EP2577678B1 - Canister for transporting and/or storing radioactive materials, including improved thermal conduction means - Google Patents

Canister for transporting and/or storing radioactive materials, including improved thermal conduction means Download PDF

Info

Publication number
EP2577678B1
EP2577678B1 EP11722101.0A EP11722101A EP2577678B1 EP 2577678 B1 EP2577678 B1 EP 2577678B1 EP 11722101 A EP11722101 A EP 11722101A EP 2577678 B1 EP2577678 B1 EP 2577678B1
Authority
EP
European Patent Office
Prior art keywords
thermal conduction
package
elements
conduction elements
package according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11722101.0A
Other languages
German (de)
French (fr)
Other versions
EP2577678B2 (en
EP2577678A1 (en
Inventor
Sébastien MOMON
Hervé ISSARD
Gilles Bonnet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TN International SA
Original Assignee
TN International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42989571&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2577678(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TN International SA filed Critical TN International SA
Publication of EP2577678A1 publication Critical patent/EP2577678A1/en
Publication of EP2577678B1 publication Critical patent/EP2577678B1/en
Application granted granted Critical
Publication of EP2577678B2 publication Critical patent/EP2577678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins

Definitions

  • the present invention relates to the field of packaging for the transport and / or storage of radioactive materials, preferably of the type of irradiated nuclear fuel assemblies.
  • storage devices also called “baskets” or “racks” storage. These storage devices, usually of cylindrical shape and of substantially circular or polygonal section, are able to receive the radioactive materials.
  • the storage device is intended to be housed in the cavity of a package in order to form together therewith a container for the transport and / or storage of radioactive materials, in which they are perfectly confined.
  • the aforesaid cavity is generally defined by a lateral body extending along a longitudinal axis of the package, as well as a bottom and a package cover arranged at opposite ends of the body, in the direction of the longitudinal axis.
  • the lateral body includes a wall internal and an outer wall, generally taking the form of two concentric metal ferrules together forming an annular space inside which are housed thermal conduction means, as well as means of radiological protection, in particular to form a barrier against neutrons emitted by the radioactive material housed in the cavity.
  • the thermal conduction means make it possible to conduct the heat released by the radioactive materials towards the outside of the container, in order to avoid any risk of overheating which may cause degradation of these materials, an alteration of the mechanical properties of the constituent materials of the packaging, or an abnormal pressure rise in the cavity.
  • Thermal conduction means have been the subject of many developments, which have led to various achievements.
  • One of the most commonly used resides in the placement of fins / ribs in the annular space between the two ferrules. These fins, which extend in length in the direction of the longitudinal axis of the package, thus allow to conduct the heat of the inner shell to the outer shell. Furthermore, in this embodiment, it is classically interposed radiological protection blocks between the fins.
  • this heat conduction fin solution can be problematic in that it is susceptible to generate hot spots on the outer shell of the lateral body of the package, at the junctions with these fins.
  • the document JPH05-172992 also discloses a packaging for the transport and / or storage of radioactive materials comprising radiological protection means as well as thermal conduction means.
  • the invention therefore aims to at least partially overcome the disadvantages mentioned above, relating to the achievements of the prior art.
  • the subject of the invention is a packaging for transporting and / or storing radioactive materials
  • said packaging comprising a lateral body defining a cavity for accommodating said radioactive materials extending along a longitudinal axis of the package, the body having an inner wall and an outer wall defining therebetween a space extending about said longitudinal axis, said space housing radiological protection means as well as thermal conduction means.
  • said thermal conduction means comprise a plurality of thermal conduction elements each defining internally a hollow extending in length in a conduction direction from the inner wall to the outer wall.
  • at least a portion of the thermal conduction elements, and preferably each of them have a hollow filled at least partially with a radiological protection material, and preferably entirely filled with this material.
  • the solution afforded by the present invention makes it easy, by appropriately distributing and in quantity the elements of thermal conduction, avoid the appearance of hot spots on the outer wall of the lateral body.
  • At least some of said thermal conduction elements each extend in a substantially radial direction of the lateral packaging body, which is indeed the direction in which the path is most direct to connect the two walls of the lateral body.
  • the radial direction must be understood as being the direction intercepting each of the two walls of the lateral body orthogonally locally.
  • the invention is not limited to such a direction of conduction, it may for example be inclined relative to a radial plane and / or relative to a transverse plane.
  • At least some of said heat conduction elements each have a substantially cylindrical shape.
  • the cylindrical shape could be replaced by a widening shape going from the inner wall to the outer wall, in particular to take into account the difference in average diameters between these walls.
  • the geometry of the section of the element remains preferably identical, only the magnitude of this section then being scalable.
  • the section of the thermal conduction element may be circular or polygonal, such as square or hexagonal.
  • At least some of said thermal conduction elements each extend in one piece along a length substantially equal to the distance separating the inner and outer walls, in the direction of conduction. This provides an uninterrupted thermal conduction path between the two walls, which is conducive to good heat dissipation.
  • at least some of the heat conduction elements could be cut in the direction of conduction, that is to say made in several sections arranged end-to-end. This is of particular interest when the heat conduction elements are closely related to a radiological protection material, for example so as to form blocks, as is preferentially the case in the invention.
  • the bucking mentioned above makes it possible to replace blocks of smaller dimensions, often better adapted to the size of the cells. defects, and thus reducing the material losses caused during these replacement operations.
  • said heat conduction elements together form an array of recesses which, in section along at least one plane parallel to the longitudinal axis and passing through this network, has at least one zone whose hollow density has an value greater than or equal to 100 troughs / m 2 .
  • a low minimum density which is preferably found in all heat conduction means, makes it possible to obtain excellent homogeneity in the heat conduction. It is further indicated that this density can be scalable within the thermal conduction means.
  • the walls of the heat conduction elements defining the hollows may be thin, conducive to a reduction in the risk of radiological leakage.
  • the average thickness of the walls of the heat conduction elements delimiting the hollows is between 0.02 and 0.5 mm.
  • the recesses each have, in section orthogonal to the direction of conduction, a maximum width of between 2 and 25 mm, this maximum width naturally corresponding to the diameter in the particular case of a circular section.
  • the ratio between the length of the hollow in the direction of conduction, and its maximum width is preferably between 3 and 100.
  • the high density value mentioned above can be achieved by providing that at least some of said thermal conduction elements are made using one or more honeycomb structures, each honeycomb cell forming said hollow of a thermal conduction element.
  • the cells can be of any shape, for example polygonal, as square or hexagonal.
  • they may be cylindrical or of enlarged shape going from the inner wall to the outer wall, as mentioned above.
  • honeycomb structures are widely distributed commercially in a wide variety of forms.
  • the high density of cells offered by the honeycomb structures is obtained thanks to the walls each delimiting several cells. This aspect also ensures an excellent ratio between the heat conducting capacity of the honeycomb structure and the mass of this structure. By reasoning mass equivalent structure, this ratio is further improved when the structure comprises cells of small section, reflecting a high density of cells, and whose walls are thin.
  • a honeycomb structure must be understood as a structure formed using a stack of sheets / strips forming the cells, the stacking direction being orthogonal to the direction longitudinal of these cells.
  • each structure is equipped with holes making the cells communicate with each other.
  • This facilitates the introduction of a radiological protection material into the cells when this material is introduced by casting, in particular when the casting takes place directly between the two walls of the lateral packaging body, with the honeycomb structure already in place in the inter-wall space.
  • the holes are made in the stacking direction of the leaves of the honeycomb structure. Their number is chosen according to various parameters, such as the viscosity of the cast material.
  • thermal conduction elements are made using independent elements, spaced from each other, these elements then taking preferentially each in the form of a tube, cylindrical or flared towards the outer wall of the lateral body, and section of any shape.
  • the independent thermal conduction elements can be placed in contact with each other, and possibly fixed together. This leads to a configuration approximating a honeycomb structure.
  • At least one of the heat conduction elements is externally espoused by said radiological protection material, and also internally, at its hollow. It is thus the same solid material which externally and internally marries at least one of the elements of thermal conduction.
  • each conduction element Thermal is not necessarily closed in section in a plane orthogonal to the direction of conduction, even if the closed character of the hollow is a preferred solution.
  • the hollow preferably extends continuously along its associated thermal conduction element, in the direction of conduction, remaining open at its two opposite ends considered in the same direction of conduction.
  • the lateral body of the package preferably has a conventional cylindrical shape, for example of circular or polygonal section.
  • the inner and outer walls adopting this same shape are generally called ferrules, and are concentric, centered on said longitudinal axis around which is the inter-ferrule space.
  • the invention also relates to a container for the transport and / or storage of radioactive materials, comprising a package as described above.
  • the container 1 generally comprises a packaging 2 object of the present invention, inside which there is a storage device 4, also called storage basket.
  • the device 4 is intended to be placed in a housing cavity 6 of the package 2, as schematically shown in FIG. figure 1 on which it is also possible to see the longitudinal axis 8 of this package, coincident with the longitudinal axes of the storage device and the housing cavity.
  • longitudinal should be understood as parallel to the longitudinal axis 8 and the longitudinal direction of the package.
  • the container 1 and the device 4 forming receiving housings of the fuel assemblies are here shown in a horizontal / lying position usually adopted during the transport of the assemblies, different from the vertical position of loading / unloading of the fuel assemblies.
  • the package 2 essentially has a bottom (not shown) on which the device 4 is intended to rest in a vertical position, a lid (not shown) arranged at the other longitudinal end of the package , and a lateral body 10 extending around and along the longitudinal axis 8, that is to say in the longitudinal direction of the container 1.
  • this lateral body 10 which defines the housing cavity 6, with the aid of a lateral inner surface 12 of substantially cylindrical shape and of circular section, and of axis coincident with the axis 8.
  • the bottom of the package which defines the bottom of the cavity 6 open at the lid, can be made in one piece with a portion of the lateral body 10, without departing from the scope of the invention.
  • the lateral body 10 which firstly has two concentric metal walls / ferrules together forming an annular space 14 centered on the longitudinal axis 8 of the package. It is indeed an inner shell 20 centered on the axis 8, and an outer shell 22 also centered on the axis 8.
  • the annular space 14 is filled by thermal conduction means 16, as well as radiological protection means 18 essentially designed to form a barrier against neutrons emitted by the fuel assemblies housed in the storage device 4.
  • thermal conduction means 16 as well as radiological protection means 18 essentially designed to form a barrier against neutrons emitted by the fuel assemblies housed in the storage device 4.
  • radiological protection means 18 essentially designed to form a barrier against neutrons emitted by the fuel assemblies housed in the storage device 4.
  • these elements are housed between the inner shell 20 whose inner surface corresponds to the inner lateral surface 12 of the cavity 6, and the outer shell 22.
  • the radiological protection device 18 is produced using a solid material known per se, such as a composite material with a polymer matrix, and more specifically whose matrix is a resin, preferably a highly hydrogenated resin, for example of the type vinylester resin.
  • This neutron protection material is also known as "resin concrete”.
  • the thermal conduction means 16 are for example made of an alloy having good heat conduction characteristics, of the aluminum alloy or copper type. It can also be a ceramic or carbon-based material, such as silicon carbide.
  • boron may be provided in the radiological protection means and / or the thermal conduction means, in order to reinforce the neutron protection function.
  • the radiological protection means 18 take the form of a single block of material cast between the two rings 20, 22, penetrating into the heat conduction means 16, as will be detailed below.
  • the thermal conduction means are here formed using several honeycomb structures 30, which are placed circumferentially next to one another in the inter-ring space 14.
  • Each structure 30 For example, it has a shape of annular ring sector, extending at an angle of preferably between 5 and 60 °.
  • Each structure 30 also extends over the entire length of the space 14 along the direction of the axis 8, as well as over substantially the entire radial length of this space, or may alternatively be cut according to the one and / or the other of these two directions.
  • Each structure 30 forms heat conduction elements 31 each defining a cavity 32 corresponding to a cell / cell of the structure.
  • the cavity walls / cells 34 forming the elements 31 make it possible to define each several cavities / cells 32.
  • the recesses 32 each extend in length in a conduction direction 36 going from the inner shell 20 to the outer shell 22, this direction corresponding to the longitudinal axis of the honeycomb cell concerned.
  • this direction 36 is preferably radial or substantially radial.
  • the conduction elements 31 are substantially cylindrical and parallel to each other, as well as the recesses 32 that they define.
  • the conduction directions 36 are here very close to the radial direction, therefore qualified as substantially radial, even though they may be inclined by a few degrees with respect to this same radial direction.
  • the conduction elements 31 are no longer cylindrical, but each have a shape extending from the inner shell 20 to the outer shell 22, in particular to take into account the difference in diameters between these two rings.
  • the geometry of the section of each element 31 remains preferentially identical, only the magnitude of this section then being increasing towards the outer shell 22.
  • the conduction direction 36 of each of the elements 31 corresponds to the radial direction of the body 10, orthogonally intercepting the axis 8.
  • the heat conduction elements 31 and the recesses 32 that they define each extend over a length substantially identical to the distance separating the two rings, in the direction of conduction 36 of the element 31 concerned.
  • a mounting set is preferentially retained, in order to allow the introduction of the structures 30 into the inter-shell space 14.
  • the honeycomb structures 30 define heat conduction elements 31 of hexagonal section, even if any other form could be envisaged, without departing from the scope of the invention.
  • This hexagonal shape is conventionally produced by means of a stack of embossed sheets / strips 40 forming the hollows / cells 32, the stacking direction 42 of these sheets being orthogonal to the longitudinal direction 36 of the cells.
  • Each recess 32 considered in section orthogonal to the direction of conduction 36 as is the case on the figure 2 , has a maximum width "l" of between 2 and 25 mm.
  • the walls of the heat conduction elements 31 delimiting the recesses 32 are of small thickness, for example of average thickness between 0.02 and 0.5 mm.
  • some parts of the walls are formed by a single sheet 40, while other parts are formed by the superposition of two sheets 40.
  • the average thickness mentioned above is defined as corresponding to about 1.5 times the thickness of the superimposed sheets 40 constituting the honeycomb structures 30.
  • the ratio between the length "L" of each recess 32 in its direction of conduction 36, and its maximum width "1" mentioned above, is preferably between 3 and 100.
  • the length "L” is preferentially between 75 and 200 mm.
  • honeycomb structures lies in the high density of conduction elements 31 and recesses 32 that it is able to provide.
  • the heat conduction elements 31 together form a network of recesses 32 which, in section along at least one plane parallel to the axis 8 and passing through this network, has at least one zone whose cavity density 32 has a value greater than or equal to 100 troughs / m 2 .
  • the figure 2 shows such a section taken according to the plane of line II-II shown on the figure 1 .
  • this minimum density value is encountered in all areas of the conduction means 16, even if it can be scalable within these same means 16.
  • the radiological protection material 18 preferably completely fills the recesses 32 of the honeycomb structures 30. Since the casting of this material is made directly in the inter-ring space 14, with the structures 30 already in place in the package being in the vertical position, it is expected to make holes 46 in the sheets 40 to communicate the hollows 32 between them. During the gravitational casting of the material 18, the latter can then borrow the holes 46 in order to distribute the best in each of the recesses 32 of the structures 30.
  • the holes 46 are here made in the stacking direction 42 of the sheets 40 as evidenced by the figure 2 . Their number is chosen according to various parameters, such as the viscosity of the cast material.
  • the thermal conduction elements are no longer made by honeycomb structures, but by independent elements 31 spaced apart from each other. They therefore each have, unlike the previous embodiment, a wall of their own, that is to say that is not shared with other elements 31. It may be tubes, for example of circular section, as shown on the figure 3 .
  • the elements can take a widening shape by going from the inner wall to the outer wall, such as a frustoconical shape. The geometry of the section of the element then remains preferentially identical here, only the magnitude of this section being scalable.
  • these tubes 31 internally defining the recesses 32 may also be provided with holes, in order to be more easily filled with the neutron protection material 18.
  • FIG 4 there is shown a block 100 in the form of an angular sector of ferrule, intended to be introduced into the inter-ferrule space 14.
  • This solution also envisaged for the present invention, contrasts with the previous solution in that it consists to make several sectors of ferrule 100 outside the space 14, before introducing them into this same space, so that they are arranged circumferentially next to each other.
  • Each block 100 integrates the neutron protection material 18 and a plurality of heat conduction elements 31, filled with this material which defines the quasi-totality of the peripheral surface of the block. Nevertheless, it is expected that the ends of the conduction elements 31 remain visible at the two concentric surfaces 110, 112 of the block, respectively intended to be facing / contacting the surfaces of the rings 20, 22 delimiting the space 14. This allows to establish a better heat transfer between the ferrules 20, 22 and the thermal conduction elements of the block 100. It is noted that if the thermal conduction elements of the block 100 are here of the type of those shown on FIG. figure 3 , they could nevertheless adopt any form according to the present invention, in particular that shown on the figures 1 and 2 . Of course, various modifications may be made by those skilled in the art to the invention as defined in the appended claims.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention se rapporte au domaine des emballages pour le transport et/ou entreposage de matières radioactives, de préférence du type assemblages de combustible nucléaire irradiés.The present invention relates to the field of packaging for the transport and / or storage of radioactive materials, preferably of the type of irradiated nuclear fuel assemblies.

ETAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART

Classiquement, pour assurer le transport et/ou l'entreposage de matières radioactives, il est utilisé des dispositifs de rangement, également appelés « paniers » ou « râteliers » de rangement. Ces dispositifs de rangement, habituellement de forme cylindrique et de section sensiblement circulaire ou polygonale, sont aptes à recevoir les matières radioactives. Le dispositif de rangement est destiné à être logé dans la cavité d'un emballage afin de former conjointement avec celui-ci un conteneur pour le transport et/ou entreposage de matières radioactives, dans lequel elles sont parfaitement confinées.Conventionally, to ensure the transport and / or storage of radioactive materials, it is used storage devices, also called "baskets" or "racks" storage. These storage devices, usually of cylindrical shape and of substantially circular or polygonal section, are able to receive the radioactive materials. The storage device is intended to be housed in the cavity of a package in order to form together therewith a container for the transport and / or storage of radioactive materials, in which they are perfectly confined.

La cavité précitée est généralement définie par un corps latéral s'étendant selon un axe longitudinal de l'emballage, ainsi que par un fond et un couvercle d'emballage agencés aux extrémités opposées du corps, selon la direction de l'axe longitudinal. Le corps latéral comprend une paroi intérieure et une paroi extérieure, prenant généralement la forme de deux viroles métalliques concentriques formant conjointement un espace annulaire à l'intérieur duquel sont logés des moyens de conduction thermique, ainsi que des moyens de protection radiologique, en particulier pour former une barrière contre les neutrons émis par la matière radioactive logée dans la cavité.The aforesaid cavity is generally defined by a lateral body extending along a longitudinal axis of the package, as well as a bottom and a package cover arranged at opposite ends of the body, in the direction of the longitudinal axis. The lateral body includes a wall internal and an outer wall, generally taking the form of two concentric metal ferrules together forming an annular space inside which are housed thermal conduction means, as well as means of radiological protection, in particular to form a barrier against neutrons emitted by the radioactive material housed in the cavity.

