EP2580970A1 - Electrically heated cigarette smoking system with internal manifolding for puff detection - Google Patents

Electrically heated cigarette smoking system with internal manifolding for puff detection Download PDF

Info

Publication number
EP2580970A1
EP2580970A1 EP12198728.3A EP12198728A EP2580970A1 EP 2580970 A1 EP2580970 A1 EP 2580970A1 EP 12198728 A EP12198728 A EP 12198728A EP 2580970 A1 EP2580970 A1 EP 2580970A1
Authority
EP
European Patent Office
Prior art keywords
cigarette
flow passage
sensor
electrically heated
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12198728.3A
Other languages
German (de)
French (fr)
Other versions
EP2580970B1 (en
Inventor
John Louis Felter
Robert E. Lee
Ashok Solanky
Clint Blake
Pamela Davis
David E. Sharpe
Mark E. Watson
Robert L. Ripley
Brett W. Stevenson
William J. Crowe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philip Morris Products SA
Original Assignee
Philip Morris Products SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philip Morris Products SA filed Critical Philip Morris Products SA
Publication of EP2580970A1 publication Critical patent/EP2580970A1/en
Application granted granted Critical
Publication of EP2580970B1 publication Critical patent/EP2580970B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F1/00Tobacco pipes
    • A24F1/02Tobacco pipes with arrangements for cleaning or cooling the smoke
    • A24F1/22Tobacco pipes with arrangements for cleaning or cooling the smoke with arrangements for cooling by air, e.g. pipes with double walls
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F13/00Appliances for smoking cigars or cigarettes
    • A24F13/02Cigar or cigarette holders
    • A24F13/04Cigar or cigarette holders with arrangements for cleaning or cooling the smoke
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present invention relates to electrical smoking systems that heat a cigarette upon detection of a draw taken on the cigarette.
  • Previously known conventional lit cigarettes deliver flavor and aroma to the user as a result of combustion of tobacco.
  • a mass of combustible material primarily tobacco, is oxidized as the result of applied heat with typical combustion temperatures in a conventional cigarette being in excess of 800°C during puffing. Heat is drawn through an adjacent mass of tobacco by drawing on the mouth end of the cigarette. During this heating, inefficient oxidization of the combustible material takes place and yields various distillation and pyrolysis products. As these products are drawn through the body of the smoking device toward the mouth of the smoker, they cool and condense to form the aerosol which gives the consumer the flavor and aroma associated with smoking.
  • Conventional lit cigarettes can produce side stream smoke during smoldering between puffs, which may be objectionable to some non-smokers. Also, once lit, conventional cigarettes must be fully consumed or be discarded.
  • U.S. Patent No. 5,388,594 which is incorporated herein by reference, discloses an electrical smoking system that includes novel electrically powered lighters and novel cigarettes that are adapted to cooperate with the lighters.
  • the lighter includes a plurality of metallic heaters disposed in a configuration that slidingly receives a tobacco rod portion of the cigarette.
  • One of the many advantages of such a smoking system is the reusability of the lighter for numerous cigarettes.
  • One of the primary goals in an electrical smoking system such as that disclosed in U.S. Patent No. 5,388,594 , is to provide sensations of smoking that are as close as possible to the sensations experienced when smoking a conventional cigarette.
  • Some of these sensations include the resistance-to-draw (RTD) experienced by a smoker taking a puff on the cigarette, and the length of time between when a smoker begins to draw on the cigarette and when the smoker can first detect the flavors and aromas associated with smoking the cigarette.
  • RTD resistance-to-draw
  • RTD of traditional cigarettes is the pressure required to force air through the full length of a standard cigarette at the rate of 17.5 ml per second. RTD is usually expressed in inches or millimeters of water. Smokers have certain expectations when drawing upon a traditional cigarette in that too little RTD or too much can detract from smoking enjoyment. More traditional cigarettes of moderate delivery have RTD's generally within the range of approximately 100 to 130 mm's water.
  • establishing a quick response time for electrically heating a portion of the cigarette with one or more heater elements in response to a puff is a desirable characteristic.
  • the heating of the cigarette would be instantaneous with the beginning of a puff cycle.
  • sensing systems typically have some delay time between the beginning of a puff cycle and the heating of the cigarette with one or more heaters.
  • the heating fixture in an electrical smoking system such as that shown in commonly assigned U.S. Patent Nos. 5,388,594 and 5,878,752 , which are herein incorporated in their entireties by reference, includes a plurality of radially-spaced heating blades supported to extend from a hub and that are individually energized by a power source under the control of electrical circuitry to heat a number of discrete heating zones around the periphery of an inserted cigarette. Eight heating blades are preferred to develop eight puffs as in a conventional cigarette, although a greater or lesser number of heating blades can be provided.
  • the electrical circuitry in electrical smoking systems can be energized by a puff sensitive sensor that is sensitive to pressure drops occurring when a smoker draws on the cigarette.
  • the puff sensor activates an appropriate one of the cigarette heater elements or blades as a result of a change in pressure when a smoker draws on the cigarette.
  • a sensor that relies on detection of a pressure drop in order to initiate the smoking event may require a RTD through the cigarette that a smoker finds to be higher than the RTD with a conventional cigarette.
  • the electrical smoking system should preferably provide a RTD that is as close to a conventional cigarette as possible, while also avoiding false signals and undesired actuation of the heater blades that may occur as a result of shock vibration or air flow through the system created by factors other than a smoker drawing on the cigarette, such as movement of the cigarette smoking system or air movement past the cigarette smoking system.
  • An embodiment of an electrically heated cigarette smoking device in accordance with the invention includes a heater unit, a plurality of heaters within the heater unit for applying heat to portions of a cigarette supported within the heater unit, the heater unit having an opening adapted to receive an end of a cigarette and adapted to position the end in proximity to the plurality of heaters, and the heater unit defining at least part of a suction flow passage through which ambient air is drawn into contact with the cigarette when a smoker draws on the cigarette positioned in the heater unit.
  • a housing is mated with the heater unit and is designed to be comfortably grasped by a smoker.
  • a partition positions the heater unit relative to the housing and at least partially defines a bypass flow passage in fluid communication with ambient air surrounding the housing, the partition further defining a flow diverting passage through which ambient air is drawn from the bypass flow passage into the suction flow passage when a smoker puffs on a cigarette inserted in the heater unit opening.
  • a sensor can be positioned in the flow diverting passage or in the suction flow passage, and preferably in the flow diverting passage leading to the suction flow passage, to provide a signal indicative of a smoker taking a puff on the cigarette.
  • the housing of the electrically heated cigarette smoking device can include a chamber that is formed around at least part of the filter end of the cigarette when the cigarette is inserted into the housing.
  • a vacuum or pressure drop sensor can be ported to the chamber and will consequently sense the vacuum or pressure drop created at this location. Openings in the cigarette at this location allow for the sensing of internal vacuum created within the cigarette when a smoker takes a puff on the cigarette.
  • This arrangement can provide a faster response time than an arrangement wherein RTD (or pressure drop) is established predominantly in the lighter portion of the electrical smoking system, such as with an annular frit (porous body) adjacent the air admission port of the lighter as taught in commonly assigned U.S. Patent No. 5, 954, 979 .
  • An electrically heated cigarette smoking system includes a heater unit with heating elements that apply heat to portions of a cigarette supported within the heater unit.
  • the heater unit defines at least part of a suction flow passage through which ambient air is drawn into contact with the cigarette when a smoker draws on the cigarette.
  • a partition positions the heater unit relative to a housing, and at least partially defines a bypass flow passage in fluid communication with ambient air surrounding the housing. The partition further defines a flow diverting passage leading to the suction flow passage through which ambient air is drawn from the bypass flow passage when a smoker puffs on the cigarette.
  • a bypass flow passage that is in communication with the surrounding ambient air, and a flow diverting passage leading to a suction flow passage through which air is drawn from the bypass flow passage only when a smoker puffs on a cigarette, ensures that the sensor positioned in the flow diverting passage or the suction flow passage will be activated only when a smoker draws on the cigarette.
  • the arrangement of flow passages within the housing and defined by the housing, the heater unit and a partition that positions the heater unit relative to the housing improves the manufacturability of the electrically heated cigarette smoking device. This arrangement creates a flow passage in which the sensor can be mounted and sufficiently isolated from extraneous flow of ambient air through the device at times other than when a smoker is drawing on the cigarette.
  • a flow sensor is preferably used in the flow diverting passage since it can detect flow as soon as a smoker begins to draw on the cigarette, thereby enabling a response time that is very similar to the response time a smoker experiences when smoking a conventional cigarette.
  • An alternative embodiment of an electrically heated cigarette smoking system includes a housing, a plurality of heating elements arranged within the housing adapted to receive there-between a portion of a cigarette, a power source that supplies energy to the heating elements to heat the cigarette, and a manifold arrangement defining a puff sensing chamber surrounding a portion of the cigarette at a filter section of the cigarette.
  • the chamber is in fluid communication with the interior of the cigarette through perforations or openings around the filter portion of the cigarette, thereby allowing a pressure sensor positioned in communication with the chamber to detect pressure drops through the cigarette as a smoker takes a puff on the cigarette.
  • a separate and distinct puff sensing chamber for an electrically heated cigarette smoking device may be formed to abut a portion of a cigarette.
  • the separate sensing chamber may at one location be directed to abut a particular point or area on the cigarette, or the separate sensing chamber may surround the circumference of the cigarette.
  • the sensing chamber may be at another location vented to, ported to, or occupied by, a pressure sensor switch that detects a change in vacuum in the sensing chamber.
  • the sensing chamber may be attached to the electrically heated cigarette smoking device or built as a separate section or chamber of the electric smoking device.
  • a portion of the cigarette to which the sensing chamber is to abut may include a number of openings, holes or perforations, so as to allow the change in pressure inside the smokable product that occurs during a puff to be more easily and directly sensed.
  • the openings, holes or perforations may be preformed in the smokable product or may be created by a piercing tool included in the electric smoking device.
  • the sensing chamber may be affixed to an outer surface of the lighter portion of the electrically heated cigarette smoking system and may include an annular channel that forms a chamber around at least a portion of the circumference of the cigarette. In this case, the channel will be positioned at the filter end of the cigarette when the cigarette is positioned in the lighter portion of the smoking system.
  • the sensing chamber may be a round cylinder shape having a central axis oriented parallel to the central axis of the elongated cigarette shaft.
  • the sensing chamber can be formed within a cylindrical manifold arrangement that can be mated with and joined to an end of the lighter such that when a cigarette is inserted through the manifold arrangement and into the lighter, the filter end of the cigarette is surrounded by the sensing chamber defined within the manifold arrangement.
  • the manifold arrangement can also be formed integrally with the lighter. Passageways defined within the manifold arrangement can be designed to direct ambient air surrounding the smoking device or lighter to internal passageways in the lighter that lead to the heater portion of the lighter surrounding the tobacco portion of the cigarette.
  • a vacuum sensing sensor senses the puff vacuum around the tobacco section of the cigarette inside the heater assembly.
  • the heater has a restrictive device in the air inlet path which creates a pressure drop when a smoker takes a puff on the cigarette.
  • the restrictive device is preferably eliminated in this embodiment of the present invention and all of the RTD will be in the cigarette. Consequently there is no pressure drop to sense in the heater chamber.
  • the manifold arrangement around the filter end of the cigarette directs flow of ambient air essentially unrestricted through the internal passageways to the heater, while providing a separate passageway from the puff sensor (vacuum sensor) to the puff sensing chamber around the filter end of the cigarette. Since there is still vacuum or a pressure drop created in the cigarette, the structure according to this embodiment of the present invention provides for sensing of the pressure drop created in the cigarette near where it is at a maximum. This arrangement makes the lighter respond faster and/or reduces the required sophistication of the vacuum sensor system. This also allows the use of existing vacuum sensing technology.
  • the sensor used for detecting flow or pressure drop is preferably a micro-electrically machined device that fits within a very small volume, such that the overall size of the cigarette smoking device can be kept small, and the sensor consumes very small amounts of power while providing very fast response times when a smoker draws upon the cigarette, thereby creating a flow or pressure change.
  • the electrically heated cigarette smoking device includes electronics that activate the heater blades upon receiving a signal from the sensor.
  • An electrically heated cigarette smoking device 200 is shown in an assembled condition in Fig. 1 and in an exploded view in Fig. 2 .
  • the entire electrically heated cigarette smoking device 200 includes an upper heater case cap 20, a front housing 22, and left and right battery case portions 26, 24.
  • a heater unit 30 is positioned below the heater case cap 20, with the heater unit 30 fitting inside of a partition 40 that positions the heater unit relative to the front housing 22 of the cigarette smoking device.
  • An opening 18 at the top of the heater case cap 20 allows for the insertion of a cigarette into the top opening 30a of the heater unit 30.
  • the cigarette When the cigarette has been inserted through the opening 18 and into opening 30a of the heater unit 30, it is positioned in proximity to a plurality of heater blades (not shown) arranged around the circumference of the cigarette.
  • the heater blades are activated in sequence each time a puff is taken on the cigarette and electricity that passes through the heater blades raises the temperature of the blades sufficiently to cause pyrolysis of the tobacco, which is typically contained at least within a layer of the cigarette referred to as the "mat" layer immediately inside of an outer cigarette paper layer, such as shown in commonly assigned U.S. Patent Nos. 5,388,594 , 5,878,752 and 5,934,289 , which are herein incorporated in their entireties by reference.
  • the heater blades are in contact with the outer cigarette paper layer, and the heat is sufficient to cause pyrolysis of the tobacco in the mat layer inside of the outer cigarette paper layer, as well as additional tobacco that may be contained within a tobacco plug inside the mat layer.
  • a printed circuit board 60 is positioned between the partition 40 and the front housing 22, and can include a liquid crystal display that reveals information to a smoker such as the battery charge level and the number of puffs remaining for a cigarette that has been inserted into the heater 30.
  • the printed circuit board 60 can also mount the necessary electronics for activating the heater blades within heater 30 upon receiving a signal from a sensor that can also be mounted on the printed circuit board.
  • Slots 23, 25 through the heater case cap 20, as shown in Fig. 1 provide passageways for ambient air to enter the cigarette smoking device when a cigarette is positioned within the opening 18.
  • the partition 40 further defines a circumferential channel 42, or bypass flow passage, that is aligned with the slots 23, 25 when the cigarette smoking device is assembled.
  • a heater unit connector 56 is positioned below the heater unit 30 within inner housing members 52, 54, and provides an electrical connection between the heater blades mounted within the heater unit 30 and a power source such as a battery (not shown) that is housed within the battery case portions 24, 26.
  • a power source such as a battery (not shown) that is housed within the battery case portions 24, 26.
  • the detailed views in Figs. 4-7 show the partition 40 mounted on the heater unit connector 56, with the heater 30 that would normally be mounted within the partition 40 not being shown.
  • the ambient air surrounding the smoking device 200 is free to flow within the bypass flow passage created by the circumferential channel 42 and in and out of the external slots 23, 25, such as when a cigarette is held within the smoking device and the device is moved about but the smoker is not puffing on the cigarette.
  • FIG. 3A and 3B formed by a circumferential groove on the outside of the heater unit 30 and the inner periphery of partition 40.
  • Air sucked into the suction flow passage 32 can pass through radial holes 34a, 34b at opposite ends of the circumferential groove 32 and into contact with a cigarette placed within the heater 30.
  • the change in direction that air must follow to move from bypass flow passage 42 into the flow diverting passage 44 ensures that air will follow this path only when a suction is created by a smoker drawing upon a cigarette held within the cigarette smoking device.
  • Alternative arrangements for the flow passages through the smoking device can include T-shaped baffles that direct ambient air into contact with the cigarette only when a smoker takes a puff on the cigarette.
  • a sensor such as a micro-electrically machined flow sensor, can be placed within the flow diverting passage 44 and mounted to the printed circuit board 60.
  • the sensor is preferably a flow sensor that detects any air flow through the flow diverting passageway 44.
  • An example of a sensor that can be used in the flow diverting passage to detect the occurrence of a puff taken by a smoker is a dual thermal anemometer, which can be manufactured using micro-electrical machining principle techniques.
  • a dual thermal anemometer is based upon the principles of differential voltage, differential current, differential resistance, or differential temperature. The flow of air across such a device generates a difference in the heating of two electrical elements in the device, which in turn creates a difference in voltage, current, resistance, or temperature between the elements.
  • the elements within a dual thermal anemometer can be indirectly heated by the use of a separate heating element that is typically placed in between the sensing elements and in close proximity to those elements.
  • Other flow sensors could include a vane anemometer having a proximity switch that counts the revolutions of the vane and supplies a pulse sequence, which is converted by the measuring instrument to a flow rate.
  • vane anemometers include paddlewheel-type anemometers, cup anemometers or propellor-type anemometers.
  • Flow sensors that are manufactured using micro-electrical machining techniques can be made of very small size, which enables a reduction in the size of the overall cigarette smoking device as well as improving the response time of the sensors.
  • a sensor that detects flow such as a micro-electrically machined anemometer, is preferred since it does not require detection of a pressure difference, and therefore enables the cigarette smoking device to maintain a low resistance to draw when a smoker puffs upon a cigarette mounted within the device.
  • a micro-electrically machined flow sensor also provides a very fast response time such that the time between detection of a puff and the heating of a cigarette mounted within the device is reduced to a level that compares favorably to the sensations experienced by a smoker puffing a conventional cigarette.
  • a micro-electrically machined flow sensor also enables the size of the cigarette smoking device to be reduced since the size of the diverging passageway within which the sensor is mounted can be kept very small.
  • Another advantage of reducing the length of time between the detection of a puff on the cigarette and the heating of the cigarette mounted within the device is the resulting increase in the length of time during a puff that the tobacco product is being exposed to the heat. Accordingly, for a given length of time that an average smoker will puff upon a cigarette, a greater portion of that time will include the application of heat to the tobacco product and the resultant generation of the aerosols and total particulate matter providing the flavors and aroma desired by the smoker.
  • the suction flow passage 32 leading to the cigarette is reached after air is diverted axially downwardly and radially inwardly through the flow diverting passage 44 from the bypass flow passage 42 formed around the outside of partition 40.
  • This exact arrangement of flow passages can be varied depending upon the configuration of the various components within the smoking device.
  • the principle requirement is that the passageway within which the flow sensor is mounted is separated from a bypass flow passage in direct communication with the external ambient air by some type of diverging passageway or mechanical baffling that ensures that air will flow only through the suction flow passage when a smoker is drawing upon a cigarette held within the smoking device.
  • a puff sensing chamber 132 may be defined as an annular channel within a manifold 140 having a central axis oriented parallel to the central axis of the cigarette 15.
  • the cylindrical manifold arrangement 140 can be mated with and joined to an end of the lighter 300 such that when a cigarette is inserted through the manifold arrangement 140 and into the lighter 300, the filter end of the cigarette is surrounded by the puff sensing chamber 132 defined within the manifold arrangement 140.
  • the manifold arrangement can also be formed integrally with the lighter.
  • a portion of the cigarette 15 abutting the puff sensing chamber 132 formed in manifold arrangement 140 may include a number of openings, holes or perforations 17, so as to allow the change in pressure inside the cigarette that occurs during a puff to be more easily and directly sensed.
  • the openings 17 may be preformed in the cigarette 15 or may be created by a piercing tool included in the electric smoking device.
  • the manifold arrangement 140 around the filter end of the cigarette 15 can also include passageways that direct the flow of ambient air essentially unrestricted to internal passageways in the lighter 300 that lead to the heater elements 130 in contact with the cigarette paper wrapping the tobacco portion of the cigarette 15.
  • a separate passageway 131 leads from the puff sensor 146 (vacuum sensor) to the puff sensing chamber 132 around the filter end of the cigarette. Since there is still vacuum created in the cigarette, the structure according to this embodiment of the present invention provides for sensing of the vacuum created in the cigarette near where it is at a maximum. This arrangement makes the lighter respond faster and/or reduces the required sophistication of the vacuum sensor system.

