeared.

Das bekannte Unterwasserarbeitssystem ist zur örtlichen Untersuchung der Unterwasserwelt vorgesehen, beispielsweise zur Erkundung eines Wracks. Für eine großflächige Aufklärung unter Wasser, beispielsweise zur Aufklärung eines Unterwassergebiets im Rahmen der Mienenbekämpfung oder zur Inspektion langer Pipelines, ist das stationär arbeitende bekannte Unterwasserarbeitssystem ungeeignet.The known underwater work system is intended for local investigation of the underwater world, for example, to explore a wreck. For a large-scale reconnaissance under water, for example, to clarify an underwater area in the context of mine control or for the inspection of long pipelines, the stationary operating known underwater work system is unsuitable.

Die WO 2012/037174 A2 offenbart eine Boje und ein System zur Überwachung von Tauchern und anderen Unterwasserobjekten. Dabei kann die Boje einen Taucher überwachen und Positionsinformationen über den Taucher erhalten und diese Informationen verwenden, um sich entsprechend der weiteren Überwachung zu positionieren.The WO 2012/037174 A2 discloses a buoy and system for monitoring divers and other underwater objects. The buoy may monitor a diver and obtain position information about the diver and use that information to position themselves for further monitoring.

Die Boje kann sich zur Kommunikation mit dem Taucher einer akustischen Kommunikationseinrichtung bedienen, und die Taucherposition, biometrische und andere Daten ermitteln.The buoy may use an acoustic communication device to communicate with the diver and determine the diver position, biometric and other data.

In einer Ausführungsform umfasst die Boje ein Antriebssystem und über ein akustisches Kommunikationsmodul kann der Taucher die Boje zu einem Wirkbereich steuern.In one embodiment, the buoy comprises a propulsion system and via an acoustic communication module, the diver can control the buoy to an effective range.

Die lediglich akustische Kommunikation ist zwingend vorgegeben, da eine etwaige physische Verbindung beispielsweise mittels eines Seils oder Schlauchs aus Gefährdungsgründen nicht zulässig ist. Andererseits ist eine Datenübermittlungsrate durch die akustische Kommunikation beschränkt, sodass eine Echtzeitfähigkeit nicht gewährleistet werden kann.The only acoustic communication is mandatory, as a possible physical connection, for example by means of a rope or hose for reasons of risk is not allowed. On the other hand, a data transmission rate is limited by the acoustic communication, so that real-time capability can not be ensured.

Die JP S57 196309 A offenbart ein indirektes Kontrollsystem für ein Unterwasserfahrzeug zur Überwachung und Behandlung von explosiven Stoffen, bei dem ein Mutterüberwasserschiff zunächst die Position einer explosiven Substanz im Meer detektiert und anschließend ein zweites Überwasserboot zu dieser Position leitet. Mittels einer Winde am Heck des Überwasserbootes wird ein ferngesteuertes Unterwasserfahrzeug (ROV) an einem Kabel auf eine vorgegebene Tiefe in der Nähe zur explosiven Substanz ins Meer abgelassen. Kontrollsignale werden vom Mutterüberwasserschiff drahtlos per Funk zum Überwasserboot und vom Überwasserboot über das Kabel zum ferngesteuerten Unterwasserfahrzeug übertragen.The JP S57 196309 A discloses an indirect control system for an underwater vehicle for the monitoring and treatment of explosive materials in which a mother overwater vessel first detects the position of an explosive substance in the sea and then directs a second surface watercraft to that position. By means of a winch at the stern of the surface boat, a remote-controlled underwater vehicle (ROV) on a cable is lowered to a specified depth close to the explosive substance into the sea. Control signals are transmitted wirelessly from the mother's overwater vessel to the overwater boat and from the overwater boat via the cable to the remote-controlled underwater vehicle.

Die US 5,396,859 A offenbart ein Unterwassersystem zur Verbindung von Glasfaserkabeln, bei welchem ein U-Boot am Heck über ein erstes Glasfaserkabel mit dem Heck eines ferngesteuerten Unterwasserfahrzeuges verbunden ist. Ein zweites Glasfaserkabel ist zwischen einer Ankerboje und einem Torpedo im Wasser verbunden. Gesteuert vom U-Boot kann sich das Unterwasserfahrzeug derart an die Ankerboje annähern, dass die beiden Glasfaserkabel zum Starten des Torpedos verbunden werden.The US 5,396,859 A discloses a submarine system for connecting fiber optic cables, in which a submarine is connected at the rear via a first fiber optic cable to the stern of a remote-controlled underwater vehicle. A second fiber optic cable is connected between an anchor buoy and a torpedo in the water. Controlled by the submarine, the underwater vehicle can approach the anchor buoy in such a way that the two fiber optic cables are connected to start the torpedo.

Die DE 10 2004 062 124 B3 offenbart eine Einrichtung zum Tracken eines Unterwasserfahrzeuges mittels einer getauchten Plattform unter Verwendung eines akustischen Positionierungssystems. Ergänzend zur Trackeinrichtung können Lenksignale von der Plattform über einen Lenkdraht an die Antriebs- und Steuereinrichtung des Unterwasserfahrzeugs übertragen werden.The DE 10 2004 062 124 B3 discloses a device for tracking an underwater vehicle by means of a submerged vehicle Platform using an acoustic positioning system. In addition to the track device steering signals can be transmitted from the platform via a steering wire to the drive and control device of the underwater vehicle.

Die WO 03/045776 A1 offenbart ein ferngesteuertes Minenjagdsystem, welches aus einem Unterwasserfahrzeug mit einer über die Wasseroberfläche ausfahrbaren Antenne und einem ferngesteuerten Unterwasserfahrzeug (ROV) besteht, welche von einer externen Kontrollstation auf einem Überwasserschiff per Funkt gesteuert werden, wobei das ferngesteuerte Unterwasserfahrzeug (ROV) über ein Antriebs- und Fernüberwachungskabel mit dem Unterwasserfahrzeug verbunden ist.The WO 03/045776 A1 discloses a remote mine-hunting system consisting of an underwater vehicle with a surface-extendable antenna and a remote-controlled underwater vehicle (ROV) which are remotely controlled by an external control station on a surface vessel, the remote controlled underwater vehicle (ROV) being powered by a propulsion system Remote monitoring cable is connected to the underwater vehicle.

Der vorliegenden Erfindung liegt das Problem zugrunde, ein Unterwasserarbeitssystem mit mindestens einem autonomen unbemannten Unterwasserfahrzeug und einem unbemannten, an der Wasseroberfläche schwimmenden Relaisfahrzeug sowie ein Verfahren zum Betrieb eines solchen Unterwasserarbeitssystems zu schaffen, welche eine erhöhte Leistungsfähigkeit des bei der großräumigen Unterwasseraufklärung mit kurzen Missionszeiten und eine echtzeitfähige Datenübertragung bereitstellen.The present invention is based on the problem to provide an underwater work system with at least one autonomous unmanned underwater vehicle and an unmanned, floating on the water surface relay vehicle and a method of operating such a Unterwasserarbeitssystems, which increased performance of the large-scale underwater reconnaissance with short mission times and a Provide real-time data transmission.

Gelöst wird die Aufgabe durch ein Unterwasserarbeitssystem mit mindestens einem autonomen unbemannten Unterwasserfahrzeug und einem unbemannten, an der Wasseroberfläche schwimmenden Relaisfahrzeug, welches eine Funkantenne zur externen Kommunikation und einen Antrieb aufweist, wobei das autonome unbemannte Unterwasserfahrzeug physikalisch über eine Koppelverbindung mit dem Relaisfahrzeug verbunden ist, wobei die Koppelverbindung eine interne Kommunikationseinrichtung umfasst oder die Koppelverbindung ein Bestandteil der Kommunikationseinrichtung ist, und das Relaisfahrzeug, das autonome Unterwasserfahrzeug und/oder die Koppelverbindung derart ausgestaltet sind, dass das Relaisfahrzeug mittels einer Steuereinheit, insbesondere unter Berücksichtigung von Navigationsinformationen, über das autonome Unterwasserfahrzeug führbar ist.The object is achieved by an underwater work system with at least one autonomous unmanned underwater vehicle and an unmanned, floating on the water surface relay vehicle having a radio antenna for external communication and a drive, wherein the autonomous unmanned underwater vehicle is physically connected via a coupling connection with the relay vehicle, said the coupling connection comprises an internal communication device or the coupling connection is a component of the communication device, and the relay vehicle, the autonomous underwater vehicle and / or the coupling connection are configured such that the relay vehicle by means of a control unit, in particular taking into account navigation information, on the autonomous underwater vehicle is feasible.

