EP2582036B1 - Parameterschätzvorrichtung für ein Antriebssystem eines Permanentmagnetsynchronmotors - Google Patents

Parameterschätzvorrichtung für ein Antriebssystem eines Permanentmagnetsynchronmotors Download PDF

Info

Publication number
EP2582036B1
EP2582036B1 EP12184942.6A EP12184942A EP2582036B1 EP 2582036 B1 EP2582036 B1 EP 2582036B1 EP 12184942 A EP12184942 A EP 12184942A EP 2582036 B1 EP2582036 B1 EP 2582036B1
Authority
EP
European Patent Office
Prior art keywords
unit
estimating
output
reference frame
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12184942.6A
Other languages
English (en)
French (fr)
Other versions
EP2582036A2 (de
EP2582036A3 (de
Inventor
An No Yoo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Electric Co Ltd
Original Assignee
LSIS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSIS Co Ltd filed Critical LSIS Co Ltd
Publication of EP2582036A2 publication Critical patent/EP2582036A2/de
Publication of EP2582036A3 publication Critical patent/EP2582036A3/de
Application granted granted Critical
Publication of EP2582036B1 publication Critical patent/EP2582036B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant

Definitions

  • the present disclosure relates to parameter estimation, and more particularly to a parameter estimating apparatus for permanent magnet synchronous motor driving system.
  • PMSMs Permanent magnet synchronous machines driven by voltage inverters are generally operated under a speed control mode or a torque control mode.
  • the PMSMs used for the speed control mode may include such industrial fields as hoist fields including elevators and cranes, and variable speed operation fields including fans and pumps.
  • the PMSMs used for the torque control mode may include such industrial fields as traction motors for electric vehicles.
  • FIG.1 is a schematic diagram illustrating a PMSM according to prior art, where a PMSM driving system is illustrated that is driven by an inverter in which a vector control independently controlling a magnetic flux current and a torque current is realized.
  • the PMSM driving system includes an inverter (100), a PMSM (200) and a rotor position detector (210).
  • the inverter (100) receives a reference torque to output voltages for driving the PMSM (200) in response to the reference torque.
  • the rotor of the PMSM (200) is attached with the rotor position detector (210) to calculate or measure rotor position and rotor velocity.
  • the rotor position and rotor velocity calculated or measured by the rotor position detector (210) is used for coordination conversion by coordinate converters (130, 170).
  • a current command generator (110) outputs a current command of synchronous reference frame.
  • a current controller (120) serving to control the current command, outputs d/q axis voltage of the synchronous reference frame.
  • a coordinate converter (130) uses the rotor position information received from the rotor position detector (210) to convert an output voltage of the current controller (120) to a voltage of a stationary reference frame.
  • An over-modulator (140) functions to convert the output voltage of the coordinate converter (130) to a voltage that can be combined by an inverter unit (150).
  • the inverter unit (150) is a voltage type inverter including a power semiconductor, and applies command torque-tracing voltages to the PMSM (200).
  • Current sensors (161 to 163) measure a phase current between the PMSM (200) and the inverter unit (150), and the current measured by the current sensors (161 to 163) is coordinate-converted by the coordinate converter (170) and fedback to the current controller (120).
  • an superscript 'r' represents a parameter of a synchronous reference frame
  • a subscript 's' is a parameter of stationary reference frame
  • P represents the number of poles of a motor
  • ⁇ ds r ⁇ qs r are rotor magnetic fluxes of d/q axis synchronous reference frame on the stationary reference frame
  • i ds r , i qs r are currents of d/q axis stationary reference frame on the synchronous reference frame
  • magnetic flux of rotor on d/q axis the synchronous reference frame may be defined by the following Equations:
  • the torque of the PMSM (200) is influenced by the d/q axis inductance and the magnet flux linkage of the permanent magnet,
  • a command generator (110) generates d/q axis current command on synchronous reference frame using relation between command torque and Equation 4.
  • a voltage equation of the synchronous reference frame of the PMSM (200) may be obtained by the following Equations.
  • V ds r R s i ds r + L ds d i ds r dt ⁇ ⁇ r ⁇ qs r
  • V qs r R s i qs r + L qs d i qs r dt + ⁇ r ⁇ ds r
  • ⁇ r is an electrical angle velocity
  • V ds r and V qs r are d/q axis voltage on the synchronous reference frame
  • R s is a phase resistance on the synchronous reference frame.
  • the current command generated by the current command generator (110) and feedback current of the coordinate converter (170) are inputted to the current controller (120).
  • the current controller (120) is a proportional and integral regulator, and combines an output voltage in the following manners.
  • V ds r * K pd + K id s i ds _ ref r ⁇ i ds r ⁇ ⁇ r ⁇ ⁇ qs r
  • V qs r * K pq + K iq s i qs _ ref r ⁇ i qs r + ⁇ r ⁇ ⁇ ds r
  • ⁇ ⁇ ds r and ⁇ ⁇ qs r are d/q axis magnetic flux estimated on the synchronous reference frame.
  • the over-modulator (140) regulates the voltage of the coordinate converter (130) and outputs the regulated voltage so that a voltage command can be available within an inscribed circle of voltage restriction condition expressed in a hexagon on the stationary reference frame.
  • the inverter unit (150) combines the following voltages from the output voltage of the over-modulator (140) and applies the voltage to the PMSM (200).
  • the current sensors (161 ⁇ 163) measure a phase current between the inverter unit (150) and the PMSM (200), convert the phase current to a current on the synchronous reference frame, and feedback the current to the current controller (120).
  • i ds s 2 i as ⁇ i bs ⁇ i cs 3
  • i qs s i bs ⁇ i cs 2
