EP2593735B1 - Cooling apparatus - Google Patents

Cooling apparatus Download PDF

Info

Publication number
EP2593735B1
EP2593735B1 EP11738939.5A EP11738939A EP2593735B1 EP 2593735 B1 EP2593735 B1 EP 2593735B1 EP 11738939 A EP11738939 A EP 11738939A EP 2593735 B1 EP2593735 B1 EP 2593735B1
Authority
EP
European Patent Office
Prior art keywords
cooling
vacuum chamber
connecting lines
cooling apparatus
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11738939.5A
Other languages
German (de)
French (fr)
Other versions
EP2593735A2 (en
Inventor
Johannes Wild
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL11738939T priority Critical patent/PL2593735T3/en
Publication of EP2593735A2 publication Critical patent/EP2593735A2/en
Application granted granted Critical
Publication of EP2593735B1 publication Critical patent/EP2593735B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Description

Die Erfindung betrifft eine KĆ¼hlvorrichtung mit einem geschlossenen KĆ¼hlkreislauf zum KĆ¼hlen von Objekten auf semi-kryogene bzw. kryogene Temperaturen von 230 K bis 80 K umfassend einen Kompressor zum Komprimieren eines KĆ¼hlmittels, dem das KĆ¼hlmittel in gasfƶrmigem Zustand zugefĆ¼hrt ist und aus dem das KĆ¼hlmittel in verdichtetem gasfƶrmigen Zustand austritt, einen dem Kompressor nachgeschalteten NachkĆ¼hler, einen GegenstromwƤrmetauscher umfassend eine Zu- und eine RĆ¼ckleitung, die derart angeordnet sind, dass das verdichtete KĆ¼hlmittel in der Zuleitung unter ErwƤrmung des durch die RĆ¼ckleitung flieƟenden entspannten KĆ¼hlmittels verflĆ¼ssigbar ist, und einen mit der Zu- und der RĆ¼ckleitung in Verbindung stehenden, vom KĆ¼hlmittel durchstrƶmten KĆ¼hlkopf, in dem das KĆ¼hlmittel verdampft.
Eine derartige KĆ¼hlvorrichtung ist beispielsweise dem Dokument EP 650574 A1 zu entnehmen. Die Dokumente WO 97/33671 A1 und WO 02/01123 A1 offenbaren KĆ¼hlvorrichtungen mit geschlossenen KĆ¼hlkreislauf zum KĆ¼hlen von Objekten auf semi-kryogene bzw. kryogene Temperaturen. In kommerziellen KĆ¼hlsystemen werden der GegenstromwƤrmetauscher und der KĆ¼hlkopf zu einer baulichen Einheit zusammengefasst und in einer Vakuumkammer angeordnet, in der auch das zu kĆ¼hlende Objekt platziert wird. Der in der Vakuumkammer angeordnete GegenstromwƤrmetauscher wird dabei Ć¼ber flexible Gaszuleitung in den KĆ¼hlkreislauf eingebunden. Da sich das KĆ¼hlmittel in den flexiblen Gaszuleitungen auf Raumtemperatur befindet und erst in der Vakuumkammer auf semi-kryogene bzw. kryogene Temperaturen gebracht wird, entfƤllt das Erfordernis der Isolierung dieser Leitungen. Die mit dem Transport von auf semi-kryogene bzw. kryogene Temperaturen gekĆ¼hltem KĆ¼hlmittel Ć¼ber flexible Leitungen verbundenen Probleme, wie z.B. das Vereisen, die Entstehung von Kondenswasser sowie das Auftreten von WƤrmeverlusten, werden somit vermieden. Der Nachteil liegt aber darin, dass die GerƤte eine groƟe Vakuumkammer benƶtigen, die fĆ¼r viele Prozesse unerwĆ¼nscht oder gar unbrauchbar ist. Die in solchen GerƤten verwendeten WƤrmetauscher sind in der Regel nƤmlich mehrere Meter lang und werden in einer Spirale gewickelt, um eine gewisse Kompaktheit des KĆ¼hlkopfes mit dem WƤrmetauscher zu erreichen. Nichtsdestotrotz sind die WƤrmetauscher schon bei kleinen Leistungen (z.B. -130Ā°C bei 30W) relativ groƟ (ca. 200mm hoch mit einem Durchmesser von 80mm). Weiters erfordert ein solches KĆ¼hlungssystem ein gutes Vakuumsystem, da das Volumen der Vakuumkammer dementsprechend groƟ sein muss. Bei bestehenden GerƤten (z.B. Polycold-Cryotiger), die das Mixed Gas Joule Thomson Verfahren nĆ¼tzen (siehe EP 650574 A1 ) und den GegenstromwƤrmetauscher mit KĆ¼hlkopf in der Vakuumkammer haben, geht eine Erhƶhung der KĆ¼hlleistung mit einer deutlichen VergrĆ¶ĆŸerung des WƤrmetauschers einher. Insbesondere bei hƶheren KĆ¼hlleistungen (ca. >50W) sind solche GerƤte wirtschaftlich nicht mehr sinnvoll bzw. unattraktiv, insbesondere fĆ¼r wissenschaftliche Anwendungen (z.B. Hochleistungs-LaserverstƤrker, z.B. 150W bei 130K, Laserkristalle mit Abmessungen von z.B. 3mmx6mm), bei denen kleine Vakuumkammern erwĆ¼nscht sind.
The invention relates to a cooling device with a closed cooling circuit for cooling objects to semi-cryogenic temperatures of 230 K to 80 K, comprising a compressor for compressing a coolant to which the coolant is supplied in the gaseous state and from which the coolant in compressed gaseous state exits, an aftercooler downstream of the compressor, a countercurrent heat exchanger comprising a supply and a return line, which are arranged such that the compressed refrigerant in the supply line is liquefied while heating the expanded refrigerant flowing through the return line, and one with the Zu- and the return associated, cooled by the coolant cooling head in which the coolant evaporates.
Such a cooling device is for example the document EP 650574 A1 refer to. The documents WO 97/33671 A1 and WO 02/01123 A1 disclose closed circuit cooling devices for cooling objects to semi-cryogenic temperatures. In commercial cooling systems, the countercurrent heat exchanger and the cooling head are combined to form a structural unit and placed in a vacuum chamber in which the object to be cooled is also placed. The arranged in the vacuum chamber countercurrent heat exchanger is integrated via flexible gas supply into the cooling circuit. Since the coolant in the flexible gas supply lines is at room temperature and only in the vacuum chamber is brought to semi-cryogenic or cryogenic temperatures, eliminating the need for the isolation of these lines. The problems associated with the transport of refrigerants cooled to semi-cryogenic or cryogenic temperatures via flexible lines, such as icing, the formation of condensation water and the occurrence of heat losses, are thus avoided. The disadvantage, however, lies in the fact that the devices require a large vacuum chamber suitable for Many processes are undesirable or even unusable. The heat exchangers used in such devices are usually several meters long and are wound in a spiral in order to achieve a certain compactness of the cooling head with the heat exchanger. Nevertheless, the heat exchangers are relatively large even at low power (eg -130 Ā° C at 30W) (about 200mm high with a diameter of 80mm). Furthermore, such a cooling system requires a good vacuum system, since the volume of the vacuum chamber must be correspondingly large. For existing devices (eg Polycold Cryotiger) that use the Mixed Gas Joule Thomson method (see EP 650574 A1 ) and have the countercurrent heat exchanger with the cooling head in the vacuum chamber, is an increase in the cooling capacity associated with a significant increase in the heat exchanger. In particular, at higher cooling capacities (about> 50W) such devices are no longer economically useful or unattractive, especially for scientific applications (eg high power laser amplifiers, eg 150W at 130K, laser crystals with dimensions of eg 3mmx6mm) where small vacuum chambers are desired ,

