EP2587496B1 - Bistabiler Schaltmagnet mit Kolbenpositionsdetektor - Google Patents

Bistabiler Schaltmagnet mit Kolbenpositionsdetektor Download PDF

Info

Publication number
EP2587496B1
EP2587496B1 EP20120184928 EP12184928A EP2587496B1 EP 2587496 B1 EP2587496 B1 EP 2587496B1 EP 20120184928 EP20120184928 EP 20120184928 EP 12184928 A EP12184928 A EP 12184928A EP 2587496 B1 EP2587496 B1 EP 2587496B1
Authority
EP
European Patent Office
Prior art keywords
switching
piston
magnet
bistable
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20120184928
Other languages
English (en)
French (fr)
Other versions
EP2587496A1 (de
Inventor
Gerhard Schöner
Ewald Lampl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MSG Mechatronic Systems GmbH
Original Assignee
MSG Mechatronic Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MSG Mechatronic Systems GmbH filed Critical MSG Mechatronic Systems GmbH
Publication of EP2587496A1 publication Critical patent/EP2587496A1/de
Application granted granted Critical
Publication of EP2587496B1 publication Critical patent/EP2587496B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/185Monitoring or fail-safe circuits with armature position measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1872Bistable or bidirectional current devices

Definitions

  • the invention relates to a bistable solenoid with an excitation coil and, with respect to the excitation coil by a switching current in the excitation coil in a first switching position and a second switching position, adjustable piston and a piston position detector for detecting whether the piston is moved to its first or second switching position has.
  • the piston is connected to a sealing element, which releases or interrupts the flow of a medium through a valve arranged outside the switching magnet, depending on the piston position.
  • the document EP 2 164 081 A2 discloses a switching magnet in which the piston position detector is formed by two mechanical contacts. Depending on the switching position of the piston of the solenoid either one or the other mechanical contact is closed.
  • the provision of mechanical contacts has the disadvantage of additional friction and mechanical wear of the contacts.
  • the invention has for its object to provide a solenoid with piston position detector, in which the above-mentioned disadvantages are avoided.
  • this task is solved by means of the features of claim 1, characterized in that the piston position detector is formed by at least one magnetic flux density in the magnetic circuit generating permanent magnet and arranged in the magnetic circuit magnetic field sensor, both fixed with respect to the exciter coil fixed in the Switching magnets are provided, and wherein the piston position detector has evaluation means which evaluate the magnetic flux density in the magnetic circuit, which is measured by the magnetic field sensor and is dependent on the switching position of the piston in order to detect the piston position.
  • the advantage is obtained that the detection of the current position of the piston in the switching magnet takes place without contact. Since the magnetic field sensor does not detect the magnetic field generated by the exciting coil only for switching the switching position of the piston, but the magnetic field always present through the permanent magnet, the detection of the piston position can always take place when the piston has assumed one of its two possible switching positions.
  • position detectors are known in which on the Moving part (eg locking pin or piston) is a permanent magnet is fixed and detected with a stationary magnetic field sensor, whether the permanent magnet is close (eg first switching position) or far away (eg second switching position) of the magnetic field sensor.
  • this additional permanent magnet on the moving part can be dispensed with because the magnetic field of the permanent magnet is used for position detection, which is provided for holding the piston in its second switching position.
  • costs can be saved in the production of the solenoid.
  • the piston without a permanent magnet mounted on the piston can be made lighter and more mobile, which is advantageous both in terms of the switching speed and for the current required for switching current of the switching current.
  • FIG. 1 shows a bistable solenoid 1 as part of a bistable diaphragm valve, which is designed according to this example for shutting off or releasing a water pipe of a car.
  • the water is supplied to the diaphragm valve in a volume and discharged through another volume of the diaphragm valve again.
  • the solenoid 1 has a piston 4, which in FIG. 1 is shown in its first switching position.
  • a spring 5 presses a stop ring 6 with a spring force FK in the direction R against a stop surface 7 of the housing of the solenoid 1.
  • the volume and the other volume are connected together and it is the water flow in the line of the Diaphragm valve released.
  • the piston 4 is displaceable against the spring force FK against the direction R in a second switching position.
  • a sealing element not shown in the figures seals the volume against the other volume, so that the flow of water is interrupted in the line.
  • Switching magnets according to the invention can be used for a large number of other application examples, which are not discussed in more detail in this description.
  • the solenoid 1 is formed bistable, which is why the piston 4 is positioned either held in its first switching position or in its second switching position.
  • the spring 5 holds the piston 4 with the spring force FK in its first switching position.
  • the switching magnet 1 further has a permanent magnet 8 which exerts a magnetic attraction force MK against the direction R on the piston 4 via a pole core 9.
  • the magnetic attraction force MK is too weak to move the piston 4 from its first switching position to its second switching position.
  • the spring force FK is too weak to move the piston 4 from its second switching position to its first switching position.
