EP2577292A2 - Installation de distribution d'eau comprenant un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau - Google Patents

Installation de distribution d'eau comprenant un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau

Info

Publication number
EP2577292A2
EP2577292A2 EP11723466.6A EP11723466A EP2577292A2 EP 2577292 A2 EP2577292 A2 EP 2577292A2 EP 11723466 A EP11723466 A EP 11723466A EP 2577292 A2 EP2577292 A2 EP 2577292A2
Authority
EP
European Patent Office
Prior art keywords
water
measuring
chamber
installation according
propeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11723466.6A
Other languages
German (de)
English (en)
Inventor
Arnaud Genin
Albin Monsorez
Cyrille Lemoine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veolia Water Solutions and Technologies Support SAS
Original Assignee
Veolia Water Solutions and Technologies Support SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veolia Water Solutions and Technologies Support SAS filed Critical Veolia Water Solutions and Technologies Support SAS
Publication of EP2577292A2 publication Critical patent/EP2577292A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1886Water using probes, e.g. submersible probes, buoys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1893Water using flow cells

Definitions

  • Water distribution installation comprising a device for measuring the value of at least one parameter representative of the quality of a water
  • the field of the invention is that of controlling the quality of water circulating in a distribution network.
  • the invention relates to the design and implementation of devices used to measure the quality of these waters.
  • Water treatment processes are commonly used for example for their potabilization, purification, desalination ...
  • the treated waters produced by the implementation of these processes are conducted to their distribution point by means of a network of pipes.
  • the quality of the treated water is generally controlled directly at the outlet of the treatment units used to produce them. It is then possible to know if the produced water has a level of quality sufficient to be distributed. The distribution of treated water can thus be interrupted if it is detected that it does not have a suitable quality.
  • devices for measuring the water quality have been designed to be installed no longer at the outlet of the water treatment units, but directly within the pipeline network and preferably near the distribution points.
  • a device for measuring the quality of a water generally comprises a probe having a body whose head is provided with one or more measuring means able to measure parameters representative of the quality of a water such as, for example, its content in water. chlorine, its temperature, its turbidity ...
  • the body of this type of probe is introduced into a bypass pipe connected to a main distribution pipe treated water so that its head carrying means of measurement bathes in the water circulating there. Deviated water is reintroduced into the main pipe or thrown away.
  • Such a technique is described in Japanese Patent Application JP-A1-2008058024.
  • This derivation measurement technique then has the advantage of making it possible to know the quality of the water produced when it is at its point, or at least close to its point of distribution.
  • the phenomenon of retro-pollution consists of the injection via the diversion pipe of water coming from the natural environment in the main pipe. Natural water is then mixed with mains water circulating in the main pipe which degrades the quality of this network water.
  • This technique of the prior art has in particular a disadvantage related to the fact that only a reduced portion of the treated water circulating in a distribution pipe in which a probe is introduced passes next to the head carrying the measuring means. As a result, the measurements made by means of the probe are not perfectly representative of the real quality of the water.
  • Another disadvantage of this technique of the prior art is related to the fact that some measuring means implemented in this technique of the prior art consume the species for which they make it possible to measure the concentration.
  • certain means for measuring chlorine consume the chlorine present in the water when they measure the concentration. It may then happen that the local concentration of water in this case measured is lower in the vicinity of the measuring means to its actual concentration in the water circulating in the pipe. The measurement made is therefore not very representative of the reality if the renewal of the water to be analyzed is weak in the vicinity of these measuring means.
  • Probes of this type require power to operate. They are usually located in places where it is not possible to connect them to the mains. These probes are then supplied with electrical energy by means of batteries housed in their body. These batteries must be replaced regularly to ensure that the probes function properly. These probes, however, are placed in difficult to access places which can make the replacement of their batteries difficult. In addition, it may happen that the batteries supplying a probe are discharged without being replaced, which means that the control of the quality of the water is no longer achieved. The control of the distributed water is no longer ensured.
  • the invention particularly aims to overcome these disadvantages of the prior art.
  • an object of the invention is to provide, in at least one embodiment, a control technique of at least one parameter representative of the quality of a water whose implementation allows to have an indication. relating to the quality of water that is representative of reality.
  • Another objective of the invention is to implement, in at least one embodiment of the invention, such a technique that can be implemented within treated water distribution networks whose pipes are small. cut.
  • the invention also aims, in at least one embodiment of the invention, to provide such a technique that limits the maintenance of equipment used to control the quality of water.
  • the invention aims to provide, in at least one embodiment, such a technique that is able to be implemented for a long time without requiring intervention.
  • the invention aims to provide, in at least one embodiment, such a technique which helps to limit the fouling of its equipment.
  • the invention also aims to produce, in at least one embodiment, such a technique that is not subject to problems related to the supply of electrical energy to its equipment.
  • Another object of the invention is to provide such a technique that is reliable, robust and simple to implement.
  • a device for measuring the value of at least one parameter representative of the quality of a water circulating in a water. water distribution pipe said device comprising at least one means for measuring said parameter and means for directing all said water flowing in said distribution pipe opposite said measuring means.
  • the invention is based on a completely original approach which consists in implementing a water quality control device which comprises: a measurement chamber housing at least one measurement means and intended to be connected to water inlet and outlet pipes, and means provided so that all the water flowing from one to the other of these pipes passes in front of this measuring means.
  • the entire volume of treated water flowing in a pipe of a distribution network passes through a measuring chamber housing one or more measuring means (s). so that the measurement of the quality of this water is very representative of its real quality.
  • a device according to the invention is not, as opposed to the probes according to the prior art, introduced into a water distribution pipe. On the contrary, it is inserted between two portions of such a pipe. It can thus be implemented to control the quality of water flowing in small pipes, in particular having a diameter smaller than that of a probe.
  • said device comprises a measurement chamber housing said measuring means, said measuring chamber comprising an inlet intended to be connected to an inlet portion of said distribution pipe of said water, and an outlet intended to be connected a discharge portion of said distribution pipe of said water.
  • a device comprises means for generating a turbulent flow of said water opposite said measuring means.
  • this characteristic contributes to limiting the fouling of the measuring means (s) housed in the measuring chamber by creating, on their surface, hydrodynamic stresses tending to prevent the deposition of materials and / or to tear up materials that have been deposited there.