Die Erfindung zielt daher darauf ab, eine KĆ¼hlvorrichtung derart zu verbessern, dass eine AbkĆ¼hlung eines Objekts in effizienter Weise auf mƶglichst tiefe semi-kryogene bzw. kryogene Temperaturen gelingt, wobei die Vakuumkammer gleichzeitig mƶglichst klein und handlich ausgebildet sein soll und zugleich eine wesentliche Leistungssteigerung erzielt werden soll (z.B. statt 30W/140K, 200W/140K). Weiters sollen die Verluste beim Transport des KĆ¼hlmittels mƶglichst gering gehalten werden.The invention therefore aims to improve a cooling device such that a cooling of an object in an efficient manner to the lowest possible semi-cryogenic or cryogenic temperatures succeeds, the vacuum chamber should be designed as small and handy as possible and at the same time achieves a significant increase in performance should be (eg instead of 30W / 140K, 200W / 140K). Furthermore, the losses during transport of the coolant should be kept as low as possible.

Zur Lƶsung dieser Aufgabe ist die KĆ¼hlvorrichtung der eingangs genannten Art erfindungsgemƤƟ im Wesentlichen dahingehend weitergebildet, dass der KĆ¼hlkopf in einer mit einer Unterdruckquelle verbindbaren Vakuumkammer angeordnet ist, die Ć¼ber flexible Verbindungsleitungen mit der Zu- und der RĆ¼ckleitung des GegenstromwƤrmetauschers verbunden ist, sodass der GegenstromwƤrmetauscher auƟerhalb der Vakuumkammer angeordnet ist. Die Erfindung beruht also auf der Idee, das herkƶmmliche Mixed JT-Verfahren zu nutzen und den Prozess der VerflĆ¼ssigung des KĆ¼hlmittels mittels des GegenstromwƤrmetauschers abgetrennt von der Vakuumkammer durchzufĆ¼hren. Die VerflĆ¼ssigung des KĆ¼hlmittels erfolgt somit auƟerhalb der Vakuumkammer, wobei das verflĆ¼ssigte KĆ¼hlmittel der Vakuumkammer Ć¼ber flexible Verbindungsleitungen zugefĆ¼hrt wird. Dabei ist lediglich dafĆ¼r Sorge zu tragen, dass der WƤrmetauscher und die Verbindungsleitungen in geeigneter Weise thermisch isoliert sind. Der WƤrmetauscher kann beispielsweise mit Hilfe einer eigenen Vakuumkammer mit Vakuumpumpe oder einfacher mittels DƤmmstoffen aus expandiertem Polystyrol (EPS), DƤmmstoffen aus extrudiertem Polystyrol (XPS), DƤmmstoffen aus Polyurethan (PUR) oder mittels einer VakuumdƤmmplatte (VIP) isoliert werden. Da die KĆ¼hlleistungen auf Grund der erfindungsgemƤƟen Ausbildung vervielfacht werden kƶnnen, spielen Verluste auf Grund einer allenfalls schlechteren Isolierung des WƤrmetauschers nur eine untergeordnete Rolle. Es wurden z.B. Leistungen auf einem KĆ¼hlkopf mit (Zylinder: H 35mm x D 35mm) 300W/140K realisiert. Dies entspricht einer Verzehnfachung der KƤlteleistung bei einer Volumenverkleinerung um das ca. 30fache. Zur besseren thermischen Isolierung, insbesondere bei tieferen Temperaturen kann in die Isolierung des WƤrmetauschers eine temperaturstrahlungsreflektierende Schicht aus Aluminiumfolie oder gleichwertigem Material eingebracht werden. Es ergibt sich dabei beispielsweise ein Schichtaufbau EPS, Aluminiumfolie, EPS, Aluminiumfolie,...To solve this problem, the cooling device of the type mentioned is according to the invention substantially further developed in that the cooling head is arranged in a connectable to a vacuum source vacuum chamber, the flexible Connecting lines is connected to the inlet and the return line of the countercurrent heat exchanger, so that the countercurrent heat exchanger is arranged outside the vacuum chamber. The invention is thus based on the idea of using the conventional mixed-JT process and carrying out the process of liquefying the coolant by means of the countercurrent heat exchanger separated from the vacuum chamber. The liquefaction of the coolant thus takes place outside the vacuum chamber, wherein the liquefied coolant is supplied to the vacuum chamber via flexible connecting lines. It is only necessary to ensure that the heat exchanger and the connecting lines are suitably thermally insulated. The heat exchanger can be isolated, for example, by means of its own vacuum chamber with vacuum pump or more easily by means of expanded polystyrene (EPS), extruded polystyrene (XPS) insulation, polyurethane (PUR) insulation or by means of a vacuum insulation panel (VIP). Since the cooling performance can be multiplied due to the formation of the invention, losses due to a possibly worse insulation of the heat exchanger play only a minor role. For example, performances were realized on a cooling head with (cylinder: H 35mm x D 35mm) 300W / 140K. This corresponds to a tenfold increase in cooling capacity with a reduction in volume of approximately 30 times. For better thermal insulation, in particular at lower temperatures, a temperature radiation-reflecting layer of aluminum foil or equivalent material can be introduced into the insulation of the heat exchanger. This results, for example, in a layer structure EPS, aluminum foil, EPS, aluminum foil, ...