Somit können bidirektional zwischen dem Relaisfahrzeug und dem Unterwasserfahrzeug Daten mit höheren Datenraten als bei einer akustischen Datenübermittlung übertragen werden. Somit kann eine akustikfreie Kommunikation oder Datenübertragung bereitgestellt werden.Thus, data can be transmitted bidirectionally between the relay vehicle and the underwater vehicle at higher data rates than with acoustic data transmission. Thus, an acoustics-free communication or data transmission can be provided.

Insbesondere kann auf plötzlich auftretende Ereignisse durch beispielsweise vor dem Unterwasserfahrzeug auftretendes natürliches (z.B. Fische) oder technisches Objekt (U-Boot) schnell reagiert werden.In particular, sudden events can be quickly responded to by, for example, occurring in front of the underwater vehicle, natural (e.g., fish) or technical (submarine) object.

Auch kann über die Koppelverbindung eine Energieversorgung des Unterwasserfahrzeugs erfolgen.Also can be done via the coupling connection, a power supply of the underwater vehicle.

Die "Koppelverbindung" verbindet physikalisch das Unterwasserfahrzeug mit dem Relaisfahrzeug. Diese Koppelverbindung kann durch einen Schlauch oder auch ein Kabel erfolgen. Physikalisch ist insbesondere als Gegensatz zu Funk oder Schall zu verstehen.The "coupling link" physically connects the underwater vehicle to the relay vehicle. This coupling connection can be made by a hose or a cable. Physically is to be understood in particular as a contrast to radio or sound.

Weiterhin kann auf das Unterwasserfahrzeug jederzeit physikalisch zugegriffen werden, sodass bei "Verlust" des Unterwasserfahrzeugs aufwändige Suchmanöver des Relaisfahrzeugs unterbleiben können.Furthermore, the underwater vehicle can be accessed physically at any time, so that in case of "loss" of the underwater vehicle, time-consuming search maneuvers of the relay vehicle can be omitted.

Erfindungsgemäß wird das an der Wasseroberfläche schwimmende unbemannte Relaisfahrzeug von einer Steuereinheit unter Berücksichtigung von Navigationsinformation über das mindestens eine autonome unbemannte Unterwasserfahrzeug geführt, wodurch das autonome unbemannte Unterwasserfahrzeug mit quasi unbeschränkter Reichweite unter Wasser operieren kann.According to the invention, the unmanned relay vehicle floating on the water surface is guided by a control unit taking into account navigation information about the at least one autonomous unmanned underwater vehicle, whereby the autonomous unmanned underwater vehicle operate with virtually unlimited range underwater.

Die Steuereinheit kann einen Kurs für das Relaisfahrzeug ermitteln und kann dessen Antrieb entsprechend ansteuern, so dass die Fahrzeuge des Unterwasserarbeitssystems stets in einer gewünschten Position relativ zueinander stehen. Das Relaisfahrzeug und das mindestens eine zugeordnete Unterwasserfahrzeug bilden somit insbesondere ein autonomes Unterwasserarbeitssystem, welche als autonome Gruppe navigiert werden. Dabei werden insbesondere vom unbemannten Unterwasserfahrzeug die während der Mission durch die Sensoren des autonomen Unterwasserfahrzeugs erfassten Missionsinformationen in Echtzeit zum Relaisfahrzeug vermittelt.The control unit may determine a course for the relay vehicle and may drive its drive accordingly, so that the vehicles of the underwater work system are always in a desired position relative to each other. The relay vehicle and the at least one associated underwater vehicle thus form in particular an autonomous underwater work system, which are navigated as an autonomous group. In particular, the unmanned underwater vehicle acquires the mission information acquired during the mission by the sensors of the autonomous underwater vehicle in real time to the relay vehicle.

Unter Navigationsinformation des autonomen Unterwasserfahrzeugs ist dabei Information über das Fahrtverhalten und die Position des autonomen unbemannten Unterwasserfahrzeugs zu verstehen, beispielsweise die Absolutgeschwindigkeit, die Geschwindigkeit über Grund, die Ausrichtung des Unterwasserfahrzeugs, die Tauchtiefe und die Entfernung vom Relaisfahrzeug und/oder auch Sonarinformationen.Under navigation information of the autonomous underwater vehicle is to understand information about the driving behavior and the position of the autonomous unmanned underwater vehicle, such as the absolute speed, speed over ground, the orientation of the underwater vehicle, the depth and distance from the relay vehicle and / or sonar information.

In vielen Missionssituationen reicht für eine zuverlässige Führung des Relaisfahrzeugs diejenige Navigationsinformation aus, welche durch Navigationssensoren des abgetauchten autonomen Unterwasserfahrzeugs erfasst werden und der Steuereinheit zugeführt werden. Zusätzliche Navigationsinformation über das Relaisfahrzeug und auch das autonome Unterwasserfahrzeug kann durch Sensoren an Bord des Relaisfahrzeugs erfasst und für die Navigation herangezogen werden.In many mission situations sufficient for a reliable guidance of the relay vehicle that navigation information, which are detected by navigation sensors of the submerged autonomous underwater vehicle and fed to the control unit. Additional navigation information about the relay vehicle and also the autonomous underwater vehicle can be detected by sensors on board the relay vehicle and used for navigation.

Vorteilhaft ist die Steuereinheit, welche das Relaisfahrzeug führt, an Bord des Relaisfahrzeugs angeordnet, wobei die im abgetauchten Unterwasserfahrzeug erfasste Navigationsinformation über die interne Kommunikationseinrichtung zum Relaisfahrzeug vermittelt wird.Advantageously, the control unit which guides the relay vehicle is arranged on board the relay vehicle, wherein the navigation information acquired in the submerged marine vehicle is communicated to the relay vehicle via the internal communication device.

Es ist jedoch auch eine Führung des Relaisfahrzeugs durch eine an Bord des autonomen Unterwasserfahrzeugs angeordnete Steuereinrichtung möglich, wobei Steuerbefehle für den Antrieb des Relaisfahrzeugs über die interne Kommunikationseinrichtung geleitet werden. Die Anordnung der Steuereinheit, welche das Relaisfahrzeug steuert, an Bord des Relaisfahrzeugs, hat den Vorteil, dass an Bord des schwimmfähigen Relaisfahrzeugs grundsätzlich mehr Bauraum für eine leistungsfähige Steuereinheit zur Verfügung steht. Ferner wird durch die Anordnung von Energie verbrauchenden Systemen, welche Information von und für das autonome Unterwasserfahrzeug verarbeiten, an Bord des Relaisfahrzeugs der Energiebedarf des Unterwasserfahrzeugs reduziert.However, it is also possible to guide the relay vehicle through a control device arranged on board the autonomous underwater vehicle, wherein control commands for driving the relay vehicle are conducted via the internal communication device. The arrangement of the control unit, which controls the relay vehicle, on board the relay vehicle, has the advantage that on board the floating relay vehicle basically more space for a powerful control unit is available. Furthermore, the arrangement of power-consuming systems that process information from and for the autonomous underwater vehicle on board the relay vehicle reduces the energy requirements of the underwater vehicle.

Umfasst das Unterwasserarbeitssystem mehrere autonome Unterwasserfahrzeuge, welche einem gemeinsamen Relaisfahrzeug zugeordnet sind und jeweils über eine interne Kommunikationseinrichtung mit dem Relaisfahrzeug verbunden sind, so ermittelt die Steuereinheit unter Berücksichtigung der Navigationsinformation aller beteiligten Unterwasserfahrzeuge einen Kurs für das Relaisfahrzeug, bei dem eine optimale Positionierung des Relaisfahrzeugs relativ zu den angeschlossenen Unterwasserfahrzeugen gegeben ist.If the underwater working system comprises a plurality of autonomous underwater vehicles which are assigned to a common relay vehicle and are each connected to the relay vehicle via an internal communication device, the control unit determines a course for the relay vehicle, taking into account the navigation information of all submarines involved, in which the relay vehicle is optimally positioned given to the connected underwater vehicles.

In einer Ausführungsform ist die Kommunikationseinrichtung derart ausgestaltet, dass diese echtzeitfähig ist. Echtzeitfähigkeit ist insbesondere dann gegeben, wenn die Ausbreitungsgeschwindigkeit der Übertragung größer ist als bei einer akustischen Kommunikation. Insbesondere Ausbreitungsgeschwindigkeiten oberhalb von 2000m pro Sekunde sind mit umfasst. Insbesondere ist dann Echtzeitfähigkeit gewährleistet, wenn Sonarinformationen unterhalb der Wiederholraten des Sonars an das Relaisfahrzeug übermittelbar sind.In one embodiment, the communication device is designed such that it is real-time capable. Real-time capability is especially given when the propagation speed of the transmission is greater than in an acoustic communication. In particular, propagation speeds above 2000 m per second are included. In particular, then real-time capability is ensured when sonar information below the Refresh rates of the sonar can be transmitted to the relay vehicle.