  • a device comprises means for accelerating the flow of said water opposite said measuring means.
  • the implementation of this characteristic also contributes to limiting the fouling of the measuring means (s) housed in the measuring chamber by the creation, on their surface, hydrodynamic stresses tending to prevent the deposition of materials and / or to tear up materials that have been deposited there.
  • a device advantageously comprises means for converting into electrical energy the hydraulic energy due to the flow of said water in said chamber.
  • a device according to the invention preferably comprises means for converting the heat of said water into electrical energy.
  • a device comprises a probe, said probe comprising a body having a head with which is secured to said measuring means, said body defining with the walls of said chamber a flow channel of said water between said inlet and said outlet and passing opposite said head.
  • the volume of the measuring chamber defined by this channel is then reduced, which contributes to improving the representativeness of the measurements and eliminating the recirculation zones and / or low flow in this chamber.
  • said means for generating a turbulent flow comprise a helix placed between a wall of said chamber and said measuring means and / or a reduction element of the section of said channel placed between a wall of said chamber and said measuring means.
  • channel section reduction means also allows, under the sole effect of the flow of water in the measuring chamber to generate a turbulent flow there.
  • said means for accelerating the flow comprise a reduction element of the section of said channel placed between a wall of said chamber and said measuring means and / or a propeller placed between a wall of said chamber and said means. measurement.
  • said means for converting hydraulic energy comprise said propeller, said propeller being rotatably mounted inside said chamber and connected to at least one magnet, said means for converting hydraulic energy into electrical energy further comprising at least one induction coil placed facing said magnet outside said chamber.
  • the helix is connected to magnets which it drives in rotation facing a coil placed outside the measuring chamber.
  • the rotation of the helix by the flow of water in the measuring chamber then allows to generate by induction of the electric current which may for example be accumulated in batteries for supplying the device.
  • said hydraulic energy conversion means comprise said propeller, said propeller being mounted on a shaft rotatably mounted inside said chamber, an end of said shaft extending outside said chamber and being connected to a current generator.
  • the first solution described above in which the propeller is not mounted on a shaft passing through the bottom of the measuring chamber, has the advantages of avoiding the appearance of leaks between the measuring chamber and the shaft. and to reduce the energy dissipation due to the friction of this shaft in the connection by which it is connected to the bottom of the measuring chamber.
  • the device is then energy independent and its implementation requires no external power supply.
  • Said means for converting said heat preferably comprise an element made of thermoelectric material.
  • This type of material makes it possible to efficiently transform the temperature gradient between the water contained in the pipe and the environment outside this pipe.
  • said reduction element is at least partly covered by said thermoelectric material.
  • the present invention also covers a measuring chamber for a device for measuring the value of at least one parameter representative of the quality of a water according to the invention.
  • a measurement chamber comprises an inlet intended to be connected to an inlet portion of said distribution pipe of said water, and an outlet intended to be connected to a discharge portion of said distribution pipe of said water and a receptacle for housing a probe comprising a body and a head which is integral with at least one means for measuring said parameter, the walls of said chamber defining with said body, when said probe is housed in said receptacle, a flow channel of said water between said inlet and said outlet and passing opposite said head.
  • the present invention also covers a water distribution installation comprising a water distribution pipe and a device for measuring the value of at least one parameter representative of the quality of a water circulating in said distribution pipe according to the invention. any of the variants previously described.
  • Figure 1 shows schematically a sectional view of a device according to the invention implementing a springboard
  • FIG. 2 illustrates a perspective view of the device illustrated in FIG.
  • Figure 3 schematically shows a sectional view of a device according to the invention implementing a helix
  • FIG. 4 illustrates a perspective view of the device illustrated in FIG.
  • Figure 5 illustrates a variant of the device of Figures 3 and 4;
  • FIG. 6 illustrates a view of a measuring device according to the invention mounted on a water distribution pipe at the outlet of a treatment installation. 7. Description of an embodiment of the invention
  • the general principle of the invention consists in implementing a device for controlling the quality of a water which comprises:
  • a measuring chamber housing at least one measurement means and intended to be connected to water inlet and outlet pipes, and means provided for all the water flowing from one to the other to other of these pipes passes in front of this measuring means.
  • the entire volume of treated water flowing in a pipe of a distribution network thus passes through a measuring chamber housing one or more means (s) measurement.
  • the measurement of the quality of this water is very representative of its real quality.
  • a device according to the invention can thus be implemented to control the quality of water flowing in small pipes because it is intended to be inserted between two portions of a distribution pipe. of water.
  • FIGS. 1 and 2 a first embodiment of a device for measuring the value of at least one parameter representative of the quality of a water according to the invention is presented.
  • such a device comprises a measuring chamber 10.
  • the measuring chamber 10 has a circular section and is in the form of a hollow cylinder.
  • the measuring chamber 10 comprises an inlet 11 intended to be connected to a water inlet pipe 12, and an outlet 13 intended to be connected to a drain pipe 14 of this water.
  • the device according to the invention is intended to be installed between two portions of a water distribution pipe.
  • the arrival pipeline is therefore an arrival portion of the distribution pipe
  • the discharge pipe is a discharge portion of the distribution pipe.
  • the measurement chamber 10 defines a receptacle 15 able to house a probe 16 comprising a body 17 and a head 18 to which are attached measurement means (not shown) intended to measure parameters representative of the quality of the water flowing in. the measuring chamber 10.
  • the measuring chamber 10 comprises an opening 19 to allow the probe 16 to be housed in the receptacle 15.
  • a probe 16 When a probe 16 is housed in the receptacle 15, its body 17 defines with the inner walls of the measuring chamber 10 a channel 20 for the flow of water passing through the inlet 11, the head 18 of the probe 15 and the exit 13.
  • Lateral stops 21 are interposed on either side of the body 17 of the probe 16 between the walls of the measuring chamber 10 and the body 17. Their dimensions are chosen so that the water circulating in the measuring chamber 10 can not flow around the probe 16, but instead is forced to pass under the head 18 of the probe 16.
  • the bottom of the measuring chamber 10 houses means for accelerating the flow of water and generating a turbulent flow opposite the measuring means integral with the head 18. These means comprise a reduction element of the section of the channel 20 placed between the bottom 22 of the measuring chamber 10 and the measuring means. This reduction element comprises a springboard element 23.