Landscapes

  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Control Of Resistance Heating (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Abstract

An electrically heated cigarette smoking system is disclosed comprising a housing 20,22,24,26, a plurality of heating elements arranged within the housing adapted to receive there-between a portion of a cigarette, a power source connected to the heating elements, a bypass flow passage 42 within the housing, the bypass flow passage being in fluid communication with the ambient air surrounding the housing, a suction flow passage 32 within the housing and creating a pathway for air to be drawn by a smoker into contact with the cigarette, the suction flow passage being connected to the bypass flow passage through a flow diverting passage so that ambient air passing through the bypass flow passage will only flow into the suction flow passage when the smoker draws on the cigarette, and a sensor operable to detect air flow in the suction flow passage and output a signal indicative of a smoker drawing on the cigarette. Also disclosed is a method of making an electrically heated cigarette smoking system.

Description

    FIELD OF THE INVENTION
  • The present invention relates to electrical smoking systems that heat a cigarette upon detection of a draw taken on the cigarette.
  • BACKGROUND OF THE INVENTION
  • Previously known conventional lit cigarettes deliver flavor and aroma to the user as a result of combustion of tobacco. A mass of combustible material, primarily tobacco, is oxidized as the result of applied heat with typical combustion temperatures in a conventional cigarette being in excess of 800°C during puffing. Heat is drawn through an adjacent mass of tobacco by drawing on the mouth end of the cigarette. During this heating, inefficient oxidization of the combustible material takes place and yields various distillation and pyrolysis products. As these products are drawn through the body of the smoking device toward the mouth of the smoker, they cool and condense to form the aerosol which gives the consumer the flavor and aroma associated with smoking. Conventional lit cigarettes can produce side stream smoke during smoldering between puffs, which may be objectionable to some non-smokers. Also, once lit, conventional cigarettes must be fully consumed or be discarded.
  • Commonly assigned U.S. Patent No. 5,388,594 , which is incorporated herein by reference, discloses an electrical smoking system that includes novel electrically powered lighters and novel cigarettes that are adapted to cooperate with the lighters. The lighter includes a plurality of metallic heaters disposed in a configuration that slidingly receives a tobacco rod portion of the cigarette. One of the many advantages of such a smoking system is the reusability of the lighter for numerous cigarettes. One of the primary goals in an electrical smoking system such as that disclosed in U.S. Patent No. 5,388,594 , is to provide sensations of smoking that are as close as possible to the sensations experienced when smoking a conventional cigarette. Some of these sensations include the resistance-to-draw (RTD) experienced by a smoker taking a puff on the cigarette, and the length of time between when a smoker begins to draw on the cigarette and when the smoker can first detect the flavors and aromas associated with smoking the cigarette.
  • RTD of traditional cigarettes is the pressure required to force air through the full length of a standard cigarette at the rate of 17.5 ml per second. RTD is usually expressed in inches or millimeters of water. Smokers have certain expectations when drawing upon a traditional cigarette in that too little RTD or too much can detract from smoking enjoyment. More traditional cigarettes of moderate delivery have RTD's generally within the range of approximately 100 to 130 mm's water.
  • Establishing a desired RTD in electrical smoking systems is complicated by the circumstance that in smoking systems such as shown in U.S. Patent Nos. 5,388,594 and 5,692,525 , air is first drawn through passages within the cigarette lighter before being drawn out through the cigarette. The filter tipping of the cigarettes of those systems are preferably flow-through and/or low particulate efficiency filters so as to minimize loss of whatever smoke is produced. Such filters produce little pressure drop and therefore do not contribute much RTD. Consequently, prior practices have included the establishment of RTD (or pressure drop) predominantly in the lighter portion of the electrical smoking system, such as with an annular frit (porous body) adjacent the air admission port of the lighter as taught in commonly assigned U.S. Patent No. 5,954,979 , incorporated herein by reference. Because pressure drop varies widely with any change in size of the constriction, it has been found that the frits or other forms of tiny flow constrictions in the lighter body must be manufactured with care. It therefore adds expense and other production and quality concerns. Furthermore, tiny flow passages are prone to clog, particularly in lighters wherein any smoke is allowed to linger after completion of a puff.
  • Further, establishing a quick response time for electrically heating a portion of the cigarette with one or more heater elements in response to a puff is a desirable characteristic. To achieve an equivalent experience to traditional cigarette smoking, ideally the heating of the cigarette would be instantaneous with the beginning of a puff cycle. However, sensing systems typically have some delay time between the beginning of a puff cycle and the heating of the cigarette with one or more heaters.
  • The heating fixture in an electrical smoking system such as that shown in commonly assigned U.S. Patent Nos. 5,388,594 and 5,878,752 , which are herein incorporated in their entireties by reference, includes a plurality of radially-spaced heating blades supported to extend from a hub and that are individually energized by a power source under the control of electrical circuitry to heat a number of discrete heating zones around the periphery of an inserted cigarette. Eight heating blades are preferred to develop eight puffs as in a conventional cigarette, although a greater or lesser number of heating blades can be provided.
  • The electrical circuitry in electrical smoking systems can be energized by a puff sensitive sensor that is sensitive to pressure drops occurring when a smoker draws on the cigarette. The puff sensor activates an appropriate one of the cigarette heater elements or blades as a result of a change in pressure when a smoker draws on the cigarette. A sensor that relies on detection of a pressure drop in order to initiate the smoking event may require a RTD through the cigarette that a smoker finds to be higher than the RTD with a conventional cigarette. The electrical smoking system should preferably provide a RTD that is as close to a conventional cigarette as possible, while also avoiding false signals and undesired actuation of the heater blades that may occur as a result of shock vibration or air flow through the system created by factors other than a smoker drawing on the cigarette, such as movement of the cigarette smoking system or air movement past the cigarette smoking system.
  • SUMMARY OF THE INVENTION
  • An embodiment of an electrically heated cigarette smoking device in accordance with the invention includes a heater unit, a plurality of heaters within the heater unit for applying heat to portions of a cigarette supported within the heater unit, the heater unit having an opening adapted to receive an end of a cigarette and adapted to position the end in proximity to the plurality of heaters, and the heater unit defining at least part of a suction flow passage through which ambient air is drawn into contact with the cigarette when a smoker draws on the cigarette positioned in the heater unit. A housing is mated with the heater unit and is designed to be comfortably grasped by a smoker. A partition positions the heater unit relative to the housing and at least partially defines a bypass flow passage in fluid communication with ambient air surrounding the housing, the partition further defining a flow diverting passage through which ambient air is drawn from the bypass flow passage into the suction flow passage when a smoker puffs on a cigarette inserted in the heater unit opening. A sensor can be positioned in the flow diverting passage or in the suction flow passage, and preferably in the flow diverting passage leading to the suction flow passage, to provide a signal indicative of a smoker taking a puff on the cigarette.
  • In an alternative embodiment, the housing of the electrically heated cigarette smoking device can include a chamber that is formed around at least part of the filter end of the cigarette when the cigarette is inserted into the housing. A vacuum or pressure drop sensor can be ported to the chamber and will consequently sense the vacuum or pressure drop created at this location. Openings in the cigarette at this location allow for the sensing of internal vacuum created within the cigarette when a smoker takes a puff on the cigarette. This arrangement can provide a faster response time than an arrangement wherein RTD (or pressure drop) is established predominantly in the lighter portion of the electrical smoking system, such as with an annular frit (porous body) adjacent the air admission port of the lighter as taught in commonly assigned U.S. Patent No. 5, 954, 979 .
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various preferred features and advantages of the invention will become apparent upon the consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which each particular reference number refers to particular parts throughout. In the following figures:
    • Fig. 1 is a perspective view of an electrically heated cigarette smoking system according to an embodiment of the invention.
    • Fig. 2 is an exploded perspective view of the electrically heated cigarette smoking system shown in Fig. 1.
    • Figs. 3A and 3B are two perspective views of a heater case cap and heater case for an electrically heated cigarette smoking system according to an embodiment of the invention.
    • Fig. 4 is a perspective view of a partition and heater unit connector for an electrically heated cigarette smoking system according to an embodiment of the invention.
    • Fig. 5 is another perspective view of the partition and heater unit connector shown in Fig. 4.
    • Fig. 6 is yet another perspective view of the partition and heater unit connector shown in Figs. 4 and 5.
    • Fig. 7 is an enlarged perspective view of a portion of the partition and heater unit connector shown in Figs. 4, 5 and 6.
    • Fig. 8 is a cross-sectional view of an electrically heated cigarette smoking system having a sensing chamber formed around the filter portion of an inserted cigarette.
    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • An electrically heated cigarette smoking system according to an embodiment of the invention includes a heater unit with heating elements that apply heat to portions of a cigarette supported within the heater unit. The heater unit defines at least part of a suction flow passage through which ambient air is drawn into contact with the cigarette when a smoker draws on the cigarette. A partition positions the heater unit relative to a housing, and at least partially defines a bypass flow passage in fluid communication with ambient air surrounding the housing. The partition further defines a flow diverting passage leading to the suction flow passage through which ambient air is drawn from the bypass flow passage when a smoker puffs on the cigarette.
  • The provision of a bypass flow passage that is in communication with the surrounding ambient air, and a flow diverting passage leading to a suction flow passage through which air is drawn from the bypass flow passage only when a smoker puffs on a cigarette, ensures that the sensor positioned in the flow diverting passage or the suction flow passage will be activated only when a smoker draws on the cigarette. The arrangement of flow passages within the housing and defined by the housing, the heater unit and a partition that positions the heater unit relative to the housing improves the manufacturability of the electrically heated cigarette smoking device. This arrangement creates a flow passage in which the sensor can be mounted and sufficiently isolated from extraneous flow of ambient air through the device at times other than when a smoker is drawing on the cigarette. The positioning of the sensor in a flow diverting passage or suction flow passage that is accessed only after air has been diverted at least once from a bypass flow passage cuts down on false signals since air will flow through the suction flow passage only when a smoker draws upon the cigarette inserted into the cigarette smoking device. A flow sensor is preferably used in the flow diverting passage since it can detect flow as soon as a smoker begins to draw on the cigarette, thereby enabling a response time that is very similar to the response time a smoker experiences when smoking a conventional cigarette.
  • An alternative embodiment of an electrically heated cigarette smoking system according to the invention includes a housing, a plurality of heating elements arranged within the housing adapted to receive there-between a portion of a cigarette, a power source that supplies energy to the heating elements to heat the cigarette, and a manifold arrangement defining a puff sensing chamber surrounding a portion of the cigarette at a filter section of the cigarette. The chamber is in fluid communication with the interior of the cigarette through perforations or openings around the filter portion of the cigarette, thereby allowing a pressure sensor positioned in communication with the chamber to detect pressure drops through the cigarette as a smoker takes a puff on the cigarette.
  • In this alternative embodiment, a separate and distinct puff sensing chamber for an electrically heated cigarette smoking device may be formed to abut a portion of a cigarette. The separate sensing chamber may at one location be directed to abut a particular point or area on the cigarette, or the separate sensing chamber may surround the circumference of the cigarette. The sensing chamber may be at another location vented to, ported to, or occupied by, a pressure sensor switch that detects a change in vacuum in the sensing chamber. The sensing chamber may be attached to the electrically heated cigarette smoking device or built as a separate section or chamber of the electric smoking device. In the case of a cigarette, a portion of the cigarette to which the sensing chamber is to abut may include a number of openings, holes or perforations, so as to allow the change in pressure inside the smokable product that occurs during a puff to be more easily and directly sensed. The openings, holes or perforations may be preformed in the smokable product or may be created by a piercing tool included in the electric smoking device.
  • The sensing chamber may be affixed to an outer surface of the lighter portion of the electrically heated cigarette smoking system and may include an annular channel that forms a chamber around at least a portion of the circumference of the cigarette. In this case, the channel will be positioned at the filter end of the cigarette when the cigarette is positioned in the lighter portion of the smoking system.
  • In one variation the sensing chamber may be a round cylinder shape having a central axis oriented parallel to the central axis of the elongated cigarette shaft. The sensing chamber can be formed within a cylindrical manifold arrangement that can be mated with and joined to an end of the lighter such that when a cigarette is inserted through the manifold arrangement and into the lighter, the filter end of the cigarette is surrounded by the sensing chamber defined within the manifold arrangement. The manifold arrangement can also be formed integrally with the lighter. Passageways defined within the manifold arrangement can be designed to direct ambient air surrounding the smoking device or lighter to internal passageways in the lighter that lead to the heater portion of the lighter surrounding the tobacco portion of the cigarette.
  • In the present state of technology, a vacuum sensing sensor senses the puff vacuum around the tobacco section of the cigarette inside the heater assembly. The heater has a restrictive device in the air inlet path which creates a pressure drop when a smoker takes a puff on the cigarette. In order to make the perceived RTD of the smoking system more like that of a conventional cigarette, the restrictive device is preferably eliminated in this embodiment of the present invention and all of the RTD will be in the cigarette. Consequently there is no pressure drop to sense in the heater chamber.
  • The manifold arrangement around the filter end of the cigarette directs flow of ambient air essentially unrestricted through the internal passageways to the heater, while providing a separate passageway from the puff sensor (vacuum sensor) to the puff sensing chamber around the filter end of the cigarette. Since there is still vacuum or a pressure drop created in the cigarette, the structure according to this embodiment of the present invention provides for sensing of the pressure drop created in the cigarette near where it is at a maximum. This arrangement makes the lighter respond faster and/or reduces the required sophistication of the vacuum sensor system. This also allows the use of existing vacuum sensing technology.
  • The sensor used for detecting flow or pressure drop is preferably a micro-electrically machined device that fits within a very small volume, such that the overall size of the cigarette smoking device can be kept small, and the sensor consumes very small amounts of power while providing very fast response times when a smoker draws upon the cigarette, thereby creating a flow or pressure change. The electrically heated cigarette smoking device includes electronics that activate the heater blades upon receiving a signal from the sensor.
  • An electrically heated cigarette smoking device 200 according to an embodiment of the invention is shown in an assembled condition in Fig. 1 and in an exploded view in Fig. 2. The entire electrically heated cigarette smoking device 200 includes an upper heater case cap 20, a front housing 22, and left and right battery case portions 26, 24. As shown in the exploded view of Fig. 2, a heater unit 30 is positioned below the heater case cap 20, with the heater unit 30 fitting inside of a partition 40 that positions the heater unit relative to the front housing 22 of the cigarette smoking device. An opening 18 at the top of the heater case cap 20 allows for the insertion of a cigarette into the top opening 30a of the heater unit 30. When the cigarette has been inserted through the opening 18 and into opening 30a of the heater unit 30, it is positioned in proximity to a plurality of heater blades (not shown) arranged around the circumference of the cigarette. The heater blades are activated in sequence each time a puff is taken on the cigarette and electricity that passes through the heater blades raises the temperature of the blades sufficiently to cause pyrolysis of the tobacco, which is typically contained at least within a layer of the cigarette referred to as the "mat" layer immediately inside of an outer cigarette paper layer, such as shown in commonly assigned U.S. Patent Nos. 5,388,594 , 5,878,752 and 5,934,289 , which are herein incorporated in their entireties by reference. The heater blades are in contact with the outer cigarette paper layer, and the heat is sufficient to cause pyrolysis of the tobacco in the mat layer inside of the outer cigarette paper layer, as well as additional tobacco that may be contained within a tobacco plug inside the mat layer.
  • A printed circuit board 60 is positioned between the partition 40 and the front housing 22, and can include a liquid crystal display that reveals information to a smoker such as the battery charge level and the number of puffs remaining for a cigarette that has been inserted into the heater 30. The printed circuit board 60 can also mount the necessary electronics for activating the heater blades within heater 30 upon receiving a signal from a sensor that can also be mounted on the printed circuit board. Slots 23, 25 through the heater case cap 20, as shown in Fig. 1, provide passageways for ambient air to enter the cigarette smoking device when a cigarette is positioned within the opening 18.
  • As best seen in Fig. 2 and the more detailed view of Fig. 4, the partition 40 further defines a circumferential channel 42, or bypass flow passage, that is aligned with the slots 23, 25 when the cigarette smoking device is assembled.
  • A heater unit connector 56 is positioned below the heater unit 30 within inner housing members 52, 54, and provides an electrical connection between the heater blades mounted within the heater unit 30 and a power source such as a battery (not shown) that is housed within the battery case portions 24, 26. The detailed views in Figs. 4-7 show the partition 40 mounted on the heater unit connector 56, with the heater 30 that would normally be mounted within the partition 40 not being shown.
  • The ambient air surrounding the smoking device 200 is free to flow within the bypass flow passage created by the circumferential channel 42 and in and out of the external slots 23, 25, such as when a cigarette is held within the smoking device and the device is moved about but the smoker is not puffing on the cigarette.
  • When a cigarette is inserted into the opening 18 of the heater case cap 20 and opening 30a of the heater 30, and the smoker draws upon the cigarette, suction is created that pulls the ambient air from the circumferential bypass flow passage 42 into a flow diverting passage 44, which requires the air to change direction from circumferential flow to flow in an axial direction and a radially inward direction, as best seen in Figs. 4, 5 and 7, with the air flow represented by arrows labeled "A". The pressure drop created by the smoker drawing on the cigarette causes the air to flow from the bypass flow passage 42, into the flow diverting passage 44, and into a suction flow passage 32, seen in Figs. 3A and 3B, formed by a circumferential groove on the outside of the heater unit 30 and the inner periphery of partition 40. Air sucked into the suction flow passage 32 can pass through radial holes 34a, 34b at opposite ends of the circumferential groove 32 and into contact with a cigarette placed within the heater 30. The change in direction that air must follow to move from bypass flow passage 42 into the flow diverting passage 44, ensures that air will follow this path only when a suction is created by a smoker drawing upon a cigarette held within the cigarette smoking device. Alternative arrangements for the flow passages through the smoking device can include T-shaped baffles that direct ambient air into contact with the cigarette only when a smoker takes a puff on the cigarette.
  • A sensor, such as a micro-electrically machined flow sensor, can be placed within the flow diverting passage 44 and mounted to the printed circuit board 60. The sensor is preferably a flow sensor that detects any air flow through the flow diverting passageway 44. An example of a sensor that can be used in the flow diverting passage to detect the occurrence of a puff taken by a smoker is a dual thermal anemometer, which can be manufactured using micro-electrical machining principle techniques. A dual thermal anemometer is based upon the principles of differential voltage, differential current, differential resistance, or differential temperature. The flow of air across such a device generates a difference in the heating of two electrical elements in the device, which in turn creates a difference in voltage, current, resistance, or temperature between the elements. The elements within a dual thermal anemometer can be indirectly heated by the use of a separate heating element that is typically placed in between the sensing elements and in close proximity to those elements. Other flow sensors could include a vane anemometer having a proximity switch that counts the revolutions of the vane and supplies a pulse sequence, which is converted by the measuring instrument to a flow rate. Examples of vane anemometers include paddlewheel-type anemometers, cup anemometers or propellor-type anemometers. Flow sensors that are manufactured using micro-electrical machining techniques can be made of very small size, which enables a reduction in the size of the overall cigarette smoking device as well as improving the response time of the sensors. A sensor that detects flow, such as a micro-electrically machined anemometer, is preferred since it does not require detection of a pressure difference, and therefore enables the cigarette smoking device to maintain a low resistance to draw when a smoker puffs upon a cigarette mounted within the device. A micro-electrically machined flow sensor also provides a very fast response time such that the time between detection of a puff and the heating of a cigarette mounted within the device is reduced to a level that compares favorably to the sensations experienced by a smoker puffing a conventional cigarette. A micro-electrically machined flow sensor also enables the size of the cigarette smoking device to be reduced since the size of the diverging passageway within which the sensor is mounted can be kept very small.
  • Another advantage of reducing the length of time between the detection of a puff on the cigarette and the heating of the cigarette mounted within the device is the resulting increase in the length of time during a puff that the tobacco product is being exposed to the heat. Accordingly, for a given length of time that an average smoker will puff upon a cigarette, a greater portion of that time will include the application of heat to the tobacco product and the resultant generation of the aerosols and total particulate matter providing the flavors and aroma desired by the smoker.
  • In the embodiment shown in the drawings, the suction flow passage 32 leading to the cigarette is reached after air is diverted axially downwardly and radially inwardly through the flow diverting passage 44 from the bypass flow passage 42 formed around the outside of partition 40. One of ordinary skill will recognize that this exact arrangement of flow passages can be varied depending upon the configuration of the various components within the smoking device. The principle requirement is that the passageway within which the flow sensor is mounted is separated from a bypass flow passage in direct communication with the external ambient air by some type of diverging passageway or mechanical baffling that ensures that air will flow only through the suction flow passage when a smoker is drawing upon a cigarette held within the smoking device. As a result of this configuration, false signals that could be created simply by movement of the device are avoided and electronic circuitry necessary to filter out these false signals is no longer necessary.
  • In an alternative embodiment of an electrically heated cigarette smoking system, partially shown in Fig. 8, a puff sensing chamber 132 may be defined as an annular channel within a manifold 140 having a central axis oriented parallel to the central axis of the cigarette 15. The cylindrical manifold arrangement 140 can be mated with and joined to an end of the lighter 300 such that when a cigarette is inserted through the manifold arrangement 140 and into the lighter 300, the filter end of the cigarette is surrounded by the puff sensing chamber 132 defined within the manifold arrangement 140. The manifold arrangement can also be formed integrally with the lighter.
  • A portion of the cigarette 15 abutting the puff sensing chamber 132 formed in manifold arrangement 140 may include a number of openings, holes or perforations 17, so as to allow the change in pressure inside the cigarette that occurs during a puff to be more easily and directly sensed. The openings 17 may be preformed in the cigarette 15 or may be created by a piercing tool included in the electric smoking device. The manifold arrangement 140 around the filter end of the cigarette 15 can also include passageways that direct the flow of ambient air essentially unrestricted to internal passageways in the lighter 300 that lead to the heater elements 130 in contact with the cigarette paper wrapping the tobacco portion of the cigarette 15. A separate passageway 131 leads from the puff sensor 146 (vacuum sensor) to the puff sensing chamber 132 around the filter end of the cigarette. Since there is still vacuum created in the cigarette, the structure according to this embodiment of the present invention provides for sensing of the vacuum created in the cigarette near where it is at a maximum. This arrangement makes the lighter respond faster and/or reduces the required sophistication of the vacuum sensor system.
  • While this invention has been described in conjunction with the exemplary embodiments outlined above, it is evident that alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the exemplary embodiments of the invention as well as variations and modifications may be made without departing from the spirit and scope of the invention as set forth in the attached claims.
  • The following numbered sections define aspects of the invention:
    1. 1. An electrically heated cigarette smoking system, comprising:
      • a heater unit,
      • said heater unit having an opening adapted to receive an end of a cigarette and said heater unit adapted to apply heat to a portion of said cigarette;
      • said heater unit defining at least part of a suction flow passage through which ambient air is drawn into contact with the cigarette when a smoker draws on the cigarette positioned in the heater unit;
      • a housing designed to be grasped by a smoker;
      • a partition positioning said heater unit relative to said housing and at least partially defining a bypass flow passage in fluid communication with ambient air surrounding said housing, said partition further defining a flow diverting passage leading from said bypass flow passage to the suction flow passage and through which ambient air is drawn from the bypass flow passage when a smoker puffs on a cigarette inserted in said heater unit opening, and
      • a sensor operable to detect air flow in said flow diverting passage and output a signal indicative of a smoker taking a puff on said cigarette.
    2. 2. The electrically heated cigarette smoking system according to section 1 further including electronic circuitry that activates said heater unit upon receiving a signal from said sensor.
    3. 3. The electrically heated cigarette smoking system according to section 2 wherein said sensor is a micro-electrically machined device.
    4. 4. The electrically heated cigarette smoking system according to section 3, wherein said sensor is a dual thermal anemometer.
    5. 5. The electrically heated cigarette smoking system according to claim 3 wherein said sensor is a vane anemometer.
    6. 6. The electrically heated cigarette smoking system according to section 3 wherein said sensor is a differential pressure sensor.
    7. 7. The electrically heated cigarette smoking system according to section 3 wherein said sensor is a strain sensor.
    8. 8. An electrically heated cigarette smoking system, comprising:
      • a housing;
      • a plurality of heating elements arranged within said housing adapted to receive there-between a portion of a cigarette;
      • a power source connected to the heating elements;
      • a bypass flow passage within said housing, said bypass flow passage being in fluid communication with the ambient air surrounding said housing;
      • a suction flow passage within said housing and creating a pathway for air to be drawn by a smoker into contact with the cigarette,
      • said suction flow passage being connected to said bypass flow passage through a flow diverting passage so that ambient air passing through said bypass flow passage will only flow into said suction flow passage when the smoker draws on the cigarette, and
      • a sensor operable to detect air flow in said suction flow passage and output a signal indicative of a smoker drawing on said cigarette.
    9. 9. The electrically heated cigarette smoking system according to section 8 further including electronic circuitry that activates said heater blades upon receiving a signal from said sensor.
    10. 10. The electrically heated cigarette smoking system according to section 9 wherein said sensor is a micro-electrically machined device.
    11. 11. The electrically heated cigarette smoking system according to section 10 wherein said sensor is a dual thermal anemometer.
    12. 12. The electrically heated cigarette smoking system according to section 10 wherein said sensor is a vane anemometer.
    13. 13. The electrically heated cigarette smoking system according to section 10 wherein said sensor is a differential pressure sensor.
    14. 14. The electrically heated cigarette smoking system according to section 10 wherein said sensor is a strain sensor.
    15. 15. An electrically heated cigarette smoking system, comprising:
      • a housing;
      • a plurality of heating elements arranged within said housing adapted to receive there-between a portion of a cigarette;
      • a power source that supplies energy to the heating elements for heating the cigarette; and
      • a manifold arrangement defining a chamber surrounding a portion of the cigarette at a filter section of the cigarette, and said chamber being in fluid communication with an internal portion of the cigarette through openings into said filter section of the cigarette.
    16. 16. The electrically heated cigarette smoking system according to section 15 further including a sensor positioned in communication with said chamber, said sensor detecting pressure drop created in said chamber as a result of a smoker taking a puff on the cigarette.
    17. 17. The electrically heated cigarette smoking system according to section 16 wherein said power source supplies energy to said heating elements upon receipt of a signal received from said sensor.
    18. 18. The electrically heated cigarette smoking system according to section 17 wherein said sensor is a micro electrically machined sensor.
    19. 19. The electrically heated cigarette smoking system according to section 18 wherein said manifold arrangement is formed integrally with said housing.
    20. 20. The electrically heated cigarette smoking system according to section 18 wherein said sensor is a differential pressure sensor.
    21. 21. A method of making an electrically heated cigarette smoking system comprising:
      • forming a heater unit having an internal opening adapted to receive a portion of a cigarette, the heater unit also having a groove formed around at least part of the outer periphery of the heater unit;
      • positioning the heater unit relative to an outer housing with a partition between at least part of the heater unit and the outer housing, a first flow passage being defined between the outer housing and the partition, openings being provided through said outer housing into said first flow passage, a second flow passage being defined between the heater unit and the partition, and a flow diverting passage being defined through said partition and connecting said first and second flow passages when said system is assembled; and
      • mounting a flow sensor within said flow diverting passage.
    22. 22. The method according to section 21 wherein:
      • the heater unit is connected through electronic circuitry mounted within said outer housing to a power source also mounted within said outer housing.