  • the PMSM (200) is saturated in magnetic flux according to load condition to generate a difference between the torque to be outputted by the inverter (100) and the actually outputted torque, the explanation of which has been described above.
  • the driving of the PMSM (200) as in FIG. 1 is problematic in that performance decreases in terms of torque control, if inductance of the PMSM (200) or magnetic flux linkage by the permanent magnet is saturated according to load condition, because the d/q axis current command on the synchronous reference frame is calculated by the torque command.
  • Document JP 2010 088238 A discloses a prior art synchronous motor controller for matching a torque command and an output torque.
  • embodiments of the present disclosure may relate to a parameter estimating apparatus for permanent magnet synchronous motor driving system that may substantially obviate one or more of the above disadvantages due to limitations and disadvantages of related art, and it is therefore an object of the present disclosure to provide a parameter estimating apparatus for permanent magnet synchronous motor driving system configured to estimate a magnetic flux linkage by inductance and a permanent magnet through a real time flux estimation, whereby a PMSM driving performance can be enhanced.
  • a parameter estimating apparatus for permanent magnet synchronous motor driving system including a current command generating unit generating a current command on a synchronous reference frame from a torque command, a current controller generating a voltage on the synchronous reference frame using a rotor position of a PMSM (Permanent Magnet Synchronous Machine) from the current command, a first coordinate converter converting an output of the current controller on the synchronous reference frame to an output on stationary reference frame, an over-modulator limiting the output of the first coordinate converter to within a predetermined range and outputting the limited output, an inverter unit applying a voltage command tracing the command torque to the PMSM, and a second coordinate converter converting a phase current outputted from the inverter unit on the stationary reference frame to a phase current on the synchronous reference frame, the apparatus comprising: a first estimating unit estimating a d-axis magnetic flux and a q-axis magnetic flux on a synchronous reference frame, using the output voltage
  • the second estimating unit comprises a first determining unit determining the q-axis inductance from the q-axis magnetic flux estimated by the first estimating unit, a first compensating unit compensating a difference between the first determining unit and a first adding unit using any one of a proportional gain and a proportional and integral gain, a first integrating unit integrating an output of the first compensating unit, and the first adding unit adding an output of the first integrating unit to an initially-set q-axis inductance.
  • the second estimating unit further comprises a first limiting unit limiting an output of the first adding unit to within predetermined maximum and minimum value.
  • the third estimating unit comprises a second determining unit determining the d-axis inductance from the d-axis magnetic flux estimated by the first estimating unit, a second compensating unit compensating a difference between the second determining unit and a second adding unit using any one of a proportional gain and a proportional integral gain, a second integrating unit integrating an output of the second compensating unit, and the second adding unit adding an output of the second integrating unit to the initially-set q-axis inductance.
  • the third estimating unit further comprises a second limiting unit limiting an output of the second adding unit to within predetermined maximum and minimum value.
  • the second determining unit is such that a magnet flux linkage is defined by a constant value.
  • a parameter estimating apparatus for permanent magnet synchronous motor driving system including a current command generating unit generating a current command on a synchronous reference frame from a torque command, a current controller generating a voltage on the synchronous reference frame using a rotor position of a PMSM from the current command, a first coordinate converter converting an output of the current controller on the synchronous reference frame to an output on stationary reference frame, an over-modulator limiting the output of the first coordinate converter to within a predetermined range and outputting the limited output, an inverter unit applying a voltage command tracing the command torque to the PMSM, and a second coordinate converter converting a phase current outputted from the inverter unit on the stationary reference frame to a phase current on the synchronous reference frame, the apparatus comprising: a first estimating unit estimating a d-axis magnetic flux and a q-axis magnetic flux on a synchronous reference frame, using the output voltage of the over-modulator, the phase current
  • the second estimating unit comprises a first determining unit determining the q-axis inductance from the q-axis magnetic flux estimated by the first estimating unit, a first compensating unit compensating a difference between the first determining unit and a first adding unit using any one of a proportional gain and a proportional integral gain, a first integrating unit integrating an output of the first compensating unit, and the first adding unit adding an output of the first integrating unit to an initially-set q-axis inductance.
  • the second estimating unit further comprises a first limiting unit limiting an output of the first adding unit to within predetermined maximum and minimum value.
  • the third estimating unit comprises a second determining unit determining the magnet flux linkage of the permanent magnet from the q-axis magnetic flux estimated by the first estimating unit, a second compensating unit compensating a difference between the second determining unit and a second adding unit, using any one of a proportional gain and a proportional integral gain, a second integrating unit integrating an output of the second compensating unit, and the second adding unit adding an output of the second integrating unit to the initially-set magnet flux linkage of the permanent magnet.