Les moyens de conduction thermique permettent de conduire la chaleur dégagée par les matières radioactives vers l'extérieur du conteneur, afin d'éviter tout risque de surchauffe susceptible de provoquer une dégradation de ces matières, une altération des propriétés mécaniques des matériaux constitutifs de l'emballage, ou encore une élévation de pression anormale dans la cavité.The thermal conduction means make it possible to conduct the heat released by the radioactive materials towards the outside of the container, in order to avoid any risk of overheating which may cause degradation of these materials, an alteration of the mechanical properties of the constituent materials of the packaging, or an abnormal pressure rise in the cavity.

Les moyens de conduction thermique ont fait l'objet de nombreux développements, qui ont conduit à diverses réalisations. L'une des plus couramment employée réside dans la mise en place d'ailettes / nervures dans l'espace annulaire, entre les deux viroles. Ces ailettes, qui s'étendent en longueur selon la direction de l'axe longitudinal de l'emballage, permettent ainsi de conduire la chaleur de la virole intérieure vers la virole extérieure. Par ailleurs, dans cette réalisation, il est classiquement interposé des blocs de protection radiologique entre les ailettes.Thermal conduction means have been the subject of many developments, which have led to various achievements. One of the most commonly used resides in the placement of fins / ribs in the annular space between the two ferrules. These fins, which extend in length in the direction of the longitudinal axis of the package, thus allow to conduct the heat of the inner shell to the outer shell. Furthermore, in this embodiment, it is classically interposed radiological protection blocks between the fins.

Bien qu'elle soit largement répandue, cette solution à ailettes de conduction thermique peut s'avérer problématique en ce qu'elle est susceptible de générer des points chauds sur la virole extérieure du corps latéral de l'emballage, au niveau des jonctions avec ces mêmes ailettes.Although widely used, this heat conduction fin solution can be problematic in that it is susceptible to generate hot spots on the outer shell of the lateral body of the package, at the junctions with these fins.

Une autre solution, connue notamment du document EP 1 355 320 , permet de répondre partiellement à ce problème d'homogénéité de transfert de chaleur, en employant des structures en nid d'abeilles. Néanmoins, l'agencement proposé dans ce document fournit une capacité de conduction thermique perfectible. En outre, elle requiert l'utilisation d'ailettes de conduction thermique, en combinaison avec les structures en nid d'abeilles, ce qui complexifie la conception de l'emballage.Another solution, known in particular from the document EP 1 355 320 , makes it possible to partially answer this problem of homogeneity of heat transfer, by employing structures in honeycomb. Nevertheless, the arrangement proposed in this document provides a perfectible thermal conduction capacity. In addition, it requires the use of thermal conduction fins, in combination with the honeycomb structures, which complicates the design of the package.

Le document JPH05-172992 divulgue aussi un emballage pour le transport et/ ou l'entreposage de matières radioactives comprenant des moyens de protection radiologique ainsi que des moyens de conduction thermique.The document JPH05-172992 also discloses a packaging for the transport and / or storage of radioactive materials comprising radiological protection means as well as thermal conduction means.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

L'invention a donc pour but de remédier au moins partiellement aux inconvénients mentionnés ci-dessus, relatifs aux réalisations de l'art antérieur.The invention therefore aims to at least partially overcome the disadvantages mentioned above, relating to the achievements of the prior art.

Pour ce faire, l'invention a pour objet un emballage pour le transport et/ou entreposage de matières radioactives, ledit emballage comprenant un corps latéral définissant une cavité de logement desdites matières radioactives s'étendant selon un axe longitudinal de l'emballage, le corps comportant une paroi intérieure ainsi qu'une paroi extérieure définissant entre elles un espace s'étendant autour dudit axe longitudinal, ledit espace logeant des moyens de protection radiologique ainsi que des moyens de conduction thermique. Selon l'invention, lesdits moyens de conduction thermique comprennent une pluralité d'éléments de conduction thermique définissant chacun intérieurement un creux s'étendant en longueur dans une direction de conduction allant de la paroi intérieure vers la paroi extérieure. De plus, au moins une partie des éléments de conduction thermique, et de préférence chacun d'eux, ont un creux rempli au moins partiellement d'un matériau de protection radiologique, et de préférence entièrement rempli par ce matériau.To do this, the subject of the invention is a packaging for transporting and / or storing radioactive materials, said packaging comprising a lateral body defining a cavity for accommodating said radioactive materials extending along a longitudinal axis of the package, the body having an inner wall and an outer wall defining therebetween a space extending about said longitudinal axis, said space housing radiological protection means as well as thermal conduction means. According to the invention, said thermal conduction means comprise a plurality of thermal conduction elements each defining internally a hollow extending in length in a conduction direction from the inner wall to the outer wall. In addition, at least a portion of the thermal conduction elements, and preferably each of them, have a hollow filled at least partially with a radiological protection material, and preferably entirely filled with this material.

L'orientation particulière des creux, ainsi que l'orientation des éléments de conduction thermique qui en découle, permettent de conférer une meilleure capacité de conduction thermique, en particulier par rapport à la solution de structures en nid d'abeilles décrite dans le document EP 1 355 320 , dans laquelle les creux formés par les cellules de nid d'abeilles sont orientés parallèlement aux parois et à l'axe longitudinal de l'emballage. En effet, grâce à ces orientations spécifiques à la présente invention, le chemin de conduction thermique défini par les éléments de conduction est raccourci par rapport à celui rencontré dans les structures en nid d'abeilles du document EP 1 355 320 , car il rejoint de manière plus directe les deux parois du corps latéral. En outre, le chemin de conduction thermique entre les deux parois ne souffre pas d'interruptions multiples du type de celles rencontrées dans les structures en nid d'abeilles du document EP 1 355 320 , résultant de la superposition des feuilles métalliques formant conjointement les cellules de nid d'abeilles.The particular orientation of the hollows, as well as the orientation of the heat conduction elements which results from this, make it possible to confer a better heat conduction capacity, in particular with respect to the solution of honeycomb structures described in the document EP 1 355 320 wherein the hollows formed by the honeycomb cells are oriented parallel to the walls and to the longitudinal axis of the package. Indeed, thanks to these orientations specific to the present invention, the thermal conduction path defined by the conduction elements is shortened compared to that encountered in the honeycomb structures of the document. EP 1 355 320 because it joins more directly the two walls of the lateral body. In addition, the thermal conduction path between the two walls does not suffer from multiple interruptions of the type encountered in the honeycomb structures of the document. EP 1 355 320 resulting from the superposition of the metal sheets jointly forming the honeycomb cells.

Par ailleurs, la solution apportée par la présente invention permet facilement, en répartissant convenablement et en quantité les éléments de conduction thermique, d'éviter l'apparition de points chauds sur la paroi extérieure du corps latéral.Moreover, the solution afforded by the present invention makes it easy, by appropriately distributing and in quantity the elements of thermal conduction, avoid the appearance of hot spots on the outer wall of the lateral body.

Enfin, l'invention offrant un excellent transfert de chaleur, elle ne requiert plus l'emploi d'ailettes de conduction thermique du type de celles rencontrées dans l'art antérieur. Sa conception s'en trouve ainsi simplifiée.Finally, since the invention offers excellent heat transfer, it no longer requires the use of thermal conduction fins of the type of those encountered in the prior art. Its design is thus simplified.

De préférence, au moins certains desdits éléments de conduction thermique s'étendent chacun selon une direction sensiblement radiale du corps latéral d'emballage, qui constitue en effet la direction selon laquelle le chemin est le plus direct pour relier les deux parois du corps latéral. A cet égard, la direction radiale doit être comprise comme étant la direction interceptant localement, de manière orthogonale, chacune des deux parois du corps latéral. Néanmoins, l'invention n'est pas limitée à une telle direction de conduction, celle-ci pouvant par exemple être inclinée par rapport à un plan radial et/ou par rapport à un plan transversal.Preferably, at least some of said thermal conduction elements each extend in a substantially radial direction of the lateral packaging body, which is indeed the direction in which the path is most direct to connect the two walls of the lateral body. In this respect, the radial direction must be understood as being the direction intercepting each of the two walls of the lateral body orthogonally locally. Nevertheless, the invention is not limited to such a direction of conduction, it may for example be inclined relative to a radial plane and / or relative to a transverse plane.

De préférence, au moins certains desdits éléments de conduction thermique présentent chacun une forme sensiblement cylindrique. Cependant, la forme cylindrique pourrait être remplacée par une forme s'agrandissant en allant de la paroi intérieure à la paroi extérieure, en particulier pour prendre en compte la différence des diamètres moyens entre ces parois. Dans un tel cas, la géométrie de la section de l'élément reste préférentiellement identique, seule la grandeur de cette section étant alors évolutive.Preferably, at least some of said heat conduction elements each have a substantially cylindrical shape. However, the cylindrical shape could be replaced by a widening shape going from the inner wall to the outer wall, in particular to take into account the difference in average diameters between these walls. In such a case, the geometry of the section of the element remains preferably identical, only the magnitude of this section then being scalable.

A titre d'exemples indicatifs, la section de l'élément de conduction thermique peut être circulaire ou polygonale, comme carrée ou hexagonale.As indicative examples, the section of the thermal conduction element may be circular or polygonal, such as square or hexagonal.