In einer vorteilhaften Ausführungsform der Erfindung sind eine Steuereinheit des Relaisfahrzeugs und eine Steuereinheit des autonomen Unterwasserfahrzeugs derart ausgebildet, dass über die interne Kommunikationseinrichtung Navigationsinformation in Richtung des Relaisfahrzeugs und in der anderen Richtung Steuerbefehle für das Unterwasserfahrzeug austauschbar ist. Auf diese Weise kann das erfindungsgemäße Unterwasserarbeitssystem neben der Übertragung von Missionsinformation in Echtzeit von einer menschlichen Bedienperson bedarfsweise direkt gesteuert werden, wenn dies gewünscht wird.In an advantageous embodiment of the invention, a control unit of the relay vehicle and a control unit of the autonomous underwater vehicle are designed such that via the internal communication device navigation information in the direction of the relay vehicle and in the other direction control commands for the underwater vehicle is interchangeable. In this way, in addition to the transmission of mission information in real time, the underwater work system according to the invention can be directly controlled by a human operator as needed, if desired.

Das Unterwasserarbeitssystem mit der Möglichkeit der ständigen Informationsübertragung in beiden Richtungen zwischen dem Unterwasserfahrzeug und einer Trägerplattform ermöglicht eine Überwachung des autonom operierenden Unterwasserarbeitssystems, wobei jederzeit ein Steuereingriff durch die Bedienperson erfolgen kann ("supervised autonomous system"). Das überwachte autonome Unterwasserarbeitssystem reduziert die Missionszeit und steigert die Effektivität der Mission indem eine Bedienperson erkennen kann, wenn das Unterwasserfahrzeug einer falschen Spur gefolgt sein sollte. In diesem Fall wird durch einen steuernden Eingriff in das autonome Missionsprogramm der Verlust von Missionszeit verhindert, was bei einem Weiterverfolgen nicht Zielführender und auf einem Irrtum beruhender Untersuchungen die Folge wäre.The underwater work system with the possibility of continuous information transmission in both directions between the underwater vehicle and a carrier platform allows monitoring of the autonomously operating underwater work system, wherein at any time a control intervention by the operator can take place ("supervised autonomous system"). The supervised autonomous underwater work system reduces the mission time and increases the mission's effectiveness by allowing an operator to detect when the underwater vehicle has followed a wrong lane. In this case, a controlled intervention in the autonomous mission program prevents the loss of mission time, which would result in following non-targeting and erroneous investigations.

Über die interne Kommunikationseinrichtung werden vorteilhaft dem Unterwasserfahrzeug Informationen über seine augenblickliche Position zugeleitet. Eine verlässliche Information über die Position steht dabei im Relaisfahrzeug zur Verfügung, welches genaue Positionsdaten über seine Funkantenne beziehen kann, beispielsweise per GPS. Dabei kann dem autonomen Unterwasserfahrzeug diese per GPS ermittelte Position des Relaisfahrzeugs mitgeteilt werden, so dass das Unterwasserfahrzeug mit der Kenntnis der Position des Relaisfahrzeugs navigiert. Darüber hinaus kann eine Verarbeitung der GPS-Daten an Bord des Relaisfahrzeugs erfolgen und dem Unterwasserfahrzeug unter Berücksichtigung der im Relaisfahrzeug zur Verfügung stehenden Navigationsinformation des Unterwasserfahrzeugs dessen genaue Position mitgeteilt werden.About the internal communication device are advantageously the underwater vehicle information about its current position forwarded. Reliable information about the position is available in the relay vehicle, which provides precise position data about its position Radio antenna can refer, for example by GPS. In this case, the autonomous underwater vehicle can be informed of this GPS position of the relay vehicle, so that the underwater vehicle navigates with the knowledge of the position of the relay vehicle. In addition, processing of the GPS data on board the relay vehicle can take place and the underwater vehicle can be informed of its exact position, taking into account the navigation information of the underwater vehicle available in the relay vehicle.

Vorteilhaft umfasst die interne Kommunikationseinrichtung ein Lichtwellenleiterkabel, welches das Relaisfahrzeug mit dem Unterwasserfahrzeug verbindet. Über das Lichtwellenleiterkabel ist eine leistungsfähige Datenübertragung möglich. Die Steuereinheit des Relaisfahrzeugs führt das Relaisfahrzeug unter Berücksichtigung von Navigationsinformation des autonomen Unterwasserfahrzeugs derart, dass eine Zugbelastung auf das Lichtwellenleiterkabel vermieden wird. Dabei kann es vorteilhaft sein, wenn die Steuereinheit, welche das Relaisfahrzeug führt, auf Informationen über die Zugbelastung im Lichtwellenleiterkabel zurückgreifen kann und bei zu hoher Zugbelastung das Relaisfahrzeug entsprechend steuert. Zu diesem Zweck kann dem Lichtwellenleiterkabel eine Einrichtung zur Messung der Zugbelastung zugeordnet sein.Advantageously, the internal communication device comprises an optical fiber cable which connects the relay vehicle with the underwater vehicle. The fiber-optic cable enables powerful data transmission. The control unit of the relay vehicle guides the relay vehicle in consideration of navigation information of the autonomous underwater vehicle such that a tensile load on the optical fiber cable is avoided. It may be advantageous if the control unit, which carries the relay vehicle, can rely on information about the tensile load in the optical fiber cable and controls the relay vehicle according to excessive tensile load. For this purpose, a device for measuring the tensile load can be assigned to the optical waveguide cable.

In vorteilhafter Ausführungsform der Erfindung wird das Relaisfahrzeug dem Unterwasserfahrzeug nachgeführt, wodurch die Zugbelastung des Lichtwellenleiterkabels reduziert oder ausgeschlossen wird. Dabei wird beispielsweise das Relaisfahrzeug mit dem gleichen Kurs gesteuert wie das Unterwasserfahrzeug, dessen Kurs sich aus der übertragenen Navigationsinformation ergibt.In an advantageous embodiment of the invention, the relay vehicle is tracked to the underwater vehicle, whereby the tensile load of the optical fiber cable is reduced or eliminated. In this case, for example, the relay vehicle is controlled with the same course as the underwater vehicle whose course results from the transmitted navigation information.

In einer vorteilhaften Ausführungsform der Erfindung weist das Relaisfahrzeug Mittel zur Bestimmung der Entfernung des Unterwasserfahrzeugs vom Relaisfahrzeug auf. Das Relaisfahrzeug wird dabei auf der Grundlage der Navigationsinformation des Unterwasserfahrzeugs, welche während der Mission vom Unterwasserfahrzeug geliefert werden kann, und der aktuellen Entfernung geführt.In an advantageous embodiment of the invention, the relay vehicle has means for determining the distance of the Underwater vehicle from the relay vehicle. The relay vehicle is guided on the basis of the navigational information of the underwater vehicle, which can be delivered during the mission of the underwater vehicle, and the current distance.

Dabei kann mit den Navigationsinformation des Unterwasserfahrzeugs und der Kenntnis der Entfernung die tatsächliche Position des Unterwasserfahrzeugs eindeutig bestimmt und der Kurs des Relaisfahrzeugs optimal abgestimmt werden, beispielsweise das Relaisfahrzeug dem Unterwasserfahrzeug auf gleichem Kurs nachgeführt werden. Vorteilhaft wird die Entfernung zwischen dem Unterwasserfahrzeug und dem Relaisfahrzeug mittels eines akustischen Sendekopfes ("pinger") erfasst. Hierzu weist das Unterwasserfahrzeug und/oder das Relaisfahrzeug einen akustischen Sendekopf auf.It can be clearly determined with the navigation information of the underwater vehicle and the knowledge of the distance, the actual position of the underwater vehicle and the course of the relay vehicle to be optimally tuned, for example, the relay vehicle track the underwater vehicle on the same course. Advantageously, the distance between the underwater vehicle and the relay vehicle is detected by means of an acoustic transmission head ("pinger"). For this purpose, the underwater vehicle and / or the relay vehicle on an acoustic transmission head.

In einer vorteilhaften Ausführungsform der Erfindung wird die Navigation des Unterwasserfahrzeugs von der Steuereinheit des Relaisfahrzeugs unterstützt oder übernommen, wodurch die erforderliche Rechenkapazität der Steuereinheit an Bord des Unterwasserfahrzeugs und damit der Strombedarf des Unterwasserfahrzeugs reduziert sind.In an advantageous embodiment of the invention, the navigation of the underwater vehicle is supported or adopted by the control unit of the relay vehicle, whereby the required computing capacity of the control unit on board the underwater vehicle and thus the power requirements of the underwater vehicle are reduced.

In einer weiteren Ausführungsform der Erfindung weist das Relaisfahrzeug ein mit seiner Steuereinheit verbundenes Sonar auf, das heißt zur Ortung von Gegenständen im Raum und unter Wasser mithilfe ausgesandter Schallimpulse geeignete Einrichtungen. Dabei ist die Steuereinheit derart ausgebildet, dass bei Feststellen von Hindernissen durch das Sonar Ausweichmanöver steuerbar sind.In a further embodiment of the invention, the relay vehicle has a sonar connected to its control unit, that is to say devices for locating objects in space and under water by means of emitted sound pulses. In this case, the control unit is designed such that evasion maneuvers can be controlled when obstacles are detected by the sonar.