  • the third estimating unit further comprises a second limiting unit limiting an output of the second adding unit to within predetermined maximum and minimum value.
  • the second determining unit is such that a magnet flux linkage is defined by a constant value.
  • the parameter estimating apparatus for permanent magnet synchronous motor driving system has an advantageous effect in that a real time magnetic flux is estimated to estimate a magnet flux linkage of a permanent magnet, whereby an operation performance of the PMSM can be enhanced.
  • FIGS. 1-7 of the drawings like numerals being used for like and corresponding parts of the various drawings.
  • Other features and advantages of the disclosed embodiments will be or will become apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional features and advantages be included within the scope of the disclosed embodiments, and protected by the accompanying drawings.
  • the illustrated figures are only exemplary and not intended to assert or imply any limitation with regard to the environment, architecture, or process in which different embodiments may be implemented. Accordingly, the described aspect is intended to embrace all such alterations, modifications, and variations that fall within the scope and novel idea of the present invention.
  • first constituent element
  • second constituent element
  • exemplary is merely meant to mean an example, rather than the best. If is also to be appreciated that features, layers and/or elements depicted herein are illustrated with particular dimensions and/or orientations relative to one another for purposes of simplicity and ease of understanding, and that the actual dimensions and/or orientations may differ substantially from that illustrated.
  • the terms "-er”, “-or”, “part” and “module” described in the specification mean units for processing at least one function and operation and can be implemented by hardware components or software components, and combinations thereof.
  • FIG.2 is a structural view illustrating a PMSM driving system according to an exemplary embodiment of the present disclosure, where the PMSM driving system driven by an inverter including a parameter estimating apparatus is illustrated.
  • the PMSM driving system includes an inverter (10), a PMSM (20) and a rotor position detector (21).
  • the inverter (10) includes a current command generator (11), a current controller (12), a first coordinate converter (13), an over-modulator (14), an inverter unit (15), current sensors (16a to 16c), a second coordinate converter (17) and a parameter estimating unit (18).
  • the inverter (10) receives a reference torque to output voltages (V as , V bs , V cs ) for driving the PMSM (20) in response to the reference torque.
  • the rotor of the PMSM (20) is attached with the rotor position detector (21) to calculate or measure rotor position and rotor velocity.
  • the rotor position measured by the rotor position detector (21) is used for coordination conversion by the first and second coordinate converters (13, 17).
  • the current command generator (11) generates d/q axis current command on the synchronous reference frame from the reference torque, and updates an inductance from the parameter estimating unit (18) and magnet flux linkage information of a permanent magnet to generate d/q axis current command.
  • the current controller (12) controlling the current command outputted by the current command generator (11) outputs the d/q axis voltage on a synchronous reference frame.
  • the first coordinate converter (13) uses the rotor position information obtained by the rotor position detector (21) to convert the output voltage of the current controller (12) to a voltage on a stationary reference frame.
  • the over-modulator (14) converts the output voltage of the first coordinate converter (13) to a voltage combinable by the inverter unit (15).
  • the inverter unit (150) is preferably a voltage type inverter including a power semiconductor such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and applies reference torque-tracing voltages (V as , V bs , V cs ) to the PMSM (20).
  • the current sensors (16a to 16c) measure a phase current of PMSM (20) between the PMSM (20) and the inverter unit (15), and the current measured by the current sensors (16a ⁇ 16c) is feedback to the current controller (12).
  • the second coordinate converter (17) converts the current on the stationary reference frame measured by the current sensors (16a to 16c) to current on the synchronous reference frame and transmits the current to the current controller (12).
  • the parameter estimating unit (18) receives the output voltage of the over-modulator (14), the phase current of the second coordinate converter (17) and rotor position detected by the rotor position detector (21) to estimate a magnetic flux used by the current controller (12), and estimates the d/q axis inductance estimated by the synchronous reference frame, the magnet flux linkage of the permanent magnet or the q-axis inductance by using the estimated magnetic flux, and transmits the estimation to the current command generator (11).
  • FIG.3 is a detailed structural view illustrating a parameter estimating apparatus of FIG.2 according to an exemplary embodiment of the present disclosure.
  • the parameter estimating unit (18) includes a magnetic flux estimating unit (31), a d-axis inductance estimating unit (32) and a q-axis inductance estimating unit (33).
  • the magnetic flux estimating unit (31) receives the output voltage of the over-modulator (14), the phase current of the second coordinate converter (17) and rotor position detected by the rotor position detector (21) to estimate a magnetic flux used by the current controller (12), and explanation of which will be provided in the following.