Auf Grund der erfindungsgemƤƟen Ausbildung ergibt sich die Mƶglichkeit, das KĆ¼hlaggregat und den KĆ¼hlkopf als funktional voneinander getrennte Einheiten auszubilden, sodass im KĆ¼hlkopf selbst keine groƟbauenden Komponenten des KĆ¼hlaggregats, wie beispielsweise ein GegenstromwƤrmetauscher od. dgl., angeordnet werden mĆ¼ssen. Dies ermƶglicht es weiters, ein den jeweiligen BedĆ¼rfnissen entsprechendes KĆ¼hlaggregat mit der jeweils erforderlichen KĆ¼hlleistung vorzusehen, ohne dass der KĆ¼hlkopf in irgendeiner Weise angepasst werden muss und ohne dass die Handhabbarkeit des KĆ¼hlkopfes in irgendeiner Weise beeintrƤchtigt wird.
Eine besonders einfache Handhabbarkeit wird dadurch gewƤhrleistet, dass der Kompressor, der NachkĆ¼hler und der GegenstromwƤrmetauscher gemeinsam in einem StandgerƤt angeordnet sind, dessen GehƤuse eine DurchfĆ¼hrung fĆ¼r die den GegenstromwƤrmetauscher mit der Vakuumkammer verbindenden Verbindungsleitungen aufweist.
Wesentlich beim Mixed Gas Joule Thomson KĆ¼hlaggregat ist, dass der KĆ¼hler unter Zwischenschaltung eines Drosselorgans mit der Zuleitung des GegenstromwƤrmetauschers in Verbindung steht, damit die nƶtige Druckreduktion des KƤltemittels erfolgt und das verflĆ¼ssigte KĆ¼hlmittel im KƤltekopf verdampfen kann. Eine besonders vorteilhafte Konstruktion sieht in diesem Zusammenhang vor, dass die die Zuleitung des GegenstromwƤrmetauschers mit dem KĆ¼hlkopf verbindende Verbindungsleitung das Drosselorgan bildet.
Um die thermischen Verluste beim Transport des KĆ¼hlmittels durch die Verbindungsleitungen zu minimieren, ist gemƤƟ einer bevorzugten Weiterbildung der Erfindung vorgesehen, dass die Verbindungsleitungen eine Vakuumisolierung aufweisen. Bevorzugt kann dabei vorgesehen sein, dass die Vakuumkammer und die Vakuumisolierung der Verbindungsleitungen miteinander unmittelbar in Verbindung stehen und mit einer gemeinsamen Unterdruckquelle verbindbar sind. Dies hat den Vorteil, dass das Vakuumsystem der Vakuumkammer genutzt wird, um in geeigneter Form das KƤltemittel auf dem Transport zwischen der Vakuumkammer bzw. dem KĆ¼hlkopf und dem KĆ¼hlreservoir zu isolieren und eine VakuumdurchfĆ¼hrung zu gestalten. In der Vakuumkammer selbst befindet sich der an den Verbindungsleitungen angebrachte KĆ¼hlkopf (z.B. aus Kupfer), durch welchen das KƤltemittel (z.B. flĆ¼ssiger Stickstoff) von den Verbindungsleitungen kommend geleitet wird. Dabei wird die bestehende Vakuumkammer um das relativ geringe Volumen der Vakuumisolierung der Verbindungsleitungen erweitert und gleichzeitig eine Vakuumverbindung zwischen der Vakuumisolierung der Verbindungsleitungen und der Vakuumkammer geschaffen. Somit wird das Problem der VakuumdurchfĆ¼hrung und die Isolation der Verbindungsleitungen mit geringem Aufwand und Kosten gelƶst. Bevorzugt ist dabei vorgesehen, dass die Vakuumkammer eine DurchfĆ¼hrung fĆ¼r die Verbindungsleitungen aufweist, die derart gestaltet ist, dass der Hohlraum der Vakuumisolierung der Verbindungsleitungen mit dem Innenraum der Vakuumkammer in Verbindung steht.
Due to the construction according to the invention, there is the possibility to form the cooling unit and the cooling head as a functionally separate units, so that in the cooling head itself no bulky components of the cooling unit, such as For example, a countercurrent heat exchanger od. Like., Must be arranged. This makes it possible, furthermore, to provide a cooling unit, which corresponds to the respective requirements, with the required cooling power in each case, without the cooling head having to be adapted in any way and without the handling of the cooling head being impaired in any way.
A particularly simple handling is ensured by the fact that the compressor, the aftercooler and the countercurrent heat exchanger are arranged together in a stand-alone unit, whose housing has a passage for connecting the countercurrent heat exchanger with the vacuum chamber connecting lines.
Essential in the case of the Mixed Gas Joule Thomson refrigeration unit is that the radiator, with the interposition of a throttle element, is connected to the supply line of the countercurrent heat exchanger so that the necessary pressure reduction of the refrigerant takes place and the liquefied coolant can evaporate in the refrigeration head. A particularly advantageous construction in this context provides that the connecting line connecting the supply line of the countercurrent heat exchanger with the cooling head forms the throttle element.
In order to minimize the thermal losses during transport of the coolant through the connecting lines, it is provided according to a preferred development of the invention that the connecting lines have a vacuum insulation. Preferably, it can be provided that the vacuum chamber and the vacuum insulation of the connecting lines are in direct contact with each other and can be connected to a common vacuum source. This has the advantage that the vacuum system of the vacuum chamber is used to suitably the refrigerant to isolate on the transport between the vacuum chamber or the cooling head and the cooling reservoir and to make a vacuum feedthrough. In the vacuum chamber itself is located on the connecting lines mounted cooling head (eg copper) through which the refrigerant (eg liquid nitrogen) is coming from the connecting lines coming. In this case, the existing vacuum chamber is expanded by the relatively small volume of the vacuum insulation of the connecting lines and at the same time created a vacuum connection between the vacuum insulation of the connecting lines and the vacuum chamber. Thus, the problem of the vacuum feedthrough and the insulation of the connecting lines is achieved with little effort and expense. It is preferably provided that the vacuum chamber has a passage for the connecting lines, which is designed such that the cavity of the vacuum insulation of the connecting lines is in communication with the interior of the vacuum chamber.