  • This device further comprises means for converting the temperature gradient between the water flowing in the measurement chamber 10 and the outside medium into electrical energy.
  • These conversion means comprise a thermoelectric material 24 which partially covers the springboard. In a variant, this thermoelectric material 24 will completely cover the springboard. This material is connected to batteries (not shown) which can supply the probe 16 with electric current.
  • Each stop 21 has in the lower part a stop 25 against which bears the head 18 of the probe 16 so that it is located at a distance "D" from the surface of the springboard of between 1 mm and 10 cm.
  • FIGS. 3 and 4 a second embodiment of a device for measuring the value of at least one parameter representative of the quality of a water according to the invention is presented.
  • This second embodiment has a large number of similarities with the first embodiment described above.
  • this second embodiment differs from the first in that it does not implement means for converting electrical energy of the heat of the water circulating in the measuring chamber 10.
  • a device comprises, on the other hand, means for converting into electrical energy the hydraulic energy due to the flow of water in the measuring chamber 10.
  • the means for accelerating and generating a turbulent flow no longer comprise a reduction element of the section, but a propeller 26 which is placed between the bottom 22 of the measuring chamber 10 and the measuring means.
  • This propeller 26 is integral with a shaft 32 substantially perpendicular to the bottom 22 of the measuring chamber 10 and rotatably mounted in a bearing 33 integral with the bottom 22.
  • the propeller 26 may be integral with a shaft rotatably mounted in a bearing secured to the head 18 of the probe.
  • the means for converting into electric energy the hydraulic energy due to the flow of water in the measuring chamber 10 comprise this propeller 26. They furthermore comprise magnets 34 integral with the propeller 26, and a coil 31 placed outside the measuring chamber, facing the magnets 34. In a variant, the magnets may be carried by a part integral with the shaft 32.
  • the magnets 34 and the coil 31 supply electric current, via a charge regulator 28, to the batteries 29 when the propeller 26 is rotated under the effect of the flow of water in the measuring chamber 10.
  • the batteries 29 are connected to the probe 16 by electric cables 30 to enable its operation.
  • the distance "d" separating the surface of the measuring means from the upper part of the propeller 26 is between 1 and 20 mm.
  • a measuring device 62 As shown in FIG. 6, a measuring device 62 according to the invention, whatever its embodiment, is intended to be mounted on a water distribution pipe between the outlet of a treatment plant. water 60 and a water distribution point 61.
  • the water distribution pipe comprises a pipe or inlet portion 12 and a pipe or discharge portion 14 which are respectively connected to the inlet 1 1 and to the outlet 13 of the measuring chamber of the measuring device 62. All the water circulating in the distribution pipe therefore passes through the measuring chamber of the measuring device without bypass.
  • a device may comprise: means for accelerating the flow of water opposite the measuring means;
  • the propeller 26 is integral with a shaft 50 having an end passing through the bottom 22 of the measuring chamber through which it is rotatably mounted by means of a sealed bearing 51.
  • This end of the shaft 50 is mechanically linked to a generator 27.
  • This generator 27 supplies electric current, via a charge regulator 28, with batteries 29 when the propeller 26 is rotated under the effect of the flow. in the measuring chamber 10.
  • the batteries 29 are connected to the probe 16 by electric cables 30 to ensure its operation.
  • Tests consisted in respectively circulating water in a measuring chamber of a device according to the invention:
  • the water circulated at a flow rate equal to 500 l / h in a measuring chamber with a volume equal to 25 cm 3 .
  • the distance “D” separating the head 18 of the probe 16 from the surface of the springboard was equal to 1 centimeter.
  • the distance “d” separating the surface of the measuring means from the upper part of the helix was also equal to 1 centimeter.
  • the flow velocity of the water at 1 millimeter of the measuring means was equal to:
  • the flow velocity of the water opposite the measuring means is therefore increased by:
  • the turbulent intensity at 1 millimeter of the measuring means was equal to: 11% without springboard or propeller; 14% with springboard;
  • the turbulent intensity of the water opposite the measuring means is therefore increased by:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

L'invention concerne une installation de distribution d'eau comprenant une canalisation de distribution d'eau. Selon l'invention, une telle installation comprend un dispositif de mesure (62) de la valeur d'au moins un paramètre représentatif de la qualité d'une eau circulant dans ladite canalisation de distribution (12, 14), ledit dispositif (62) comprenant au moins un moyen de mesure dudit paramètre et des moyens pour diriger en regard dudit moyen de mesure l'intégralité de ladite eau circulant dans ladite canalisation de distribution.

Description

Installation de distribution d'eau comprenant un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau
1. Domaine de l'invention
Le domaine de l'invention est celui du contrôle de la qualité d'eaux circulant dans un réseau de distribution.
Plus précisément, l'invention concerne la conception et la réalisation de dispositifs mis en œuvre pour mesurer la qualité de ces eaux.
2. Art antérieur
Des procédés de traitement d'eau sont couramment mis en œuvre par exemple en vue de leur potabilisation, de leur épuration, de leur dessalement...
Les eaux traitées produites par la mise en œuvre de ces procédés sont conduites à leur point de distribution au moyen d'un réseau de canalisations.
La qualité des eaux traitées est généralement contrôlée directement à la sortie des unités de traitement mises en œuvre pour les produire. Il est alors possible de connaître si l'eau produite présente un niveau de qualité suffisant pour être distribuée. La distribution d'une eau traitée peut ainsi être interrompue s'il est détecté qu'elle ne présente pas une qualité convenable.
Il peut toutefois arriver que la qualité d'une eau traitée se dégrade entre la sortie de l'unité de traitement dont elle provient et son point de distribution. Ceci peut conduire à la distribution d'une eau traitée présentant une qualité moindre.
Pour obvier cet inconvénient, des dispositifs de mesure de la qualité d'eau ont été conçus pour être implantés non plus en sortie des unités de traitement d'eau, mais directement au sein du réseau de canalisation et préférentiellement à proximité des points de distribution.