  • Equations 20 and 21 are outputted as final output voltages via the first coordinate converter (13) and the over-modulator (14) of FIG. 2 .
  • the output voltag of the current controller (12) generates only the coordinate voltage under a situation where no over-modulation is generated, the output voltage of the current controller (12) is same as each voltage expressed by the Equations 21 and 22, if the voltage combined by the inverter unit (15) is converted to that of synchronous reference frame.
  • Equation 22 An error of magnetic flux used by the current controller (12) can be obtained using the Equations 22 and 23.
  • the parameter estimating unit (18) can estimate d/q axis magnetic flux using the following Equations 26 and 27.
  • ⁇ ds _ est _ volt r ⁇ qs _ est _ volt r
  • ⁇ qs _ est _ cur r ⁇ ⁇ qs r
  • a d-axis inductance estimating unit (32) and a q-axis inductance estimating unit (33) estimate d/q-axis inductances respectively using the magnetic flux estimated by using Equations 26 and 27.
  • a magnet flux linkage of the permanent magnet is assumed as a constant value in the exemplary embodiment of the parameter estimating unit (18) of the present disclosure.
  • FIG.4 is a detailed structural view illustrating a d-axis inductance estimating unit (32) of FIG. 3 according to an exemplary embodiment of the present disclosure
  • FIG.5 is a detailed structural view illustrating a q-axis inductance estimating unit (33) of FIG. 3 according to an exemplary embodiment of the present disclosure.
  • the d/q axis inductance estimating units (32, 33) use the magnetic flux estimated by the magnetic flux estimating unit (31) to estimate d/q axis inductances respectively.
  • the d-axis inductance estimating unit (32) includes an Ld calculating unit (41), a compensating unit (42), an integrating unit (43), an adding unit (44) and a limiting unit (45), and the q-axis inductance estimating unit (33) includes an Lq calculating unit (51), a compensating unit (52), an integrating unit (53), an adding unit (54) and a limiting unit (55).
  • the Ld calculating unit (41) obtains a d-axis inductance from the d-axis magnetic flux (Equation 26) estimated by the magnetic flux estimating unit (31). At this time, the d-axis inductance can be obtained using Equation 2.
  • the compensating unit (42) compensates a difference between the Ld calculating unit (41) and the adding unit (44) using a proportional gain or a proportional and integral gain.
  • the integrating unit (43) integrates an output of the compensating unit (42), and the adding unit (44) combines an initially-set inductance and an output of the integrating unit (43).
  • the limiting unit (45) limits the estimated d-axis inductance to within a maximum value and a minimum value.
  • the Lq calculating unit (51) obtains a q-axis inductance from the q-axis magnetic flux (Equation 27) estimated by the magnetic flux estimating unit (31). At this time, the q-axis inductance can be obtained using Equation 1.
  • the compensating unit (52) compensates a difference between the Lq calculating unit (51) and the adding unit (54) using a proportional gain or a proportional and integral gain.
  • the integrating unit (53) integrates an output of the compensating unit (52), and the adding unit (54) combines an initially-set inductance and an output of the integrating unit (53).
  • the limiting unit (55) limits the estimated q-axis inductance to within a maximum value and a minimum value.
  • the parameter estimating unit(18) for the PMSM driving system uses the output voltage of the over-modulator (14), the phase current of the second coordinate converter (17) and rotor position of the rotor position detector (21) to estimate the magnetic flux of the current controller (12), through which the inductance can be obtained, whereby performance robust to parameter changes can be obtained, through which torque linearity can be guaranteed during torque control of the PMSM.
  • the parameter estimating unit (18) may also estimate the magnet flux linkage by the permanent magnet, using the d-axis inductance as a constant value.
  • FIG.6 is a detailed structural view illustrating a parameter estimating apparatus of FIG.2 according to another exemplary embodiment of the present disclosure.
  • the parameter estimating unit (18) includes a magnetic flux estimating unit (31), a magnet flux linkage estimating unit by a permanent magnet (illustrated as “magnet flux linkage estimating unit” in the figure, 34) and a q-axis inductance estimating unit (33).
  • the operation of the magnetic flux estimating unit (31) and the q-axis inductance estimating unit (33) has been already explained above, such that no more elaboration thereto will be provided as functions are identical.
  • FIG.7 is a detailed structural view illustrating the magnet flux linkage estimating unit (34) of permanent magnet of FIG.6 according to an exemplary embodiment of the present disclosure.
  • the magnet flux linkage estimating unit (34) of permanent magnet includes a ⁇ f calculating unit (71), a compensating unit (72), an integrating unit (73), an adding unit (74) and a limiting unit (75).
  • the ⁇ f calculating unit (71) obtains a magnet flux linkage ⁇ f by a permanent magnet from the d-axis magnetic flux (Equation 26) estimated by the magnetic flux estimating unit (31). At this time, the d-axis inductance can be obtained using Equation 2.
  • the compensating unit (73) compensates a difference between the ⁇ f calculating unit (71) and the adding unit (74) using a proportional gain or a proportional and integral gain.
  • the integrating unit (73) integrates an output of the compensating unit (72), and the adding unit (74) combines an initially-set inductance and an output of the integrating unit (73).
  • the limiting unit (75) limits the magnet flux linkage by the permanent magnet to within a maximum value and a minimum value.
  • the parameter estimating unit (18) can estimate the magnetic flux of the current controller (12) to show robustness to parameter changes, whereby the PMSM driving system according to the present disclosure can guarantee torque linearity.