Claims (9)

  1. An electrically heated cigarette smoking system, comprising:
    a housing;
    a plurality of heating elements arranged within the housing adapted to receive there-between a portion of a cigarette;
    a power source connected to the heating elements;
    a bypass flow passage within the housing, the bypass flow passage being in fluid communication with the ambient air surrounding the housing;
    a suction flow passage within the housing and creating a pathway for air to be drawn by a smoker into contact with the cigarette,
    the suction flow passage being connected to the bypass flow passage through a flow diverting passage so that ambient air passing through the bypass flow passage will only flow into the suction flow passage when the smoker draws on the cigarette, and
    a sensor operable to detect air flow in the suction flow passage and output a signal indicative of a smoker drawing on the cigarette.
  2. An electrically heated cigarette smoking system according to claim 1 further including electronic circuitry that activates the heater elements upon receiving a signal from the sensor.
  3. An electrically heated cigarette smoking system according to claim 2 wherein the sensor is a micro-electrically machined device.
  4. An electrically heated cigarette smoking system according to claim 2 or 3 wherein the sensor is a dual thermal anemometer.
  5. An electrically heated cigarette smoking system according to claim 2 or 3 wherein the sensor is a vane anemometer.
  6. An electrically heated cigarette smoking system according to claim 2 or 3 wherein the sensor is a differential pressure sensor.
  7. An electrically heated cigarette smoking system according to claim 2 or 3 wherein the sensor is a strain sensor.
  8. A method of making an electrically heated cigarette smoking system, comprising:
    forming a heater unit having an internal opening adapted to receive a portion of a cigarette, the heater unit also having a groove formed around at least part of the outer periphery of the heater unit;
    positioning the heater unit relative to an outer housing with a partition between at least part of the heater unit and the outer housing, a first flow passage being defined between the outer housing and the partition, openings being provided through the outer housing into the first flow passage, a second flow passage being defined between the heater unit and the partition, and a flow diverting passage being defined through the partition and connecting the first and second flow passages when the system is assembled; and
    mounting a flow sensor within the flow diverting passage.
  9. A method according to claim 8 wherein the heater unit is connected through electronic circuitry mounted within the outer housing to a power source also mounted within the outer housing.
EP12198728.3A 2002-11-08 2003-11-07 Electrically heated cigarette smoking system with internal manifolding for puff detection Expired - Lifetime EP2580970B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/290,402 US6810883B2 (en) 2002-11-08 2002-11-08 Electrically heated cigarette smoking system with internal manifolding for puff detection
EP03783252A EP1558098B1 (en) 2002-11-08 2003-11-07 Electrically heated cigarette smoking system with internal manifolding for puff detection

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP03783252.4 Division 2003-11-07
EP03783252A Division EP1558098B1 (en) 2002-11-08 2003-11-07 Electrically heated cigarette smoking system with internal manifolding for puff detection

Publications (2)

Publication Number Publication Date
EP2580970A1 true EP2580970A1 (en) 2013-04-17
EP2580970B1 EP2580970B1 (en) 2014-07-23

Family

ID=32229025

Family Applications (4)

Application Number Title Priority Date Filing Date
EP03783252A Expired - Lifetime EP1558098B1 (en) 2002-11-08 2003-11-07 Electrically heated cigarette smoking system with internal manifolding for puff detection
EP12198728.3A Expired - Lifetime EP2580970B1 (en) 2002-11-08 2003-11-07 Electrically heated cigarette smoking system with internal manifolding for puff detection
EP14190762.6A Expired - Lifetime EP2853166B1 (en) 2002-11-08 2003-11-07 Electrical smoking system
EP12198733.3A Expired - Lifetime EP2580971B1 (en) 2002-11-08 2003-11-07 Electrically heated cigarette smoking system with internal manifolding for puff detection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03783252A Expired - Lifetime EP1558098B1 (en) 2002-11-08 2003-11-07 Electrically heated cigarette smoking system with internal manifolding for puff detection

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP14190762.6A Expired - Lifetime EP2853166B1 (en) 2002-11-08 2003-11-07 Electrical smoking system
EP12198733.3A Expired - Lifetime EP2580971B1 (en) 2002-11-08 2003-11-07 Electrically heated cigarette smoking system with internal manifolding for puff detection

Country Status (20)

Country Link
US (2) US6810883B2 (en)
EP (4) EP1558098B1 (en)
JP (1) JP4302061B2 (en)
KR (1) KR101087458B1 (en)
CN (2) CN100546509C (en)
AR (1) AR042007A1 (en)
AU (1) AU2003290670A1 (en)
BR (1) BR0316088B1 (en)
DK (4) DK2580970T3 (en)
ES (4) ES2528702T3 (en)
HK (4) HK1086170A1 (en)
HU (1) HUE044828T2 (en)
LT (1) LT2853166T (en)
MX (1) MXPA05004936A (en)
PL (1) PL209131B1 (en)
PT (4) PT2580971E (en)
SI (1) SI2853166T1 (en)
TR (1) TR201910495T4 (en)
TW (2) TWI306392B (en)
WO (1) WO2004043175A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10034988B2 (en) 2012-11-28 2018-07-31 Fontem Holdings I B.V. Methods and devices for compound delivery
US10194693B2 (en) 2013-09-20 2019-02-05 Fontem Holdings 1 B.V. Aerosol generating device