  • the solenoid 1 now further comprises an excitation coil 10, in which a switching current (DC) can be fed with a first polarity to move the piston 4 from its first switching position to its second switching position, and in a switching current with a second polarity can be fed to adjust the piston 4 from its second switching position to its first switching position.
  • a switching current DC
  • the shift solenoid 1 further includes a piston position detector for detecting whether the piston is adjusted to its first or second shift position. On the basis of this information from the piston position detector, for example, the vehicle electronics check the switching state of the piston 4 and initiate appropriate measures in case of deviations from the desired state.
  • the piston position detector comprises a Hall sensor 11, the permanent magnet 8 and evaluation means, which in the FIG. 1 are not shown in detail.
  • a magnetic circuit is formed, via which the magnetic flux of the permanent magnet 8 from the permanent magnet 8 via the pole core 9, the piston 4 and the air gap between the piston 4 and the pole core 9 or the housing, is passed through the housing of the switching magnet 1 to the permanent magnet 8.
  • a switching current is impressed into the excitation coil 10
  • the magnetic flux of the excitation coil superimposed on the magnetic flux of the permanent magnet 8, whereby the piston 4 is adjusted between its two switching positions.
  • the Hall sensor 11 is now mounted between the piston 4 and the housing in the region of the magnetic circuit, which is why the Hall sensor 11 measures the magnetic flux density in the magnetic circuit.
  • FIG. 2 a measurement characteristic M of the flux density measured in millitesla [mT] by the Hall sensor 11 as a function of the length in millimeters [mm] of the air gap of the piston 4 to the pole core 9 is shown.
  • the length of the air gap is about 0 mm and the Hall sensor 11 measures a magnetic flux density of about 24 mT.
  • Evaluation means of the piston position detector are now adapted to detect that the piston 4 is adjusted to its first switching position when the measured magnetic flux density is less than a lower threshold OS of 7 mT. Furthermore, the evaluation means of the piston position detector detects that the piston 4 is adjusted to its second switching position when the measured magnetic flux density is greater than an upper threshold value US of 18 mT.
  • the dependence of the magnetic flux in the magnetic circuit on the switching position of the piston 4 and the application of the upper threshold OS and lower threshold US has the advantage that the piston position detector can detect the switching position of the piston 4 without contact and without an additional permanent magnet.
  • the specified threshold values are to be understood as an example and depend on the particular design of the switching magnet and the magnetic field strength of the permanent magnet.
  • the Hall sensor 11 may be formed as a threshold value switch, which advantageously thereby already takes over the evaluation of the evaluation. As a result, it is thus possible to dispense with separate evaluation means.
  • a solenoid 12 is shown as a second embodiment of the invention.
  • the switching magnet 12 has the same structure as the switching magnet 1, wherein additionally a second permanent magnet 13 is attached as part of the piston position detector on the side of the Hall sensor 11 on the piston 4.
  • the second permanent magnet 13 can be used to influence the magnetic flux density at the magnetic field sensor. For some magnetic field sensors, a signal symmetric about the 0-point is advantageous. In this case, the second permanent magnet 13 is reversely poled as the permanent magnet. 8
  • NdFeB magnets known to those skilled in the art from other fields. These NdFeB magnets are characterized by their large magnetic field strength with relatively small volume of the permanent magnet.
  • the position of the Hall sensor 11 immediately adjacent to the displaced in its first switching position piston 4 has proved advantageous for constructive considerations.
  • Other positions of the Hall sensor 11 in the region of the magnetic circuit or the stray field of the magnetic circuit would be possible for the measurement of the magnetic flux density in the magnetic circuit.
  • a threshold value of the magnetic flux density would have to be determined which corresponds to the respective length of the air gap between the piston 4 and the pole core 9.
  • the bistable solenoid could also have a permanent magnet on each side of the piston, in which case the spring 5 would not be necessary and each of the permanent magnets would hold the piston in one of the two shift positions. Furthermore, it is also possible to use arrangements with two coils and a radial permanent magnet between the coils.
  • the solenoid could have a connectable to a data bus control electronics, the from the data bus, a switching information can be fed and which is designed to evaluate the switching information and for outputting the switching current to the excitation coil.
  • a data bus protocol the protocol according to a so-called LIN bus (Local Interconnected Network) has proven to be advantageous in automotive applications.
  • the bistable solenoid can also be provided in a switching valve, with the example, the water or oil supply is controlled.
  • the advantage is obtained that a likewise connected to the LIN bus control unit of a car via only one data line can deliver the switching information to the bistable switching valve, whereby costs can be saved and digital processing is possible.
  • the evaluation means of the Kolbepositionsdetektors a position information can be delivered to the control electronics, which at certain times (eg every three seconds) and / or on request of the control unit of the car outputs the position information via the data bus to the control unit.
  • the control unit of the car is always informed about the current position of the piston of the bistable switching valve, whereby the troubleshooting in the workshop is much easier.
  • the magnetic flux density of the permanent magnet 8 may be mitigated weakening or amplifying.
  • the polarity as attenuating has proven to be advantageous in the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