Claims (10)

  1. Parameterschätzvorrichtung für ein Permanentmagnet-Synchronmotorantriebssystem, wobei die Vorrichtung eine Strombefehlserzeugungseinheit (11) aufweist, die aus einem Drehmomentbefehl einen Strombefehl an einem Synchronreferenzrahmen erzeugt, ein Stromregler (12) eine Spannung an dem Synchronreferenzrahmen unter Nutzung einer Rotorposition einer PMSM (Permanentmagnet-Synchronmaschine) aus dem Strombefehl erzeugt, ein erster Koordinatenwandler (13) einen Ausgang des Stromreglers auf dem synchronen Referenzrahmen zu einem Ausgang auf einem stationären Referenzrahmen umwandelt, ein Übermodulator (14) die Ausgabe des ersten Koordinatenwandlers innerhalb eines vorbestimmten Bereichs begrenzt und der begrenzten Ausgabe ausgibt, eine Wechselrichtereinheit (15) einen Spannungsbefehl anlegt, der das Befehlsdrehmoment zum PMSM verfolgt, und ein zweiter Koordinatenwandler (17) einen Phasenstrom umwandelt, der von der Wechselrichtereinheit an dem stationären Referenzrahmen an eine Phase an dem synchronen Referenzrahmen ausgegeben wird, gekennzeichnet durch: eine erste Schätzeinheit (31), die einen d-Achsen-Magnetfluss und einen q-Achsen-Magnetfluss an einem synchronen Referenzrahmen unter Nutzung der Ausgangsspannung des Übermodulators (14), des Phasenstroms vom zweiten Koordinatenwandler (17) und der Rotorposition abschätzt; eine zweite Schätzeinheit (33), die eine q-Achsen-Induktivität an dem synchronen Referenzrahmen unter Nutzung des q-Achsen-Magnetflusses von der ersten Schätzeinheit (31) abschätzt; und eine dritte Schätzeinheit (32) zum Abschätzen einer d-Achsen-Induktivität an dem synchronen Referenzrahmen unter Nutzung des d-Achsen-Magnetflusses von der ersten Schätzeinheit, wobei ein Strombefehl unter Nutzung der Strombefehl-Erzeugungseinheit (11), der q-Achsen-Induktivität und der d-Achsen-Induktivität erzeugt wird, die von der zweiten und der dritten Schätzeinheit (33 und 32) abgeschätzt werden;
    wobei die zweite Schätzeinheit (33) eine erste Bestimmungseinheit (51) aufweist, die die q-Achsen-Induktivität aus dem durch die erste Schätzeinheit (31) geschätzten q-Achsen-Magnetfluss bestimmt, eine erste Kompensationseinheit (52) eine Differenz zwischen der ersten Bestimmungseinheit (51) und einer ersten Additionseinheit (54) unter Nutzung einer Proportionalverstärkung oder einer Proportional- und Integralverstärkung kompensiert, eine erste Integriereinheit (53) eine Ausgabe der ersten Kompensationseinheit (52) integriert, und die erste Addiereinheit (54) eine Ausgabe der ersten Integriereinheit (53) zu einer anfänglich eingestellten q-Achsen-Induktivität addiert.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Schätzeinheit (33) ferner eine erste Begrenzungseinheit (55) umfasst, die eine Ausgabe der ersten Addiereinheit (54) auf einen vorbestimmten maximalen und minimalen Wert begrenzt.
  3. Vorrichtung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die dritte Schätzeinheit (32) eine zweite Bestimmungseinheit (41) umfasst, die die d-Achsen-Induktivität aus dem von der ersten Schätzeinheit (31) abgeschätzten d-Achsen-Magnetfluss bestimmt, eine zweite Kompensationseinheit (42), die eine Differenz zwischen der zweiten Bestimmungseinheit (41) und einer zweiten Addiereinheit (44) unter Nutzung einer proportionalen Verstärkung und einer proportionalen Integralverstärkung kompensiert, eine zweite Integrationseinheit (43) eine Ausgabe der zweiten Kompensationseinheit (42) integriert, und die zweite Addiereinheit (44) eine Ausgabe der zweiten Integriereinheit (43) zu der anfänglich eingestellten q-Achsen-Induktivität addiert.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die dritte Schätzeinheit (32) ferner eine zweite Begrenzungseinheit (45) umfasst, die eine Ausgabe der zweiten Addiereinheit (44) auf einen vorbestimmten maximalen und minimalen Wert begrenzt.
  5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die zweite Bestimmungseinheit (41) derart ist, dass eine Magnetflussverkettung durch einen konstanten Wert definiert ist.