Families Citing this family (403)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994096B2 (en) * 2003-01-30 2006-02-07 Philip Morris Usa Inc. Flow distributor of an electrically heated cigarette smoking system
CN100381083C (en) 2003-04-29 2008-04-16 韩力 Electronic nonflammable spraying cigarette
EP1737499A4 (en) 2004-03-09 2009-07-22 Arriva Pharmaceuticals Inc Treatment of chronic obstructive pulmonary disease by low dose inhalation of protease inhibitor
CN2719043Y (en) 2004-04-14 2005-08-24 韩力 Atomized electronic cigarette
NL1027533C2 (en) * 2004-11-17 2006-05-18 Berten Beheer B V N Electric smoking device for inhaling stimulant, e.g. tobacco, has heating device for volatile stimulant material releasably connected to inhalation part
JP4473735B2 (en) * 2005-01-05 2010-06-02 アロカ株式会社 Dosimeter
US9675109B2 (en) 2005-07-19 2017-06-13 J. T. International Sa Method and system for vaporization of a substance
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US11647783B2 (en) 2005-07-19 2023-05-16 Juul Labs, Inc. Devices for vaporization of a substance
US7791002B2 (en) * 2005-08-22 2010-09-07 Eveready Battery Company, Inc. Battery powered cigarette lighter and process for using the same
CN201067079Y (en) 2006-05-16 2008-06-04 韩力 Simulation aerosol inhaler
US7726320B2 (en) 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
US8991402B2 (en) 2007-12-18 2015-03-31 Pax Labs, Inc. Aerosol devices and methods for inhaling a substance and uses thereof
EP2100525A1 (en) * 2008-03-14 2009-09-16 Philip Morris Products S.A. Electrically heated aerosol generating system and method
EP2110034A1 (en) 2008-04-17 2009-10-21 Philip Morris Products S.A. An electrically heated smoking system
EP2113178A1 (en) 2008-04-30 2009-11-04 Philip Morris Products S.A. An electrically heated smoking system having a liquid storage portion
EP2143346A1 (en) * 2008-07-08 2010-01-13 Philip Morris Products S.A. A flow sensor system
EP2201850A1 (en) 2008-12-24 2010-06-30 Philip Morris Products S.A. An article including identification information for use in an electrically heated smoking system
KR200455132Y1 (en) * 2009-01-08 2011-08-19 조여언 Liquid vaporization suction device
CN201379072Y (en) 2009-02-11 2010-01-13 韩力 Improved atomizing electronic cigarette
EP2253233A1 (en) 2009-05-21 2010-11-24 Philip Morris Products S.A. An electrically heated smoking system
DE102009029768B4 (en) * 2009-06-18 2013-02-21 Zetzig Ab Device for delivering nicotine
US10420374B2 (en) 2009-09-18 2019-09-24 Altria Client Services Llc Electronic smoke apparatus
US9072321B2 (en) 2009-09-18 2015-07-07 Minilogic Device Corporation Ltd. Electronic smoke
EP2319334A1 (en) 2009-10-27 2011-05-11 Philip Morris Products S.A. A smoking system having a liquid storage portion
EP2327318A1 (en) 2009-11-27 2011-06-01 Philip Morris Products S.A. An electrically heated smoking system with internal or external heater
CA2797975C (en) 2010-04-30 2017-06-06 Blec, Llc Electronic smoking device
US11344683B2 (en) 2010-05-15 2022-05-31 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
US9861772B2 (en) 2010-05-15 2018-01-09 Rai Strategic Holdings, Inc. Personal vaporizing inhaler cartridge
US9095175B2 (en) 2010-05-15 2015-08-04 R. J. Reynolds Tobacco Company Data logging personal vaporizing inhaler
US9999250B2 (en) 2010-05-15 2018-06-19 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
US10136672B2 (en) 2010-05-15 2018-11-27 Rai Strategic Holdings, Inc. Solderless directly written heating elements
US9259035B2 (en) 2010-05-15 2016-02-16 R. J. Reynolds Tobacco Company Solderless personal vaporizing inhaler
US10159278B2 (en) 2010-05-15 2018-12-25 Rai Strategic Holdings, Inc. Assembly directed airflow
US9743691B2 (en) 2010-05-15 2017-08-29 Rai Strategic Holdings, Inc. Vaporizer configuration, control, and reporting
US8757147B2 (en) 2010-05-15 2014-06-24 Minusa Holdings Llc Personal vaporizing inhaler with internal light source
WO2013016846A1 (en) * 2011-08-04 2013-02-07 Ruyan Investment (Holdings) Limited A capacitor sensor, devices employing the capacitor sensor and methods for their use
US9078473B2 (en) 2011-08-09 2015-07-14 R.J. Reynolds Tobacco Company Smoking articles and use thereof for yielding inhalation materials
EA037480B1 (en) * 2011-08-16 2021-04-01 Джуул Лэбз, Инк. Low temperature electronic vaporization device
US10143232B2 (en) * 2011-12-30 2018-12-04 Philip Morris Products S.A. Aerosol generating device with air flow detection
WO2013098398A2 (en) 2011-12-30 2013-07-04 Philip Morris Products S.A. Aerosol generating system with consumption monitoring and feedback
US9854839B2 (en) 2012-01-31 2018-01-02 Altria Client Services Llc Electronic vaping device and method
TW201340892A (en) 2012-02-13 2013-10-16 Philip Morris Prod Smoking article comprising an isolated combustible heat source
US9532597B2 (en) 2012-02-22 2017-01-03 Altria Client Services Llc Electronic smoking article
MX2014010189A (en) 2012-02-22 2014-11-14 Altria Client Services Inc Electronic smoking article and improved heater element.
US20130255702A1 (en) 2012-03-28 2013-10-03 R.J. Reynolds Tobacco Company Smoking article incorporating a conductive substrate
US10004259B2 (en) 2012-06-28 2018-06-26 Rai Strategic Holdings, Inc. Reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article
US10517530B2 (en) 2012-08-28 2019-12-31 Juul Labs, Inc. Methods and devices for delivering and monitoring of tobacco, nicotine, or other substances
US8881737B2 (en) 2012-09-04 2014-11-11 R.J. Reynolds Tobacco Company Electronic smoking article comprising one or more microheaters
US8910639B2 (en) 2012-09-05 2014-12-16 R. J. Reynolds Tobacco Company Single-use connector and cartridge for a smoking article and related method
US10117460B2 (en) 2012-10-08 2018-11-06 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
US9854841B2 (en) 2012-10-08 2018-01-02 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
US9210738B2 (en) 2012-12-07 2015-12-08 R.J. Reynolds Tobacco Company Apparatus and method for winding a substantially continuous heating element about a substantially continuous wick
US20140174458A1 (en) * 2012-12-21 2014-06-26 Samuel Aaron Katz Self-contained electronic smoking device that produces smoke and ash by incineration
USD691766S1 (en) 2013-01-14 2013-10-15 Altria Client Services Inc. Mouthpiece of a smoking article
USD849993S1 (en) 2013-01-14 2019-05-28 Altria Client Services Electronic smoking article
USD695449S1 (en) 2013-01-14 2013-12-10 Altria Client Services Inc. Electronic smoking article
USD841231S1 (en) 2013-01-14 2019-02-19 Altria Client Services, Llc Electronic vaping device mouthpiece
USD691765S1 (en) 2013-01-14 2013-10-15 Altria Client Services Inc. Electronic smoking article
US8910640B2 (en) 2013-01-30 2014-12-16 R.J. Reynolds Tobacco Company Wick suitable for use in an electronic smoking article
US10031183B2 (en) 2013-03-07 2018-07-24 Rai Strategic Holdings, Inc. Spent cartridge detection method and system for an electronic smoking article
US20140261486A1 (en) 2013-03-12 2014-09-18 R.J. Reynolds Tobacco Company Electronic smoking article having a vapor-enhancing apparatus and associated method
US9277770B2 (en) 2013-03-14 2016-03-08 R. J. Reynolds Tobacco Company Atomizer for an aerosol delivery device formed from a continuously extending wire and related input, cartridge, and method
US9918495B2 (en) 2014-02-28 2018-03-20 Rai Strategic Holdings, Inc. Atomizer for an aerosol delivery device and related input, aerosol production assembly, cartridge, and method
EP2967154B1 (en) 2013-03-14 2018-10-17 R. J. Reynolds Tobacco Company Atomizer for an aerosol delivery device and related input, aerosol production assembly, cartridge, and method
US20140261487A1 (en) 2013-03-14 2014-09-18 R. J. Reynolds Tobacco Company Electronic smoking article with improved storage and transport of aerosol precursor compositions
US9609893B2 (en) 2013-03-15 2017-04-04 Rai Strategic Holdings, Inc. Cartridge and control body of an aerosol delivery device including anti-rotation mechanism and related method
EP2967137B1 (en) * 2013-03-15 2021-03-03 Philip Morris Products S.a.s. Smoking article with an airflow directing element comprising an aerosol-modifying agent
US9220302B2 (en) 2013-03-15 2015-12-29 R.J. Reynolds Tobacco Company Cartridge for an aerosol delivery device and method for assembling a cartridge for a smoking article
US9491974B2 (en) 2013-03-15 2016-11-15 Rai Strategic Holdings, Inc. Heating elements formed from a sheet of a material and inputs and methods for the production of atomizers
US9423152B2 (en) 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
KR102305865B1 (en) 2013-03-15 2021-09-27 레이 스트라티직 홀딩스, 인크. Heating elements formed from a sheet of a material, inputs and methods for the production of atomizers, cartridge for an aerosol delivery device and method for assembling a cartridge for a smoking article
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
CA3208137A1 (en) 2013-05-06 2014-11-13 Juul Labs, Inc. Nicotine salt formulations for aerosol devices and methods thereof
CN105473012B (en) 2013-06-14 2020-06-19 尤尔实验室有限公司 Multiple heating elements with individual vaporizable materials in electronic vaporization devices
US11229239B2 (en) 2013-07-19 2022-01-25 Rai Strategic Holdings, Inc. Electronic smoking article with haptic feedback
US10172387B2 (en) 2013-08-28 2019-01-08 Rai Strategic Holdings, Inc. Carbon conductive substrate for electronic smoking article
US9806549B2 (en) 2013-10-04 2017-10-31 Rai Strategic Holdings, Inc. Accessory for an aerosol delivery device and related method and computer program product
BR302014001648S1 (en) 2013-10-14 2015-06-09 Altria Client Services Inc Smoke Applied Configuration
EP4147596B1 (en) * 2013-10-29 2024-04-24 Nicoventures Trading Limited Apparatus for heating smokable material
US10292424B2 (en) 2013-10-31 2019-05-21 Rai Strategic Holdings, Inc. Aerosol delivery device including a pressure-based aerosol delivery mechanism
US20150128968A1 (en) 2013-11-11 2015-05-14 R.J. Reynolds Tobacco Company Mouthpiece for smoking article
US20150128969A1 (en) 2013-11-11 2015-05-14 R.J. Reynolds Tobacco Company Mouthpiece for smoking article
US10039321B2 (en) 2013-11-12 2018-08-07 Vmr Products Llc Vaporizer
CN111466616A (en) * 2013-11-21 2020-07-31 方特慕控股第四私人有限公司 Electronic cigarette and method for recording smoking data
US9839237B2 (en) 2013-11-22 2017-12-12 Rai Strategic Holdings, Inc. Reservoir housing for an electronic smoking article
IL279066B (en) 2013-12-03 2022-09-01 Philip Morris Products Sa Aerosol-generating article and electrically operated system incorporating a taggant
UA118457C2 (en) * 2013-12-05 2019-01-25 Філіп Морріс Продактс С.А. Heated aerosol generating article with air-flow barrier
KR102665932B1 (en) 2013-12-05 2024-05-13 쥴 랩스, 인크. Nicotine liquid formulations for aerosol devices and methods thereof
CN103720056A (en) * 2013-12-13 2014-04-16 浙江中烟工业有限责任公司 Resistance wire heating device for non-burning cigarettes
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
CN110664012A (en) 2013-12-23 2020-01-10 尤尔实验室有限公司 Evaporation apparatus system and method
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US9549573B2 (en) 2013-12-23 2017-01-24 Pax Labs, Inc. Vaporization device systems and methods
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US9974334B2 (en) 2014-01-17 2018-05-22 Rai Strategic Holdings, Inc. Electronic smoking article with improved storage of aerosol precursor compositions
US10575558B2 (en) 2014-02-03 2020-03-03 Rai Strategic Holdings, Inc. Aerosol delivery device comprising multiple outer bodies and related assembly method
US11065402B2 (en) 2014-02-04 2021-07-20 Gseh Holistic, Inc. Aromatherapy vaporization device
US10238764B2 (en) 2014-08-19 2019-03-26 Vapium Inc. Aromatherapy vaporization device
US9451791B2 (en) 2014-02-05 2016-09-27 Rai Strategic Holdings, Inc. Aerosol delivery device with an illuminated outer surface and related method
US20150224268A1 (en) 2014-02-07 2015-08-13 R.J. Reynolds Tobacco Company Charging Accessory Device for an Aerosol Delivery Device and Related System, Method, Apparatus, and Computer Program Product for Providing Interactive Services for Aerosol Delivery Devices
WO2015120591A1 (en) * 2014-02-12 2015-08-20 吉瑞高新科技股份有限公司 Electronic cigarette and airflow control method thereof
US9833019B2 (en) 2014-02-13 2017-12-05 Rai Strategic Holdings, Inc. Method for assembling a cartridge for a smoking article
US9839238B2 (en) 2014-02-28 2017-12-12 Rai Strategic Holdings, Inc. Control body for an electronic smoking article
US9597466B2 (en) 2014-03-12 2017-03-21 R. J. Reynolds Tobacco Company Aerosol delivery system and related method, apparatus, and computer program product for providing control information to an aerosol delivery device via a cartridge
US11696604B2 (en) 2014-03-13 2023-07-11 Rai Strategic Holdings, Inc. Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics
CN104939318B (en) * 2014-03-31 2019-08-06 惠州市吉瑞科技有限公司 Electronic cigarette and control method with lung capacity detection function
US9877510B2 (en) 2014-04-04 2018-01-30 Rai Strategic Holdings, Inc. Sensor for an aerosol delivery device
US9924741B2 (en) 2014-05-05 2018-03-27 Rai Strategic Holdings, Inc. Method of preparing an aerosol delivery device
US11478021B2 (en) 2014-05-16 2022-10-25 Juul Labs, Inc. Systems and methods for aerosolizing a vaporizable material
TWI697289B (en) 2014-05-21 2020-07-01 瑞士商菲利浦莫里斯製品股份有限公司 Aerosol-forming article, electrically heated aerosol-generating device and system and method of operating said system
US9955726B2 (en) 2014-05-23 2018-05-01 Rai Strategic Holdings, Inc. Sealed cartridge for an aerosol delivery device and related assembly method
CN104055222B (en) * 2014-06-23 2017-03-15 湖南中烟工业有限责任公司 Electrical heating low temperature cigarette
US10888119B2 (en) 2014-07-10 2021-01-12 Rai Strategic Holdings, Inc. System and related methods, apparatuses, and computer program products for controlling operation of a device based on a read request
US10058123B2 (en) * 2014-07-11 2018-08-28 R. J. Reynolds Tobacco Company Heater for an aerosol delivery device and methods of formation thereof
CN104095295A (en) * 2014-07-18 2014-10-15 云南中烟工业有限责任公司 Smoking set with function of electromagnetic induction heating
CA160775S (en) 2014-08-11 2015-09-29 Ploom Inc Electronic vaporization device with cartridge
US10765144B2 (en) 2014-08-21 2020-09-08 Rai Strategic Holdings, Inc. Aerosol delivery device including a moveable cartridge and related assembly method
US9913493B2 (en) 2014-08-21 2018-03-13 Rai Strategic Holdings, Inc. Aerosol delivery device including a moveable cartridge and related assembly method
US9609895B2 (en) 2014-08-21 2017-04-04 Rai Strategic Holdings, Inc. System and related methods, apparatuses, and computer program products for testing components of an aerosol delivery device
US11051554B2 (en) 2014-11-12 2021-07-06 Rai Strategic Holdings, Inc. MEMS-based sensor for an aerosol delivery device
KR102574658B1 (en) 2014-12-05 2023-09-05 쥴 랩스, 인크. Calibrated dose control
US10500600B2 (en) 2014-12-09 2019-12-10 Rai Strategic Holdings, Inc. Gesture recognition user interface for an aerosol delivery device
EP3236787B1 (en) 2014-12-25 2023-04-26 Fontem Ventures B.V. Dynamic output power management for electronic smoking device
GB201501429D0 (en) * 2015-01-28 2015-03-11 British American Tobacco Co Apparatus for heating aerosol generating material
US10321711B2 (en) 2015-01-29 2019-06-18 Rai Strategic Holdings, Inc. Proximity detection for an aerosol delivery device
CA2920941C (en) * 2015-02-17 2021-10-05 Mark Krietzman A vaporizer system with a disposal cartridge
US10893707B2 (en) 2015-02-17 2021-01-19 Mark H. Krietzman Portable temperature controlled aromatherapy vaporizers
US10027016B2 (en) 2015-03-04 2018-07-17 Rai Strategic Holdings Inc. Antenna for an aerosol delivery device
US9980516B2 (en) 2015-03-09 2018-05-29 Rai Strategic Holdings, Inc. Aerosol delivery device including a wave guide and related method
US10172388B2 (en) 2015-03-10 2019-01-08 Rai Strategic Holdings, Inc. Aerosol delivery device with microfluidic delivery component
KR102000864B1 (en) * 2015-04-06 2019-07-16 니뽄 다바코 산교 가부시키가이샤 Flavor inhaler
US11000069B2 (en) 2015-05-15 2021-05-11 Rai Strategic Holdings, Inc. Aerosol delivery device and methods of formation thereof
US10238145B2 (en) 2015-05-19 2019-03-26 Rai Strategic Holdings, Inc. Assembly substation for assembling a cartridge for a smoking article
US10226073B2 (en) 2015-06-09 2019-03-12 Rai Strategic Holdings, Inc. Electronic smoking article including a heating apparatus implementing a solid aerosol generating source, and associated apparatus and method
US10736356B2 (en) 2015-06-25 2020-08-11 Altria Client Services Llc Electronic vaping device having pressure sensor
CN104983073A (en) * 2015-07-07 2015-10-21 深圳市赛尔美电子科技有限公司 Cigarette distillation device
JP6925986B2 (en) 2015-07-13 2021-08-25 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Production of aerosol-forming composition
US11504489B2 (en) 2015-07-17 2022-11-22 Rai Strategic Holdings, Inc. Contained liquid system for refilling aerosol delivery devices
US10966460B2 (en) 2015-07-17 2021-04-06 Rai Strategic Holdings, Inc. Load-based detection of an aerosol delivery device in an assembled arrangement
CN105077598B (en) * 2015-07-21 2018-05-29 深圳睿思奇科技开发有限公司 A kind of Intelligent electronic cigarette
CN105077597B (en) * 2015-07-21 2018-11-13 深圳睿思奇科技开发有限公司 A kind of electronic cigarette
US11134544B2 (en) 2015-07-24 2021-09-28 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
US10206429B2 (en) 2015-07-24 2019-02-19 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
US11033054B2 (en) 2015-07-24 2021-06-15 Rai Strategic Holdings, Inc. Radio-frequency identification (RFID) authentication system for aerosol delivery devices
US10015987B2 (en) 2015-07-24 2018-07-10 Rai Strategic Holdings Inc. Trigger-based wireless broadcasting for aerosol delivery devices
JP6408709B2 (en) 2015-07-28 2018-10-17 日本たばこ産業株式会社 Non-burning flavor inhaler
US10034494B2 (en) 2015-09-15 2018-07-31 Rai Strategic Holdings, Inc. Reservoir for aerosol delivery devices
US10058125B2 (en) 2015-10-13 2018-08-28 Rai Strategic Holdings, Inc. Method for assembling an aerosol delivery device
US10582726B2 (en) 2015-10-21 2020-03-10 Rai Strategic Holdings, Inc. Induction charging for an aerosol delivery device
US10918134B2 (en) 2015-10-21 2021-02-16 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device
US20170112194A1 (en) 2015-10-21 2017-04-27 Rai Strategic Holdings, Inc. Rechargeable lithium-ion capacitor for an aerosol delivery device
US10201187B2 (en) 2015-11-02 2019-02-12 Rai Strategic Holdings, Inc. User interface for an aerosol delivery device
US10820630B2 (en) 2015-11-06 2020-11-03 Rai Strategic Holdings, Inc. Aerosol delivery device including a wirelessly-heated atomizer and related method
US10772358B2 (en) 2015-12-07 2020-09-15 Indose Inc Inhalation device having security features
US10440992B2 (en) 2015-12-07 2019-10-15 Rai Strategic Holdings, Inc. Motion sensing for an aerosol delivery device
US10595562B2 (en) 2015-12-07 2020-03-24 Indose Inc Inhalation device with metering
US9955733B2 (en) 2015-12-07 2018-05-01 Rai Strategic Holdings, Inc. Camera for an aerosol delivery device
US11291252B2 (en) 2015-12-18 2022-04-05 Rai Strategic Holdings, Inc. Proximity sensing for an aerosol delivery device
US10092036B2 (en) 2015-12-28 2018-10-09 Rai Strategic Holdings, Inc. Aerosol delivery device including a housing and a coupler
US10051891B2 (en) 2016-01-05 2018-08-21 Rai Strategic Holdings, Inc. Capacitive sensing input device for an aerosol delivery device
US10194694B2 (en) 2016-01-05 2019-02-05 Rai Strategic Holdings, Inc. Aerosol delivery device with improved fluid transport
US10258086B2 (en) 2016-01-12 2019-04-16 Rai Strategic Holdings, Inc. Hall effect current sensor for an aerosol delivery device
US10104912B2 (en) 2016-01-20 2018-10-23 Rai Strategic Holdings, Inc. Control for an induction-based aerosol delivery device
US10015989B2 (en) 2016-01-27 2018-07-10 Rai Strategic Holdings, Inc. One-way valve for refilling an aerosol delivery device
US20170215478A1 (en) 2016-01-28 2017-08-03 Stratos Product Development Llc Vapor delivery systems and methods
USD861975S1 (en) 2016-02-08 2019-10-01 Juul Labs, Inc. Vaporizer device with cartridges
SG10202108578XA (en) 2016-02-11 2021-09-29 Juul Labs Inc Securely attaching cartridges for vaporizer devices
UA125687C2 (en) 2016-02-11 2022-05-18 Джуул Лебз, Інк. Fillable vaporizer cartridge and method of filling
US11412781B2 (en) 2016-02-12 2022-08-16 Rai Strategic Holdings, Inc. Adapters for refilling an aerosol delivery device
US10455863B2 (en) 2016-03-03 2019-10-29 Altria Client Services Llc Cartridge for electronic vaping device
US10433580B2 (en) 2016-03-03 2019-10-08 Altria Client Services Llc Methods to add menthol, botanic materials, and/or non-botanic materials to a cartridge, and/or an electronic vaping device including the cartridge
US20170251724A1 (en) 2016-03-04 2017-09-07 Rai Strategic Holdings, Inc. Flexible display for an aerosol delivery device
US10368580B2 (en) 2016-03-08 2019-08-06 Altria Client Services Llc Combined cartridge for electronic vaping device
US9936733B2 (en) 2016-03-09 2018-04-10 Rai Strategic Holdings, Inc. Accessory configured to charge an aerosol delivery device and related method
US10258087B2 (en) 2016-03-10 2019-04-16 Altria Client Services Llc E-vaping cartridge and device
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US10357060B2 (en) 2016-03-11 2019-07-23 Altria Client Services Llc E-vaping device cartridge holder
US10368581B2 (en) 2016-03-11 2019-08-06 Altria Client Services Llc Multiple dispersion generator e-vaping device
US10334880B2 (en) 2016-03-25 2019-07-02 Rai Strategic Holdings, Inc. Aerosol delivery device including connector comprising extension and receptacle
US11207478B2 (en) 2016-03-25 2021-12-28 Rai Strategic Holdings, Inc. Aerosol production assembly including surface with micro-pattern
US10945462B2 (en) 2016-04-12 2021-03-16 Rai Strategic Holdings, Inc. Detachable power source for an aerosol delivery device
US10333339B2 (en) 2016-04-12 2019-06-25 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10028534B2 (en) 2016-04-20 2018-07-24 Rai Strategic Holdings, Inc. Aerosol delivery device, and associated apparatus and method of formation thereof
US10405579B2 (en) 2016-04-29 2019-09-10 Rai Strategic Holdings, Inc. Methods for assembling a cartridge for an aerosol delivery device, and associated systems and apparatuses
CN106037008B (en) * 2016-05-25 2018-10-26 深圳瀚星翔科技有限公司 Smoke consuming apparatus
US10179690B2 (en) 2016-05-26 2019-01-15 Rai Strategic Holdings, Inc. Aerosol precursor composition mixing system for an aerosol delivery device
CN105852222B (en) * 2016-06-08 2019-06-14 卓尔悦欧洲控股有限公司 A kind of electronic cigarette
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
US10959458B2 (en) 2016-06-20 2021-03-30 Rai Strategic Holdings, Inc. Aerosol delivery device including an electrical generator assembly
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
US10085485B2 (en) 2016-07-06 2018-10-02 Rai Strategic Holdings, Inc. Aerosol delivery device with a reservoir housing and a vaporizer assembly
US10231485B2 (en) 2016-07-08 2019-03-19 Rai Strategic Holdings, Inc. Radio frequency to direct current converter for an aerosol delivery device
US10405581B2 (en) 2016-07-08 2019-09-10 Rai Strategic Holdings, Inc. Gas sensing for an aerosol delivery device
US10463078B2 (en) 2016-07-08 2019-11-05 Rai Strategic Holdings, Inc. Aerosol delivery device with condensing and non-condensing vaporization
US10602775B2 (en) 2016-07-21 2020-03-31 Rai Strategic Holdings, Inc. Aerosol delivery device with a unitary reservoir and liquid transport element comprising a porous monolith and related method
US10617151B2 (en) 2016-07-21 2020-04-14 Rai Strategic Holdings, Inc. Aerosol delivery device with a liquid transport element comprising a porous monolith and related method
US11019847B2 (en) 2016-07-28 2021-06-01 Rai Strategic Holdings, Inc. Aerosol delivery devices including a selector and related methods
US10765146B2 (en) 2016-08-08 2020-09-08 Rai Strategic Holdings, Inc. Boost converter for an aerosol delivery device
US11937647B2 (en) 2016-09-09 2024-03-26 Rai Strategic Holdings, Inc. Fluidic control for an aerosol delivery device
US11660403B2 (en) 2016-09-22 2023-05-30 Juul Labs, Inc. Leak-resistant vaporizer device
US10080387B2 (en) 2016-09-23 2018-09-25 Rai Strategic Holdings, Inc. Aerosol delivery device with replaceable wick and heater assembly
US10477896B2 (en) 2016-10-12 2019-11-19 Rai Strategic Holdings, Inc. Photodetector for measuring aerosol precursor composition in an aerosol delivery device
CN106376977B (en) * 2016-10-18 2023-04-18 云南中烟工业有限责任公司 Smoking set separate air inlet device
US10492530B2 (en) 2016-11-15 2019-12-03 Rai Strategic Holdings, Inc. Two-wire authentication system for an aerosol delivery device
US9864947B1 (en) 2016-11-15 2018-01-09 Rai Strategic Holdings, Inc. Near field communication for a tobacco-based article or package therefor
US10524508B2 (en) 2016-11-15 2020-01-07 Rai Strategic Holdings, Inc. Induction-based aerosol delivery device
US11103012B2 (en) 2016-11-17 2021-08-31 Rai Strategic Holdings, Inc. Satellite navigation for an aerosol delivery device
US10653183B2 (en) 2016-11-18 2020-05-19 Rai Strategic Holdings, Inc. Power source for an aerosol delivery device
US10524509B2 (en) 2016-11-18 2020-01-07 Rai Strategic Holdings, Inc. Pressure sensing for an aerosol delivery device
US10206431B2 (en) 2016-11-18 2019-02-19 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10172392B2 (en) 2016-11-18 2019-01-08 Rai Strategic Holdings, Inc. Humidity sensing for an aerosol delivery device