  • Die Erfindung betrifft einen bistabilen Schaltmagneten mit einer Erregerspule und einem, gegenüber der Erregerspule durch einen Schaltstrom in der Erregerspule in eine erste Schaltposition und eine zweite Schaltposition, verstellbaren Kolben und mit einem Kolbenpositionsdetektor zur Detektion, ob der Kolben in seine erste oder seine zweite Schaltposition verstellt ist. Der Kolben ist mit einem Dichtelement verbunden, welches den Durchfluss eines Mediums durch ein außerhalb des Schaltmagneten angeordnetes Ventil je nach Kolbenposition freigibt oder unterbricht.
  • Das Dokument EP 2 164 081 A2 offenbart so einen Schaltmagneten, bei dem der Kolbenpositionsdetektor durch zwei mechanische Kontakte gebildet ist. Je nach Schaltposition des Kolbens des Schaltmagneten wird entweder der eine oder der andere mechanische Kontakt geschlossen. Das Vorsehen von mechanischen Kontakten hat den Nachteil von zusätzlicher Reibung und einem mechanischen Verschleiß der Kontakte.
  • Ferner zeigt US 5 769 043 einen Schaltmagneten, dessen Kolbenpositionsdetektor durch einen Permanentmagneten und einen Magnetfeldsensor gebildet ist, die im Bezug auf die Erregerspulen unverstellbar befestigt sind.
  • Der Erfindung liegt die Aufgabe zugrunde einen Schaltmagneten mit Kolbenpositionsdetektor zu schaffen, bei dem die vorstehend angeführten Nachteile vermieden sind. Erfindungsgemäß wird diese Aufgabestellung mittels der Merkmale des Anspruchs 1 dadurch gelöst, dass der Kolbenpositionsdetektor durch zumindest einen eine magnetische Flussdichte im magnetischen Kreis erzeugenden Permanentmagneten und einen im Bereich des magnetischen Kreises angeordneten Magnetfeldsensor gebildet ist, die beide im Bezug auf die Erregerspule unverstellbar befestigt in dem Schaltmagneten vorgesehen sind, und wobei der Kolbenpositionsdetektor Auswertemittel aufweist, die zur Detektion der Kolbenposition die von dem Magnetfeldsensor gemessene, von der Schaltposition des Kolbens abhängige magnetische Flussdichte im magnetischen Kreis auswerten.
  • Hierdurch ist der Vorteil erhalten, dass die Detektion der aktuellen Position des Kolbens im Schaltmagneten berührungslos erfolgt. Da der Magnetfeldsensor nicht das von der Erregerspule nur zum Umschalten der Schaltposition des Kolbes erzeugte Magnetfeld, sondern das immer durch den Permanentmagneten vorhandene Magnetfeld detektiert, kann die Detektion der Kolbenposition immer dann erfolgen, wenn der Kolben eine seiner zwei möglichen Schaltpositionen eingenommen hat.
  • Es kann erwähnt werden, dass Positionsdetektoren bekannt sind, bei denen auf dem bewegten Teil (z.B. Verriegelungsbolzen oder Kolben) ein Permanentmagnet befestigt ist und mit einem stillstehenden Magnetfeldsensor detektiert wird, ob der Permanentmagnet nahe (z.B. erste Schaltposition) oder weit entfernt (z.B. zweite Schaltposition) von dem Magnetfeldsensor entfernt ist. Erfindungsgemäß kann auf diesen für den Positionsdetektor zusätzlichen Permanentmagneten auf dem bewegten Teil (Kolben des Schaltmagneten) verzichtet werden, da das Magnetfeld des Permanentmagneten zur Positionsdetektion ausgenutzt wird, der zum Halten des Kolbens in seiner zweiten Schaltposition vorgesehen ist. Hierdurch können Kosten bei der Herstellung des Schaltmagneten eingespart werden. Besonders vorteilhaft ist, dass der Kolben ohne einem auf dem Kolben befestigten Permanentmagneten leichter und beweglicher ausgeführt werden kann, was sowohl bezüglich der Schaltgeschwindigkeit als auch für die zum Schalten nötige Stromstärke des Schaltstroms vorteilhaft ist.
  • Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Systems werden im Folgenden anhand der Figuren näher erläutert.
    • Figur 1 zeigt einen bistabilen Schaltmagneten gemäß einem ersten Ausführungsbeispiel der Erfindung.
    • Figur 2 zeigt die von dem Hallsensor des Schaltmagneten gemäß Figur 1 gemessene magnetische Flussdichte in Abhängigkeit der Schaltposition des Kolbens.
    • Figur 3 zeigt einen bistabilen Schaltmagneten gemäß einem zweiten Ausführungsbeispiel, bei dem ein zweiter Permanentmagnet vorgesehen ist.
  • Figur 1 zeigt einen bistabilen Schaltmagneten 1 als Teil eines bistabilen Membranventils, das gemäß diesem Beispiel zum Absperren oder Freigeben einer Wasserleitung eines Autos ausgebildet ist. Das Wasser wird dem Membranventil in ein Volumen zugeführt und über ein weiteres Volumen von dem Membranventil wieder abgegeben. Der Schaltmagnet 1 weist einen Kolben 4 auf, der in Figur 1 in seiner ersten Schaltposition dargestellt ist. In dieser ersten Schaltposition drückt eine Feder 5 einen Anschlagring 6 mit einer Federkraft FK in Richtung R gegen eine Anschlagfläche 7 des Gehäuses des Schaltmagneten 1. In dieser Schaltposition sind das Volumen und das weitere Volumen miteinander verbunden und es ist der Wasserfluss in der Leitung von dem Membranventil freigegeben. Der Kolben 4 ist gegen die Federkraft FK entgegen der Richtung R in eine zweite Schaltposition verschiebbar. In dieser zweiten Schaltposition dichtet ein in den Figuren nicht dargestelltes Dichtelement das Volumen gegen das weitere Volumen ab, weshalb der Wasserfluss in der Leitung unterbrochen ist. Erfindungsgemäße Schaltmagnete sind für eine Vielzahl anderer Anwendungsbeispiele verwendbar, auf die in dieser Beschreibung nicht näher eingegangen ist.