Die Steuereinheit des Relaisfahrzeugs erkennt dabei über das Sonar Hindernisse im Kurs des Relaisfahrzeugs und leitet Ausweichmanöver, beispielsweise durch ein seitliches Passieren des Hindernisses, ein. In einer besonders vorteilhaften Ausführungsform ist das Relaisfahrzeug tauchfähig ausgebildet, wodurch das Relaisfahrzeug bedarfsweise einem sehr breiten Gegenstand, wie beispielsweise einem treibenden Netz, durch Abtauchen und Unterfahren des Hindernisses ausweicht.The control unit of the relay vehicle recognizes the sonar obstacles in the course of the relay vehicle and initiates evasive maneuvers, for example by a lateral passing of the obstacle, a. In a particularly advantageous Embodiment, the relay vehicle is submersible formed, whereby the relay vehicle, if necessary, evades a very wide object, such as a driving network, by submerging and driving under the obstacle.

In einer weiteren Ausführungsform der Erfindung umfasst das Relaisfahrzeug eine Datenverarbeitungseinrichtung, welcher Information vom Unterwasserfahrzeug eingebbar ist. Dabei erfolgt an Bord des Relaisfahrzeugs vor der Vermittlung der Information zur Trägerplattform eine Vorverarbeitung. In einer weiteren Ausführungsform der Erfindung umfasst das Relaisfahrzeug eine Kodiereinrichtung, mittels welcher die über die Funkantenne zu sendende bzw. empfangene Information kodierbar oder dekodierbar ist. Die Information, welche das Unterwasserfahrzeug intern zu dem Relaisfahrzeug überträgt, wird dabei vor der externen Kommunikation nach vorgegebenen Datenverarbeitungskriterien vorverarbeitet.In a further embodiment of the invention, the relay vehicle comprises a data processing device, which information from the underwater vehicle can be entered. In this case, a preprocessing takes place on board the relay vehicle before the information about the carrier platform is transmitted. In a further embodiment of the invention, the relay vehicle comprises a coding device, by means of which the information to be transmitted or received via the radio antenna can be coded or decoded. The information that transmits the underwater vehicle internally to the relay vehicle is pre-processed before the external communication according to predetermined data processing criteria.

Dabei kann beispielsweise aus den vorhandenen Daten eine Auswahl der über die Funkstrecke zu sendenden Information erfolgen oder eine Komprimierung. Auch wird die Information durch eine Kodierung auf der Funkstrecke geschützt.In this case, for example, from the existing data, a selection of the information to be sent via the radio link or a compression. Also, the information is protected by a coding on the radio link.

Besonders vorteilhaft wird solche Information, welche für die Überwachung des Unterwasserarbeitssystems bzw. der Mission des autonomen Unterwasserfahrzeugs durch eine Bedienperson nicht erforderlich oder erwünscht ist, an Bord des Relaisfahrzeugs gespeichert. Diese Information kann nach Abschluss der Mission und Bergung des Unterwasserfahrzeugs ausgelesen werden und wird in einer vorteilhaften Ausführungsform während der Mission für einen bedarfsweisen Abruf per Funk bereitgehalten.Particularly advantageous is such information, which is not required or desired for monitoring the underwater workstation or the mission of the autonomous underwater vehicle by an operator, stored on board the relay vehicle. This information may be read after completion of the mission and salvage of the submersible and, in an advantageous embodiment, will be maintained by radio during the mission on-demand call.

Weiterhin kann die Aufgabe gelöst werden durch ein Verfahren zum Betrieb eines Unterwasserarbeitssystems, wobei mindestens ein autonomes, unbemanntes Unterwasserfahrzeug intern mit einem unbemannten, an der Wasseroberfläche schwimmenden und angetriebenen Relaisfahrzeug kommuniziert, wobei das Relaisfahrzeug über eine Funkantenne extern kommuniziert, wobei eine Steuereinheit das Relaisfahrzeug unter Berücksichtigung von Navigationsinformation über das mindestens eine autonome unbemannte Unterwasserfahrzeug führt.Furthermore, the object can be achieved by a method for operating an underwater work system, wherein at least one autonomous, unmanned underwater vehicle internally with an unmanned, at the water surface floating and powered relay vehicle communicates with the relay vehicle communicates externally via a radio antenna, wherein a control unit, the relay vehicle taking into account navigation information on the at least one autonomous unmanned underwater vehicle leads.

In einer diesbezüglichen Ausführungsform führt die Steuereinheit das Relaisfahrzeug dem Unterwasserfahrzeug nach.In a related embodiment, the control unit tracks the relay vehicle to the underwater vehicle.

Zudem kann das Relaisfahrzeug auf der Grundlage der Navigationsinformation des Unterwasserfahrzeugs und der aktuellen Entfernung zwischen dem Unterwasserfahrzeug und dem Relaisfahrzeug geführt werden, wobei die Entfernung insbesondere mittels eines akustischen Sendekopfs am Unterwasserfahrzeug und/oder am Relaisfahrzeug erfasst wird.In addition, the relay vehicle may be guided on the basis of the navigation information of the underwater vehicle and the current distance between the underwater vehicle and the relay vehicle, the distance being detected in particular by means of an acoustic transmission head on the underwater vehicle and / or on the relay vehicle.

In einer weiteren Ausführungsform wird die Navigation des Unterwasserfahrzeugs von einer Steuereinheit des Relaisfahrzeugs unterstützt oder übernommen.In a further embodiment, the navigation of the underwater vehicle is supported or adopted by a control unit of the relay vehicle.

Um die Kommunikation zu effektivieren, kann die vom Unterwasserfahrzeug zum Relaisfahrzeug intern übertragene Information nach vorgegebenen Kriterien vorverarbeitet wird, insbesondere zum Teil gespeichert und zum Teil gesendet werden.In order to make the communication more effective, the information transmitted internally by the underwater vehicle to the relay vehicle can be pre-processed according to predetermined criteria, in particular partially stored and partly transmitted.

In einer weiteren Ausgestaltungsform erkennt die Steuereinheit (16) des Relaisfahrzeugs (4) über ein Sonar (19) Hindernisse (20) im Kurs des Relaisfahrzeugs (4) und leitet ein Ausweichmanöver durch seitliches Passieren des Hindernisses (20) und/oder Abtauchen und Unterfahren des Hindernisses (20) ein.In a further embodiment, the control unit (16) of the relay vehicle (4) detects obstacles (20) in the course of the relay vehicle (4) via a sonar (19) and initiates an avoidance maneuver by passing the obstacle sideways (20) and / or diving in and driving down of the obstacle (20).

Weitere Merkmale der Erfindung ergeben sich aus den Unteransprüchen sowie aus den Ausführungsbeispielen, welche nachstehend anhand der Zeichnung näher erläutert sind. Es zeigen:

Fig. 1
ein Unterwasserarbeitssystem mit einem autonomen Unterwasserfahrzeug und einem unbemannten Relaisfahrzeug,
Fig. 2
ein Schaubild zur Kommunikation zwischen dem Relaisfahrzeug und dem unbemannten Unterwasserfahrzeug gemäß Fig. 1.
Further features of the invention will become apparent from the dependent claims and from the embodiments, which are explained below with reference to the drawing. Show it:
Fig. 1
an underwater workstation with an autonomous underwater vehicle and an unmanned relay vehicle,
Fig. 2
a diagram for communication between the relay vehicle and the unmanned underwater vehicle according to Fig. 1 ,