Un dispositif de mesure de la qualité d'une eau comprend généralement une sonde présentant un corps dont la tête est munie d'un ou plusieurs moyens de mesure aptes à mesurer des paramètres représentatifs de la qualité d'une eau comme par exemple sa teneur en chlore, sa température, sa turbidité... Le corps de ce type de sonde est introduit dans une canalisation de dérivation reliée à une canalisation de distribution principale d'eau traitée de manière telle que sa tête portant des moyens de mesure baigne dans l'eau y circulant. L'eau déviée est réintroduite dans la canalisation principale ou bien jetée. Une telle technique est décrite dans la demande de brevet japonais JP-A1-2008058024.
Cette technique de mesure par dérivation présente alors l'avantage de permettre de connaître la qualité de l'eau produite lorsqu'elle se trouve à son point, ou à tout le moins proche de son point de distribution.
Elle impose toutefois, dans la technique selon laquelle l'eau déviée est réintroduite dans la canalisation principale, de mettre en œuvre dans ce but des moyens coûteux et énergivores ou bien de conférer à la canalisation de déviation une géométrie particulière induisant un risque de réduction de la vitesse dans la canalisation de déviation, voir la création d'un « bras mort », c'est-à-dire d'une zone dans laquelle la vitesse de circulation de l'eau nulle ou quasi nulle, faussant la mesure.
Par ailleurs, les pertes en eau occasionnées par la mise en œuvre de la technique dans laquelle l'eau déviée est rejetée dans le milieu naturel, comme par exemple une rivière, entraînent une baisse de la productivité et un risque de rétro pollution. Le phénomène de rétro pollution consiste en l'injection via la canalisation de dérivation d'eau provenant du milieu naturel dans la canalisation principale. De l'eau du milieu naturel est alors mélangée avec de l'eau de réseau circulant dans la canalisation principale ce qui dégrade la qualité de cette eau de réseau.
Afin de palier ces inconvénients, il a été proposé dans l'état de la technique d'introduire directement le corps de la sonde d'un dispositif de ce type dans une canalisation de distribution d'eau traitée de manière telle que sa tête portant des moyens de mesure baigne dans l'eau y circulant. Une technique de ce type est par exemple décrite dans la demande internationale de brevet WO-A1- 2007/049003.
Cette mise en œuvre qui permet également de connaître la qualité de l'eau produite lorsqu'elle se trouve à son point, ou à tout le moins proche de son point de distribution, souffre néanmoins de quelques inconvénients. 3. Inconvénients de l'art antérieur
Cette technique de l'art antérieur présente notamment un inconvénient lié au fait que seule une portion réduite de l'eau traitée circulant dans une canalisation de distribution dans laquelle est introduite une sonde passe en regard de la tête portant les moyens de mesure. Il en résulte que les mesures réalisées au moyen de la sonde ne sont pas parfaitement représentatives de la qualité réelle de l'eau.
Un autre inconvénient de cette technique de l'art antérieur est lié au fait que certains moyens de mesure mis en œuvre dans cette technique de l'art antérieur consomment l'espèce dont ils permettent de mesurer la concentration. Ainsi, certains moyens de mesure de chlore consomment le chlore présent dans l'eau lorsqu'ils en mesurent la concentration. Il peut alors arriver que la concentration locale de l'eau en l'espèce mesurée soit inférieure à proximité du moyen de mesure à sa concentration réelle dans l' eau circulant dans la canalisation. La mesure réalisée est alors peu représentative de la réalité si le renouvellement de l'eau à analyser est faible au voisinage de ces moyens de mesure.
Les têtes de ces sondes de l'art antérieur ont également tendance à s'encrasser au cours du temps. La qualité des mesures réalisées par leur mise en œuvre tend donc à diminuer progressivement. Il est alors nécessaire de procéder régulièrement à leur démontage pour les nettoyer.
Ces sondes de l'art antérieur présentent généralement une taille relativement importante tant en terme de diamètre qu'en terme de longueur qui sont respectivement généralement compris entre 35 et 60 mm et 30 et 1000 mm. Pourtant, de nombreuses canalisations de distribution présentent un faible diamètre nominal souvent compris entre environ 15 et 100 mm. Il n'est ainsi pas possible d'introduire une sonde selon l'art antérieur dans ce type de canalisations pourtant très répandu.
Les sondes de ce type nécessitent d'être alimentées en énergie électrique pour fonctionner. Elles sont généralement situées dans des endroits dans lesquels il n'est pas possible de les raccorder au réseau électrique. Ces sondes sont alors alimentées en énergie électrique au moyen de piles logées dans leur corps. Ces piles doivent être remplacées régulièrement de façon à garantir le bon fonctionnement des sondes. Ces sondes sont toutefois placées dans des endroits difficiles d'accès ce qui peut rendre le remplacement de leurs piles délicat. En outre, il peut arriver que les piles alimentant une sonde soient déchargées sans être remplacées, ce qui induit que le contrôle de la qualité de l'eau n'est plus réalisé. Le contrôle de l'eau distribuée n'est alors plus assuré.
4. Objectifs de l'invention
L'invention a notamment pour objectif de pallier ces inconvénients de l'art antérieur.
Plus précisément, un objectif de l'invention est de fournir, dans au moins un mode de réalisation, une technique de contrôle d'au moins un paramètre représentatif de la qualité d'une eau dont la mise en œuvre permette d'avoir une indication relative à la qualité de l'eau qui soit représentative de la réalité.
Un autre objectif de l'invention est de mettre en œuvre, dans au moins un mode de réalisation de l'invention, une telle technique qui puisse être mise en œuvre au sein de réseaux de distribution d'eau traitée dont les canalisations sont de petite taille.
L'invention a encore pour objectif, dans au moins un mode de réalisation de l'invention, de procurer une telle technique qui permette de limiter l'entretien des équipements mis en œuvre pour contrôler la qualité d'une eau.
Notamment, l'invention vise à procurer, dans au moins un mode de réalisation, une telle technique qui soit à même d'être mise en œuvre pendant une durée importante sans nécessiter d'intervention.
En particulier, l'invention vise à procurer, dans au moins un mode de réalisation, une telle technique qui contribue à limiter l'encrassement de ses équipements. L'invention vise également à produire, dans au moins un mode de réalisation, une telle technique qui soit peu assujettie à des problèmes liés à l'alimentation en énergie électrique de ses équipements.
Un autre objectif de l'invention est d'offrir une telle technique qui soit fiable, robuste et simple à mettre en œuvre.