De préférence, au moins certains desdits éléments de conduction thermique s'étendent chacun d'un seul tenant selon une longueur sensiblement égale à la distance séparant les parois intérieure et extérieure, selon la direction de conduction. Cela offre un chemin de conduction thermique ininterrompu entre les deux parois, qui est propice à une bonne évacuation de chaleur. Cependant, au moins certains des éléments de conduction thermique pourraient être tronçonnés selon la direction de conduction, c'est-à-dire réalisés en plusieurs tronçons agencés bout-à-bout. Cela présente un intérêt particulier lorsque les éléments de conduction thermique sont intimement liés à un matériau de protection radiologique, par exemple de manière à former des blocs, comme cela est préférentiellement le cas dans l'invention. En effet, lorsqu'il est nécessaire de remplacer une partie seulement des moyens de conduction thermique et/ou des moyens de protection radiologique, le tronçonnage mentionné ci-dessus permet de remplacer des blocs de plus petites dimensions, souvent mieux adaptés à la taille des défauts, et réduisant ainsi les pertes de matériaux occasionnées lors de ces opérations de remplacement.Preferably, at least some of said thermal conduction elements each extend in one piece along a length substantially equal to the distance separating the inner and outer walls, in the direction of conduction. This provides an uninterrupted thermal conduction path between the two walls, which is conducive to good heat dissipation. However, at least some of the heat conduction elements could be cut in the direction of conduction, that is to say made in several sections arranged end-to-end. This is of particular interest when the heat conduction elements are closely related to a radiological protection material, for example so as to form blocks, as is preferentially the case in the invention. Indeed, when it is necessary to replace only a portion of the thermal conduction means and / or radiological protection means, the bucking mentioned above makes it possible to replace blocks of smaller dimensions, often better adapted to the size of the cells. defects, and thus reducing the material losses caused during these replacement operations.

De préférence, lesdits éléments de conduction thermique forment ensemble un réseau de creux qui, en section selon au moins un plan parallèle à l'axe longitudinal et traversant ce réseau, présente au moins une zone dont la densité de creux présente une valeur supérieure ou égale à 100 creux/m2. Une densité minimale aussi élevée, qui est de préférence rencontrée dans l'ensemble des moyens de conduction thermique, permet d'obtenir une excellente homogénéité dans la conduction de chaleur. Il est indiqué par ailleurs que cette densité peut être évolutive au sein des moyens de conduction thermique.Preferably, said heat conduction elements together form an array of recesses which, in section along at least one plane parallel to the longitudinal axis and passing through this network, has at least one zone whose hollow density has an value greater than or equal to 100 troughs / m 2 . Such a low minimum density, which is preferably found in all heat conduction means, makes it possible to obtain excellent homogeneity in the heat conduction. It is further indicated that this density can be scalable within the thermal conduction means.

En outre, les parois des éléments de conduction thermique délimitant les creux peuvent être de faible épaisseur, propice à une diminution du risque de fuite radiologique. De préférence, l'épaisseur moyenne des parois des éléments de conduction thermique, délimitant les creux, est comprise entre 0,02 et 0,5 mm.In addition, the walls of the heat conduction elements defining the hollows may be thin, conducive to a reduction in the risk of radiological leakage. Preferably, the average thickness of the walls of the heat conduction elements delimiting the hollows is between 0.02 and 0.5 mm.

De préférence, les creux présentent chacun, en section orthogonale à la direction de conduction, une largeur maximale comprise entre 2 et 25 mm, cette largeur maximale correspondant naturellement au diamètre dans le cas particulier d'une section circulaire.Preferably, the recesses each have, in section orthogonal to the direction of conduction, a maximum width of between 2 and 25 mm, this maximum width naturally corresponding to the diameter in the particular case of a circular section.

Egalement, le rapport entre la longueur du creux selon la direction de conduction, et sa largeur maximale, est préférentiellement compris entre 3 et 100.Also, the ratio between the length of the hollow in the direction of conduction, and its maximum width, is preferably between 3 and 100.

La valeur de haute densité mentionnée ci-dessus peut être atteinte en prévoyant qu'au moins certains desdits éléments de conduction thermique sont réalisés à l'aide d'une ou plusieurs structures en nid d'abeilles, chaque cellule de nid d'abeilles formant ledit creux d'un élément de conduction thermique. Ici, les cellules peuvent être de toute forme, par exemple polygonale, comme carrée ou hexagonale. De plus, elles peuvent être cylindriques ou de forme s'agrandissant en allant de la paroi intérieure à la paroi extérieure, comme évoqué ci-dessus. L'avantage d'une telle utilisation réside dans le fait que les structures en nid d'abeilles sont largement répandues dans le commerce, sous des formes très diverses. De plus, il est précisé que la grande densité de cellules offerte par les structures en nid d'abeilles est obtenue grâce aux parois délimitant chacune plusieurs cellules. Cet aspect assure par ailleurs un excellent rapport entre la capacité de conduction de chaleur de la structure en nid d'abeilles, et la masse de cette structure. En raisonnant à masse de structure équivalente, ce rapport est encore amélioré lorsque la structure comprend des cellules de faible section, traduisant une densité de cellules élevée, et dont les parois sont de faible épaisseur.The high density value mentioned above can be achieved by providing that at least some of said thermal conduction elements are made using one or more honeycomb structures, each honeycomb cell forming said hollow of a thermal conduction element. Here, the cells can be of any shape, for example polygonal, as square or hexagonal. In addition, they may be cylindrical or of enlarged shape going from the inner wall to the outer wall, as mentioned above. The advantage of such use is that honeycomb structures are widely distributed commercially in a wide variety of forms. In addition, it is specified that the high density of cells offered by the honeycomb structures is obtained thanks to the walls each delimiting several cells. This aspect also ensures an excellent ratio between the heat conducting capacity of the honeycomb structure and the mass of this structure. By reasoning mass equivalent structure, this ratio is further improved when the structure comprises cells of small section, reflecting a high density of cells, and whose walls are thin.

Pour ce qui précède, il est précisé qu'une structure en nid d'abeilles doit être comprise comme une structure formée à l'aide d'un empilement de feuilles/feuillards formant les cellules, la direction d'empilement étant orthogonale à la direction longitudinale de ces cellules.For the above, it is specified that a honeycomb structure must be understood as a structure formed using a stack of sheets / strips forming the cells, the stacking direction being orthogonal to the direction longitudinal of these cells.

Avec cette solution utilisant des structures en nid d'abeilles, il est préférentiellement fait en sorte que chaque structure soit équipée de perçages faisant communiquer les cellules entre elles. Cela permet de faciliter l'introduction d'un matériau de protection radiologique dans les cellules lorsque ce matériau est introduit par coulée, en particulier lorsque la coulée s'effectue directement entre les deux parois du corps latéral d'emballage, avec la structure en nid d'abeilles déjà en place dans l'espace inter-parois. De préférence, les perçages s'effectuent selon la direction d'empilement des feuilles de la structure en nid d'abeilles. Leur nombre est retenu en fonction de différents paramètres, comme la viscosité du matériau coulé.With this solution using honeycomb structures, it is preferably made so that each structure is equipped with holes making the cells communicate with each other. This facilitates the introduction of a radiological protection material into the cells when this material is introduced by casting, in particular when the casting takes place directly between the two walls of the lateral packaging body, with the honeycomb structure already in place in the inter-wall space. Preferably, the holes are made in the stacking direction of the leaves of the honeycomb structure. Their number is chosen according to various parameters, such as the viscosity of the cast material.

Alternativement ou simultanément à la solution de structures en nid d'abeilles, il peut être prévu qu'au moins certains desdits éléments de conduction thermique sont réalisés à l'aide d'éléments indépendants, espacés les uns des autres, ces éléments prenant alors préférentiellement chacun la forme d'un tube, cylindrique ou évasé vers la paroi extérieure du corps latéral, et de section de forme quelconque. Selon une solution encore différente, combinable avec les précédentes, les éléments de conduction thermique indépendants peuvent être placés au contact les uns des autres, et éventuellement fixés entre eux. Cela conduit à une configuration se rapprochant d'une structure en nid d'abeilles.Alternatively or simultaneously with the solution of honeycomb structures, it can be provided that at least some of said thermal conduction elements are made using independent elements, spaced from each other, these elements then taking preferentially each in the form of a tube, cylindrical or flared towards the outer wall of the lateral body, and section of any shape. According to a still different solution, combinable with the previous ones, the independent thermal conduction elements can be placed in contact with each other, and possibly fixed together. This leads to a configuration approximating a honeycomb structure.

Selon l'invention, au moins l'un des éléments de conduction thermique, et de préférence chacun d'eux, est épousé extérieurement par ledit matériau de protection radiologique, et également intérieurement, au niveau de son creux. C'est ainsi le même matériau solide qui épouse extérieurement et intérieurement au moins l'un des éléments de conduction thermique.According to the invention, at least one of the heat conduction elements, and preferably each of them, is externally espoused by said radiological protection material, and also internally, at its hollow. It is thus the same solid material which externally and internally marries at least one of the elements of thermal conduction.

D'une manière générale, il est indiqué que le creux défini par chaque élément de conduction thermique n'est pas nécessairement fermé en section selon un plan orthogonal à la direction de conduction, même si le caractère fermé du creux représente une solution préférée. En outre, le creux s'étend préférentiellement de manière continue tout le long de son élément de conduction thermique associé, selon la direction de conduction, en restant ouvert à ses deux extrémités opposées considérées selon cette même direction de conduction.In a general way, it is indicated that the hollow defined by each conduction element Thermal is not necessarily closed in section in a plane orthogonal to the direction of conduction, even if the closed character of the hollow is a preferred solution. In addition, the hollow preferably extends continuously along its associated thermal conduction element, in the direction of conduction, remaining open at its two opposite ends considered in the same direction of conduction.