Fig. 1 zeigt ein Unterwasserarbeitssystem 1 mit einem autonomen unbemannten Unterwasserfahrzeug 2 und einem unbemannten, an der Wasseroberfläche 3 schwimmenden Relaisfahrzeug 4. Das Relaisfahrzeug 4 weist eine Funkantenne 5 auf, über die das Relaisfahrzeug 4 mit einer Trägerplattform kommuniziert. Die Trägerplattform ist im gezeigten Ausführungsbeispiel ein Seeschiff 6, welches zur Kommunikation mit dem Unterwasserarbeitssystem 1 gleichfalls eine Funkantenne 7 trägt. Anstelle eins bemannten Seeschiffes 6 kann auch ein Leitstand an Land oder eine andere bemannte Trägerplattform vorgesehen sein, von der aus menschliches Bedienpersonal per Funkverbindung auch aus größerem Abstand zum Relaisfahrzeug 4 mit dem Unterwasserarbeitssystem 1 kommunizieren kann. Das autonome unbemannte Unterwasserfahrzeug 2 ist über eine interne Kommunikationseinrichtung mit dem Relaisfahrzeug 4 verbunden, wobei sich der Begriff "intern" auf die Kommunikation innerhalb des Unterwasserarbeitssystems 1 bezieht. Die Kommunikationseinrichtung umfasst sowohl am Relaisfahrzeug 4 als auch am Unterwasserfahrzeug 2 jeweils eine Einrichtung zum Senden und Empfangen von Daten sowie im Ausführungsbeispiel ein Lichtwellenleiterkabel 8. Das Lichtwellenleiterkabel 8 verbindet das Relaisfahrzeug 4 mit dem Unterwasserfahrzeug 2 bzw. verbindet die in den jeweiligen Fahrzeugen angeordneten Einrichtungen zum Senden und Empfangen von Information. Fig. 1 shows an underwater working system 1 with an autonomous unmanned underwater vehicle 2 and an unmanned, floating on the water surface 3 relay vehicle 4. The relay vehicle 4 has a radio antenna 5, via which the relay vehicle 4 communicates with a support platform. In the exemplary embodiment shown, the carrier platform is a seagoing vessel 6, which likewise carries a radio antenna 7 for communication with the underwater workstation 1. Instead of a manned ocean-going ship 6, a control console on land or another manned carrier platform can be provided, from which human operators can communicate with the underwater workstation 1 by radio connection even from a greater distance to the relay vehicle 4. The autonomous unmanned underwater vehicle 2 is connected via an internal communication device to the relay vehicle 4, wherein the term "internal" refers to the communication within the underwater work system 1. The communication device comprises both the relay vehicle 4 and the underwater vehicle 2 each have a device for transmitting and receiving data and in the embodiment, a fiber optic cable 8. The optical fiber cable 8 connects the relay vehicle 4 with the underwater vehicle 2 and connects arranged in the respective vehicles facilities for Sending and receiving information.

Das Relaisfahrzeug 4 vermittelt eine Kommunikation zwischen dem Seeschiff und dem abgetauchten Unterwasserfahrzeug 2 während der Mission. Dabei wird über das Lichtwellenleiterkabel 8 und die Funkverbindung des Relaisfahrzeugs 4 zum Mutterschiff 6 in Echtzeit während der Mission Missionsinformation 9 von dem autonom operierenden Unterwasserfahrzeugs 2 übertragen. Das Unterwasserfahrzeug 2 ist mit einer Kamera 10 und anderen Sensoren zur Erfassung seiner Umwelt, im Ausführungsbeispiel ein Sonar 11, ausgestattet, deren laufend erfasste Daten als Teil der Missionsinformation 9 über das Lichtwellenleiterkabel 8 zum Relaisfahrzeug 4 übertragen werden. Das Unterwasserfahrzeug 2 umfasst ferner Navigationssensoren 12, welche einer Steuereinheit 13 des Unterwasserfahrzeugs 2 eingegeben werden und der autonomen Navigation des Unterwasserfahrzeugs 2 zugrunde gelegt werden.The relay vehicle 4 mediates communication between the sea ship and the submerged one Underwater vehicle 2 during the mission. In this case, mission information 9 is transmitted from the autonomously operating underwater vehicle 2 via the optical waveguide cable 8 and the radio link of the relay vehicle 4 to the mother ship 6 in real time during the mission. The underwater vehicle 2 is equipped with a camera 10 and other sensors for detecting its environment, in the exemplary embodiment a sonar 11, whose continuously acquired data are transmitted as part of the mission information 9 via the optical fiber cable 8 to the relay vehicle 4. The underwater vehicle 2 further comprises navigation sensors 12, which are input to a control unit 13 of the underwater vehicle 2 and are based on the autonomous navigation of the underwater vehicle 2.

Das autonome unbemannte Unterwasserfahrzeug 2 folgt einem vorgegebenen Missionsprogramm und kann unter der Führung durch seine Steuereinheit 13 unabhängig im Unterwasserraum operieren. Über die Funkantenne 5 des Relaisfahrzeugs 4 kann jedoch eine Bedienperson des Unterwasserarbeitssystems 1 Steuerinformation 14 zuführen, welche vom Relaisfahrzeug 4 über das Lichtwellenleiterkabel 8 an das Unterwasserfahrzeug 2 weitergeleitet wird. Das Unterwasserarbeitssysteml kann somit autonom arbeiten, ist dabei jedoch ständig durch die externe Kommunikation mit dem Seeschiff 6 überwachbar. Dabei kann eine Bedienperson des Unterwasserarbeitssystems jederzeit die Steuerung des unbemannten Unterwasserfahrzeugs übernehmen. Dies ist besonders vorteilhaft, wenn sich bei der Überwachung des Unterwasserarbeitssystems 1 herausstellt, dass das Unterwasserfahrzeug 2 auf der Grundlage des vorgegebenen autonomen Missionsprogramms einem Irrtum unterlag, beispielsweise ein Unterwasserobjekt irrtümlich erkannt bzw. identifiziert hat.The autonomous unmanned underwater vehicle 2 follows a predetermined mission program and can operate under the guidance of its control unit 13 independently in the underwater area. However, via the radio antenna 5 of the relay vehicle 4, an operator of the underwater work system 1 can supply control information 14, which is forwarded by the relay vehicle 4 via the optical waveguide cable 8 to the underwater vehicle 2. The Unterwasserarbeitssysteml can thus work autonomously, but it is constantly monitored by the external communication with the ship 6. In this case, an operator of the underwater work system can always take control of the unmanned underwater vehicle. This is particularly advantageous when monitoring of the underwater workstation 1 proves that the underwater vehicle 2 has been subject to an error based on the given autonomous mission program, for example, has erroneously detected or identified an underwater object.

Die Steuerinformation 14 für das Unterwasserfahrzeug 2 umfasst jedoch nicht nur vom menschlichen Bediener angewiesene Steuerbefehle, sondern auch andere Information, welche auf dem Relaisfahrzeug 4 für eine Verwendung auf dem autonomen Unterwasserfahrzeug aufbereitet wird, insbesondere Information für die Navigation. Beispielsweise ist eine regelmäßige Übermittlung einer Positionsinformation vorteilhaft, welche an Bord des Relaisfahrzeugs 4 zur Verfügung steht und beispielsweise sehr genau per GPS über die Funkantenne 5 ermittelbar ist.However, the underwater vehicle control information 14 includes not only the human operator Control commands, but also other information which is prepared on the relay vehicle 4 for use on the autonomous underwater vehicle, in particular information for navigation. For example, a regular transmission of position information is advantageous, which is available on board the relay vehicle 4 and, for example, very accurately determined by GPS via the radio antenna 5.

Das Relaisfahrzeug 4 ist als Überwasserschiff ausgebildet, um ständig Funkkontakt mit der Trägerplattform aufrechtzuerhalten und weist einen Antrieb 15 auf. Das Relaisfahrzeug 4 umfasst ferner eine Steuereinheit 16, welche das Relaisfahrzeug 4 führt und dem Antrieb 15 entsprechend dem vorgesehenen Kurs und Geschwindigkeit ansteuert. Bei der Führung des Relaisfahrzeugs 4 berücksichtigt die Steuereinheit 16 Navigationsinformation über das autonome Unterwasserfahrzeug 2, welche über das Lichtwellenleiterkabel 8 in Richtung der Missionsinformation 9 zum Relaisfahrzeug 4 übertragen wird. Zusätzlich zu der an Bord des Unterwasserfahrzeugs 2 durch die Navigationssensoren 12 ermittelten Navigationsinformation kann zusätzliche Information über das Unterwasserfahrzeug 2 durch Sensoren an Bord des Relaisfahrzeugs 4 ermittelt werden. Hierzu sind in einem vorteilhaften Ausführungsbeispiel Ortungsmittel an Bord des Relaisfahrzeugs 4 vorgesehen.The relay vehicle 4 is designed as a surface vessel to constantly maintain radio contact with the carrier platform and has a drive 15. The relay vehicle 4 further comprises a control unit 16 which guides the relay vehicle 4 and drives the drive 15 according to the intended course and speed. When guiding the relay vehicle 4, the control unit 16 takes into account navigation information about the autonomous underwater vehicle 2, which is transmitted via the optical waveguide cable 8 in the direction of the mission information 9 to the relay vehicle 4. In addition to the navigation information determined on board the underwater vehicle 2 by the navigation sensors 12, additional information about the underwater vehicle 2 can be determined by sensors on board the relay vehicle 4. For this purpose, locating means are provided on board the relay vehicle 4 in an advantageous embodiment.