US10537137B2 (en) 2016-11-22 2020-01-21 Rai Strategic Holdings, Inc. Rechargeable lithium-ion battery for an aerosol delivery device
US11013266B2 (en) 2016-12-09 2021-05-25 Rai Strategic Holdings, Inc. Aerosol delivery device sensory system including an infrared sensor and related method
US10092039B2 (en) 2016-12-14 2018-10-09 Rai Strategic Holdings, Inc. Smoking article for on-demand delivery of an increased quantity of an aerosol precursor composition, a cartridge, and a related method
US10842188B2 (en) 2016-12-14 2020-11-24 Rai Strategic Holdings, Inc. Smoking article for selective delivery of an aerosol precursor composition, a cartridge, and a related method
UA128566C2 (en) 2016-12-16 2024-08-14 Кт & Г Корпорейшон Cigarette
US10366641B2 (en) 2016-12-21 2019-07-30 R.J. Reynolds Tobacco Company Product display systems and related methods
GB201700812D0 (en) 2017-01-17 2017-03-01 British American Tobacco Investments Ltd Apparatus for heating smokable material
US10080388B2 (en) 2017-01-25 2018-09-25 Rai Strategic Holdings, Inc. Aerosol delivery device including a shape-memory alloy and a related method
US10517326B2 (en) 2017-01-27 2019-12-31 Rai Strategic Holdings, Inc. Secondary battery for an aerosol delivery device
US20210127736A1 (en) * 2019-11-06 2021-05-06 Philter Labs Incorporated Electronic Cigarette Filter Assembly
US10827783B2 (en) 2017-02-27 2020-11-10 Rai Strategic Holdings, Inc. Digital compass for an aerosol delivery device
US11622582B2 (en) 2017-04-11 2023-04-11 Kt&G Corporation Aerosol generating device and method for providing adaptive feedback through puff recognition
EP3984393A1 (en) 2017-04-11 2022-04-20 KT&G Corporation Aerosol generating device and method for providing adaptive feedback through puff recognition
CN110494053B (en) 2017-04-11 2022-05-31 韩国烟草人参公社 Aerosol generating device
JP7180947B2 (en) 2017-04-11 2022-11-30 ケーティー アンド ジー コーポレイション AEROSOL GENERATING DEVICES AND METHODS OF PROVIDING SMOKING RESTRICTION FEATURES IN AEROSOL GENERATING DEVICES
CN115024512A (en) 2017-04-11 2022-09-09 韩国烟草人参公社 Aerosol generating device
JP6854361B2 (en) 2017-04-11 2021-04-07 ケーティー・アンド・ジー・コーポレーション Smoking material cleaning device and smoking material system
US20200154772A1 (en) 2017-04-11 2020-05-21 Kt&G Corporation Aerosol generation system of preheating heater
US10314340B2 (en) 2017-04-21 2019-06-11 Rai Strategic Holdings, Inc. Refillable aerosol delivery device and related method
JP6813697B2 (en) 2017-05-11 2021-01-13 ケーティー・アンド・ジー・コーポレーション Vaporizer and aerosol generator equipped with it
KR20180124739A (en) 2017-05-11 2018-11-21 주식회사 케이티앤지 An aerosol generating device for controlling the temperature of a heater according to the type of cigarette and method thereof
US11297876B2 (en) 2017-05-17 2022-04-12 Rai Strategic Holdings, Inc. Aerosol delivery device
US11589621B2 (en) 2017-05-23 2023-02-28 Rai Strategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
US10517330B2 (en) 2017-05-23 2019-12-31 RAI Stategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
KR102035313B1 (en) 2017-05-26 2019-10-22 주식회사 케이티앤지 Heater assembly and aerosol generating apparatus having the same
CN107156915A (en) * 2017-06-26 2017-09-15 常州市派腾电子技术服务有限公司 A kind of pre-heating mean of electronic cigarette and electronic cigarette
US10575562B2 (en) 2017-06-30 2020-03-03 Rai Strategic Holdings, Inc. Smoking article for identifying an attribute of an aerosol-generating element for adaptive power output and an associated method
US10842197B2 (en) 2017-07-12 2020-11-24 Rai Strategic Holdings, Inc. Detachable container for aerosol delivery having pierceable membrane
US11337456B2 (en) 2017-07-17 2022-05-24 Rai Strategic Holdings, Inc. Video analytics camera system for an aerosol delivery device
US10349674B2 (en) 2017-07-17 2019-07-16 Rai Strategic Holdings, Inc. No-heat, no-burn smoking article
US11849762B2 (en) 2017-08-09 2023-12-26 Kt&G Corporation Electronic cigarette control method and device
WO2019031877A2 (en) 2017-08-09 2019-02-14 주식회사 케이티앤지 Aerosol generation device and control method for aerosol generation device
KR20190049391A (en) 2017-10-30 2019-05-09 주식회사 케이티앤지 Aerosol generating apparatus having heater
US10791761B2 (en) 2017-08-17 2020-10-06 Rai Strategic Holdings, Inc. Microtextured liquid transport element for aerosol delivery device
WO2019043683A1 (en) * 2017-08-31 2019-03-07 Attenti Electronic Monitoring Ltd. Travel compliance detection using body-worn offender monitoring electronic devices
EP3679813A4 (en) 2017-09-06 2021-07-14 KT&G Corporation Aerosol generation device
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US10667554B2 (en) 2017-09-18 2020-06-02 Rai Strategic Holdings, Inc. Smoking articles
US10505383B2 (en) 2017-09-19 2019-12-10 Rai Strategic Holdings, Inc. Intelligent charger for an aerosol delivery device
US11039645B2 (en) 2017-09-19 2021-06-22 Rai Strategic Holdings, Inc. Differential pressure sensor for an aerosol delivery device
CN107536116B (en) * 2017-09-30 2024-03-29 四川三联新材料有限公司 Fuming heater and fuming product
US10660370B2 (en) 2017-10-12 2020-05-26 Rai Strategic Holdings, Inc. Aerosol delivery device including a control body, an atomizer body, and a cartridge and related methods
USD863678S1 (en) * 2017-10-26 2019-10-15 Arbi Petrosian Apparatus to clean a smoking device
USD861243S1 (en) * 2017-10-26 2019-09-24 Arbi Petrosian Apparatus to refill tobacco paper
KR102138245B1 (en) 2017-10-30 2020-07-28 주식회사 케이티앤지 Aerosol generating apparatus
KR102138246B1 (en) 2017-10-30 2020-07-28 주식회사 케이티앤지 Vaporizer and aerosol generating apparatus comprising the same
JP6884264B2 (en) 2017-10-30 2021-06-09 ケイティー アンド ジー コーポレイション Aerosol generator
KR102180421B1 (en) * 2017-10-30 2020-11-18 주식회사 케이티앤지 Apparatus for generating aerosols
KR102057216B1 (en) 2017-10-30 2019-12-18 주식회사 케이티앤지 An apparatus for generating aerosols and A heater assembly therein
WO2019088587A2 (en) 2017-10-30 2019-05-09 주식회사 케이티앤지 Aerosol generation device and heater for aerosol generation device
WO2019088577A2 (en) 2017-10-30 2019-05-09 주식회사 케이티앤지 Optical module and aerosol generation device comprising same
EP3704964A4 (en) 2017-10-30 2021-09-15 KT&G Corporation Aerosol generating device
KR102057215B1 (en) 2017-10-30 2019-12-18 주식회사 케이티앤지 Method and apparatus for generating aerosols
UA126599C2 (en) 2017-10-30 2022-11-02 Кт&Г Корпорейшон Aerosol generating device and method for controlling same
US10517332B2 (en) 2017-10-31 2019-12-31 Rai Strategic Holdings, Inc. Induction heated aerosol delivery device
US10806181B2 (en) 2017-12-08 2020-10-20 Rai Strategic Holdings, Inc. Quasi-resonant flyback converter for an induction-based aerosol delivery device
US10786010B2 (en) 2017-12-15 2020-09-29 Rai Strategic Holdings, Inc. Aerosol delivery device with multiple aerosol delivery pathways
US11020544B2 (en) * 2017-12-29 2021-06-01 Shenzhen Jianan Technology Co., Limited Composite heating type flue-curing device and composite heating method for cigarettes
US10555558B2 (en) 2017-12-29 2020-02-11 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
US11019850B2 (en) 2018-02-26 2021-06-01 Rai Strategic Holdings, Inc. Heat conducting substrate for electrically heated aerosol delivery device
US12102118B2 (en) 2018-03-09 2024-10-01 Rai Strategic Holdings, Inc. Electronically heated heat-not-burn smoking article
US10813385B2 (en) 2018-03-09 2020-10-27 Rai Strategic Holdings, Inc. Buck regulator with operational amplifier feedback for an aerosol delivery device
US10798969B2 (en) 2018-03-16 2020-10-13 R. J. Reynolds Tobacco Company Smoking article with heat transfer component
US11382356B2 (en) 2018-03-20 2022-07-12 Rai Strategic Holdings, Inc. Aerosol delivery device with indexing movement
US11206864B2 (en) 2018-03-26 2021-12-28 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
CN108402525B (en) * 2018-04-13 2023-11-14 深圳瀚星翔科技有限公司 Infrared temperature control system of electronic heating device and control method thereof
US10959459B2 (en) 2018-05-16 2021-03-30 Rai Strategic Holdings, Inc. Voltage regulator for an aerosol delivery device
US11399566B2 (en) 2018-06-05 2022-08-02 Kt&G Corporation Aerosol generating device
KR102096065B1 (en) * 2018-06-05 2020-04-01 주식회사 케이티앤지 Apparatus for generating aerosols
US11191298B2 (en) 2018-06-22 2021-12-07 Rai Strategic Holdings, Inc. Aerosol source member having combined susceptor and aerosol precursor material
US11723399B2 (en) 2018-07-13 2023-08-15 R.J. Reynolds Tobacco Company Smoking article with detachable cartridge
CN211794315U (en) * 2018-07-23 2020-10-30 尤尔实验室有限公司 Cartridge for an evaporator device
CN108968154A (en) 2018-08-01 2018-12-11 声海电子(深圳)有限公司 A kind of cigarette apparatus and its working method
US11094993B2 (en) 2018-08-10 2021-08-17 Rai Strategic Holdings, Inc. Charge circuitry for an aerosol delivery device
CN212014425U (en) 2018-08-17 2020-11-27 程杨 Multipurpose particle type cigarette
US10939707B2 (en) 2018-08-23 2021-03-09 Rai Strategic Holdings, Inc. Aerosol delivery device with segmented electrical heater
US11265974B2 (en) 2018-08-27 2022-03-01 Rai Strategic Holdings, Inc. Aerosol delivery device with integrated thermal conductor
US11103013B2 (en) * 2018-09-07 2021-08-31 Fontem Holdings 1 B.V. Pivotable charging case for electronic smoking device
US11247005B2 (en) 2018-09-26 2022-02-15 Rai Strategic Holdings, Inc. Aerosol delivery device with conductive inserts
US20200128880A1 (en) 2018-10-30 2020-04-30 R.J. Reynolds Tobacco Company Smoking article cartridge
US11592793B2 (en) 2018-11-19 2023-02-28 Rai Strategic Holdings, Inc. Power control for an aerosol delivery device
US11614720B2 (en) 2018-11-19 2023-03-28 Rai Strategic Holdings, Inc. Temperature control in an aerosol delivery device
US11753750B2 (en) 2018-11-20 2023-09-12 R.J. Reynolds Tobacco Company Conductive aerosol generating composite substrate for aerosol source member
US20200154785A1 (en) 2018-11-20 2020-05-21 R.J. Reynolds Tobacco Company Overwrap material containing aerosol former for aerosol source member
US11547816B2 (en) 2018-11-28 2023-01-10 Rai Strategic Holdings, Inc. Micropump for an aerosol delivery device
US20200237018A1 (en) 2019-01-29 2020-07-30 Rai Strategic Holdings, Inc. Susceptor arrangement for induction-heated aerosol delivery device
US11096419B2 (en) 2019-01-29 2021-08-24 Rai Strategic Holdings, Inc. Air pressure sensor for an aerosol delivery device
US20200245696A1 (en) 2019-02-06 2020-08-06 Rai Strategic Holdings, Inc. Buck-boost regulator circuit for an aerosol delivery device
US11456480B2 (en) 2019-02-07 2022-09-27 Rai Strategic Holdings, Inc. Non-inverting amplifier circuit for an aerosol delivery device
US20200278707A1 (en) 2019-03-01 2020-09-03 Rai Strategic Holdings, Inc. Temperature control circuitry for an aerosol delivery device
US11324249B2 (en) 2019-03-06 2022-05-10 R.J. Reynolds Tobacco Company Aerosol delivery device with nanocellulose substrate
US11602164B2 (en) 2019-03-14 2023-03-14 Rai Strategic Holdings, Inc. Aerosol delivery device with graded porosity from inner to outer wall surfaces
JP7325980B2 (en) * 2019-03-19 2023-08-15 インテレクチュアルディスカバリーシーオー.,エルティーディー smoking jig
EP3711542A1 (en) * 2019-03-22 2020-09-23 Nerudia Limited Smoking substitute system
US11676438B2 (en) 2019-04-02 2023-06-13 Rai Strategic Holdings, Inc. Authentication and age verification for an aerosol delivery device
US11200770B2 (en) 2019-04-02 2021-12-14 Rai Strategic Holdings, Inc. Functional control and age verification of electronic devices through visual communication
US11935350B2 (en) 2019-04-02 2024-03-19 Rai Strategic Holdings, Inc. Functional control and age verification of electronic devices through speaker communication
JP6695470B1 (en) * 2019-04-12 2020-05-20 日本たばこ産業株式会社 Control device for aerosol inhaler, control method for aerosol inhaler, program, and aerosol inhaler
JP6651667B1 (en) * 2019-04-12 2020-02-19 日本たばこ産業株式会社 Control device for aerosol inhaler, method of controlling aerosol inhaler, program, and aerosol inhaler
US11783395B2 (en) 2019-04-24 2023-10-10 Rai Strategic Holdings, Inc. Decentralized identity storage for tobacco products
US11690405B2 (en) 2019-04-25 2023-07-04 Rai Strategic Holdings, Inc. Artificial intelligence in an aerosol delivery device
KR102272404B1 (en) * 2019-04-30 2021-07-02 주식회사 케이티앤지 Aerosol generating device
US11517688B2 (en) 2019-05-10 2022-12-06 Rai Strategic Holdings, Inc. Flavor article for an aerosol delivery device
US20200359703A1 (en) 2019-05-17 2020-11-19 Rai Strategic Holdings, Inc. Age verification with registered cartridges for an aerosol delivery device
EP3995011B1 (en) * 2019-07-01 2024-09-04 Japan Tobacco Inc. Heater assembly and flavor inhaler
JP7116854B2 (en) * 2019-07-01 2022-08-10 日本たばこ産業株式会社 Heater assembly and flavor sucker
US12075819B2 (en) 2019-07-18 2024-09-03 R.J. Reynolds Tobacco Company Aerosol delivery device with consumable cartridge