Am anderen Ende der Verbindungsleitungen, d.h. auf der Seite des KƤltereservoir, wird die kƤltemittelfĆ¼hrende Leitung aus der Vakuumisolierung, wie auch bei aus dem Stand der Technik bekannten vakuumisolierten Rohren geeignet herausgefĆ¼hrt. Dabei ist insbesondere auf die WƤrmeleitfƤhigkeit des HĆ¼llrohres der Vakuumisolierung und der WƤrmeĆ¼bertragungsflƤche zu achten. Auf eine gute VakuumverschweiƟung beim Ɯbergang ist ebenso zu achten. Dieser Ɯbergang, der geringe WƤrmeĆ¼bertragungsverluste verursachen sollte, kann durch herkƶmmliche Isolationsmittel gegen Kondenswasser oder Eis zusƤtzlich geschĆ¼tzt werden.At the other end of the connection lines, i. on the side of the cold reservoir, the refrigerant-carrying pipe is appropriately led out of the vacuum insulation, as well as vacuum-insulated pipes known from the prior art. It is particularly important to pay attention to the thermal conductivity of the cladding tube of the vacuum insulation and the heat transfer surface. A good vacuum welding during the transition is also important. This transition, which should cause low heat transfer losses, can be further protected by conventional insulation against condensation or ice.

Auf Grund der beschriebenen Ausbildung ist es nun mƶglich, ƤuƟerst effizient, platzsparend (volumensparend), je nach Dimensionierung des jeweiligen KĆ¼hlaggregats beliebige KƤlteleistungen in eine Vakuumkammer einzuleiten.Due to the described training, it is now possible extremely efficient, space-saving (volume-saving), depending on the dimensions of the respective cooling unit to initiate any refrigeration capacity in a vacuum chamber.

Ein besonders einfacher Aufbau der Vakuumisolierung der Verbindungsleitungen wird erreicht, wenn, wie dies einer bevorzugten Weiterbildung der Erfindung entspricht, die Vakuumisolierung einen die Verbindungsleitungen unter Ausbildung eines vorzugsweise im Wesentlichen ringfƶrmigen Hohlraumes umgebenden HĆ¼llschlauch umfasst. Der HĆ¼llschlauch kann genau so wie die Verbindungsleitungen flexibel sein. Um zu verhindern, dass die Verbindungsleitungen den HĆ¼llschlauch berĆ¼hren, was zu einem unerwĆ¼nschten WƤrmeĆ¼bergang fĆ¼hren wĆ¼rde, ist die Ausbildung bevorzugt derart ausgebildet, dass im Hohlraum zwischen den Verbindungsleitungen und dem HĆ¼llschlauch wenigstens ein Abstandhalter angeordnet ist. Wenn, wie dies bevorzugt vorgesehen ist, der Abstandhalter eine gewellte AuƟen- und Innenkontur aufweist, wird sichergestellt, dass zwischen Abstandhalter einerseits und dem HĆ¼llschlauch und den Verbindungsleitungen andererseits lediglich punkt- oder linienfƶrmige Kontakte entstehen, wobei auf Grund derartiger Hertz'scher Kontakte der WƤrmeintrag von auƟen weiter verringert werden kann.A particularly simple construction of the vacuum insulation of the connecting lines is achieved if, as is the case with a preferred development of the invention, the vacuum insulation comprises an enveloping tube surrounding the connecting lines to form a preferably substantially annular cavity. The buffer tube can be flexible as well as the connecting lines. In order to prevent the connecting lines from touching the enveloping hose, which would lead to an undesirable heat transfer, the embodiment is preferably designed such that at least one spacer is arranged in the hollow space between the connecting lines and the enveloping hose. If, as is preferably provided, the spacer has a corrugated outer and inner contour, it is ensured that between spacers on the one hand and the buffer tube and the connecting lines on the other hand only point or linear contacts arise, due to such Hertzian contacts the heat input can be further reduced from the outside.

Ein besonders einfacher Aufbau wird gemƤƟ einer bevorzugten Weiterbildung erreicht, wenn die gemeinsame Unterdruckquelle an die Vakuumkammer angeschlossen ist.A particularly simple structure is achieved according to a preferred embodiment, when the common vacuum source is connected to the vacuum chamber.

Weiters ist bevorzugt vorgesehen, dass in der Vakuumkammer ein die DurchfĆ¼hrung umgebender, insbesondere rohrfƶrmiger Abstandhalter angeordnet ist, der den Abstand zwischen dem KĆ¼hlkopf und der Innenwand der Vakuumkammer definiert, wobei der Abstandhalter radiale Durchbrechungen aufweist, sodass der Innenraum der Vakuumkammer mit dem Hohlraum der Vakuumisolierung der Verbindungsleitungen in Verbindung steht.Furthermore, it is preferably provided that in the vacuum chamber a surrounding surrounding, in particular tubular spacer is arranged, which defines the distance between the cooling head and the inner wall of the vacuum chamber, wherein the spacer has radial openings, so that the interior of the vacuum chamber with the cavity of the vacuum insulation the connecting lines communicates.

Bevorzugt umfasst das KĆ¼hlmittel Butan und/oder Iso-Butan und/oder Propan und/oder Propen und/oder Ethin und/oder Ethan und/oder Ethen und/oder Methan und/oder Argon und/oder Stickstoff .The coolant preferably comprises butane and / or isobutane and / or propane and / or propene and / or ethyne and / or ethane and / or ethene and / or methane and / or argon and / or nitrogen.