  • Der Schaltmagnet 1 ist bistabil ausgebildet, weshalb der Kolben 4 entweder in seiner ersten Schaltposition oder in seiner zweiten Schaltposition gehalten positioniert ist. Die Feder 5 hält den Kolben 4 mit der Federkraft FK in seiner ersten Schaltposition. Der Schaltmagnet 1 weist weiters einen Permanentmagneten 8 auf, der über einen Polkern 9 eine magnetische Anziehungskraft MK entgegen der Richtung R auf den Kolben 4 ausübt. Wenn der Kolben 4 in seiner ersten Schaltposition verstellt ist, dann ist die magnetische Anziehungskraft MK zu schwach, um den Kolben 4 von seiner ersten Schaltposition in seine zweite Schaltposition zu verstellen. Wenn der Kolben 4 in seine zweite Schaltposition verstellt ist, dann ist die Federkraft FK zu schwach, um den Kolben 4 von seiner zweiten Schaltposition in seine erste Schaltposition zu verstellen.
  • Der Schaltmagnet 1 weist nunmehr weiters eine Erregerspule 10 auf, in die ein Schaltstrom (Gleichstrom) mit einer ersten Polung eingespeist werden kann, um den Kolben 4 von seiner ersten Schaltposition in seine zweite Schaltposition zu verstellen, und in die ein Schaltstrom mit einer zweiten Polung eingespeist werden kann, um den Kolben 4 von seiner zweiten Schaltposition in seine erste Schaltposition zu verstellen.
  • Der Schaltmagnet 1 weist weiters einen Kolbenpositionsdetektor zur Detektion auf, ob der Kolben in seine erste oder seine zweite Schaltposition verstellt ist. Anhand dieser Information von dem Kolbenpositionsdetektor kann beispielsweise die KFZ-Elektronik den Schaltzustand des Kolbens 4 überprüfen und bei Abweichungen vom Soll-Zustand entsprechende Maßnahmen einleiten. Der Kolbenpositionsdetektor umfasst einen Hallsensor 11, den Permanentmagneten 8 und Auswertemittel, die in der Figur 1 nicht näher dargestellt sind.
  • In dem Schaltmagneten 1 bildet sich ein magnetischer Kreis aus, über den der magnetische Fluss des Permanentmagneten 8 von dem Permanentmagneten 8 über den Polkern 9, den Kolben 4 und den Luftspalt zwischen dem Kolben 4 und dem Polkern 9 oder dem Gehäuse, über das Gehäuse des Schaltmagneten 1 zum Permanentmagneten 8 geleitet wird. Sobald ein Schaltstrom in die Erregerspule 10 eingeprägt wird überlagert sich der magnetische Fluss der Erregerspule dem magnetischen Fluss des Permanentmagneten 8, wodurch der Kolben 4 zwischen seinen beiden Schaltpositionen verstellt wird.
  • Der Hallsensor 11 ist nunmehr zwischen Kolben 4 und dem Gehäuse im Bereich des magnetischen Kreises angebracht, weshalb der Hallsensor 11 die magnetische Flussdichte in dem magnetischen Kreis misst. In der Figur 2 ist eine Messkennlinie M der von dem Hallsensor 11 gemessenen Flussdichte in Millitesla [mT] in Abhängigkeit der Länge in Millimeter [mm] des Luftspalts des Kolbens 4 zum Polkern 9 dargestellt. Wenn der Kolben 4 in seine, in der Figur 1 dargestellte, erste Schaltposition verstellt ist, dann ist die Länge des Luftspalts in diesem Ausführungsbeispiel 3,5 mm und der Hallsensor 11 misst eine magnetische Flussdichte von etwa 5 mT. Wenn andererseits der Kolben 4 in seine zweite Schaltposition verstellt ist, dann ist die Länge des Luftspalts etwa 0 mm und der Hallsensor 11 misst eine magnetische Flussdichte von etwa 24 mT. Diese Messwerte ergeben sich durch das Magnetfeld des Permanentmagneten 8 und sind von dessen Magnetfeldstärke und anderen Einflussfaktoren in dem magnetischen Kreis abhängig.
  • Auswertemittel des Kolbenpositionsdetektors sind nunmehr dazu ausgebildet zu detektieren, dass der Kolben 4 in seine erste Schaltposition verstellt ist, wenn die gemessene magnetische Flussdichte kleiner als ein unterer Schwellwert OS von 7 mT ist. Weiters detektieren die Auswertemittel des Kolbenpositionsdetektors, dass der Kolben 4 in seine zweite Schaltposition verstellt ist, wenn die gemessene magnetische Flussdichte größer als ein oberer Schwellwert US von 18 mT ist. Durch die Abhängigkeit des magnetischen Flusses im magnetischen Kreis von der Schaltposition des Kolbens 4 und der Anwendung des oberen Schwellwertes OS und unteren Schwellwertes US ist der Vorteil erhalten, dass der Kolbenpositionsdetektor berührungslos und ohne einen zusätzlichen Permanentmagneten die Schaltposition des Kolbes 4 detektieren kann. Die angegebenen Schwellwerte sind als Beispiel zu verstehen und sind von der jeweiligen Konstruktion des Schaltmagneten und der Magnetfeldstärke des Permanentmagneten abhängig.