Enfin, le corps latéral de l'emballage présente de préférence une forme classique cylindrique, par exemple de section circulaire ou polygonale. Dans tous les cas, les parois intérieure et extérieure adoptant cette même forme sont généralement dénommées viroles, et sont concentriques, centrées sur ledit axe longitudinal autour duquel se trouve l'espace inter-viroles.Finally, the lateral body of the package preferably has a conventional cylindrical shape, for example of circular or polygonal section. In all cases, the inner and outer walls adopting this same shape are generally called ferrules, and are concentric, centered on said longitudinal axis around which is the inter-ferrule space.

L'invention concerne également un conteneur pour le transport et/ou entreposage de matières radioactives, comprenant un emballage tel que décrit ci-dessus.The invention also relates to a container for the transport and / or storage of radioactive materials, comprising a package as described above.

D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.Other advantages and features of the invention will become apparent in the detailed non-limiting description below.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

Cette description sera faite au regard des dessins annexés parmi lesquels ;

  • la figure 1 représente une vue en coupe transversale d'un conteneur pour le transport et/ou entreposage d'assemblages de combustible nucléaire, selon un mode de réalisation préféré de l'invention ;
  • la figure 2 représente une vue partielle en coupe prise le long de la ligne II-II de la figure 1 ;
  • la figure 3 représente une vue similaire à celle montrée sur la figure 2, avec les moyens de conduction thermique se présentant sous une forme alternative de réalisation ; et
  • la figure 4 représente une vue partielle en perspective d'un bloc formant une partie des moyens de conduction thermique et des moyens de protection radiologique, destiné à être agencé dans l'espace inter-viroles du corps latéral d'emballage.
This description will be made with reference to the appended drawings among which;
  • the figure 1 represents a cross-sectional view of a container for transporting and / or storing nuclear fuel assemblies, according to a preferred embodiment of the invention;
  • the figure 2 represents a partial sectional view taken along line II-II of the figure 1 ;
  • the figure 3 represents a view similar to that shown on the figure 2 , with the thermal conduction means being in an alternative embodiment; and
  • the figure 4 represents a partial perspective view of a block forming part of the thermal conduction means and radiological protection means, intended to be arranged in the inter-ring space of the lateral packaging body.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉSDETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Tout d'abord en référence à la figure 1, on voit un conteneur 1 pour le transport et/ou l'entreposage d'assemblages de combustible nucléaire.Firstly with reference to the figure 1 we see a container 1 for the transport and / or storage of nuclear fuel assemblies.

Le conteneur 1 comprend globalement un emballage 2 objet de la présente invention, à l'intérieur duquel se trouve un dispositif de rangement 4, également dénommé panier de rangement. Le dispositif 4 est prévu pour être placé dans une cavité de logement 6 de l'emballage 2, comme le montre schématiquement la figure 1 sur laquelle il est également possible d'apercevoir l'axe longitudinal 8 de cet emballage, confondu avec les axes longitudinaux du dispositif de rangement et de la cavité de logement.The container 1 generally comprises a packaging 2 object of the present invention, inside which there is a storage device 4, also called storage basket. The device 4 is intended to be placed in a housing cavity 6 of the package 2, as schematically shown in FIG. figure 1 on which it is also possible to see the longitudinal axis 8 of this package, coincident with the longitudinal axes of the storage device and the housing cavity.

Dans toute la description, le terme « longitudinal » doit être compris comme parallèle à l'axe longitudinal 8 et à la direction longitudinale de l'emballage.Throughout the description, the term "longitudinal" should be understood as parallel to the longitudinal axis 8 and the longitudinal direction of the package.

Le conteneur 1 et le dispositif 4 formant des logements de réception des assemblages de combustible, sont ici montrés dans une position horizontale/couchée habituellement adoptée durant le transport des assemblages, différente de la position verticale de chargement/déchargement des assemblages de combustible.The container 1 and the device 4 forming receiving housings of the fuel assemblies are here shown in a horizontal / lying position usually adopted during the transport of the assemblies, different from the vertical position of loading / unloading of the fuel assemblies.

De façon générale, l'emballage 2 dispose essentiellement d'un fond (non représenté) sur lequel le dispositif 4 est destiné à reposer en position verticale, d'un couvercle (non représenté) agencé à l'autre extrémité longitudinale de l'emballage, et d'un corps latéral 10 s'étendant autour et selon l'axe longitudinal 8, c'est-à-dire selon la direction longitudinale du conteneur 1.In general, the package 2 essentially has a bottom (not shown) on which the device 4 is intended to rest in a vertical position, a lid (not shown) arranged at the other longitudinal end of the package , and a lateral body 10 extending around and along the longitudinal axis 8, that is to say in the longitudinal direction of the container 1.

C'est ce corps latéral 10 qui définit la cavité de logement 6, à l'aide d'une surface intérieure latérale 12 de forme sensiblement cylindrique et de section circulaire, et d'axe confondu avec l'axe 8.It is this lateral body 10 which defines the housing cavity 6, with the aid of a lateral inner surface 12 of substantially cylindrical shape and of circular section, and of axis coincident with the axis 8.

Le fond de l'emballage, qui définit le fond de la cavité 6 ouverte au niveau du couvercle, peut être réalisé d'une seule pièce avec une partie du corps latéral 10, sans sortir du cadre de l'invention.The bottom of the package, which defines the bottom of the cavity 6 open at the lid, can be made in one piece with a portion of the lateral body 10, without departing from the scope of the invention.

Toujours en référence à la figure 1, on peut apercevoir de façon détaillée la conception du corps latéral 10, qui présente tout d'abord deux parois / viroles métalliques concentriques formant conjointement un espace annulaire 14 centré sur l'axe longitudinal 8 de l'emballage. Il s'agit en effet d'une virole intérieure 20 centrée sur l'axe 8, et d'une virole extérieure 22 également centrée sur l'axe 8.Still referring to the figure 1 , one can see in detail the design of the lateral body 10, which firstly has two concentric metal walls / ferrules together forming an annular space 14 centered on the longitudinal axis 8 of the package. It is indeed an inner shell 20 centered on the axis 8, and an outer shell 22 also centered on the axis 8.

L'espace annulaire 14 est comblé par des moyens de conduction thermique 16, ainsi que par des moyens de protection radiologique 18 essentiellement conçus pour former une barrière contre les neutrons émis par les assemblages de combustible logés dans le dispositif de rangement 4. Ainsi, ces éléments sont logés entre la virole intérieure 20 dont la surface intérieure correspond à la surface intérieure latérale 12 de la cavité 6, et la virole extérieure 22.The annular space 14 is filled by thermal conduction means 16, as well as radiological protection means 18 essentially designed to form a barrier against neutrons emitted by the fuel assemblies housed in the storage device 4. Thus, these elements are housed between the inner shell 20 whose inner surface corresponds to the inner lateral surface 12 of the cavity 6, and the outer shell 22.

Le dispositif de protection radiologique 18 est réalisé à l'aide d'un matériau solide connu en soi, tel qu'un matériau composite à matrice polymère, et plus précisément dont la matrice est une résine, de préférence fortement hydrogénée, par exemple du type résine vinylester. Ce matériau de protection neutronique est également connu sous l'appellation de « béton de résine ».The radiological protection device 18 is produced using a solid material known per se, such as a composite material with a polymer matrix, and more specifically whose matrix is a resin, preferably a highly hydrogenated resin, for example of the type vinylester resin. This neutron protection material is also known as "resin concrete".

Il peut par ailleurs incorporer des additifs destinés à rendre le matériau composite auto-extinguible.It can also incorporate additives to make the composite material self-extinguishing.

Les moyens de conduction thermique 16 sont par exemple réalisés dans un alliage présentant de bonnes caractéristiques de conduction thermique, du type alliage d'aluminium ou de cuivre. Il peut aussi s'agir d'un matériau en céramique ou à base de carbone, tel que le carbure de silicium.The thermal conduction means 16 are for example made of an alloy having good heat conduction characteristics, of the aluminum alloy or copper type. It can also be a ceramic or carbon-based material, such as silicon carbide.

Par ailleurs, du bore peut être prévu dans les moyens de protection radiologique et/ou les moyens de conduction thermique, afin de renforcer la fonction protection neutronique.Furthermore, boron may be provided in the radiological protection means and / or the thermal conduction means, in order to reinforce the neutron protection function.

Dans le mode de réalisation montré sur les figures 1 et 2, les moyens de protection radiologique 18 prennent la forme d'un bloc unique de matériau coulé entre les deux viroles 20, 22, pénétrant au sein des moyens de conduction thermique 16, comme cela sera détaillé ci-après.In the embodiment shown on the figures 1 and 2 , the radiological protection means 18 take the form of a single block of material cast between the two rings 20, 22, penetrating into the heat conduction means 16, as will be detailed below.