5. Exposé de l'invention
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints selon l'invention à l'aide d'un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau circulant dans une canalisation de distribution d'eau, ledit dispositif comprenant au moins un moyen de mesure dudit paramètre et des moyens pour diriger en regard dudit moyen de mesure l'intégralité de ladite eau circulant dans ladite canalisation de distribution.
Ainsi, l'invention repose sur une approche tout à fait originale qui consiste à mettre en œuvre un dispositif de contrôle de la qualité d'une eau qui comprend : une chambre de mesure logeant au moins un moyen de mesure et destinée à être reliée à des canalisations d'entrée et d'évacuation d'eau, et des moyens prévus pour que l'ensemble de l'eau circulant depuis l'une vers l'autre de ces canalisations passe devant ce moyen de mesure.
Ainsi, par opposition aux sondes selon l'art antérieur, l'ensemble du volume d'eau traitée s 'écoulant dans une canalisation d'un réseau de distribution transite par une chambre de mesure logeant un ou plusieurs moyen(s) de mesure en sorte que la mesure de la qualité de cette eau est très représentative de sa qualité réelle.
En outre, un dispositif selon l'invention n'est pas, par opposition aux sondes selon l'art antérieur, introduit dans une canalisation de distribution d'eau. Au contraire, il est inséré entre deux portions d'une telle canalisation. Il peut ainsi être mis en œuvre pour contrôler la qualité d'eaux s'écoulant dans des canalisations de petite taille, présentant en particulier un diamètre inférieur à celui d'une sonde. De manière préférentielle, ledit dispositif comprend une chambre de mesure logeant ledit moyen de mesure, ladite chambre de mesure comprenant une entrée destinée à être reliée à une portion d'arrivée de ladite canalisation de distribution de ladite eau, et une sortie destinée à être reliée à une portion d'évacuation de ladite canalisation de distribution de ladite eau.
Selon une caractéristique avantageuse, un dispositif selon l'invention comprend des moyens de génération d'un écoulement turbulent de ladite eau en regard dudit moyen de mesure.
La mise en œuvre de cette caractéristique contribue à limiter l'encrassement du ou des moyen(s) de mesure logés dans la chambre de mesure par la création, à leur surface, de contraintes hydrodynamiques tendant à y prévenir le dépôt de matières et/ou à arracher des matières qui s'y seraient déposées.
Selon un aspect préféré, un dispositif selon l'invention comprend des moyens pour accélérer l'écoulement de ladite eau en regard dudit moyen de mesure.
La mise en œuvre de cette caractéristique contribue également à limiter l'encrassement du ou des moyen(s) de mesure logés dans la chambre de mesure par la création, à leur surface, de contraintes hydrodynamiques tendant à y prévenir le dépôt de matières et/ou à arracher des matières qui s'y seraient déposées.
Le fait d'augmenter la vitesse d'écoulement de l'eau traitée à proximité des moyens de mesure induit que la concentration locale des espèces en présence dans l'eau est très proche de la concentration globale de ces espèces dans l'eau circulant dans la chambre de mesure. Dans ce cas, lorsque les moyens de mesure utilisés sont du type de ceux qui consomment l'espèce dont ils permettent de mesurer la concentration, la vitesse à laquelle ces moyens de mesure consomment ces espèces est inférieure à leur vitesse de renouvellement due à la circulation de l'eau. La mise en œuvre de cette caractéristique permet alors en outre d'améliorer, comparativement aux sondes selon l'art antérieur, la représentativité de la mesure. Le fait de procurer, dans ces deux cas, un dispositif dont la vitesse à laquelle il s'encrasse est considérablement réduite permet de limiter la fréquence de mise en œuvre de campagne de maintenance.
Ceci est particulièrement intéressant dans la mesure le volume d'eau passant en regard des moyens de mesure est important comparativement aux techniques de l'art antérieur.
Un dispositif selon l'invention comprend avantageusement des moyens de conversion en énergie électrique de l'énergie hydraulique due à l'écoulement de ladite eau dans ladite chambre.
II est alors possible de récupérer de l'énergie due à l'écoulement de l'eau dans la chambre de mesure afin de la convertir en électricité qui sera préférentiellement utilisée pour alimenter le dispositif de mesure. Ceci peut permettre de contribuer à l'augmentation de la longévité de batteries qui peuvent être utilisées pour alimenter le moyen de mesure voir à autoriser son fonctionnement de manière autonome. Cela permet ainsi de réduire les interventions de maintenance sur le point de mesure.
Un dispositif selon l'invention comprend préférentiellement des moyens de conversion en énergie électrique de la chaleur de ladite eau.
Il est alors possible de récupérer la chaleur de l'eau circulant dans la chambre de mesure afin de la convertir en électricité qui sera préférentiellement utilisée pour alimenter le dispositif de manière telle qu'il puisse fonctionner de manière autonome. Cette caractéristique est de préférence mise en œuvre lorsque l'eau s'écoulant dans la chambre de mesure est de l'eau chaude (préférentiellement de 40 à 80°C), comme par exemple de l'eau chaude sanitaire.
Le fait de pouvoir procurer, dans ces deux cas, un dispositif autonome sur le plan énergétique permet de limiter la fréquence de mise en œuvre de campagne de maintenance. Ceci permet encore d'être assuré que le dispositif fonctionne en permanence.
Selon un mode de réalisation particulier, un dispositif selon l'invention comprend une sonde, ladite sonde comprenant un corps présentant une tête à laquelle est solidarisé ledit moyen de mesure, ledit corps définissant avec les parois de ladite chambre un chenal d'écoulement de ladite eau entre ladite entrée et ladite sortie et passant en regard de ladite tête.
Le volume de la chambre de mesure défini par ce chenal est alors réduit ce qui contribue à améliorer la représentativité des mesures et à supprimer les zones de recirculation et/ou de faible débit dans cette chambre.
Selon une caractéristique préférentielle de l'invention, lesdits moyens de génération d'un écoulement turbulent comprennent une hélice placée entre une paroi de ladite chambre et ledit moyen de mesure et/ou un élément de réduction de la section dudit chenal placé entre une paroi de ladite chambre et ledit moyen de mesure.
La mise en œuvre d'une telle hélice permet, lorsqu'elle est entraînée en rotation sous l'effet de l'écoulement de l'eau dans la chambre de mesure, de créer un phénomène d'agitation à proximité des moyens de mesure limitant leur encrassement et/ou facilitant leur décrassage.