  • Der Hallsensor 11 kann als Schwellwertschalter ausgebildet sein, der vorteilhafterweise hierdurch auch bereits die Auswertung der Auswertemittel übernimmt. Hierdurch kann somit auf gesonderte Auswertemittel verzichtet werden.
  • In Figur 3 ist ein Schaltmagnet 12 als zweites Ausführungsbeispiel der Erfindung dargestellt. Der Schaltmagnet 12 weist denselben Aufbau wie der Schaltmagnet 1 auf, wobei zusätzlich ein zweiter Permanentmagnet 13 als Teil des Kolbenpositionsdetektors an der Seite des Hallsensors 11 am Kolben 4 befestigt ist. Der zweite Permanentmagnet 13 kann zur Beeinflussung der magnetischen Flussdichte am Magnetfeldsensor verwendet werden. Für einige Magnetfeldsensoren ist ein um den 0-Punkt symmetrisches Signal vorteilhaft. In diesem Fall wird der zweite Permanentmagnet 13 umgekehrt gepolt wie der Permanentmagnet 8.
  • Es hat sich als vorteilhaft erwiesen für den Permanentmagneten 8 dem Fachmann aus anderen Fachgebieten bekannte NdFeB-Magnete zu verwenden. Diese NdFeB-Magnete zeichnen sich durch ihre große Magnetfeldstärke bei relativ geringem Volumen des Permanentmagneten aus.
  • Die Position des Hallsensors 11 unmittelbar neben dem in seiner ersten Schaltposition verstellten Kolben 4 hat sich aus konstruktiven Überlegungen als vorteilhaft erwiesen. Auch andere Positionen des Hallsensors 11 im Bereich des magnetischen Kreises oder des Streufeldes des Magnetkreises wären für die Messung der magnetischen Flussdichte im magnetischen Kreis möglich.
  • Es kann erwähnt werden, dass auch andere Magnetfeldsensoren zum Einsatz kommen könnten.
  • Es kann erwähnt werden, dass mit dem erfindungsgemäßen Kolbenpositionsdetektor auch drei oder mehr Schaltpositionen des Kolbens detektiert werden könnten. Für jede zu detektierende Schaltposition müsste ein Schwellwert der magnetischen Flussdichte festgelegt werden, der der jeweiligen Länge des Luftspaltes zwischen Kolben 4 und Polkern 9 entspricht.
  • Es kann erwähnt werden, dass der bistabile Schaltmagnet auch auf jeder Seite des Kolbens einen Permanentmagneten aufweisen könnte, wobei in diesem Fall die Feder 5 nicht notwendig wäre und jeder der Permanentmagneten den Kolben in einer der zwei Schaltpositionen halten würde. Weiters können dafür auch Anordnungen mit zwei Spulen und einen radialen Permanentmagneten zwischen den Spulen eingesetzt werden.
  • Gemäß einem in den Figuren nicht dargestellten Ausführungsbeispiel der Erfindung könnte der Schaltmagnet eine mit einem Datenbus verbindbare Ansteuerelektronik aufweisen, der von dem Datenbus eine Schaltinformation zuführbar ist und die zum Auswerten der Schaltinformation und zum Abgeben des Schaltstroms an die Erregerspule ausgebildet ist. Als Datenbusprotokoll hat sich das Protokoll gemäß einem sogenannten LIN-Bus (Local Interconnected Network) bei Anwendungen im Automobilbereich als vorteilhaft erwiesen. Im Automobilbereich kann der bistabile Schaltmagnet auch in einem Schaltventil vorgesehen sein, mit dem beispielsweise die Wasser- oder Ölzufuhr geregelt wird. Hierdurch ist der Vorteil erhalten, dass eine ebenfalls mit dem LIN-Bus verbundene Steuereinheit eines Autos über nur eine Datenleitung die Schaltinformation an das bistabile Schaltventil abgeben kann, wodurch Kosten gespart werden können und eine digitale Verarbeitung ermöglicht ist. Besonders vorteilhaft ist hierbei, dass von den Auswertemitteln des Kolbepositionsdetektors eine Positionsinformation an die Ansteuerelektronik abgegeben werden kann, die zu bestimmten Zeiten (z.B. alle drei Sekunden) und/oder auf Anfrage der Steuereinheit des Autos die Positionsinformation über den Datenbus an die Steuereinheit abgibt. Hierdurch ist die Steuereinheit des Autos immer über die aktuelle Position des Kolbens des bistabilen Schaltventils informiert, wodurch die Fehlersuche in der Werkstatt wesentlich vereinfacht ist.
  • Es kann erwähnt werden, dass es für die Erfindung unerheblich ist an welcher Position im magnetischen Kreis der unverstellbar befestigte Permanentmagnet vorgesehen ist. Dies deshalb, da es für die Funktionsweise des Kolbenpositionsdetektors nur wichtig ist, dass eine magnetische Flussdichte in dem magnetischen Kreis vorhanden ist, deren Änderung der Kolbenpositionsdetektor detektieren kann. Hierdurch ist eine große konstruktive Freiheit bei der Konstruktion des Schaltmagneten gegeben.
  • Es kann erwähnt werden, dass der zweite Permanentmagnet 13 die magnetische Flussdichte des Permanentmagneten 8 abschwächend oder verstärkend gepolt sein kann. Die Polung als abschwächend hat sich in dem Ausführungsbeispiel als vorteilhaft erwiesen.