Tout d'abord, les moyens de conduction thermique sont ici formés à l'aide de plusieurs structures en nid d'abeilles 30, qui sont placées circonférentiellement les unes à côté des autres, dans l'espace inter-viroles 14. Chaque structure 30 présente par exemple une forme de secteur angulaire d'anneau, s'étendant selon un angle compris de préférence entre 5 et 60°. Chaque structure 30 s'étend également sur toute la longueur de l'espace 14 selon la direction de l'axe 8, ainsi que sur sensiblement toute la longueur radiale de cet espace, ou bien peut alternativement être tronçonnée selon l'une et/ou l'autre de ces deux directions.First of all, the thermal conduction means are here formed using several honeycomb structures 30, which are placed circumferentially next to one another in the inter-ring space 14. Each structure 30 For example, it has a shape of annular ring sector, extending at an angle of preferably between 5 and 60 °. Each structure 30 also extends over the entire length of the space 14 along the direction of the axis 8, as well as over substantially the entire radial length of this space, or may alternatively be cut according to the one and / or the other of these two directions.

Chaque structure 30 forme des éléments de conduction thermique 31 définissant chacun intérieurement un creux 32 correspondant à une cellule / alvéole de la structure. Ainsi, du fait de la conception du type en « nid d'abeilles », les parois de creux / cellules 34 formant les éléments 31 permettent de définir chacune plusieurs creux / cellules 32.Each structure 30 forms heat conduction elements 31 each defining a cavity 32 corresponding to a cell / cell of the structure. Thus, because of the design of the "honeycomb" type, the cavity walls / cells 34 forming the elements 31 make it possible to define each several cavities / cells 32.

L'une des particularités de l'invention réside dans le fait que les creux 32 s'étendent chacun en longueur selon une direction de conduction 36 allant de la virole intérieure 20 vers la virole extérieure 22, cette direction correspondant à l'axe longitudinal de la cellule de nid d'abeilles concernée. Comme cela est montré sur la figure 1, cette direction 36 est préférentiellement radiale ou sensiblement radiale. A cet égard, sur la structure en nid d'abeilles 30 la plus à gauche sur la figure 1, les éléments de conduction 31 sont sensiblement cylindriques et parallèles entre eux, tout comme les creux 32 qu'ils définissent. Les directions de conduction 36 sont ici très proches de la direction radiale, donc qualifiées de sensiblement radiales, même si elles peuvent être inclinées de quelques degrés par rapport à cette même direction radiale. Dans cette configuration, plusieurs creux 32 peuvent néanmoins présenter une direction de conduction 36 correspondant précisément à la direction radiale du corps 10, c'est-à-dire interceptant orthogonalement l'axe 8. En revanche, sur la structure en nid d'abeilles 30 la plus à droite sur la figure 1, les éléments de conduction 31 ne sont plus cylindriques, mais présentent chacun une forme s'agrandissant en allant de la virole intérieure 20 à la virole extérieure 22, en particulier pour prendre en compte la différence de diamètres entre ces deux viroles. La géométrie de la section de chaque élément 31 reste préférentiellement identique, seule la grandeur de cette section étant alors grandissante en allant vers la virole extérieure 22.One of the peculiarities of the invention lies in the fact that the recesses 32 each extend in length in a conduction direction 36 going from the inner shell 20 to the outer shell 22, this direction corresponding to the longitudinal axis of the honeycomb cell concerned. As shown on the figure 1 this direction 36 is preferably radial or substantially radial. In this respect, on the leftmost honeycomb structure 30 on the figure 1 , the conduction elements 31 are substantially cylindrical and parallel to each other, as well as the recesses 32 that they define. The conduction directions 36 are here very close to the radial direction, therefore qualified as substantially radial, even though they may be inclined by a few degrees with respect to this same radial direction. In this configuration, several recesses 32 may nevertheless have a conduction direction 36 corresponding precisely to the radial direction of the body 10, that is to say orthogonally intercepting the axis 8. On the other hand, on the honeycomb structure 30 the most right on the figure 1 , the conduction elements 31 are no longer cylindrical, but each have a shape extending from the inner shell 20 to the outer shell 22, in particular to take into account the difference in diameters between these two rings. The geometry of the section of each element 31 remains preferentially identical, only the magnitude of this section then being increasing towards the outer shell 22.

Ici, la direction de conduction 36 de chacun des éléments 31 correspond à la direction radiale du corps 10, en interceptant orthogonalement l'axe 8.Here, the conduction direction 36 of each of the elements 31 corresponds to the radial direction of the body 10, orthogonally intercepting the axis 8.

Comme évoqué ci-dessus, les éléments de conduction thermique 31 et les creux 32 qu'ils définissent s'étendent chacun sur une longueur sensiblement identique à la distance séparant les deux viroles, selon la direction de conduction 36 de l'élément 31 concerné. A titre indicatif, il est noté que seul un jeu de montage est préférentiellement retenu, afin de permettre l'introduction des structures 30 dans l'espace inter-viroles 14.As mentioned above, the heat conduction elements 31 and the recesses 32 that they define each extend over a length substantially identical to the distance separating the two rings, in the direction of conduction 36 of the element 31 concerned. As an indication, it is noted that only a mounting set is preferentially retained, in order to allow the introduction of the structures 30 into the inter-shell space 14.

Dans le mode de réalisation préféré décrit et représenté sur les figures 1 et 2, les structures en nid d'abeilles 30 définissent des éléments de conduction thermique 31 de section hexagonale, même si toute autre forme pourrait être envisagée, sans sortir du cadre de l'invention. Cette forme hexagonale est réalisée de manière classique, à l'aide d'un empilement de feuilles/feuillards gaufrés 40 formant les creux / cellules 32, la direction d'empilement 42 de ces feuilles étant orthogonale à la direction longitudinale 36 des cellules.In the preferred embodiment described and shown on the figures 1 and 2 , the honeycomb structures 30 define heat conduction elements 31 of hexagonal section, even if any other form could be envisaged, without departing from the scope of the invention. This hexagonal shape is conventionally produced by means of a stack of embossed sheets / strips 40 forming the hollows / cells 32, the stacking direction 42 of these sheets being orthogonal to the longitudinal direction 36 of the cells.

Chaque creux 32, considéré en section orthogonale à la direction de conduction 36 comme cela est le cas sur la figure 2, présente une largeur maximale « l » comprise entre 2 et 25 mm. En outre, les parois des éléments de conduction thermique 31 délimitant les creux 32 sont de faible épaisseur, par exemple d'épaisseur moyenne comprise entre 0,02 et 0,5 mm. Ici, certaines parties des parois sont formées par une feuille unique 40, tandis que d'autres parties sont formées par la superposition de deux feuilles 40. Ainsi, l'épaisseur moyenne mentionnée ci-dessus est définie comme correspondant à environ 1,5 fois l'épaisseur des feuilles superposées 40 constituant les structures en nid d'abeilles 30.Each recess 32, considered in section orthogonal to the direction of conduction 36 as is the case on the figure 2 , has a maximum width "l" of between 2 and 25 mm. In addition, the walls of the heat conduction elements 31 delimiting the recesses 32 are of small thickness, for example of average thickness between 0.02 and 0.5 mm. Here, some parts of the walls are formed by a single sheet 40, while other parts are formed by the superposition of two sheets 40. Thus, the average thickness mentioned above is defined as corresponding to about 1.5 times the thickness of the superimposed sheets 40 constituting the honeycomb structures 30.

Egalement, le rapport entre la longueur « L » de chaque creux 32 selon sa direction de conduction 36, et sa largeur maximale « l » mentionnée ci-dessus, est préférentiellement compris entre 3 et 100. Ici, la longueur « L » est préférentiellement comprise entre 75 et 200 mm.Also, the ratio between the length "L" of each recess 32 in its direction of conduction 36, and its maximum width "1" mentioned above, is preferably between 3 and 100. Here, the length "L" is preferentially between 75 and 200 mm.

L'avantage de l'utilisation de structures en nid d'abeilles 30 réside dans la forte densité d'éléments de conduction 31 et de creux 32 qu'elle est capable de procurer. En effet, les éléments de conduction thermique 31 forment ensemble un réseau de creux 32 qui, en section selon au moins un plan parallèle à l'axe 8 et traversant ce réseau, présente au moins une zone dont la densité de creux 32 présente une valeur supérieure ou égale à 100 creux/m2. La figure 2 montre une telle section prise selon le plan de la ligne II-II montrée sur la figure 1. Bien entendu, dans une même zone des moyens 16, il peut exister plusieurs plans de section dans lesquels cette valeur de densité est observée. Par ailleurs, il est de préférence fait en sorte que cette valeur minimale de densité soit rencontrée dans toutes les zones des moyens de conduction 16, même si elle peut être évolutive au sein de ces mêmes moyens 16.The advantage of using honeycomb structures lies in the high density of conduction elements 31 and recesses 32 that it is able to provide. Indeed, the heat conduction elements 31 together form a network of recesses 32 which, in section along at least one plane parallel to the axis 8 and passing through this network, has at least one zone whose cavity density 32 has a value greater than or equal to 100 troughs / m 2 . The figure 2 shows such a section taken according to the plane of line II-II shown on the figure 1 . Of course, in the same area of the means 16, there may be several section planes in which this density value is observed. Moreover, it is preferably made that this minimum density value is encountered in all areas of the conduction means 16, even if it can be scalable within these same means 16.