Le fait que cette hélice soit entraînée sous le seul effet de l'écoulement de l'eau dans la chambre de mesure permet de créer un tel phénomène d'agitation de manière autonome sans apport d'énergie extérieure.
La mise en œuvre de moyens de réduction de la section du chenal permet également, sous le seul effet de la circulation de l'eau dans la chambre de mesure d'y générer un écoulement turbulent.
Selon une autre caractéristique avantageuse, lesdits moyens pour accélérer l'écoulement comprennent un élément de réduction de la section dudit chenal placé entre une paroi de ladite chambre et ledit moyen de mesure et/ou une hélice placée entre une paroi de ladite chambre et ledit moyen de mesure.
Le fait de réduire la section de la chambre de mesure à proximité des moyens de mesure ou d'y placer une hélice libre en rotation permet d'y augmenter naturellement la vitesse d'écoulement de l'eau sans apport d'énergie extérieure.
Selon un aspect préféré, lesdits moyens de conversion de l'énergie hydraulique comprennent ladite hélice, ladite hélice étant montée libre en rotation à l'intérieur de ladite chambre et reliée à au moins un aimant, lesdits moyens de conversion de l'énergie hydraulique en énergie électrique comprenant en outre au moins une bobine d'induction placée en regard dudit aimant à l'extérieur de ladite chambre.
Ainsi, l'hélice est reliée à des aimants qu'elle entraîne en rotation en regard d'un bobinage placé à l'extérieur de la chambre de mesure. La mise en rotation de l'hélice par l'écoulement de l'eau dans la chambre de mesure permet alors de générer par induction du courant électrique qui pourra par exemple être accumulé dans des batteries destinées à alimenter le dispositif.
Dans une variante, lesdits moyens de conversion de l'énergie hydraulique comprennent ladite hélice, ladite hélice étant montée sur un arbre monté libre en rotation à l'intérieur de ladite chambre, une extrémité de cet arbre s 'étendant en dehors de ladite chambre et étant reliée à un générateur de courant.
La première solution décrite ci-dessus, dans laquelle l'hélice n'est pas montée sur un arbre traversant le fond de la chambre de mesure, présente les avantages d'éviter l'apparition de fuites entre la chambre de mesure et l'arbre, et de réduire la dissipation d'énergie due au frottement de cet arbre dans la liaison par laquelle il est relié au fond de la chambre de mesure.
Le dispositif est alors autonome sur le plan énergétique et sa mise en œuvre ne requiert aucun apport de courant extérieur.
Lesdits moyens de conversion de ladite chaleur comprennent préférentiellement un élément en matériau thermoélectrique.
Ce type de matériau permet de transformer de manière efficace le gradient de température entre l'eau contenue dans la canalisation et le milieu extérieur à cette canalisation.
Dans ce cas, ledit élément de réduction est recouvert au moins en partie dudit matériau thermoélectrique.
La présente invention couvre également une chambre de mesure pour dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau selon l'invention. Une telle chambre de mesure comprend une entrée destinée à être reliée à une portion d'arrivée de ladite canalisation de distribution de ladite eau, et une sortie destinée à être reliée à une portion d'évacuation de ladite canalisation de distribution de ladite eau et un réceptacle destiné à loger une sonde comprenant un corps et une tête dont est solidaire au moins un moyen de mesure dudit paramètre, les parois de ladite chambre définissant avec ledit corps, lorsque ladite sonde est logée dans ledit réceptacle, un chenal d'écoulement de ladite eau entre ladite entrée et ladite sortie et passant en regard de ladite tête.
La présente invention couvre également une installation de distribution d'eau comprenant une canalisation de distribution d'eau et un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau circulant dans ladite canalisation de distribution selon l'une quelconque des variantes décrites précédemment.
6. Liste des figures
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante de modes de réalisation préférentiels, donnés à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels :
la figure 1 représente de manière schématique une vue en coupe d'un dispositif selon l'invention mettant en œuvre un tremplin ;
la figure 2 illustre une vue en perspective du dispositif illustré à la figure i ;
la figure 3 représente de manière schématique une vue en coupe d'un dispositif selon l'invention mettant en œuvre une hélice ;
la figure 4 illustre une vue en perspective du dispositif illustré à la figure
3 ;
la figure 5 illustre une variante du dispositif des figures 3 et 4 ;
la figure 6 illustre une vue d'un dispositif de mesure selon l'invention monté sur une canalisation de distribution d'eau en sortie d'une installation de traitement. 7. Description d'un mode de réalisation de l'invention
7.1. Rappel du principe de l'invention
Le principe général de l'invention consiste à mettre en œuvre un dispositif de contrôle de la qualité d'une eau qui comprend :
une chambre de mesure logeant au moins un moyen de mesure et destinée à être reliée à des canalisations d'entrée et d'évacuation d'eau, et des moyens prévus pour que l'ensemble de l'eau circulant depuis l'une vers l'autre de ces canalisations passe devant ce moyen de mesure.
Par opposition aux sondes selon l'art antérieur, l'ensemble du volume d'eau traitée s'écoulant dans une canalisation d'un réseau de distribution transite ainsi par une chambre de mesure logeant un ou plusieurs moyen(s) de mesure. Il en résulte que la mesure de la qualité de cette eau est très représentative de sa qualité réelle.
Par ailleurs, un dispositif selon l'invention peut ainsi être mis en œuvre pour contrôler la qualité d'eaux s'écoulant dans des canalisations de petite taille du fait qu'il est destiné à être inséré entre deux portions d'une canalisation de distribution d'eau.
7.2. Exemple d'un premier mode de réalisation de l'invention
On présente, en relation avec les figures 1 et 2, un premier mode de réalisation d'un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau selon l'invention.
Tel que cela est représenté sur ces figures 1 et 2, un tel dispositif comprend une chambre de mesure 10. Dans ce mode de réalisation, cette chambre de mesure 10 présente une section circulaire et se présente sous la forme d'un cylindre creux.
La chambre de mesure 10 comprend une entrée 11 destinée à être reliée à une canalisation d'arrivée 12 d'eau, et une sortie 13 destinée à être reliée à une canalisation d'évacuation 14 de cette eau.