US12082607B2 (en) 2019-07-19 2024-09-10 R.J. Reynolds Tobacco Company Aerosol delivery device with clamshell holder for cartridge
US11395510B2 (en) 2019-07-19 2022-07-26 R.J. Reynolds Tobacco Company Aerosol delivery device with rotatable enclosure for cartridge
US20210015175A1 (en) 2019-07-19 2021-01-21 R.J. Reynolds Tobacco Company Aerosol delivery device with sliding sleeve
US11330838B2 (en) 2019-07-19 2022-05-17 R. J. Reynolds Tobacco Company Holder for aerosol delivery device with detachable cartridge
US20210015177A1 (en) 2019-07-19 2021-01-21 R.J. Reynolds Tobacco Company Aerosol delivery device with separable heat source and substrate
AU2020339828A1 (en) 2019-08-29 2022-03-24 Rai Strategic Holdings, Inc. Dual-chamber aerosol dispenser
US11785991B2 (en) 2019-10-04 2023-10-17 Rai Strategic Holdings, Inc. Use of infrared temperature detection in an aerosol delivery device
KR102317841B1 (en) * 2019-10-11 2021-10-26 주식회사 케이티앤지 Vaporizer and aerosol generating device comprising the same
US11470689B2 (en) 2019-10-25 2022-10-11 Rai Strategic Holdings, Inc. Soft switching in an aerosol delivery device
USD943161S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Vaporizer device
USD943158S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Vaporizer cartridge
USD943160S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Vaporizer device
USD943159S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Component for a vaporizer cartridge
CA3160182A1 (en) 2019-11-18 2021-05-27 Rai Strategic Holdings, Inc. Security tag
US11576432B2 (en) 2019-11-26 2023-02-14 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11528939B2 (en) 2019-11-26 2022-12-20 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11596172B2 (en) 2019-11-26 2023-03-07 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11528937B2 (en) 2019-11-26 2022-12-20 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11484062B2 (en) 2019-11-26 2022-11-01 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11564416B2 (en) 2019-11-26 2023-01-31 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11490656B2 (en) 2019-11-26 2022-11-08 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11528938B2 (en) 2019-11-26 2022-12-20 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
WO2021116895A2 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Stimulus-responsive pouch
US11259569B2 (en) 2019-12-10 2022-03-01 Rai Strategic Holdings, Inc. Aerosol delivery device with downstream flavor cartridge
CN110897205A (en) * 2019-12-17 2020-03-24 惠州市沛格斯科技有限公司 Heating device and electronic cigarette
US20230337747A1 (en) * 2019-12-23 2023-10-26 Philip Morris Products S.A. Aerosol-generating system having a ventilation chamber
BR112022012162A2 (en) * 2019-12-23 2022-08-30 Philip Morris Products Sa AEROSOL GENERATING DEVICE WITH A VENTILATION CHAMBER
US20210195938A1 (en) 2019-12-27 2021-07-01 Nicoventures Trading Limited Substrate with multiple aerosol forming materials for aerosol delivery device
US20210204593A1 (en) 2020-01-02 2021-07-08 R.J. Reynolds Tobacco Company Smoking article with downstream flavor addition
US11607511B2 (en) 2020-01-08 2023-03-21 Nicoventures Trading Limited Inductively-heated substrate tablet for aerosol delivery device
US11457665B2 (en) 2020-01-16 2022-10-04 Nicoventures Trading Limited Susceptor arrangement for an inductively-heated aerosol delivery device
CN115666280A (en) * 2020-03-12 2023-01-31 菲利普莫里斯生产公司 Aerosol-generating system with air entry region
BR112022017693A2 (en) * 2020-03-12 2022-10-18 Philip Morris Products Sa AEROSOL GENERATOR ARTICLE HAVING A PLURALITY OF AIR ENTRY ZONES
JP2023517068A (en) * 2020-03-12 2023-04-21 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol-generating article with multiple air entry zones
BR112022017358A2 (en) * 2020-03-12 2022-10-18 Philip Morris Products Sa AEROSOL GENERATOR ARTICLE HAVING A PLURALITY OF AIR ENTRY ZONES
US11348695B2 (en) 2020-03-23 2022-05-31 International Business Machines Corporation Machine logic for recommending specialized first aid services
US12016369B2 (en) 2020-04-14 2024-06-25 Nicoventures Trading Limited Regenerated cellulose substrate for aerosol delivery device
US20210321655A1 (en) 2020-04-16 2021-10-21 R.J. Reynolds Tobacco Company Aerosol delivery device including a segregated substrate
US20210321674A1 (en) 2020-04-21 2021-10-21 Rai Strategic Holdings, Inc. Pressure-sensing user interface for an aerosol delivery device
US11439185B2 (en) 2020-04-29 2022-09-13 R. J. Reynolds Tobacco Company Aerosol delivery device with sliding and transversely rotating locking mechanism
US11589616B2 (en) 2020-04-29 2023-02-28 R.J. Reynolds Tobacco Company Aerosol delivery device with sliding and axially rotating locking mechanism
US11839240B2 (en) 2020-04-29 2023-12-12 Rai Strategic Holdings, Inc. Piezo sensor for a power source
WO2021224878A1 (en) 2020-05-08 2021-11-11 R.J. Reynolds Tobacco Company Aerosol delivery device
US20220000178A1 (en) 2020-07-01 2022-01-06 Nicoventures Trading Limited 3d-printed substrate for aerosol delivery device
US11771132B2 (en) 2020-08-27 2023-10-03 Rai Strategic Holdings, Inc. Atomization nozzle for aerosol delivery device
KR20230068413A (en) 2020-09-11 2023-05-17 니코벤처스 트레이딩 리미티드 Alginate-based substrate
US11707088B2 (en) 2020-09-25 2023-07-25 Rai Strategic Holdings, Inc. Aroma delivery system for aerosol delivery device
US11771136B2 (en) 2020-09-28 2023-10-03 Rai Strategic Holdings, Inc. Aerosol delivery device
US20220104532A1 (en) 2020-10-07 2022-04-07 NIlCOVENTURES TRADING LIMITED Methods of making tobacco-free substrates for aerosol delivery devices
US11856986B2 (en) 2020-10-19 2024-01-02 Rai Strategic Holdings, Inc. Customizable panel for aerosol delivery device
US20220183389A1 (en) 2020-12-11 2022-06-16 Rai Strategic Holdings, Inc. Sleeve for smoking article
DE102020134440A1 (en) 2020-12-21 2022-06-23 Innovative Sensor Technology Ist Ag Heating element for electronic cigarette and electronic cigarette for detecting physical property of tobacco aerosol and/or user's health condition
IL306021A (en) 2021-03-19 2023-11-01 Nicoventures Trading Ltd Beaded substrates for aerosol delivery devices
IL305999A (en) 2021-03-19 2023-11-01 Nicoventures Trading Ltd Extruded substrates for aerosol delivery devices
US20220312849A1 (en) 2021-04-02 2022-10-06 R. J. Reynolds Tobacco Company Aerosol delivery device with integrated lighter
US11825872B2 (en) 2021-04-02 2023-11-28 R.J. Reynolds Tobacco Company Aerosol delivery device with protective sleeve
US20220312846A1 (en) 2021-04-02 2022-10-06 R. J. Reynolds Tobacco Company Aerosol delivery device consumable unit
US20220312848A1 (en) 2021-04-02 2022-10-06 R. J. Reynolds Tobacco Company Aerosol delivery device with integrated inductive heater
CA3224138A1 (en) 2021-06-30 2023-01-05 Nicoventures Trading Limited Substrate with multiple aerosol forming materials for aerosol delivery device
CA3225070A1 (en) 2021-07-09 2023-01-12 Caroline W. H. CLARK Extruded structures
KR20240036696A (en) 2021-07-30 2024-03-20 니코벤처스 트레이딩 리미티드 Aerosol-generating substrate comprising microcrystalline cellulose
US20230056177A1 (en) 2021-08-17 2023-02-23 Rai Strategic Holdings, Inc. Inductively heated aerosol delivery device consumable
US20230105080A1 (en) 2021-10-01 2023-04-06 Rai Strategic Holdings, Inc. Absorbent containing mouthpiece for aerosol delivery device
US20230107943A1 (en) 2021-10-01 2023-04-06 Rai Strategic Holdings, Inc. Mouthpiece for aerosol delivery device
US20230189881A1 (en) 2021-12-20 2023-06-22 Rai Strategic Holdings, Inc. Aerosol delivery device with improved sealing arrangement
KR20240116845A (en) 2021-12-20 2024-07-30 니코벤처스 트레이딩 리미티드 Base materials containing beads for aerosol delivery devices
US20230413897A1 (en) 2022-06-27 2023-12-28 R.J. Reynolds Tobacco Company Alternative filter materials and components for an aerosol delivery device
US20240057691A1 (en) 2022-08-19 2024-02-22 Rai Strategic Holdings, Inc. Pressurized aerosol delivery device
US20240065337A1 (en) 2022-08-30 2024-02-29 R.J. Reynolds Tobacco Company Aerosol delivery device with actuatable ignitor contacts and dual-purpose slider actuator
US20240065323A1 (en) 2022-08-30 2024-02-29 R.J. Reynolds Tobacco Company Aerosol delivery device with static ignitor contacts
US20240065322A1 (en) 2022-08-30 2024-02-29 R.J. Reynolds Tobacco Company Aerosol delivery device with alternative consumable loading and ejection configurations
US20240065321A1 (en) 2022-08-30 2024-02-29 R.J. Reynolds Tobacco Company Aerosol delivery device with improved mouthpieces
WO2024069542A1 (en) 2022-09-30 2024-04-04 R. J. Reynolds Tobacco Company Method for forming reconstituted tobacco
WO2024069544A1 (en) 2022-09-30 2024-04-04 Nicoventures Trading Limited Reconstituted tobacco substrate for aerosol delivery device
US20240196971A1 (en) 2022-12-14 2024-06-20 R.J. Reynolds Tobacco Company Aerosol delivery device with automatic consumable loading and ejecting
US20240196994A1 (en) 2022-12-14 2024-06-20 R.J. Reynolds Tobacco Company Aerosol delivery device with improved cartridge loading
US20240196972A1 (en) 2022-12-14 2024-06-20 R.J. Reynolds Tobacco Company Aerosol delivery device with deflectable or collapsible housing
WO2024161353A1 (en) 2023-02-02 2024-08-08 Nicoventures Trading Limited Capsule-containing aerosol-generating substrate for aerosol delivery device
WO2024171119A1 (en) 2023-02-17 2024-08-22 Nicoventures Trading Limited Fibrous material for aerosol delivery device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388594A (en) 1991-03-11 1995-02-14 Philip Morris Incorporated Electrical smoking system for delivering flavors and method for making same
DE4328243C1 (en) * 1993-08-19 1995-03-09 Sven Mielordt Smoke or inhalation device
US5692525A (en) 1992-09-11 1997-12-02 Philip Morris Incorporated Cigarette for electrical smoking system
US5878752A (en) 1996-11-25 1999-03-09 Philip Morris Incorporated Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses
WO1999020940A1 (en) * 1997-10-20 1999-04-29 Philip Morris Products Inc. Lighter actuation system
US5934289A (en) 1996-10-22 1999-08-10 Philip Morris Incorporated Electronic smoking system
US5954979A (en) 1997-10-16 1999-09-21 Philip Morris Incorporated Heater fixture of an electrical smoking system
US6040560A (en) * 1996-10-22 2000-03-21 Philip Morris Incorporated Power controller and method of operating an electrical smoking system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269327A (en) 1989-12-01 1993-12-14 Philip Morris Incorporated Electrical smoking article
US5060671A (en) 1989-12-01 1991-10-29 Philip Morris Incorporated Flavor generating article
US5179966A (en) 1990-11-19 1993-01-19 Philip Morris Incorporated Flavor generating article
US5479948A (en) 1993-08-10 1996-01-02 Philip Morris Incorporated Electrical smoking article having continuous tobacco flavor web and flavor cassette therefor
CN1131676C (en) * 1994-02-25 2003-12-24 菲利普莫里斯生产公司 Electric smoking system for delivering flavors and methods for making same
US5883310A (en) 1994-11-04 1999-03-16 The Regents Of The University Of California Micromachined hot-wire shear stress sensor
US5726480A (en) 1995-01-27 1998-03-10 The Regents Of The University Of California Etchants for use in micromachining of CMOS Microaccelerometers and microelectromechanical devices and method of making the same
US5649554A (en) 1995-10-16 1997-07-22 Philip Morris Incorporated Electrical lighter with a rotatable tobacco supply
US5967148A (en) 1997-10-16 1999-10-19 Philip Morris Incorporated Lighter actuation system
US6250149B1 (en) 1999-04-08 2001-06-26 The Boeing Company System and method for generating aircraft flight data using a flush-mounted air data system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388594A (en) 1991-03-11 1995-02-14 Philip Morris Incorporated Electrical smoking system for delivering flavors and method for making same
US5692525A (en) 1992-09-11 1997-12-02 Philip Morris Incorporated Cigarette for electrical smoking system
DE4328243C1 (en) * 1993-08-19 1995-03-09 Sven Mielordt Smoke or inhalation device
US5934289A (en) 1996-10-22 1999-08-10 Philip Morris Incorporated Electronic smoking system
US6040560A (en) * 1996-10-22 2000-03-21 Philip Morris Incorporated Power controller and method of operating an electrical smoking system
US5878752A (en) 1996-11-25 1999-03-09 Philip Morris Incorporated Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses
US5954979A (en) 1997-10-16 1999-09-21 Philip Morris Incorporated Heater fixture of an electrical smoking system
WO1999020940A1 (en) * 1997-10-20 1999-04-29 Philip Morris Products Inc. Lighter actuation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10034988B2 (en) 2012-11-28 2018-07-31 Fontem Holdings I B.V. Methods and devices for compound delivery
US10194693B2 (en) 2013-09-20 2019-02-05 Fontem Holdings 1 B.V. Aerosol generating device