  6. Parameterschätzvorrichtung für ein Permanentmagnet-Synchronmotorantriebssystem, wobei die Vorrichtung eine Strombefehlserzeugungseinheit (11) aufweist, die aus einem Drehmomentbefehl einen Strombefehl an einem Synchronreferenzrahmen erzeugt, ein Stromregler (12) eine Spannung an dem Synchronreferenzrahmen unter Nutzung einer Rotorposition eines PMSM aus dem Strombefehl erzeugt, ein erster Koordinatenwandler (13) einen Ausgang des Stromreglers (12) auf dem synchronen Referenzrahmen zu einem Ausgang auf einem stationären Referenzrahmen umwandelt, ein Übermodulator (14) die Ausgabe des ersten Koordinatenwandlers (13) auf einen vorbestimmten Bereich begrenzt und die begrenzte Ausgabe ausgibt, eine Wechselrichtereinheit (15) einen Spannungsbefehl anlegt, der das Befehlsdrehmoment zu dem PMSM verfolgt, und ein zweiter Koordinatenwandler (17) einen Phasenstrom umwandelt, der von der Wechselrichtereinheit an dem stationären Referenzrahmen an einen Phasenstrom an dem Synchronreferenzrahmen ausgegeben wird, die Vorrichtung gekennzeichnet durch: eine erste Schätzeinheit zum Abschätzen (31) eines d-Achsen-Magnetflusses und eines q-Achsen-Magnetflusses an einem synchronen Referenzrahmen unter Verwendung der Ausgangsspannung des Übermodulators (14), des Phasenstroms von dem zweiten Koordinatenwandler (17) und die Rotorposition; eine zweite Schätzeinheit (33), die eine q-Achsen-Induktivität an dem synchronen Referenzrahmen unter Verwendung des q-Achsen-Magnetflusses von der ersten Schätzeinheit (31) schätzt; und eine dritte Schätzeinheit (34) zum Abschätzen einer Magnetflussverbindung eines Permanentmagneten unter Nutzung des d-Achsen-Magnetflusses von der ersten Schätzeinheit (31), wobei ein Strombefehl unter Nutzung der Strombefehlserzeugungseinheit (11) die q-Achsen-Induktivität und die Magnetfluss-Verknüpfung des Permanentmagneten von der zweiten und dritten Schätzeinheit (33 und 32) erzeugt wird;
    wobei die zweite Schätzeinheit (33) eine erste Bestimmungseinheit (51) aufweist, die die q-Achsen-Induktivität aus dem durch die erste Schätzeinheit (31) abgeschätzten q-Achsen-Magnetfluss bestimmt, eine erste Kompensationseinheit (52) eine Differenz zwischen der ersten Bestimmungseinheit (51) und einer ersten Addiereinheit (54) unter Nutzung einer Proportionalverstärkung oder einer Proportionalintegralverstärkung kompensiert, eine erste Integrationseinheit (53), die eine Ausgabe der ersten Kompensationseinheit (52) integriert, und die erste Integrationseinheit Addiereinheit (54) eine Ausgabe der ersten Integriereinheit (53) zu einer anfänglich eingestellten q-Achsen-Induktivität addiert.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die zweite Schätzeinheit (33) ferner eine erste Begrenzungseinheit (55) umfasst, die eine Ausgabe der ersten Addiereinheit (54) auf einen vorbestimmten maximalen und minimalen Wert begrenzt.
  8. Vorrichtung nach einem der Ansprüche 6 bis 7, dadurch gekennzeichnet, dass die dritte Schätzeinheit (34) eine zweite Bestimmungseinheit (71) beinhaltet, die die Magnetflussverkettung des Permanentmagneten von dem durch die erste Schätzung abgeschätzten q-Achsen-Magnetfluss, der durch die erste Schätzeinheit (31) abgeschätzt wurde, bestimmt, eine zweite Kompensationseinheit (72) eine Differenz zwischen der zweiten Bestimmungseinheit (71) und einer zweiten Addiereinheit (74) unter Nutzung einer Proportionalverstärkung und/oder einer proportionalen Integralverstärkung kompensiert, eine zweite Integrationseinheit (73) eine Ausgabe der zweiten Kompensationseinheit (72) integriert, und die zweite Addiereinheit (74) eine Ausgabe der zweiten Integriereinheit (73) zu der anfänglich eingestellten Magnetflussverkettung des Permanentmagneten addiert.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die dritte Schätzeinheit (34) ferner eine zweite Begrenzungseinheit (75) umfasst, die eine Ausgabe der zweiten Addiereinheit (74) auf einen vorbestimmten maximalen und minimalen Wert begrenzt.
  10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die zweite Bestimmungseinheit (71) derart ist, dass eine Magnetflussverkettung durch einen konstanten Wert definiert ist.
EP12184942.6A 2011-10-12 2012-09-19 Parameterschätzvorrichtung für ein Antriebssystem eines Permanentmagnetsynchronmotors Active EP2582036B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110104297A KR101549283B1 (ko) 2011-10-12 2011-10-12 영구자석 동기 전동기 구동 시스템의 파라미터 추정장치