Le dispositif selon l'invention est prévu pour être installé entre deux portions d'une canalisation de distribution d'eau. La canalisation d'arrivée est donc une portion d'arrivée de la canalisation de distribution, et la canalisation d'évacuation est une portion d'évacuation de la canalisation de distribution.
La chambre de mesure 10 définit un réceptacle 15 apte à loger une sonde 16 comprenant un corps 17 et une tête 18 à laquelle sont solidarisés des moyens de mesure (non représentés) prévus pour mesurer des paramètres représentatifs de la qualité de l'eau circulant dans la chambre de mesure 10.
La chambre de mesure 10 comprend une ouverture 19 pour permettre de loger la sonde 16 dans le réceptacle 15.
Lorsqu'une sonde 16 est logée dans le réceptacle 15, son corps 17 définit avec les parois intérieures de la chambre de mesure 10 un chenal 20 d'écoulement de l'eau passant par l'entrée 11, la tête 18 de la sonde 15 et la sortie 13.
Des butées latérales 21 sont interposées de part et d'autre du corps 17 de la sonde 16 entre les parois de la chambre de mesure 10 et le corps 17. Leurs dimensions sont choisies de manière telle que l'eau circulant dans la chambre de mesure 10 ne peut pas s'écouler autour de la sonde 16, mais est au contraire forcée à passer sous la tête 18 de la sonde 16.
Le fond de la chambre de mesure 10 loge des moyens pour accélérer l'écoulement de l'eau et générer un écoulement turbulent en regard des moyens de mesure solidaires de la tête 18. Ces moyens comprennent un élément de réduction de la section du chenal 20 placé entre le fond 22 de la chambre de mesure 10 et les moyens de mesure. Cet élément de réduction comprend un élément formant tremplin 23.
Ce dispositif selon l'invention comprend en outre des moyens de conversion en énergie électrique du gradient de température entre l'eau circulant dans la chambre de mesure 10 et le milieu l'extérieur. Ces moyens de conversion comprennent un matériau thermoélectrique 24 qui recouvre en partie le tremplin. Dans une variante, ce matériau thermoélectrique 24 recouvrira totalement le tremplin. Ce matériau est relié à des batteries (non représentées) qui permettent d'alimenter la sonde 16 en courant électrique. Chaque butée 21 présente en partie inférieure un butoir 25 contre lequel vient en appui la tête 18 de la sonde 16 de manière qu'elle se situe à une distance « D » de la surface du tremplin comprise entre 1 mm et 10 cm.
7.3. Exemple d'un deuxième mode de réalisation de l'invention
On présente, en relation avec les figures 3 et 4, un deuxième mode de réalisation d'un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau selon l'invention.
Ce deuxième mode de réalisation présente un grand nombre de similitudes avec le premier mode de réalisation décrit plus haut.
Plus précisément, ce deuxième mode de réalisation se distingue du premier du fait qu'il ne met pas en œuvre de moyens de conversion en énergie électrique de la chaleur de l'eau circulant dans la chambre de mesure 10.
Un dispositif selon ce deuxième mode de réalisation comprend en revanche des moyens de conversion en énergie électrique de l'énergie hydraulique due à l'écoulement de l'eau dans la chambre de mesure 10.
En outre, les moyens d'accélération et de génération d'un écoulement turbulent comprennent non plus un élément de réduction de la section, mais une hélice 26 qui est placée entre le fond 22 de la chambre de mesure 10 et les moyens de mesure. Cette hélice 26 est solidaire d'un arbre 32 essentiellement perpendiculaire au fond 22 de la chambre de mesure 10 et monté libre en rotation dans un palier 33 solidaire de ce fond 22. Dans une variante, l'hélice 26 pourra être solidaire d'un arbre monté libre en rotation dans un palier solidaire de la tête 18 de la sonde.
Les moyens de conversion en énergie électrique de l'énergie hydraulique due à l'écoulement de l'eau dans la chambre de mesure 10 comprennent cette hélice 26. Ils comprennent en outre des aimants 34 solidaires de l'hélice 26, et une bobine 31 placée en dehors de la chambre de mesure, en regard des aimants 34. Dans une variante, les aimants pourront être portés par une pièce solidaire de l'arbre 32. Les aimants 34 et la bobine 31 alimentent en courant électrique, via un régulateur de charge 28, des batteries 29 lorsque l'hélice 26 est entraînée en rotation sous l'effet de l'écoulement d'eau dans la chambre de mesure 10. Les batteries 29 sont reliées à la sonde 16 par des câbles électriques 30 pour permettre d'assurer son fonctionnement.
La distance « d » séparant la surface des moyens de mesure de la partie supérieure de l'hélice 26 est comprise entre 1 et 20 mm.
Comme cela est représenté à la figure 6, un dispositif de mesure 62 selon l'invention, quelle que soit sa forme de réalisation, est destiné à être monté sur une canalisation de distribution d'eau entre la sortie d'une installation de traitement d'eau 60 et un point de distribution d'eau 61. La canalisation de distribution d'eau comprend une canalisation ou portion d'arrivée 12 et une canalisation ou portion d'évacuation 14 qui sont respectivement reliées à l'entrée 1 1 et à la sortie 13 de la chambre de mesure du dispositif de mesure 62. L'ensemble de l'eau circulant dans la canalisation de distribution transite donc par la chambre de mesure du dispositif de mesure sans dérivation.
7.4. Variantes
Dans des variantes, un dispositif selon l'invention pourra comprendre : des moyens pour accélérer l'écoulement de l'eau en regard des moyens de mesure ;
et/ou
des moyens de génération d'un écoulement turbulent de l'eau en regard des moyens de mesure ;
et/ou
de moyens de conversion en énergie électrique de la du gradient de température entre l'eau circulant dans la chambre de mesure 10 et le milieu extérieur ;
et/ou
des moyens de conversion en énergie électrique de l'énergie hydraulique due à l'écoulement de l'eau dans la chambre de mesure 10. Dans une variante illustrée à la figure 5, l'hélice 26 est solidaire d'un arbre 50 présentant une extrémité traversant le fond 22 de la chambre de mesure à travers lequel il est monté libre en rotation au moyen d'un palier étanche 51. Cette extrémité de l'arbre 50 est liée mécaniquement à un générateur 27. Ce générateur 27 alimente en courant électrique, via un régulateur de charge 28, des batteries 29 lorsque l'hélice 26 est entraînée en rotation sous l'effet de l'écoulement d'eau dans la chambre de mesure 10. Les batteries 29 sont reliées à la sonde 16 par des câbles électriques 30 pour permettre d'assurer son fonctionnement.