Zur Ermittlung einer Entfernung zwischen dem Relaisfahrzeug 4 und dem Unterwasserfahrzeug 2 ist an einem der beiden Fahrzeuge ein akustischer Sendekopf 18, ein sogenannter "pinger", angeordnet. Im gezeigten Ausführungsbeispiel ist der akustische Sendekopf 18 an dem unbemannten Unterwasserfahrzeug 2 angeordnet, so dass die Entfernungsbestimmung und die dazu erforderlichen Rechenoperationen an Bord des Relaisfahrzeugs 4 erfolgen können. An Bord des Unterwasserfahrzeugs 2 muss daher keine zusätzliche Energie für die Entfernungsbestimmung zur Verfügung gestellt werden, welche an Bord des autonomen Unterwasserfahrzeugs grundsätzlich begrenzt ist. Das Relaisfahrzeug 4 weist ferner ein Sonar 19 in seinem Bugbereich auf, mit dem im Wasser treibende Hindernisse 20 rechtzeitig erkannt werden können. Wird bei der Auswertung der Signale des Sonars 19 ein Hindernis im Kurs des Relaisfahrzeugs 4 detektiert, so leitet die Steuereinheit 16 ein entsprechendes Ausweichmanöver durch seitliches Passieren ein oder veranlasst das Relaisfahrzeug 4 zu einem Abtauchen und Unterfahren des Hindernisses 20. Hierzu ist das Relaisfahrzeug 4 im gezeigten Ausführungsbeispiel für kurzzeitige Tauchmanöver ausgestaltet.To determine a distance between the relay vehicle 4 and the underwater vehicle 2, an acoustic transmission head 18, a so-called "pinger", is arranged on one of the two vehicles. In the exemplary embodiment shown, the acoustic transmission head 18 is arranged on the unmanned underwater vehicle 2, so that the determination of the distance and the necessary arithmetic operations on board the relay vehicle 4 can take place. On board the underwater vehicle 2 must therefore no additional energy is provided for the distance determination, which is basically limited on board the autonomous underwater vehicle. The relay vehicle 4 also has a sonar 19 in its bow area, with the driving in the water obstacles 20 can be detected in good time. If an obstacle in the course of the relay vehicle 4 is detected during the evaluation of the signals of the sonar 19, the control unit 16 initiates a corresponding avoidance maneuver by passing sideways or causes the relay vehicle 4 to descend and pass under the obstacle 20. For this purpose, the relay vehicle 4 is in shown embodiment designed for short-term diving maneuvers.

In einem weiteren Ausführungsbeispiel ist das Relaisfahrzeug 4 ein Unterwasserfahrzeug, welches als Relaisfahrzeug 4 an der Wasseroberfläche 3 verwendet wird. Durch Unterfahren des Hindernisses 20 kann verhindert werden, dass breite, unter Wasser treibende Hindernisse wie Netze und dergleichen das empfindliche Lichtwellenleiterkabel 8 zerstören. Nach dem Unterfahren des Hindernisses 20 taucht das Relaisfahrzeug 4 unmittelbar wieder auf und nimmt die Funkverbindung zum Seeschiff 6 wieder auf.In a further embodiment, the relay vehicle 4 is an underwater vehicle which is used as a relay vehicle 4 on the water surface 3. By passing under the obstacle 20 can be prevented that wide, underwater obstacles such as nets and the like destroy the sensitive fiber optic cable 8. After driving under the obstacle 20, the relay vehicle 4 immediately reappears and resumes the radio connection to the ship 6.

Die Steuereinheit 16 bestimmt den Kurs des Relaisfahrzeugs 4 nach Auswertung der Navigationsinformation des unbemannten Unterwasserfahrzeugs derart, dass die Entfernung zwischen den beiden Fahrzeugen vorgegebene Grenzwerte nicht überschreitet. Die Steuereinheit 16 bestimmt dabei den Kurs des Relaisfahrzeugs 4 derart, dass das Relaisfahrzeug 4 dem Unterwasserfahrzeug 2 nachgeführt wird. Wird bei der Bestimmung der Entfernung zwischen dem Relaisfahrzeug 4 und dem Unterwasserfahrzeug 2 ein zu großer Abstand festgestellt, so ermittelt die Steuereinheit einen neuen Kurs, mit dem das Relaisfahrzeug 4 dem Unterwasserfahrzeug 2 nachgeführt wird. Das Unterwasserfahrzeug 2 kann somit autonom operieren, während das Relaisfahrzeug 4 an der Wasseroberfläche 3 nachgeführt wird und stets die externe Kommunikation des Unterwasserarbeitssystems 1 mit dem Seeschiff 6 aufrechterhält.The control unit 16 determines the course of the relay vehicle 4 after evaluation of the navigation information of the unmanned underwater vehicle such that the distance between the two vehicles does not exceed predetermined limits. The control unit 16 determines the course of the relay vehicle 4 such that the relay vehicle 4 is tracked to the underwater vehicle 2. If an excessively large distance is determined when determining the distance between the relay vehicle 4 and the underwater vehicle 2, the control unit determines a new course with which the relay vehicle 4 tracks the underwater vehicle 2. The underwater vehicle 2 can thus operate autonomously, while the relay vehicle 4 is tracked on the water surface 3 and always maintains the external communication of the underwater work system 1 with the ship 6.

Die interne Kommunikation zwischen der Steuereinheit 16 des Relaisfahrzeugs 4 und der Steuereinheit 13 des autonomen unbemannten Unterwasserfahrzeugs 2 ist nachstehend einschließlich der externen Kommunikation über das Relaisfahrzeug 4 anhand von Fig. 2 näher erläutert. Über die interne Kommunikationseinrichtung 21, welche das Lichtwellenleiterkabel 8 gemäß Fig. 1 umfasst, wird von der Steuereinheit 13 des Unterwasserfahrzeugs 2 Missionsinformation 9 übertragen, welche während der Mission von der Kamera 10 und anderen Sensoren zur Erfassung der Umwelt aufgenommen wird. Mit der in Echtzeit übertragenen Missionsinformation 9 überträgt die Steuereinheit 13 Navigationsinformation 17 über das autonome Unterwasserfahrzeug 2 zur Steuereinheit 16 des Relaisfahrzeugs 4. Die Navigationsinformation 17 kann dabei sowohl Rohdaten der Navigationssensoren 12 des Unterwasserfahrzeugs 2 umfassen als auch bereits aufbereitete Navigationsinformation, welche die Steuereinheit 13 des Unterwasserfahrzeugs 2 für ihre eigene autonome Navigation während der Mission aus den Rohdaten der Navigationssensoren 12 zur Verfügung hat. Je nach Konfiguration des Unterwasserarbeitssystems 1 kann die zum Relaisfahrzeug übertragene Navigationsinformation 17 auch eine Kombination aus Rohdaten und aus den Rohdaten bereits im Unterwasserfahrzeug bestimmter Navigationsinformation sein. Besonders vorteilhaft wird die Steuereinheit 13 des Unterwasserfahrzeugs 2 mit der Steuereinheit 16 des Relaisfahrzeugs 4 derart verknüpft, dass die Navigation des Unterwasserfahrzeugs 2 von der Steuereinheit 16 des Relaisfahrzeugs 4 unterstützt oder übernommen wird. Dabei wird die Navigationsinformation bzw. die von den Navigationssensoren erfassten Messwerte vom Unterwasserfahrzeug 2 direkt zur Steuereinheit 16 des Relaisfahrzeugs 4 übertragen. Die Steuereinheit 16 des Relaisfahrzeugs 4 leitet nach Auswertung der eingegangenen Navigationsinformation 17 der Steuereinheit 13 des Unterwasserfahrzeugs entsprechende Steuerinformation 14 zu.The internal communication between the control unit 16 of the relay vehicle 4 and the control unit 13 of the autonomous unmanned underwater vehicle 2 is described below, including the external communication via the relay vehicle 4 on the basis of Fig. 2 explained in more detail. Via the internal communication device 21, which the optical fiber cable 8 according to Fig. 1 Missions information 9 is transmitted from the control unit 13 of the underwater vehicle 2, which is recorded during the mission of the camera 10 and other sensors for detecting the environment. With the mission information 9 transmitted in real time, the control unit 13 transmits navigation information 17 via the autonomous underwater vehicle 2 to the control unit 16 of the relay vehicle 4. The navigation information 17 can comprise both raw data of the navigation sensors 12 of the underwater vehicle 2 and already prepared navigation information which the control unit 13 of the Underwater vehicle 2 for their own autonomous navigation during the mission from the raw data of the navigation sensors 12 has available. Depending on the configuration of the underwater workstation 1, the navigation information 17 transmitted to the relay vehicle may also be a combination of raw data and navigation information already determined in the underwater vehicle. Particularly advantageously, the control unit 13 of the underwater vehicle 2 is linked to the control unit 16 of the relay vehicle 4 in such a way that the navigation of the underwater vehicle 2 is supported or taken over by the control unit 16 of the relay vehicle 4. The navigation information or the of the Navigation sensors recorded measured values from the underwater vehicle 2 directly to the control unit 16 of the relay vehicle 4 transmitted. The control unit 16 of the relay vehicle 4, after evaluating the incoming navigation information 17, sends the control unit 13 of the underwater vehicle corresponding control information 14.