Die Erfindung wird nun anhand von in der Zeichnung schematisch dargestellten AusfĆ¼hrungsbeispielen nƤher erlƤutert. In dieser zeigt Fig.1 einen geschlossenen KĆ¼hlkreislauf mit einem KĆ¼hlaggregat und einem KĆ¼hlkopf, Fig.2 eine Schnittansicht des KĆ¼hlkopfes mit den Verbindungsleitungen und Fig.3 einen Schnitt gemƤƟ der Linie III-III der Fig.2.The invention will now be explained in more detail with reference to embodiments shown schematically in the drawing. In this shows Fig.1 a closed cooling circuit with a cooling unit and a cooling head, Fig.2 a sectional view of the cooling head with the connecting lines and Figure 3 a section along the line III-III of Fig.2 ,

Der in Fig.1 gezeigte KĆ¼hlkreislauf wird meist als Mixed Gas Joule Thomson KĆ¼hlprozess bezeichnet und ist beispielsweise in dem Dokument EP 650574 A1 beschrieben. Der KĆ¼hlkreislauf umfasst einen Kompressor 1 zum Komprimieren des bei 2 gasfƶrmig zugefĆ¼hrten KƤltemittels. Das KƤltemittel kann beispielsweise eine Gasmischung bestehend aus Propan, Ethan, Methan und Stickstoff sein. Das komprimierte KƤltemittel wird Ć¼ber eine Leitung 3 einem Ɩlabscheider 4 zugefĆ¼hrt, mit dem das sich im Kompressor 1 ggf. mit dem KƤltemittel vermischende Ɩl abgetrennt wird. Das von Ɩl gereinigte KƤltemittel wird anschieƟend einem NachkĆ¼hler 5 zugefĆ¼hrt, in welchem die dem Kompressor 1 zugefĆ¼hrte WƤrme dem KƤltemittel entzogen wird. Das gekĆ¼hlte, komprimierte, aber noch immer zumeist gasfƶrmige KƤltemittel wird anschlieƟend Ć¼ber eine Leitung 6 einem GegenstromwƤrmetauscher 7 zugefĆ¼hrt, in welchem das durch die KƤltemittelzuleitung 8 flieƟende KĆ¼hlmittel vom in der KƤltemittelrĆ¼ckleitung 9 flieƟenden KƤltemittel gekĆ¼hlt und verflĆ¼ssigt wird. Die KƤltemittelzuleitung 8 und die KƤltemittelrĆ¼ckleitung 9 kƶnnen in der Praxis mehrere Meter lang sein und werden oft schraubenlinienfƶrmig oder spiralfƶrmig gewickelt, um eine gewisse Kompaktheit des WƤrmestromwƤrmetauschers zu erreichen. Das verflĆ¼ssigte KƤltemittel wird Ć¼ber eine Drossel 10 entspannt, sodass das KƤltemittel im KĆ¼hlkopf 11 verdampfen und hierdurch der Umgebung VerdampfungswƤrme entziehen kann. Der KĆ¼hlkopf 11 wird vom KĆ¼hlmittel durchstrƶmt und ist daher beispielsweise als hohler Zylinder ausgefĆ¼hrt. Das vom KĆ¼hlkopf 11 rĆ¼ckflieƟende KƤltemittel wird im GegenstromwƤrmetauscher 7 in der Folge bis auf Raumtemperatur erwƤrmt, wobei das rĆ¼ckflieƟende KƤltemittel das hinflieƟende KƤltemittel abkĆ¼hlt. Zum AbkĆ¼hlen eines Objekts, das schematisch mit 12 angedeutet ist, wird dieses in Kontakt mit dem KĆ¼hlkopf 11 gebracht. Der KĆ¼hlkopf 11 besteht daher aus einem thermisch leitfƤhigen Material wie z.B. Kupfer.The in Fig.1 The cooling circuit shown is usually referred to as the mixed gas joule Thomson cooling process and is for example in the document EP 650574 A1 described. The cooling circuit comprises a compressor 1 for compressing the gaseously supplied refrigerant in 2. The refrigerant may be, for example, a gas mixture consisting of propane, ethane, methane and nitrogen. The compressed refrigerant is fed via a line 3 to an oil separator 4, with which the possibly in the compressor 1 with the refrigerant mixing oil is separated. The oil purified by the oil is then fed to an aftercooler 5, in which the heat supplied to the compressor 1 is removed from the refrigerant. The cooled, compressed, but still mostly gaseous refrigerant is then fed via a line 6 to a countercurrent heat exchanger 7, in which the coolant flowing through the refrigerant supply line 8 is cooled and liquefied by the refrigerant flowing in the refrigerant return line 9. The refrigerant supply line 8 and the refrigerant return line 9 may in practice be several meters long and are often helically or spirally wound in order to achieve a certain compactness of the heat flow heat exchanger. The liquefied refrigerant is depressurized via a throttle 10, so that the refrigerant in the cooling head 11 evaporate and thereby escape the environment evaporation heat. The cooling head 11 is from Coolant flows through and is therefore designed for example as a hollow cylinder. The flowing back from the cooling head 11 refrigerant is heated in countercurrent heat exchanger 7 in the sequence up to room temperature, wherein the refluxing refrigerant cools the flowing refrigerant. For cooling an object, which is schematically indicated by 12, this is brought into contact with the cooling head 11. The cooling head 11 is therefore made of a thermally conductive material such as copper.

ErfindungsgemƤƟ ist der KĆ¼hlkopf 11 Ć¼ber Verbindungsleitungen 13 und 14 mit dem GegenstromwƤrmetauscher 7 verbunden, sodass das KĆ¼hlaggregat 15 und der in einer Vakuumkammer 16 angeordnete KĆ¼hlkopf 11 als voneinander gesonderte bauliche Einheiten realisiert werden kƶnnen. Die erfindungsgemƤƟe Ausbildung macht es erforderlich, dass das im WƤrmetauscher 7 gekĆ¼hlte und verflĆ¼ssigte KƤltemittel Ć¼ber die Verbindungsleitungen 13 und 14 Ć¼ber eine mehr oder minder lange Strecke transportiert wird, sodass eine ausreichende Isolation der Verbindungsleitungen sichergestellt werden muss.According to the invention, the cooling head 11 is connected via connecting lines 13 and 14 to the counterflow heat exchanger 7, so that the cooling unit 15 and the cooling head 11 arranged in a vacuum chamber 16 can be realized as separate structural units. The inventive construction makes it necessary that the cooled and liquefied in the heat exchanger 7 refrigerant is transported via the connecting lines 13 and 14 over a more or less long distance, so that a sufficient insulation of the connecting lines must be ensured.