Publications (3)

Publication Number Publication Date
EP2582036A2 EP2582036A2 (de) 2013-04-17
EP2582036A3 EP2582036A3 (de) 2018-01-31
EP2582036B1 true EP2582036B1 (de) 2019-01-23

Family

ID=47048965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12184942.6A Active EP2582036B1 (de) 2011-10-12 2012-09-19 Parameterschätzvorrichtung für ein Antriebssystem eines Permanentmagnetsynchronmotors

Country Status (6)

Country Link
US (1) US8829831B2 (de)
EP (1) EP2582036B1 (de)
JP (1) JP5580384B2 (de)
KR (1) KR101549283B1 (de)
CN (1) CN103051277B (de)
ES (1) ES2717601T3 (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9621092B2 (en) * 2013-01-25 2017-04-11 Nissan Motor Co., Ltd. Induction motor control apparatus and induction motor control method
JP5693652B2 (ja) * 2013-05-13 2015-04-01 三菱電機株式会社 同期機制御装置
CN103338002A (zh) * 2013-06-25 2013-10-02 同济大学 一种永磁同步电机永磁体磁通和交轴电感的辨识方法
EP3022567B1 (de) * 2013-07-18 2018-02-21 NXP USA, Inc. Vorrichtung und verfahren zur bestimmung von impedanzeigenschaften einer elektrischen last
US11418140B2 (en) * 2013-07-23 2022-08-16 Atieva, Inc. Induction motor flux and torque control
US10521519B2 (en) 2013-07-23 2019-12-31 Atieva, Inc. Induction motor flux and torque control with rotor flux estimation
US9344026B2 (en) * 2013-07-23 2016-05-17 Atieva, Inc. Induction motor flux and torque control
CN103701394B (zh) * 2013-12-30 2016-06-08 哈尔滨工业大学 一种基于电流量的逆变器功率管开路故障在线诊断方法
CN103986393B (zh) * 2014-04-21 2017-04-12 南京航空航天大学 一种永磁同步电机转子初始位置检测方法
KR101840509B1 (ko) 2014-04-29 2018-03-20 엘에스산전 주식회사 동기전동기 센서리스 벡터제어를 위한 회전각 추정장치
KR101591198B1 (ko) * 2014-10-14 2016-02-03 한양대학교 산학협력단 영구자석 동기 전동기의 인덕턴스 추정기 및 영구자석 동기 전동기의 인덕턴스 추정방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
CN104601069B (zh) * 2014-12-26 2016-04-06 南车株洲电力机车研究所有限公司 一种永磁同步电机的电感参数获取方法及系统
KR102421551B1 (ko) 2014-12-30 2022-07-20 삼성전자주식회사 모터 구동 장치 및 그 제어 방법
US9831812B2 (en) * 2015-02-27 2017-11-28 Nutech Ventures Direct torque control of AC electric machines
KR102447965B1 (ko) * 2015-03-17 2022-09-28 삼성전자주식회사 모터 구동 장치 및 그 제어 방법
CN104767457B (zh) * 2015-04-23 2018-07-27 四川长虹空调有限公司 直流变频压缩机运行过程中参数自适应的方法
JP6068554B2 (ja) 2015-05-11 2017-01-25 ファナック株式会社 センサレスで制御停止を行う機能を有するサーボ制御装置
JP6241460B2 (ja) * 2015-08-25 2017-12-06 株式会社デンソー 電動機の制御装置
WO2017104871A1 (ko) * 2015-12-18 2017-06-22 한양대학교 산학협력단 영구자석 동기 전동기의 인덕턴스 추정기 및 영구자석 동기 전동기의 인덕턴스 추정방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
JP6559058B2 (ja) 2015-12-24 2019-08-14 三星電子株式会社Samsung Electronics Co.,Ltd. 制御装置、空気調和装置、制御方法
US10725440B1 (en) * 2016-02-26 2020-07-28 The Mathworks, Inc. Systems and method for parameter estimation for a permanent magnet synchronous machine
CN106208867A (zh) * 2016-07-16 2016-12-07 沈阳航空航天大学 一种永磁同步电机控制系统pid参数寻优方法
JP6848390B2 (ja) * 2016-11-24 2021-03-24 日産自動車株式会社 可変磁束型回転電機の電流制御方法、及び電流制御装置
JP6790760B2 (ja) * 2016-11-24 2020-11-25 日産自動車株式会社 可変磁束モータの電流制御方法、及び電流制御装置
CN106627251B (zh) * 2017-01-22 2019-03-15 北京新能源汽车股份有限公司 一种电机控制方法及装置
DE102017205385A1 (de) * 2017-03-30 2018-10-04 Zf Friedrichshafen Ag Verfahren zum Kalibrieren eines Umrichters für eine elektrische Maschine, Steuergerät und Steuermodul
KR101987460B1 (ko) * 2018-02-21 2019-09-30 (주)모토닉 연료펌프 모터 제어장치 및 제어방법
CN108832859A (zh) * 2018-04-26 2018-11-16 江苏大学 一种基于参数辨识的永磁直线电机的预测电流控制方法
CN108768234B (zh) * 2018-06-21 2022-03-11 江苏英耐杰新能源有限公司 一种用于永磁同步电机矢量控制的基于离线参数辨识方法
FR3086473B1 (fr) * 2018-09-20 2020-10-02 Ifp Energies Now Procede de determination du flux magnetique d'une machine electrique
EP3883126A4 (de) * 2018-11-15 2022-01-19 Nissan Motor Co., Ltd. Elektrofahrzeugsteuerungsverfahren und -steuerungsvorrichtung
CN109713972B (zh) * 2018-12-10 2020-08-18 西安理工大学 一种基于非线性动力学分析的永磁同步电机磁链优化方法
CN110266236B (zh) * 2019-06-24 2020-11-24 珠海格力电器股份有限公司 一种电压矢量过调制控制方法、装置及永磁同步电机
CN112886887B (zh) * 2019-11-29 2023-11-14 比亚迪股份有限公司 用于电机的控制方法和控制装置、汽车以及存储介质
KR102437244B1 (ko) 2020-05-19 2022-08-30 한국과학기술원 영구자석동기모터 전체 파라미터의 실시간 추정 방법 및 장치
US20210391812A1 (en) * 2020-06-12 2021-12-16 Saginaw Valley State University Position sensor offset error diagnosis and calibration in permanent magnet synchronous machine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137258A (en) * 1998-10-26 2000-10-24 General Electric Company System for speed-sensorless control of an induction machine
US6163128A (en) * 1999-08-20 2000-12-19 General Motors Corporation Method and drive system for controlling a permanent magnet synchronous machine
JP3582505B2 (ja) * 2001-09-10 2004-10-27 日産自動車株式会社 モーター制御装置
JP3771544B2 (ja) * 2003-03-24 2006-04-26 株式会社日立製作所 永久磁石形同期電動機の制御方法及び装置
JP4455248B2 (ja) * 2004-09-24 2010-04-21 三菱電機株式会社 誘導電動機のベクトル制御装置
KR100655702B1 (ko) * 2004-12-20 2006-12-11 현대자동차주식회사 영구자석 동기 모터 제어방법
JP4650110B2 (ja) 2005-06-03 2011-03-16 日産自動車株式会社 電動機の制御装置
JP5167631B2 (ja) * 2006-11-30 2013-03-21 株式会社デンソー モータの制御方法及びそれを利用するモータ制御装置
JP5092572B2 (ja) * 2007-06-22 2012-12-05 富士電機株式会社 永久磁石形同期電動機の制御装置
JP5172418B2 (ja) 2008-03-28 2013-03-27 本田技研工業株式会社 電動機システムの制御装置
JP5252372B2 (ja) * 2008-10-01 2013-07-31 株式会社安川電機 同期電動機制御装置とその制御方法
JP5397023B2 (ja) 2009-06-01 2014-01-22 株式会社安川電機 交流モータの制御装置
JP2011041343A (ja) 2009-08-06 2011-02-24 Toshiba Corp モータ駆動装置及びモータ駆動方法
JP5116785B2 (ja) 2010-02-25 2013-01-09 株式会社日立製作所 交流電動機の駆動装置及び電動機車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20130039613A (ko) 2013-04-22
JP5580384B2 (ja) 2014-08-27
US8829831B2 (en) 2014-09-09
EP2582036A2 (de) 2013-04-17
CN103051277A (zh) 2013-04-17
US20130093370A1 (en) 2013-04-18
EP2582036A3 (de) 2018-01-31
CN103051277B (zh) 2015-04-15
KR101549283B1 (ko) 2015-09-01
ES2717601T3 (es) 2019-06-24
JP2013085461A (ja) 2013-05-09