Im Fall, dass die Bedienperson an Bord des Seeschiffs 6 die Steuerung übernimmt oder andere Befehle an das Unterwasserfahrzeug 2 weiterleiten will, empfängt das Relaisfahrzeug 4 über die Funkverbindung entsprechende Befehle und leitet eine entsprechende Steuerinformation 14 an die Steuereinheit 13 des Unterwasserfahrzeugs 2 weiter.In the event that the operator on board the ship 6 takes over the control or wants to forward other commands to the underwater vehicle 2, the relay vehicle 4 receives corresponding commands via the radio link and forwards corresponding control information 14 to the control unit 13 of the underwater vehicle 2.

Die Steuereinheit 16 bestimmt aus einer Auswertung des Pingersignals des akustischen Sendekopfes 18 (Fig. 1) des Unterwasserfahrzeugs 2 die Entfernung des Unterwasserfahrzeugs 2 vom Relaisfahrzeug 4. Mit Kenntnis der genauen Entfernung ergibt sich die genaue Position des Unterwasserfahrzeugs 2 relativ zum Relaisfahrzeug 4. Die Steuereinheit 16 des Relaisfahrzeugs 4 empfängt ferner über die Funkantenne 5 GPS-Positionssignale 22, so dass die Steuereinheit 16 die tatsächliche Position des Relaisfahrzeugs 4 präzise bestimmen kann. Durch Verknüpfung der tatsächlichen Position des Relaisfahrzeugs mit der relativen Position des Unterwasserfahrzeugs wird die tatsächliche Position des Unterwasserfahrzeugs ermittelt, welche dem Unterwasserfahrzeug als Bestandteil der Steuerinformation 14 zur Verfügung gestellt wird. Damit kann die autonome Navigation des Unterwasserfahrzeugs beim Ablauf des Missionsprogramms auf die genaue Position des Unterwasserfahrzeugs zurückgreifen, welche das autonome Unterwasserfahrzeug während seiner Mission unter Wasser nicht zuverlässig bestimmen kann.The control unit 16 determines from an evaluation of the ping signal of the acoustic transmission head 18 (FIG. Fig. 1 Knowing the exact distance results in the exact position of the underwater vehicle 2 relative to the relay vehicle 4. The control unit 16 of the relay vehicle 4 also receives via the radio antenna 5 GPS position signals 22 so that the control unit 16 can precisely determine the actual position of the relay vehicle 4. By linking the actual position of the relay vehicle with the relative position of the underwater vehicle, the actual position of the underwater vehicle is determined, which is made available to the underwater vehicle as part of the control information 14. Thus, the autonomous navigation of the underwater vehicle can rely on the exact position of the underwater vehicle during the course of the mission program, which can not reliably determine the autonomous underwater vehicle during its mission under water.

Erkennt die Steuereinheit 16 des Relaisfahrzeugs eine zu große Entfernung zwischen dem Relaisfahrzeug 4 und dem Unterwasserfahrzeug 2, so wird eine Kurskorrektur vorgenommen, um das Relaisfahrzeug 4 dem Unterwasserfahrzeug 2 nachzuführen. Die Steuereinheit 16 ermittelt entsprechende Steuerbefehle 23 für den Antrieb 15 des Relaisfahrzeugs 4. Bei der Navigation des Relaisfahrzeugs 4 berücksichtigt die Steuereinheit 16 die eingehenden Messwerte des Sonars 19 des Relaisfahrzeugs 4, wobei gegebenenfalls Ausweichmanöver bei voraus liegenden Hindernissen 20 gesteuert werden. Zur Verbesserung der Genauigkeit der Navigation sind in dem Relaisfahrzeug 4 weitere Navigationssensoren 24 angeordnet, welche der Steuereinheit 16 bei der Führung des Relaisfahrzeugs 4 weitere Information bereit stellen. Der Steuereinheit 16 des Relaisfahrzeugs 4 ist eine Datenverarbeitungseinrichtung 25 zugeordnet, in der die zur externen Kommunikation 26 vorgesehene Information vorverarbeitet wird. Dabei kann eine Auswahl der zur externen Kommunikation 26 gewünschten Information erfolgen, beispielsweise ausschließlich Missionsinformation 9 in Echtzeit übertragen werden. Die Datenverarbeitungseinrichtung kann darüber hinaus zur Speicherung von Information genutzt werden, so dass entsprechende Einrichtungen an Bord des Unterwasserfahrzeugs 2 nicht erforderlich sind bzw. die Stromversorgung des Unterwasserfahrzeugs 2 entlastet ist.Recognizes the control unit 16 of the relay vehicle too large distance between the relay vehicle 4 and the Underwater vehicle 2, a course correction is made to track the relay vehicle 4 the underwater vehicle 2. The control unit 16 determines corresponding control commands 23 for the drive 15 of the relay vehicle 4. During the navigation of the relay vehicle 4, the control unit 16 takes into account the incoming measured values of the sonar 19 of the relay vehicle 4, where appropriate avoidance maneuvers are controlled with obstacles 20 lying ahead. To improve the accuracy of navigation 4 further navigation sensors 24 are arranged in the relay vehicle, which provide the control unit 16 in the management of the relay vehicle 4 more information. The control unit 16 of the relay vehicle 4 is associated with a data processing device 25, in which the information provided for external communication 26 is preprocessed. In this case, a selection of the information desired for the external communication 26 can take place, for example exclusively mission information 9 can be transmitted in real time. The data processing device can also be used for the storage of information, so that corresponding devices on board the underwater vehicle 2 are not required or the power supply of the underwater vehicle 2 is relieved.

Die externe Kommunikation 26 erfolgt im gezeigten Ausführungsbeispiel über eine Kodiereinrichtung 27, welche die zur externen Kommunikation 26 vorgesehene Information kodiert bzw. die über die Antenne empfangene Information dekodiert und der Steuereinheit 6 zur Verfügung stellt. Auf diese Weise ist sichergestellt, dass bei der externen Kommunikation 26 des Unterwasserarbeitssystems über die Funkantenne 5 verschlüsselte Information übertragen wird.The external communication 26 takes place in the illustrated embodiment via an encoder 27, which encodes the information provided for external communication 26 or decodes the information received via the antenna and provides the control unit 6. In this way, it is ensured that in the external communication 26 of the underwater work system via the radio antenna 5 encrypted information is transmitted.

Claims (10)

  1. Underwater working system (1) with at least one autonomous unmanned underwater vehicle (2) and an unmanned relay vehicle (4) floating on the water surface (3), which relay vehicle has a radio antenna (5) for external communication (26) and a drive (15), wherein the autonomous unmanned underwater vehicle (2) is connected physically to the relay vehicle (4) by a coupling connection, wherein the coupling connection comprises an internal communication device (21) or the coupling connection is a constituent of the communication device (21), wherein the relay vehicle (4), the autonomous underwater vehicle (2) and/or the coupling connection are configured so that the relay vehicle (4) can be guided by the autonomous underwater vehicle (2) by means of a control unit (16), taking navigation information into account, so that the autonomous unmanned underwater vehicle (2) is operable with quasi unlimited range under water.
  2. Underwater working system according to claim 1,
    characterised by that the communication device is configured so that this is real-time capable.
  3. Underwater working system according to one of the preceding claims,
    characterised by that a control unit (16) of the relay vehicle (4) and a control unit (13) of the underwater vehicle (2) are formed so that navigation information (17) for the relay vehicle (4) and control information (22) for the underwater vehicle (2) can be exchanged via the internal communication device.
  4. Underwater working system according to any one of the preceding claims,
    characterised by that the coupling connection is realised by an optical fibre cable (8), which physically connects the relay vehicle (4) to the underwater vehicle (2).
  5. Underwater working system according to any one of the preceding claims,
    characterised by that the relay vehicle (4) and/or the underwater vehicle (2) has or have means for determining the distance of the underwater vehicle (2) from the relay vehicle (4).
  6. Underwater working system according to any one of the preceding claims,
    characterised by that the underwater vehicle (2) and/or the relay vehicle (4) has or have an acoustic transmitting head (18).
  7. Underwater working system according to any one of the preceding claims,
    characterised by that the relay vehicle (4) and/or the underwater vehicle (2) has or have a sonar (19), wherein in particular the relay vehicle (4) and/or the underwater vehicle (2) are formed so that upon detection of obstacles (20) by the sonar (19), evasive manoeuvres of the underwater vehicle (2) and/or relay vehicle (4) are controllable, wherein the controlling takes place in particular by the non-evading vehicle (2, 4) in each case.
  8. Underwater working system according to any one of the preceding claims,
    characterised by that the relay vehicle (4) is formed to be submersible.
  9. Underwater working system according to any one of the preceding claims,
    characterised by that the relay vehicle (4) comprises a data processing device (25), in which information (9, 17) can be entered by the underwater vehicle (2).
  10. Underwater working system according to any one of the preceding claims,
    characterised by that the relay vehicle (4) comprises a coding device (27), by means of which information to be transmitted or received via the radio antenna (5) can be coded or decoded.
EP13710283.6A 2012-03-30 2013-02-13 Underwater system and method for its operation Active EP2830934B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012006565A DE102012006565A1 (en) 2012-03-30 2012-03-30 Underwater work system and method of operating an underwater workstation
PCT/DE2013/100053 WO2013143528A1 (en) 2012-03-30 2013-02-13 Underwater working system and method for operating an underwater working system