In Fig.2 sind der KĆ¼hlkopf samt Vakuumkammer sowie die Verbindungsleitungen nƤher dargestellt. Es ist ersichtlich, dass die Verbindungsleitungen 13 und 14 eine Vakuumisolierung 17 aufweisen, deren evakuierter Innenraum mit dem Innenraum der Vakuumkammer 16 in Verbindung steht. Die Verbindungsleitungen 13 und 14 kƶnnen dabei als flexible Rohre ausgebildet sein, um die Handhabbarkeit zu verbessern. Die Vakuumisolierung 17 der Verbindungsleitung weist einen flexiblen HĆ¼llschlauch 18 auf, das beispielsweise als Edelstahlwellrohr ausgebildet sein kann, das bevorzugt eine Stahlummantelung aufweist. Zwischen den Verbindungsleitungen 13 und 14, die ebenfalls eine gewellte AuƟenkontur aufweisen kƶnnen, kƶnnen Abstandhalter 19 angeordnet sein, die ebenfalls flexibel ausgefĆ¼hrt sein kƶnnen. Die Abstandhalter 19 weisen bevorzugt eine gewellte AuƟenkontur auf, sodass aufgrund der dadurch erzielten LinienberĆ¼hrungen mit dem HĆ¼llrohr 18 bzw. den Verbindungsleitungen 13 und 14 die WƤrmeĆ¼bertragung minimiert wird. Der Abstandshalter 19 dient somit der mechanischen und damit thermischen Entkopplung der Verbindungsleitungen 13 und 14 zum HĆ¼llrohr 18. Er sollte ausreichend flexibel, temperaturstabil, alterungsbestƤndig und ausgasungsfrei sein (z.B. Teflon, Kunststoff, Edelstahl). An der Stelle 20 sind die Verbindungsleitungen 13 und 14 aus der Vakuumisolierung 17 herausgefĆ¼hrt. Auf geringe thermische Verluste an der Ɯbergangsstelle 20 ist zu achten. Dies kann durch Materialien mit geringer thermischer LeitfƤhigkeit und einem geringen Ɯbergangsquerschnitt erreicht werden (z.B. Edelstahl). ZusƤtzlich kann die Ɯbergangsstelle 20 durch herkƶmmliche Materialien zur WƤrmeisolierung geschĆ¼tzt werden (z.B. geschƤumtes Polystyrol, Amaflex).In Fig.2 the cooling head with vacuum chamber and the connecting lines are shown in detail. It can be seen that the connecting lines 13 and 14 have a vacuum insulation 17 whose evacuated interior is in communication with the interior of the vacuum chamber 16. The connecting lines 13 and 14 may be formed as flexible tubes to improve the handling. The vacuum insulation 17 of the connecting line has a flexible HĆ¼llschlauch 18, which may be formed for example as a stainless steel corrugated pipe, which preferably has a steel jacket. Between the connecting lines 13 and 14, which may also have a corrugated outer contour, spacers 19 may be arranged, which may also be made flexible. The spacers 19 preferably have a corrugated outer contour, so that due to the line contacts achieved with the cladding tube 18 and the connecting lines 13 and 14, the heat transfer is minimized. The spacer 19 thus serves the mechanical and thus thermal decoupling of the connecting lines 13 and 14 to the cladding tube 18. It should be sufficiently flexible, temperature stable, resistant to aging and degassing (eg Teflon, plastic, stainless steel). At the point 20, the connecting lines 13 and 14 are led out of the vacuum insulation 17. Low thermal losses at the transition point 20 should be taken into account. This can be achieved by materials with low thermal conductivity and a low transition cross-section (eg stainless steel). In addition, the interface 20 may be protected by conventional thermal insulation materials (eg, foamed polystyrene, Amaflex).

Die Verbindungsleitungen 13 und 14 kƶnnen thermisch gekoppelt sein. Die Verbindungsleitungen 13 und 14 kƶnnen alternativ auch ineinander gefĆ¼hrt werden. Je nach Querschnitt und LƤnge der Verbindungsleitung 13 kann das KĆ¼hlmittel eine Druckreduktion entlang der Zuleitung erfahren, sodass das KƤltemittel wie bei KompressionskƤltemaschinen im KĆ¼hlkopf verdampft und WƤrme abgefĆ¼hrt wird. In diesem Fall ist die Zuleitung sogleich Drosselorgan.The connecting lines 13 and 14 may be thermally coupled. The connecting lines 13 and 14 can alternatively be guided into each other. Depending on the cross-section and length of the connecting line 13, the coolant may experience a pressure reduction along the supply line, so that the refrigerant is evaporated in the cooling head as in compression refrigerating machines and heat is dissipated. In this case, the supply line is immediately throttle body.

Die Vakuumisolierung 17 ist mit einem Vakuumflansch 21 verbunden, durch welchen die Verbindungsleitungen 13 und 14 hindurchgefĆ¼hrt und dem KĆ¼hlkopf 11 zugefĆ¼hrt sind. Um die mechanische StabilitƤt des KĆ¼hlkopfs 11 zu verbessern, ist zwischen dem KĆ¼hlkopf 11 und dem Vakuumflansch 21 ein Abstandhalter 22 angeordnet, der beispielsweise aus Teflon, Keramik oder Edelstahl bestehen kann und ausgasungsbestƤndig, tieftemperaturgeeignet, versprƶdungsbestƤndig und alterungsbestƤndig sein sollte. Dabei ist auf eine ausreichende thermische Entkopplung des Abstandshalters 22 vom Vakuumflansch 21 zu achten und auf eine gute atmosphƤrische DurchlƤssigkeit zum HĆ¼llrohr 18. In der Querschnittsansicht gemƤƟ Fig.3 ist ersichtlich, dass der Abstandhalter 22 mehrere radiale Durchbrechungen 24 aufwiest, damit der evakuierte Innenraum der Vakuumisolierung der Verbindungsleitungen mit dem evakuierten Innenraum der Vakuumkammer 16 in leitender Verbindung steht. Ein Flansch bzw. Anschluss zum AnschlieƟen an eine Vakuumpumpe ist mit 23 bezeichnet.The vacuum insulation 17 is connected to a vacuum flange 21, through which the connecting lines 13 and 14 are passed and fed to the cooling head 11. In order to improve the mechanical stability of the cooling head 11, a spacer 22 is disposed between the cooling head 11 and the vacuum flange 21, which may for example consist of Teflon, ceramic or stainless steel and ausgasungsbestƤndig, low temperature suitable, should be resistant to embrittlement and aging. It is on a sufficient thermal decoupling of the spacer 22 from the vacuum flange 21 and a good atmospheric permeability to the cladding tube 18. In the cross-sectional view according to Figure 3 It can be seen that the spacer 22 has a plurality of radial openings 24, so that the evacuated interior of the vacuum insulation of the connecting lines with the evacuated interior of the vacuum chamber 16 is in a conductive connection. A flange for connection to a vacuum pump is indicated at 23.