Similar Documents

Publication Publication Date Title
EP2582036B1 (de) Parameterschätzvorrichtung für ein Antriebssystem eines Permanentmagnetsynchronmotors
JP5540040B2 (ja) 埋込型永久磁石同期電動機の駆動装置
US9136785B2 (en) Motor control system to compensate for torque ripple
KR20130005190A (ko) 매입형 영구자석 동기 전동기의 구동장치
EP1617552A2 (de) Antriebssteuerungsvorrichtung und Verfahren eines Wechselstrommotors
EP2779414A2 (de) Motorsteuerungssystem mit Bandbreitenkompensation
US9000694B2 (en) Synchronous motor control apparatus
WO2013137146A1 (ja) 電動機の制御装置及び電動機の制御方法
US9077278B2 (en) AC motor control apparatus
US20170264227A1 (en) Inverter control device and motor drive system
EP1460758B1 (de) Vektorsteuerungsverfahren und -vorrichtung
JP5223109B2 (ja) 永久磁石形同期電動機の制御装置
US9602035B2 (en) Driving apparatus for electric motor
US20140225540A1 (en) Control apparatus for ac motor
EP3258591A1 (de) Motorantriebssteuervorrichtung
JP5330652B2 (ja) 永久磁石モータ制御装置
EP3128668B1 (de) Antriebsvorrichtung für elektrische einrichtung
EP2963804B1 (de) Wechselrichter, baumaschine und motorsteuerungsverfahren
JP6541092B2 (ja) 永久磁石同期電動機の制御装置
KR101878090B1 (ko) 모터 제어 시스템 및 방법
JP5534991B2 (ja) 同期電動機の制御装置
EP3474438B1 (de) Motorsteuerungsvorrichtung und steuerungsverfahren
JP5456873B1 (ja) 同期機制御装置
EP3226405B1 (de) Vorrichtung zur korrektur der stromreferenz
JP5040605B2 (ja) 永久磁石形同期電動機の制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: H02P 21/14 20160101AFI20171219BHEP

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012056156

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H02P0021140000

Ipc: H02P0021160000

17P Request for examination filed

Effective date: 20180628

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H02P 21/16 20160101AFI20180727BHEP

INTG Intention to grant announced

Effective date: 20180821

RIN1 Information on inventor provided before grant (corrected)

Inventor name: YOO, AN NO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RIC2 Information provided on ipc code assigned after grant

Ipc: H02P 21/16 20160101AFI20180727BHEP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1092250

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012056156

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2717601

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1092250

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012056156

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

26N No opposition filed

Effective date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190919

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230608

Year of fee payment: 12

Ref country code: FR

Payment date: 20230609

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230705

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230607

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231013

Year of fee payment: 12