Dans le mode de réalisation préféré décrit, le matériau de protection radiologique 18 remplit de préférence entièrement les creux 32 des structures en nids d'abeilles 30. Etant donné que la coulée de ce matériau s'effectue directement dans l'espace inter-viroles 14, avec les structures 30 déjà en place dans l'emballage se trouvant en position verticale, il est prévu de réaliser des perçages 46 dans les feuilles 40 afin de faire communiquer les creux 32 entre eux. Lors de la coulée par gravité du matériau 18, celui-ci peut alors emprunter les perçages 46 afin de se répartir au mieux dans chacun des creux 32 des structures 30. Les perçages 46 sont ici réalisés selon la direction d'empilement 42 des feuilles 40, comme en témoigne la figure 2. Leur nombre est retenu en fonction de différents paramètres, comme la viscosité du matériau coulé.In the preferred embodiment described, the radiological protection material 18 preferably completely fills the recesses 32 of the honeycomb structures 30. Since the casting of this material is made directly in the inter-ring space 14, with the structures 30 already in place in the package being in the vertical position, it is expected to make holes 46 in the sheets 40 to communicate the hollows 32 between them. During the gravitational casting of the material 18, the latter can then borrow the holes 46 in order to distribute the best in each of the recesses 32 of the structures 30. The holes 46 are here made in the stacking direction 42 of the sheets 40 as evidenced by the figure 2 . Their number is chosen according to various parameters, such as the viscosity of the cast material.

Selon une alternative de réalisation montrée sur la figure 3, les éléments de conduction thermique ne sont plus réalisés par des structures en nid d'abeilles, mais par des éléments indépendants 31 espacés les uns des autres. Ils ont donc chacun, contrairement au mode de réalisation précédent, une paroi qui leur est propre, c'est-à-dire qui n'est pas partagée avec d'autres éléments 31. Il peut s'agir de tubes, par exemple de section circulaire, comme cela a été représenté sur la figure 3. Alternativement, les éléments peuvent prendre une forme s'agrandissant en allant de la paroi intérieure à la paroi extérieure, telle qu'une forme tronconique. La géométrie de la section de l'élément reste alors ici préférentiellement identique, seule la grandeur de cette section étant évolutive.According to an alternative embodiment shown on the figure 3 , the thermal conduction elements are no longer made by honeycomb structures, but by independent elements 31 spaced apart from each other. They therefore each have, unlike the previous embodiment, a wall of their own, that is to say that is not shared with other elements 31. It may be tubes, for example of circular section, as shown on the figure 3 . Alternatively, the elements can take a widening shape by going from the inner wall to the outer wall, such as a frustoconical shape. The geometry of the section of the element then remains preferentially identical here, only the magnitude of this section being scalable.

Leur forme, leur dimension et leur disposition dans l'espace inter-viroles 14 sont identiques ou similaires à celles décrites pour la solution à structures en nid d'abeilles. Par ailleurs, ces tubes 31 définissant intérieurement les creux 32 peuvent également être dotés de perçages, afin d'être plus facilement remplis du matériau de protection neutronique 18.Their shape, their size and their arrangement in the inter-shell space 14 are identical or similar to those described for the solution with honeycomb structures. Moreover, these tubes 31 internally defining the recesses 32 may also be provided with holes, in order to be more easily filled with the neutron protection material 18.

Enfin, en référence à la figure 4, il est montré un bloc 100 en forme de secteur angulaire de virole, destiné à être introduit dans l'espace inter-virole 14. Cette solution, également envisagée pour la présente invention, contraste donc avec la solution précédente en ce qu'elle consiste à réaliser plusieurs secteurs de virole 100 en dehors de l'espace 14, avant de les introduire dans ce même espace, afin qu'ils soient agencés circonférentiellement les uns à côté des autres.Finally, with reference to figure 4 , there is shown a block 100 in the form of an angular sector of ferrule, intended to be introduced into the inter-ferrule space 14. This solution, also envisaged for the present invention, contrasts with the previous solution in that it consists to make several sectors of ferrule 100 outside the space 14, before introducing them into this same space, so that they are arranged circumferentially next to each other.

Chaque bloc 100 intègre le matériau de protection neutronique 18 ainsi qu'une pluralité d'éléments de conduction thermique 31, remplis par ce matériau qui définit la quasi-totalité de la surface périphérique du bloc. Néanmoins, il est prévu que les extrémités des éléments de conduction 31 restent apparentes au niveau des deux surfaces concentriques 110, 112 du bloc, respectivement destinées à être en regard / contact des surfaces des viroles 20, 22 délimitant l'espace 14. Cela permet d'établir un meilleur transfert thermique entre les viroles 20, 22 et les éléments de conduction thermique du bloc 100. Il est noté que si les éléments de conduction thermique du bloc 100 sont ici du type de ceux montrés sur la figure 3, ils pourraient néanmoins adopter toute forme conforme à la présente invention, en particulier celle montrée sur les figures 1 et 2.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention telle quelle est définie dans les revendications ci-jointes.
Each block 100 integrates the neutron protection material 18 and a plurality of heat conduction elements 31, filled with this material which defines the quasi-totality of the peripheral surface of the block. Nevertheless, it is expected that the ends of the conduction elements 31 remain visible at the two concentric surfaces 110, 112 of the block, respectively intended to be facing / contacting the surfaces of the rings 20, 22 delimiting the space 14. This allows to establish a better heat transfer between the ferrules 20, 22 and the thermal conduction elements of the block 100. It is noted that if the thermal conduction elements of the block 100 are here of the type of those shown on FIG. figure 3 , they could nevertheless adopt any form according to the present invention, in particular that shown on the figures 1 and 2 .
Of course, various modifications may be made by those skilled in the art to the invention as defined in the appended claims.

Claims (9)

  1. Package (2) for the transport and/or storage of radioactive materials, where said package includes a lateral body (10) which defines a cavity (6) for housing said radioactive materials which extends along a longitudinal axis (8) of the package, where the body (10) includes an interior wall (22) together with an exterior wall (22) which between them define a space (14) which extends around said longitudinal axis, where said space houses means of radiological protection (18) as well as means of thermal conduction (16),
    characterised in that said means of thermal conduction include multiple thermal conduction elements (31) which each define internally a void (32) which extends lengthways in a conduction direction (36) going from the interior wall (20) towards the exterior wall (22), and in that at least a part of the thermal conduction elements (31) has its void (32) at least partially filled with a radiological protection material, and in that at least one of the said thermal conduction elements (31) fits externally against the radiological protection material, and also internally, at its voids (32).
  2. Package according to claim 1, characterised in that certain of said thermal conduction elements (31) each extend in a direction which is essentially radial to the package lateral body.
  3. Package according to claim 1 or claim 2, characterised in that at least some of said thermal conduction elements (31) each exhibit an essentially cylindrical form.
  4. Package according to any one of the preceding claims, characterised in that at least some of the said thermal conduction elements (31) each extend lying together over a length essentially equal to the distance separating the interior and exterior walls, along the direction of conduction (36).
  5. Package according to any one of the preceding claims, characterised in that the said thermal conduction elements (31) together form a network of voids (32) which, in cross section along at least one plane parallel to the longitudinal axis (8) and traversing this network, exhibits at least one zone whose density of voids has a value greater than or equal to 100 voids/m2.
  6. Package according to any one of the preceding claims, characterised in that at least some of the said thermal conduction elements (31) are made using one or more honeycomb structures (30), with each honeycomb cell forming said void (32) of a thermal conduction element.
  7. Package according to claim 6, characterised in that each honeycomb structure is equipped with holes (46) linking the cells (32) together.
  8. Package according to any one of the preceding claims, characterised in that at least some of the said thermal conduction elements (31) are made using independent elements, spaced apart from each other.
  9. Container (1) for the transport and/or storage of radioactive materials containing a package (2) according to any one of the preceding claims whatsoever.
EP11722101.0A 2010-06-02 2011-05-31 Canister for transporting and/or storing radioactive materials, including improved thermal conduction means Active EP2577678B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054299A FR2961005B1 (en) 2010-06-02 2010-06-02 PACKAGING FOR THE TRANSPORT AND / OR STORAGE OF RADIOACTIVE MATERIALS, INCLUDING IMPROVED THERMAL CONDUCTION MEANS
PCT/EP2011/058947 WO2011151325A1 (en) 2010-06-02 2011-05-31 Canister for transporting and/or storing radioactive materials, including improved thermal conduction means

Publications (3)

Publication Number Publication Date
EP2577678A1 EP2577678A1 (en) 2013-04-10
EP2577678B1 true EP2577678B1 (en) 2014-04-09
EP2577678B2 EP2577678B2 (en) 2018-07-11

Family

ID=42989571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11722101.0A Active EP2577678B2 (en) 2010-06-02 2011-05-31 Canister for transporting and/or storing radioactive materials, including improved thermal conduction means

Country Status (8)