Claims (12)

  1. Bistabiler Schaltmagnet (1; 12) mit einer Erregerspule (10) und einem, gegenüber der Erregerspule (10) durch einen Schaltstrom in der Erregerspule (10) in eine erste Schaltposition und eine zweite Schaltposition, verstellbaren Kolben (4) und mit einem Kolbenpositionsdetektor zur Detektion, ob der Kolben (4) in seine erste oder seine zweite Schaltposition verstellt ist, dadurch gekennzeichnet, dass
    der Kolben (4) durch zumindest einen eine magnetische Flussdichte im magnetischen Kreis erzeugenden Permanentmagneten (8) in seiner zweiten Schaltposition gehalten wird und, dass der Kolbenpositionsdetektor durch den Permanentmagneten (8; 13) und einen im Bereich des magnetischen Kreises angeordneten Magnetfeldsensor (11) gebildet ist, die beide im Bezug auf die Erregerspule (10) unverstellbar befestigt in dem Schaltmagneten (1; 12) vorgesehen sind, und wobei der Kolbenpositionsdetektor Auswertemittel aufweist, die zur Detektion der Kolbenposition die von dem Magnetfeldsensor (11) gemessene, von der Schaltposition des Kolbens (4) abhängige magnetische Flussdichte im magnetischen Kreis auswerten.
  2. Bistabiler Schaltmagnet (1; 12) gemäß Anspruch 1, dadurch gekennzeichnet, dass eine Feder (5) vorgesehen ist, die den Kolben (4) in seine erste Schaltposition drückt, und dass der Permanentmagnet (8), entgegen der Federkraft (FK), den Kolben (4) in der zweiten Schaltposition hält, wobei der Kolben (4) durch den Schaltstrom, abhängig von seiner Polarität, in die erste Schaltposition und die zweite Schaltposition verstellbar ist.
  3. Bistabiler Schaltmagnet (1; 12) gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Permanentmagnet (8) durch einen NdFeB-Magnet gebildet ist.
  4. Bistabiler Schaltmagnet (1; 12) gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Magnetfeldsensor (11) unmittelbar neben dem in seine erste Schaltposition verstellten Kolben (4) vorgesehen ist.
  5. Bistabiler Schaltmagnet (12) gemäß Anspruch 4, dadurch gekennzeichnet, dass im magnetischen Kreis, zwischen dem in seine erste Schaltposition verstellen Kolben (4) und dem Magnetfeldsensor (11) ein zweiter Permanentmagnet (13) am Kolben (4) befestigt vorgesehen ist.
  6. Bistabiler Schaltmagnet (1; 12) gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Magnetfeldsensor (11) durch einen Hallsensor gebildet ist, der als linearer Hallsensor oder als Schwellwertschalter ausgebildet ist.
  7. Bistabiler Schaltmagnet gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Magnetfeldsensor zur Detektion der axialen Komponente des magnetischen Flusses angeordnet ist.
  8. Bistabiler Schaltmagnet gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Magnetfeldsensor außerhalb der Achse des Schaltmagneten zur Detektion der axialen und/oder radialen Komponente des magnetischen Flusses angeordnet ist.
  9. Bistabiler Schaltmagnet gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine mit einem Datenbus verbindbare Ansteuerelektronik vorgesehen ist, der von dem Datenbus eine Schaltinformation zuführbar ist und die zum Auswerten der Schaltinformation und zum Abgeben des Schaltstroms an die Erregerspule ausgebildet ist.
  10. Bistabiler Schaltmagnet gemäß Anspruch 9, dadurch gekennzeichnet, dass der Datenbus durch einen LIN-Bus gebildet ist.
  11. Bistabiler Schaltmagnet gemäß einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass von den Auswertemitteln des Kolbepositionsdetektors eine Positionsinformation an die Ansteuerelektronik abgebbar ist, die zu bestimmten Zeiten und/oder auf Anfrage zum Abgeben der Positionsinformation über den Datenbus ausgebildet ist.
  12. Bistabiles Schaltventil zum Öffnen oder Schießen der Verbindung zwischen einem ersten Volumen und einem zweiten Volumen, dadurch gekennzeichnet, dass der bistabile Schaltmagnet (1; 12) gemäß einem der vorherigen Ansprüche vorgesehen ist und, dass der Kolben (4) mit einem Dichtelement verbunden ist, das in der ersten oder in der zweiten Schaltposition des Kolbens (4) ein erstes Volumen im Gehäuse des Schaltventils gegenüber einem zweiten Volumen in dem Gehäuse des Schaltventils abdichtet, wobei die beiden Volumina in der zweiten bzw. der ersten Schaltposition des Kolbens (4) miteinander verbunden sind.
EP20120184928 2011-10-27 2012-09-19 Bistabiler Schaltmagnet mit Kolbenpositionsdetektor Not-in-force EP2587496B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT15832011A AT512065A1 (de) 2011-10-27 2011-10-27 Bistabiler schaltmagnet mit kolbenpositionsdetektor