Also Published As

Publication number Publication date
CN1717186A (en) 2006-01-04
KR101087458B1 (en) 2011-11-25
AU2003290670A1 (en) 2004-06-03
ES2512493T3 (en) 2014-10-24
US6810883B2 (en) 2004-11-02
ES2401958T3 (en) 2013-04-25
EP1558098A4 (en) 2011-05-18
WO2004043175A1 (en) 2004-05-27
PT2580971E (en) 2014-12-24
EP2580970B1 (en) 2014-07-23
TW200836649A (en) 2008-09-16
JP2006505281A (en) 2006-02-16
DK2580971T3 (en) 2014-12-01
HK1205648A1 (en) 2015-12-24
HK1086170A1 (en) 2006-09-15
HUE044828T2 (en) 2019-11-28
PT2853166T (en) 2019-09-30
TW200416001A (en) 2004-09-01
LT2853166T (en) 2019-07-25
BR0316088A (en) 2005-09-27
MXPA05004936A (en) 2005-08-18
SI2853166T1 (en) 2019-08-30
EP2580971B1 (en) 2014-10-29
HK1184649A1 (en) 2014-01-30
EP1558098A1 (en) 2005-08-03
DK1558098T3 (en) 2013-04-08
JP4302061B2 (en) 2009-07-22
PT1558098E (en) 2013-02-19
EP2853166A1 (en) 2015-04-01
US20040089314A1 (en) 2004-05-13
ES2734451T3 (en) 2019-12-10
PL378810A1 (en) 2006-05-15
PL209131B1 (en) 2011-07-29
AR042007A1 (en) 2005-06-08
DK2580970T3 (en) 2014-09-08
TWI306020B (en) 2009-02-11
US20040200488A1 (en) 2004-10-14
TWI306392B (en) 2009-02-21
ES2528702T3 (en) 2015-02-11
HK1184650A1 (en) 2014-01-30
TR201910495T4 (en) 2019-08-21
DK2853166T3 (en) 2019-07-22
EP1558098B1 (en) 2013-01-02
CN101637308B (en) 2013-11-06
CN100546509C (en) 2009-10-07
KR20050084650A (en) 2005-08-26
EP2853166B1 (en) 2019-06-12
BR0316088B1 (en) 2013-08-13
CN101637308A (en) 2010-02-03
EP2580971A1 (en) 2013-04-17
PT2580970E (en) 2014-09-09

Similar Documents

Publication Publication Date Title
EP1558098B1 (en) Electrically heated cigarette smoking system with internal manifolding for puff detection
US11266178B2 (en) Aerosol delivery device including a control body, an atomizer body, and a cartridge and related methods
EP4292456A2 (en) Aerosol delivery device and cartridge providing flavor control
EP1947965B1 (en) Smokeless cigarette system
JP2001521123A (en) Heater fittings for electric smoking system
EP4149292B1 (en) Cartridge for an aerosol generating device
JP2024517491A (en) Aerosol generating device having puff recognition function and method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1558098

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: LT LV

17P Request for examination filed

Effective date: 20131017

RAX Requested extension states of the european patent have changed

Extension state: LT

Payment date: 20131017

Extension state: LV

Payment date: 20131017

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1184649

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1558098

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: LT LV

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 678332

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60346558

Country of ref document: DE

Effective date: 20140904

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140902

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140827

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2512493

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141024

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1184649

Country of ref document: HK

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 17109

Country of ref document: SK

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E009614

Country of ref document: EE

Effective date: 20141023

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20140402068

Country of ref document: GR

Effective date: 20141121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60346558

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

26N No opposition filed

Effective date: 20150424

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E023370

Country of ref document: HU

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20191120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20191024

Year of fee payment: 17

Ref country code: RO

Payment date: 20191025

Year of fee payment: 17

Ref country code: HU

Payment date: 20191115

Year of fee payment: 17

Ref country code: IE

Payment date: 20191121

Year of fee payment: 17

Ref country code: SE

Payment date: 20191121

Year of fee payment: 17

Ref country code: PT

Payment date: 20191021

Year of fee payment: 17

Ref country code: SK

Payment date: 20191024

Year of fee payment: 17

Ref country code: FI

Payment date: 20191121

Year of fee payment: 17

Ref country code: BG

Payment date: 20191122

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20191122

Year of fee payment: 17

Ref country code: EE

Payment date: 20191122

Year of fee payment: 17

Ref country code: BE

Payment date: 20191120

Year of fee payment: 17

Ref country code: GR

Payment date: 20191122

Year of fee payment: 17

Ref country code: ES

Payment date: 20191220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20191121

Year of fee payment: 17

Ref country code: TR

Payment date: 20191106

Year of fee payment: 17

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E009614

Country of ref document: EE

Effective date: 20201130

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20201130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 678332

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201107

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 17109

Country of ref document: SK

Effective date: 20201107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210510

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201108

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201108

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20201107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20221118

Year of fee payment: 20

Ref country code: IT

Payment date: 20221122

Year of fee payment: 20

Ref country code: GB

Payment date: 20221125

Year of fee payment: 20

Ref country code: FR

Payment date: 20221129

Year of fee payment: 20

Ref country code: DE

Payment date: 20221123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221114

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60346558

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20231106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107