Country Link
US (1) US20130206361A1 (en)
EP (1) EP2577678B2 (en)
JP (1) JP5889287B2 (en)
KR (1) KR101811401B1 (en)
CN (1) CN103026421A (en)
ES (1) ES2479716T3 (en)
FR (1) FR2961005B1 (en)
WO (1) WO2011151325A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240783B (en) * 2014-09-22 2016-12-07 中国核电工程有限公司 A kind of HTGR fresh fuel carry elements hold-up vessel
KR101599744B1 (en) 2015-07-07 2016-03-08 한국수력원자력 주식회사 Cylindrical Modular Type Dry Storage System and method for Pressurized Water Reactor Spent Nuclear Fuel
FR3042635B1 (en) * 2015-10-16 2017-12-15 Tn Int COOLING ELEMENT WITH EMBASE FOR DISCHARGING HEAT FROM A PACKAGING
ES2876936T3 (en) * 2016-07-01 2021-11-15 Holtec International Container for storing and / or transporting spent nuclear fuel
FR3060192B1 (en) * 2016-12-09 2019-05-17 Tn International TRANSPORT AND / OR STORAGE PACKAGING OF RADIOACTIVE MATERIALS COMPRISING AN IMPROVED FLUIDIC COMMUNICATION SYSTEM BETWEEN INTERIOR AND OUTSIDE OF CONFINEMENT ENCLOSURE
FR3080705B1 (en) * 2018-04-27 2020-10-30 Tn Int TRANSPORT AND / OR STORAGE PACKAGING OF RADIOACTIVE MATERIALS ALLOWING EASY MANUFACTURING AS WELL AS AN IMPROVEMENT OF THERMAL CONDUCTION
JP2023509325A (en) 2019-12-11 2023-03-08 ジーイー-ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Passive heat removal cask and method of use
EP4073824A4 (en) * 2019-12-11 2023-11-01 GE-Hitachi Nuclear Energy Americas LLC Passive heat removal casks and methods of using the same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE583252A (en) * 1958-10-17
US3056028A (en) * 1960-05-03 1962-09-25 James T Mattingly Neutron shielding structure
US3742985A (en) * 1967-01-31 1973-07-03 Chemstress Ind Inc Reinforced pipe
JPS5419560B1 (en) * 1969-08-13 1979-07-16
US3710857A (en) * 1970-05-04 1973-01-16 Krupp Gmbh Pressure-retentive vessel, e.g. for pressurized-fluid nuclear reactors
DE2108855A1 (en) * 1970-05-11 1971-11-25 Dampferzeugerbau Veb K Canister for atomic wastes
FR2208165B1 (en) * 1972-11-28 1975-09-12 Robatel Slpi
DE7911030U1 (en) * 1979-04-14 1979-08-23 Transnuklear Gmbh, 6450 Hanau SHIELD CONTAINER FOR THE TRANSPORT AND / OR STORAGE OF BURNED FUEL ELEMENTS
DE3012256A1 (en) * 1980-03-29 1981-10-15 Transnuklear Gmbh, 6450 Hanau CONTAINER FOR TRANSPORT AND / OR STORAGE OF RADIOACTIVE SUBSTANCES
DE3244707A1 (en) * 1982-12-03 1984-06-07 Anton J. 7302 Ostfildern Vox Flask for transporting and/or storing radioactive substances, in particular spent fuel elements
US4914306A (en) * 1988-08-11 1990-04-03 Dufrane Kenneth H Versatile composite radiation shield
JPH0422000U (en) * 1990-06-14 1992-02-24
JPH0766075B2 (en) * 1991-07-01 1995-07-19 日立造船株式会社 Radioactive object storage container
JP3342994B2 (en) * 1995-08-04 2002-11-11 株式会社神戸製鋼所 Container for transport and storage of radioactive materials
FR2776118B1 (en) * 1998-03-13 2000-06-09 Transnucleaire RADIATION PROTECTION DEVICE FOR CONTAINER FOR TRANSPORTING RADIOACTIVE MATERIAL
ES2181339T3 (en) * 1999-06-19 2003-02-16 Gnb Gmbh TRANSPORT AND / OR STORAGE CONTAINER FOR HEAT PRODUCING RADIOACTIVE ELEMENTS.
EP1122745A1 (en) 1999-12-15 2001-08-08 GNB Gesellschaft für Nuklear-Behälter mbH Container for shipping and/or storing radioactive heat releasing materials and method for producing the same
JP3443071B2 (en) * 2000-05-02 2003-09-02 三菱重工業株式会社 Cask
JP3416657B2 (en) * 2001-01-25 2003-06-16 三菱重工業株式会社 Cask and method of manufacturing cask
JP4246894B2 (en) 2000-08-11 2009-04-02 三菱重工業株式会社 Cask and cask manufacturing method
EP1418594A1 (en) 2002-11-09 2004-05-12 GNB Gesellschaft für Nuklear-Behälter mbH Transport and/or storage container for heat releasing radioactive elements
JP4291588B2 (en) * 2003-01-31 2009-07-08 株式会社神戸製鋼所 Concrete cask and manufacturing method thereof
JP2007139677A (en) 2005-11-22 2007-06-07 Hitachi Ltd Radioactive material storage container, and manufacturing method therefor
RU2348085C1 (en) 2007-07-09 2009-02-27 Открытое акционерное общество "Конструкторское бюро специального машиностроения" Container for transportation and/or storage of waste nuclear fuel
JP2008076408A (en) * 2007-10-22 2008-04-03 Mitsubishi Heavy Ind Ltd Radioactive material container
FR2935532B1 (en) 2008-08-27 2012-07-13 Tn Int PROCESS FOR MANUFACTURING PACKAGING FOR THE TRANSPORT AND / OR STORAGE OF NUCLEAR MATERIALS USING THE WELDING REMOVAL PHENOMENON

Also Published As

Publication number Publication date
FR2961005B1 (en) 2015-12-11
KR20130080448A (en) 2013-07-12
KR101811401B1 (en) 2017-12-22
FR2961005A1 (en) 2011-12-09
JP2013533958A (en) 2013-08-29
JP5889287B2 (en) 2016-03-22
CN103026421A (en) 2013-04-03
WO2011151325A1 (en) 2011-12-08
EP2577678B2 (en) 2018-07-11
US20130206361A1 (en) 2013-08-15
ES2479716T3 (en) 2014-07-24
EP2577678A1 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
EP2577678B1 (en) Canister for transporting and/or storing radioactive materials, including improved thermal conduction means
EP2140459B1 (en) Container for transporting and/or storing nuclear materials, comprising a radiological shield made of lead cast onto a metal reinforcement
WO2000060609A1 (en) Installation for very long term storage of heat-generating products such as nuclear waste
EP2320429B1 (en) Packaging for transporting and/or storing radioactive materials including radially stacked radiation protection elements
EP2798644B1 (en) Container for transporting and/or storing radioactive materials
EP2586033B1 (en) Container for transporting and/or storing radioactive materials
FR3024919A1 (en) BASKET FOR TRANSPORTING AND / OR STORING RADIOACTIVE MATERIALS
WO2003063180A2 (en) Installation for the very long storage of products that emit a high heat flux
EP2320432B1 (en) Packaging for transporting and/or storing radioactive materials providing a reinforced heat transfer
FR2943166A1 (en) NUCLEAR FUEL STORAGE CASE WITH FACILITATED CLOSURE.
EP2700077A1 (en) Thermally conductive element enabling an improvement in the manufacture of packaging for the transport and/or storage of radioactive material
FR3044819A1 (en) STORAGE DEVICE FOR STORING AND / OR TRANSPORTING NUCLEAR FUEL ASSEMBLIES, COMPRISING STAGES WITH DIFFERENTIATED FUNCTIONS
FR2935532A1 (en) PROCESS FOR MANUFACTURING PACKAGING FOR THE TRANSPORT AND / OR STORAGE OF NUCLEAR MATERIALS USING THE WELDING REMOVAL PHENOMENON
WO2017167853A1 (en) Transport and/or storage packaging for radioactive materials equipped with heat dissipation devices produced in one piece
FR3042635A1 (en) COOLING ELEMENT WITH EMBASE FOR DISCHARGING HEAT FROM A PACKAGING
WO2006016082A1 (en) External heat-removal device for packaging designed for storing and/or transporting nuclear materials
EP3743928B1 (en) Storage basket for radioactive materials, having an optimised space requirement and housings with more accurate geometry
WO2017158309A1 (en) Thermal battery with encapsulated phase-change material
FR3121265A1 (en) UNIT FOR THE TRANSPORT OF URANIUM HEXAFLUORIDE
EP4136660A1 (en) Storage device for storing and/or transporting nuclear fuel assemblies, having a low-cost design
FR3137488A1 (en) IMPROVED REMOVABLE HEAT DISSIPATION DEVICE, INTENDED TO BE MOUNTED IN A REVERSIBLE MANNER ON A SIDE BODY OF A PACKAGE FOR TRANSPORT AND/OR STORAGE OF RADIOACTIVE MATERIALS
WO2014111445A1 (en) Packaging for transporting and/or storing radioactive substances, comprising improved protection against fire
FR3080705A1 (en) PACKAGING OF TRANSPORT AND / OR STORAGE OF RADIOACTIVE MATERIALS FOR EASY MANUFACTURING AND IMPROVEMENT IN THERMAL CONDUCTION
FR2855311A1 (en) Holder for nuclear fuel assemblies during transport and storage has cellular structure with grooves for interlocking edges of metal jackets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 9/00 20060101ALI20131105BHEP

Ipc: G21F 5/06 20060101ALI20131105BHEP

Ipc: G21F 5/008 20060101AFI20131105BHEP

Ipc: G21F 5/10 20060101ALI20131105BHEP

INTG Intention to grant announced

Effective date: 20131127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 661728

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011006069

Country of ref document: DE

Effective date: 20140522

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2479716

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140724

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 661728

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140409

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602011006069

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: GNS GESELLSCHAFT FUER NUKLEAR-SERVICE MBH

Effective date: 20150109

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602011006069

Country of ref document: DE

Effective date: 20150109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110531

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180413

Year of fee payment: 8

27A Patent maintained in amended form

Effective date: 20180711

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602011006069

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180625

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: SE

Ref legal event code: NAV

REG Reference to a national code

Ref country code: NL

Ref legal event code: NE

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20140409

REG Reference to a national code

Ref country code: SE

Ref legal event code: RINS

Effective date: 20191011

Ref country code: SE

Ref legal event code: RPEO

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230529

Year of fee payment: 13

Ref country code: DE

Payment date: 20230529

Year of fee payment: 13

Ref country code: CH

Payment date: 20230605

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230531

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230530

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230530

Year of fee payment: 13