Publications (2)

Publication Number Publication Date
EP2587496A1 EP2587496A1 (de) 2013-05-01
EP2587496B1 true EP2587496B1 (de) 2014-06-04

Family

ID=46888939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20120184928 Not-in-force EP2587496B1 (de) 2011-10-27 2012-09-19 Bistabiler Schaltmagnet mit Kolbenpositionsdetektor

Country Status (2)

Country Link
EP (1) EP2587496B1 (de)
AT (1) AT512065A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106017712A (zh) * 2016-07-26 2016-10-12 华中科技大学 活塞瞬态温度检测系统及发动机
CN109599248A (zh) * 2018-11-30 2019-04-09 中国工程物理研究院应用电子学研究所 一种1.8t紧凑型低功耗强场直流磁体
US10571041B2 (en) 2015-08-28 2020-02-25 Taylor Commercial Foodservice Inc. Bi-stable changeover valve
EP3264431B1 (de) * 2016-07-01 2022-04-20 Safran Landing Systems Bistabiler linearer elektromagnet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113500A1 (de) * 2014-09-18 2016-03-24 Eto Magnetic Gmbh Bistabile elektromagnetische Aktorvorrichtung
CN107256755B (zh) * 2017-07-31 2023-09-08 中国船舶重工集团公司第七0七研究所 一种内置双向位置检测的自保持电磁铁
DE102017125786A1 (de) 2017-11-06 2019-05-09 Schaeffler Technologies AG & Co. KG Bistabiler Linearmagnet
CN108006302B (zh) * 2017-11-08 2019-05-21 中国航空工业集团公司金城南京机电液压工程研究中心 一种基于双线圈温升控制的电磁活门

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769043A (en) * 1997-05-08 1998-06-23 Siemens Automotive Corporation Method and apparatus for detecting engine valve motion
ES2205648T3 (es) * 1998-07-07 2004-05-01 Daimlerchrysler Ag Apantallamiento magnetico de un elemento actuador para el control electromagnetico de valvulas.
GB2380065B (en) * 1998-10-08 2003-05-14 Camcon Ltd Magnetic drives
DE10054308A1 (de) * 2000-11-02 2002-06-13 Conti Temic Microelectronic Aktor zur elektromagnetischen Ventilsteuerung mit zwei Elektromagneten
DE10328422A1 (de) * 2003-06-25 2005-01-27 Festo Ag & Co. Positionserfassungsvorrichtung sowie damit ausgestattete fluidtechnische Vorrichtung
DE102005058376B4 (de) * 2004-12-06 2014-03-06 Kendrion (Villingen) Gmbh Geräuschoptimierter Hubaktor
US8159807B2 (en) * 2005-12-22 2012-04-17 Siemens Aktiengesellschaft Method and device for operating a switching device
EP2277182A4 (de) * 2008-05-16 2017-01-25 G.W. Lisk Company, Inc. Integrierter positionssteuerungssensor
AT13504U1 (de) 2008-09-10 2014-02-15 Msg Mechatronic Systems Gmbh Schaltmagnet
DE102010001914A1 (de) * 2010-02-15 2011-08-18 Robert Bosch GmbH, 70469 Lenkvorrichtung für ein Kraftfahrzeug