Bei gleichmƤƟig mit KĆ¼hlmittel durchstrƶmtem KĆ¼hlkopf und bei mechanischer Stabilisierung des KĆ¼hlkopfes mittels Abstandshalter wird der KĆ¼hlkopf ƤuƟerst vibrationsarm.When the cooling head flows through coolant evenly and when the cooling head is mechanically stabilized by means of spacers, the cooling head is extremely low in vibration.

Typische Anwendungsgebiete fĆ¼r die Erfindung sind die KĆ¼hlung von HochleistungslaserverstƤrkern sowie verschiedene KĆ¼hlaufgaben in der analytischen Chemie, auf dem Gebiet der Supraleitung, der Astronomie sowie generell in der Forschung und Entwicklung sowie in der medizinischen Diagnostik.Typical applications for the invention are the cooling of high-power laser amplifiers and various cooling tasks in analytical chemistry, in the field of superconductivity, astronomy and in general in research and development as well as in medical diagnostics.

Claims (12)

  1. A cooling apparatus with a closed cooling circuit for cooling objects to semi-cryogenic or cryogenic temperatures of 230K to 80K, comprising a compressor for compressing a coolant, to which the coolant is supplied in a gaseous state, and from which the coolant exits in a compressed gaseous state, an after-cooler connected downstream from the compressor, from which the coolant exits largely in gaseous form, a counterflow heat exchanger comprising a feed line and a return line, which are arranged in such a way that the compressed coolant is liquefied in the feed line as the relieved coolant flowing through the return line is being heated, and a cooling head that is connected with the feed line and return line and has coolant flowing through it, in which the coolant evaporates, characterized in that the cooling head (11) is arranged in a vacuum chamber (16), which can be joined with a low-pressure source, and is joined by flexible connecting lines (13, 14) with the feed line and return line (8, 9) of the counterflow heat exchanger (7), so that the counterflow heat exchanger is situated outside the vacuum chamber, wherein the compressor (1), the after-cooler (5) and the counterflow heat exchanger (7) are situated together in a standing device, the housing of which exhibits a lead-through for the connecting lines (13, 14) that join the counterflow heat exchanger (7) with the vacuum chamber (16).
  2. The cooling apparatus according to claim 1, characterized in that the cooling head (11) is connected to the feed line (8) of the counterflow heat exchanger (7) with a throttle (10) interspersed.
  3. The cooling apparatus according to claim 2, characterized in that the connecting line (13) joining the feed line (8) of the counterflow heat exchanger (7) with the cooling head (11) forms the throttle (10).
  4. The cooling apparatus according to one of claims 1 to 3, characterized in that the connecting lines (13, 14) exhibit vacuum insulation (17).
  5. The cooling apparatus according to claim 4, characterized in that the vacuum insulation (17) comprises a cladding tube (18) that envelops the connecting lines (13, 14), with the formation of an essentially annular hollow space, wherein the hollow space can be joined with a low-pressure source.
  6. The cooling apparatus according to claim 4 or 5, characterized in that the vacuum chamber (16) and vacuum insulation (17) for the connecting lines (13, 14) are directly joined together, and can be joined with a shared low-pressure source.
  7. The cooling apparatus according to claim 4, 5 or 6, characterized in that the vacuum chamber (16) exhibits a lead-through for the connecting lines (13, 14), which is configured in such a way that the hollow space of the vacuum insulation (17) for the connecting lines (13, 14) is joined with the interior space of the vacuum chamber (16).
  8. The cooling apparatus according to one of claims 5 to 7, characterized in that at least one spacer (19) is arranged in the hollow space between the connecting lines (13, 14) and the cladding tube (18).
  9. The cooling apparatus according to claim 8, characterized in that the spacer (19) exhibits a corrugated outer and inner contour.
  10. The cooling apparatus according to one of claims 5 to 9, characterized in that the vacuum chamber (16) exhibits a port (23) for connecting the shared low-pressure source.
  11. The cooling apparatus according to one of claims 1 to 10, characterized in that the vacuum chamber (16) incorporates in particular a tubular spacer (22), which envelops the lead-through, and defines the distance between the cooling head (11) and the inner wall of the vacuum chamber (16), wherein the spacer (22) exhibits radial through holes (24), so that the interior space of the vacuum chamber (16) is joined with the hollow space of the vacuum insulation (17) for the connecting lines (13, 14).
  12. The cooling apparatus according to one of claims 1 to 11, characterized in that the coolant comprises butane and/or isobutane and/or propane and/or propene and/or ethyne and/or ethane and/or ethene and/or methane and/or argon and/or nitrogen.
EP11738939.5A 2010-07-12 2011-07-12 Cooling apparatus Active EP2593735B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11738939T PL2593735T3 (en) 2010-07-12 2011-07-12 Cooling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1177/2010A AT510064B1 (en) 2010-07-12 2010-07-12 COOLER
PCT/AT2011/000298 WO2012006645A2 (en) 2010-07-12 2011-07-12 Cooling apparatus

Publications (2)

Publication Number Publication Date
EP2593735A2 EP2593735A2 (en) 2013-05-22
EP2593735B1 true EP2593735B1 (en) 2018-12-26

Family

ID=44629558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11738939.5A Active EP2593735B1 (en) 2010-07-12 2011-07-12 Cooling apparatus

Country Status (9)

Country Link
US (1) US9851126B2 (en)
EP (1) EP2593735B1 (en)
AT (1) AT510064B1 (en)
CY (1) CY1121387T1 (en)
ES (1) ES2717632T3 (en)
HU (1) HUE041997T2 (en)
LT (1) LT2593735T (en)
PL (1) PL2593735T3 (en)
WO (1) WO2012006645A2 (en)

Families Citing this family (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629728A (en) * 2012-04-05 2012-08-08 ęø…华大学 Solid laser using flexible constraint

Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE60306281T2 (en) * 2002-09-12 2007-04-26 Cryocor, Inc., San Diego Cooling source for cryoablation catheter