Publications (2)

Publication Number Publication Date
EP2830934A1 EP2830934A1 (en) 2015-02-04
EP2830934B1 true EP2830934B1 (en) 2018-04-04

Family

ID=47900392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13710283.6A Active EP2830934B1 (en) 2012-03-30 2013-02-13 Underwater system and method for its operation

Country Status (10)

Country Link
US (1) US9669912B2 (en)
EP (1) EP2830934B1 (en)
AU (1) AU2013242589B2 (en)
CA (1) CA2866295C (en)
DE (2) DE102012006565A1 (en)
DK (1) DK2830934T3 (en)
GB (2) GB2506817B (en)
NO (1) NO2945856T3 (en)
PT (1) PT2830934T (en)
WO (1) WO2013143528A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10328999B2 (en) * 2014-01-10 2019-06-25 Wt Industries, Llc System for launch and recovery of remotely operated vehicles
US10545253B2 (en) * 2014-09-12 2020-01-28 Cgg Services Sas AUV based seismic acquisition system and method
CN104777845B (en) * 2015-04-15 2018-04-03 上海海事大学 The underwater body apparatus and automatic obstacle avoiding method of underwater robot
US20170291670A1 (en) * 2016-04-08 2017-10-12 Texas Marine & Offshore Projects LLC Autonomous workboats and methods of using same
CN107845158B (en) * 2017-10-08 2019-08-13 浙江大学 A kind of data back device and method of underwater operation instrument
JP2019089422A (en) * 2017-11-14 2019-06-13 リュル キム,ドン Seabed survey system using underwater drone
US11292563B2 (en) * 2017-12-09 2022-04-05 Oceaneering International, Inc. Methods for subsea vehicles supervised control
CN108132631B (en) * 2018-01-31 2019-12-06 上海彩虹鱼深海装备科技有限公司 power supply control system and method for deep sea equipment
TWI729531B (en) * 2019-10-17 2021-06-01 國立中央大學 Wireless communication relay system for unmanned vehicles
CN112526524B (en) * 2020-12-09 2022-06-17 青岛澎湃海洋探索技术有限公司 Underwater fishing net detection method based on forward-looking sonar image and AUV platform
CN112615913B (en) * 2020-12-09 2022-08-09 大连海事大学 Information returning method for cooperation of unmanned aerial vehicle and unmanned ship for marine environment monitoring
US20230061059A1 (en) * 2021-08-25 2023-03-02 Brendan Hyland Compact surveillance system
CN113895580B (en) * 2021-11-17 2022-11-15 国网智能科技股份有限公司 Communication positioning device and method for cableless autonomous underwater robot

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838636A (en) * 1969-06-24 1998-11-17 The United States Of America As Represented By The Secretary Of The Navy Underwater vehicle guidance system and method
FR2375803A5 (en) * 1970-04-14 1978-07-21 Ver Flugtechnische Werke UNCREWED UNDERWATER VEHICLE
JPS57196309A (en) * 1981-05-27 1982-12-02 Tech Res & Dev Inst Of Japan Def Agency Indirect controller of underwater travelling object
JPS628895A (en) 1985-07-06 1987-01-16 Kaiken:Kk Radio-controlled submerged robot
FR2659290B1 (en) 1990-03-06 1992-05-15 Thomson Csf SYSTEM FOR EXPLORING THE UNDERWATER SPACE WITH AUTONOMOUS VEHICLES.
GB2247379B (en) * 1990-08-24 1994-06-08 Stc Plc Repeater buoy
US5396859A (en) * 1993-09-13 1995-03-14 The United States Of America As Represented By The Secretary Of The Navy System for effecting underwater coupling of optical fiber cables characterized by a novel V-probe cable capture mechanism
KR100360825B1 (en) * 2000-09-01 2002-11-13 한국해양연구원 Single Canister Type Underwater Stereo Camera Capable of Distance Measurement
GB0128163D0 (en) * 2001-11-23 2002-01-16 Bridport Aviat Products Ltd Nets
FR2832975B1 (en) 2001-11-30 2004-01-30 Thales Sa TELEOPERE AND PROJECTABLE MINING HUNTING SYSTEM
DE102004062124B3 (en) * 2004-12-23 2006-06-22 Atlas Elektronik Gmbh Submarine vehicle tracking, has submerged platform comprising track device that is utilized for determining momentary positions of driven submarine vehicle, where platform is space stabilized in submerged position
US8102733B2 (en) * 2007-03-09 2012-01-24 Lockheed Martin Corporation Communicating using sonar signals at multiple frequencies
EP2616317B1 (en) * 2010-09-13 2016-03-09 Incube Labs, Llc Self-propelled buoy for monitoring underwater objects
DE102010056539A1 (en) * 2010-12-29 2012-07-05 Atlas Elektronik Gmbh Coupling head, coupling device with coupling head, attachable Rendezvouskopf, Rendevouseinrichtung with Rendezvouskopf, underwater vehicle with it, coupling system, coupling method and application method for an underwater vehicle

Also Published As

Publication number Publication date
GB201401862D0 (en) 2014-03-19
CA2866295C (en) 2019-09-03
GB2506817B (en) 2014-07-09
DE102012006565A1 (en) 2013-10-02
WO2013143528A1 (en) 2013-10-03
AU2013242589B2 (en) 2016-05-12
AU2013242589A1 (en) 2014-10-16
NO2945856T3 (en) 2018-07-21
US20150046014A1 (en) 2015-02-12
GB2510990A (en) 2014-08-20
CA2866295A1 (en) 2013-10-03
DE112013001824A5 (en) 2014-12-11
GB2510990B (en) 2014-10-22
PT2830934T (en) 2018-06-06
DK2830934T3 (en) 2018-06-14
EP2830934A1 (en) 2015-02-04
US9669912B2 (en) 2017-06-06
GB2506817A (en) 2014-04-09
GB201406433D0 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
EP2830934B1 (en) Underwater system and method for its operation
EP2830935B1 (en) Method for detecting sea mines ans sea mine detection system
EP2768725B1 (en) Unmanned underwater vehicle and method for localizing and examining an object arranged at the bottom of a body of water and system having the unmanned underwater vehicle
EP2838788B1 (en) Recovery method for the recovery of an submarine watercraft, recovery arrangement, submarine with recovery arrangement, submarine watercraft therefor and system therewith
US9592895B2 (en) Underwater docking system and docking method using the same
AU2014330808B2 (en) Underwater system and method
DE102010035899B4 (en) Unmanned underwater vehicle and method of operating an unmanned underwater vehicle
EP2598396B1 (en) Method and system for reconnoitering a region under water
EP1827965B1 (en) Device and method for tracking an underwater vessel
CN110536830B (en) Application method of multiple underwater vehicles and application system of multiple underwater vehicles
KR100702448B1 (en) Remote control system of unmanned towing vessel for towing a target
EP0188928A1 (en) System using one or more remotely controlled boats for conducting operations at sea
Ura et al. Observation behavior of an AUV for ship wreck investigation
EP0715582B1 (en) Method of locating and clearing sea mines
EP4161826A2 (en) Depth-variable trailing sonar and method for operation
EP3356220B1 (en) Method for retrieving an underwater vehicle, escort vehicle and a vehicle combination
EP3197818B1 (en) Underwater cable winch for coupling and/or uncoupling an unmanned underwater vehicle, and underwater garage and underwater vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170810

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 985308

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013009841

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2830934

Country of ref document: PT

Date of ref document: 20180606

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20180529

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180608

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180404

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ATLAS ELEKTRONIK GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180705

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013009841

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

26N No opposition filed

Effective date: 20190107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190213

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 985308

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230216

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230220

Year of fee payment: 11

Ref country code: FR

Payment date: 20230221

Year of fee payment: 11

Ref country code: DK

Payment date: 20230220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230216

Year of fee payment: 11

Ref country code: PT

Payment date: 20230202

Year of fee payment: 11

Ref country code: IT

Payment date: 20230223

Year of fee payment: 11

Ref country code: GB

Payment date: 20230221

Year of fee payment: 11

Ref country code: DE

Payment date: 20220620

Year of fee payment: 11

Ref country code: BE

Payment date: 20230216

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240219

Year of fee payment: 12