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571041B2 (en) 2015-08-28 2020-02-25 Taylor Commercial Foodservice Inc. Bi-stable changeover valve
EP3264431B1 (de) * 2016-07-01 2022-04-20 Safran Landing Systems Bistabiler linearer elektromagnet
CN106017712A (zh) * 2016-07-26 2016-10-12 华中科技大学 活塞瞬态温度检测系统及发动机
CN106017712B (zh) * 2016-07-26 2018-09-07 华中科技大学 活塞瞬态温度检测系统及发动机
CN109599248A (zh) * 2018-11-30 2019-04-09 中国工程物理研究院应用电子学研究所 一种1.8t紧凑型低功耗强场直流磁体
CN109599248B (zh) * 2018-11-30 2021-05-25 中国工程物理研究院应用电子学研究所 一种1.8t紧凑型低功耗强场直流磁体

Also Published As

Publication number Publication date
AT512065A1 (de) 2013-05-15
EP2587496A1 (de) 2013-05-01

Similar Documents

Publication Publication Date Title
EP2587496B1 (de) Bistabiler Schaltmagnet mit Kolbenpositionsdetektor
DE202010010371U1 (de) Elektromagnetische Stellvorrichtung
EP2042792B1 (de) Magnetventil mit einer Handhilfsbetätigung
EP1801535A2 (de) Magnetkupplung, insbesondere zum Arretieren eines Drehgelenks bei einem Koordinatenmessgerät
DE102015209195A1 (de) Einrastventilanordnung mit Positionserkennung
DE102014211146A1 (de) Kolben-Zylinder-Anordnung, insbesondere für ein Ausrücksystem in einem Kraftfahrzeug
DE102016217972A1 (de) Vorrichtung zum Steuern eines Automatikgetriebes
EP3580769B1 (de) Bistabile magnetventil-einrichtung und verfahren zu deren überwachung
EP3108210B1 (de) Sensoranordnung und verfahren zum bestimmen einer position und/oder einer positionsänderung eines messobjekts
WO2016139049A1 (de) Feldgerät der automatisierungstechnik
DE102016217856B4 (de) Verfahren zur Einrichtung eines Sensorsystems mit einem Multiturnsensor
DE102016205766A1 (de) Kupplungs- / Getriebebetätigungsvorrichtung und linearer Wegsensor mit gekippter Doppelmagnetanordnung
EP3645980B1 (de) Verfahren und vorrichtung zur justierung einer position eines magneten zu einem gmr-sensor
DE102012218605A1 (de) Induktiver Schaltpunktsensor, insbesondere für eine Kolben-Zylinder-Anordnung einer Kupplungsbetätigungsvorrichtung
DE102019003818A1 (de) Kupplungsvorrichtung sowie Kupplungsanordnung
DE102014217248A1 (de) Sensorsystem und Kolben-Zylinder-Anordnung
DE102006010616A1 (de) Elektromagnetische Schalteinrichtung für Getriebe
DE102012204321A1 (de) Elektromagnetische Stellvorrichtung mit Eignung zur Ankerpositionserfassung
DE102007000597A1 (de) Verfahren und Vorrichtung zum berührungslosen Messen einer relativen Verstellung von Bauteilen zueinander
EP1867956B1 (de) Vergrösserung des Wirkabstandes bei magnetischen Sensoren mittels eines Stützfeldes
DE102015225902A1 (de) Magnetfeldsensorvorrichtung und Verfahren zum Positionserfassen eines Wählhebels eines Kraftfahrzeugs
DE102012204322B4 (de) Bidirektionale elektromagnetische Stellvorrichtung
EP3001079B1 (de) Stellanordnung umfassend einen linearantrieb und einen stellungsregler
DE102014010601A1 (de) Sensoranordnung und Verfahren zum Betreiben einer Sensoranordnung
DE102015116303A1 (de) Vorrichtung zur Kompensation externer magnetischer Streufelder bzw. zum Kompensieren des Einflusses eines Magnetfeldgradienten auf einen Magnetfeldsensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130903

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 671476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012000815

Country of ref document: DE

Effective date: 20140710

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140905

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012000815

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140919

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

26N No opposition filed

Effective date: 20150305

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012000815

Country of ref document: DE

Effective date: 20150305

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120919

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220920

Year of fee payment: 11

Ref country code: AT

Payment date: 20220923

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012000815

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 671476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230919