Family Cites Families (17)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US3397720A (en) * 1964-10-23 1968-08-20 Hitco Multiple layer insulation for a cryogenic structure
US3704391A (en) * 1970-11-10 1972-11-28 Ite Imperial Corp Cryogenic current limiting switch
NL7807184A (en) * 1977-07-18 1979-01-22 Caloric Ges Apparatebau METHOD AND INSTALLATION FOR TRANSPORTING REAL GASES, ESPECIALLY NATURAL GAS.
JPS62224987A (en) * 1986-03-27 1987-10-02 Mitsubishi Electric Corp Cryogenic cooler
US5060481A (en) * 1989-07-20 1991-10-29 Helix Technology Corporation Method and apparatus for controlling a cryogenic refrigeration system
US5275595A (en) 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
JPH0765835B2 (en) * 1993-03-18 1995-07-19 ę±ę“‹é…øē“ ę Ŗ式会ē¤¾ Horizontal cryostat
US5337572A (en) 1993-05-04 1994-08-16 Apd Cryogenics, Inc. Cryogenic refrigerator with single stage compressor
US5353603A (en) * 1994-02-23 1994-10-11 Wynn's Climate Systems, Inc. Dual refrigerant recovery apparatus with single vacuum pump and control means
US5758505C1 (en) * 1995-10-12 2001-10-30 Cryogen Inc Precooling system for joule-thomson probe
US5687574A (en) 1996-03-14 1997-11-18 Apd Cryogenics, Inc. Throttle cycle cryopumping system for Group I gases
US5768911A (en) * 1996-11-25 1998-06-23 Dube; Serge Refrigerating compressor oil cooling probe device
JPH1163697A (en) * 1997-08-08 1999-03-05 Sumitomo Heavy Ind Ltd Separation type cryogenic cooler
JP3446883B2 (en) * 1998-12-25 2003-09-16 ē§‘å­¦ęŠ€č”“ęŒÆ興äŗ‹ę„­å›£ Liquid helium recondensing device and transfer line used for the device
WO2002001123A1 (en) 2000-06-23 2002-01-03 Mmr Technologies, Inc. Flexible counter-flow heat exchangers
DE10210524C1 (en) * 2002-03-09 2003-08-14 Inst Luft Kaeltetech Gem Gmbh Cryogenic cooling unit includes positive displacement micropump, condenser, interception chamber, and sub-cooling heat exchanger
US7114347B2 (en) * 2003-10-28 2006-10-03 Ajay Khatri Closed cycle refrigeration system and mixed component refrigerant

Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE60306281T2 (en) * 2002-09-12 2007-04-26 Cryocor, Inc., San Diego Cooling source for cryoablation catheter

Also Published As

Publication number Publication date
US20130205826A1 (en) 2013-08-15
AT510064A1 (en) 2012-01-15
ES2717632T3 (en) 2019-06-24
AT510064B1 (en) 2012-04-15
WO2012006645A3 (en) 2012-11-22
CY1121387T1 (en) 2020-05-29
US9851126B2 (en) 2017-12-26
PL2593735T3 (en) 2019-06-28
EP2593735A2 (en) 2013-05-22
HUE041997T2 (en) 2019-06-28
LT2593735T (en) 2019-03-12
WO2012006645A2 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
EP0805303B1 (en) Method and device for evaporating liquified gas at low temperature
DE102014011030A1 (en) Fridge and / or freezer
DE112009002309T5 (en) Modular cabinet for ultra-low temperature refrigerators
DE1221652B (en) Using the Joule-Thomson effect, a device for generating low temperatures
EP2132499A1 (en) Refrigeration device comprising coolant conduits that are connected in parallel in the heat exchanger
WO2007014618A1 (en) Coiled heat exchanger having different tube diameters
EP2593735B1 (en) Cooling apparatus
WO2007014617A1 (en) Coiled heat exchanger having different materials
DE102005058153A1 (en) Heat exchanger for use in e.g. motor vehicle cooling system, has flat pipes with channels and recesses in longitudinal direction, where channels are perfused by fluid and recesses are formed between channels
EP1795846B1 (en) Heat exchanger with a plurality of tube elements
DE1501715A1 (en) Device for the liquefaction of gases
EP2377596A1 (en) Refrigerant type dryer, in particular pressurised air refrigerant type dryer and heat exchanger for a refrigerant type dryer, in particular pressurised air refrigerant type dryer
DE102013011940A1 (en) Refrigerator has condenser and condenser output unit that are located in warm-contact with suction line which is located between vaporizer and compressor
EP2420772B1 (en) Cooling head for a cooling system
EP1457729B1 (en) Spacer for an elongate substrate
DE102008019359A1 (en) Refrigerator, particularly household refrigerator, has cooling compartment for accommodating refrigerated product and cooling circuit for circulating coolant for cooling of cooling compartment
EP2026023A1 (en) Device and process for liquefying process media
EP3707448B1 (en) Device and system for condensing at least one gas
EP3030848A1 (en) Refrigerating device with an evaporator
DE202009008405U1 (en) Heat pump system
EP3009780B1 (en) Heat exchanger
EP3147551A1 (en) Flexible conduit
WO1999058624A1 (en) Refrigerant mixture for a mixture-throttling process
EP1020691A1 (en) Capillary and suction tube system for evaporator systems, in particular cold cycle systems
DE202010015306U1 (en) Cooling device for process engineering equipment, such as pumps, in particular dosing pumps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130109

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150827

17Q First examination report despatched

Effective date: 20151112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180820

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081969

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015208

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 30271

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2717632

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190624

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E041997

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015208

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1081969

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230726

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230707

Year of fee payment: 13

Ref country code: IT

Payment date: 20230720

Year of fee payment: 13

Ref country code: IE

Payment date: 20230727

Year of fee payment: 13

Ref country code: GB

Payment date: 20230727

Year of fee payment: 13

Ref country code: ES

Payment date: 20230804

Year of fee payment: 13

Ref country code: CZ

Payment date: 20230704

Year of fee payment: 13

Ref country code: CY

Payment date: 20230706

Year of fee payment: 13

Ref country code: CH

Payment date: 20230802

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230703

Year of fee payment: 13

Ref country code: PL

Payment date: 20230704

Year of fee payment: 13

Ref country code: HU

Payment date: 20230713

Year of fee payment: 13

Ref country code: FR

Payment date: 20230725

Year of fee payment: 13

Ref country code: DE

Payment date: 20230727

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20230703

Year of fee payment: 13