7.5. Essais
Des essais ont consistés à faire respectivement circuler de l'eau dans une chambre de mesure d'un dispositif selon l'invention :
ne logeant ni tremplin, ni hélice ;
logeant un tremplin ;
logeant une hélice.
Au cours de ces essais, l'eau circulait à un débit égal à 500 1/h dans une chambre de mesure d'un volume égal à 25 cm3. La distance « D » séparant la tête 18 de la sonde 16 de la surface du tremplin était égale à 1 centimètre. La distance « d » séparant la surface des moyens de mesure de la partie supérieure de l'hélice était également égale à 1 centimètre.
La vitesse d'écoulement de l'eau à 1 millimètre des moyens de mesure était égale à :
0,6 m.s-1 sans tremplin ni hélice ;
1 m.s-1 avec tremplin ;
0,7 m.s-1 avec hélice.
La vitesse d'écoulement de l'eau en regard des moyens de mesure est donc augmentée de :
67% par la mise en œuvre d'un tremplin ;
17% par la mise en œuvre d'une hélice.
L'intensité turbulente à 1 millimètre des moyens de mesure était égale à : 11% sans tremplin ni hélice ; 14% avec tremplin ;
12%) avec hélice.
L'intensité turbulente de l'eau en regard des moyens de mesure est donc augmentée de :
- 27% par la mise en œuvre d'un tremplin ;
9% par la mise en œuvre d'une hélice.

Claims

REVENDICATIONS
1. Installation de distribution d'eau comprenant une canalisation de distribution d'eau (12, 14),
caractérisée en ce qu'elle comprend un dispositif de mesure (62) de la valeur d'au moins un paramètre représentatif de la qualité d'une eau circulant dans ladite canalisation de distribution (12, 14), ledit dispositif (62) comprenant au moins un moyen de mesure dudit paramètre et des moyens pour diriger en regard dudit moyen de mesure l'intégralité de ladite eau circulant dans ladite canalisation de distribution.
2. Installation selon la revendication 1, caractérisée en ce que ledit dispositif comprend une chambre de mesure (10) logeant ledit moyen de mesure, ladite chambre de mesure (10) comprenant une entrée (1) destinée à être reliée à une portion d'arrivée de ladite canalisation de distribution (12) de ladite eau, et une sortie (13) destinée à être reliée à une portion d' évacuation (14) de ladite canalisation de distribution de ladite eau.
3. Installation selon la revendication 1 ou 2, caractérisé en ce qu'il comprend des moyens (23, 26) de génération d'un écoulement turbulent de ladite eau en regard dudit moyen de mesure.
4. Installation selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend des moyens (23, 26) pour accélérer l'écoulement de ladite eau en regard dudit moyen de mesure.
5. Installation selon l'une quelconque des revendications 2 à 4, caractérisé en ce qu'il comprend des moyens de conversion (26, 27, 28) en énergie électrique de l'énergie hydraulique due à l'écoulement de ladite eau dans ladite chambre (10).
6. Installation selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend des moyens de conversion en énergie électrique de la chaleur de ladite eau.
7. Installation selon l'une quelconque des revendications 2 à 6, caractérisé en ce qu'il comprend une sonde (16), ladite sonde (16) comprenant un corps (17) présentant une tête (18) à laquelle est solidarisé ledit moyen de mesure, ledit corps (17) définissant avec les parois de ladite chambre (10) un chenal (22) d'écoulement de ladite eau entre ladite entrée (11) et ladite sortie (12) et passant en regard de ladite tête (18).
8. Installation selon l'une quelconque des revendications 3 à 7, caractérisé en ce que lesdits moyens de génération d'un écoulement turbulent comprennent une hélice (26) placée entre une paroi de ladite chambre (10) et ledit moyen de mesure et/ou un élément de réduction (23) de la section dudit chenal (22) placé entre une paroi de ladite chambre (10) et ledit moyen de mesure.
9. Installation selon l'une quelconque des revendications 4 à 7, caractérisé en ce que lesdits moyens pour accélérer l'écoulement comprennent un élément de réduction (23) de la section dudit chenal (22) placé entre une paroi de ladite chambre (10) et ledit moyen de mesure et/ou une hélice (26) placée entre une paroi de ladite chambre (10) et ledit moyen de mesure.
10. Installation selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que lesdits moyens de conversion de l'énergie hydraulique comprennent ladite hélice (26), ladite hélice (26) étant montée libre en rotation à l'intérieur de ladite chambre et reliée à au moins un aimant (34), lesdits moyens de conversion de l'énergie hydraulique en énergie électrique comprenant en outre au moins une bobine d'induction (31) placée en regard dudit aimant (34) à l'extérieur de ladite chambre (10).
11. Installation selon l'une quelconque des revendications 8 à 10, caractérisé en ce que lesdits moyens de conversion de l'énergie hydraulique comprennent ladite hélice (26), ladite hélice (26) étant montée sur un arbre (50) monté libre en rotation à l'intérieur de ladite chambre (10), une extrémité dudit arbre (50) s 'étendant en dehors de ladite chambre (10) et étant reliée à un générateur de courant (27).
12. Installation selon l'une quelconque des revendications 6 à 9, caractérisé en ce que lesdits moyens de conversion de ladite chaleur comprennent un élément en matériau thermoélectrique.
13. Installation selon les revendications 8 ou 9 et 12, caractérisé en ce que ledit élément de réduction (23) est recouvert au moins en partie dudit matériau thermoélectrique.
EP11723466.6A 2010-06-04 2011-06-06 Installation de distribution d'eau comprenant un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau Withdrawn EP2577292A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054420A FR2960971A1 (fr) 2010-06-04 2010-06-04 Dispositif de mesure de la valeur d'au moins un parametre representatif de la qualite d'une eau
PCT/EP2011/059252 WO2011151467A2 (fr) 2010-06-04 2011-06-06 Installation de distribution d'eau comprenant un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau

Publications (1)

Publication Number Publication Date
EP2577292A2 true EP2577292A2 (fr) 2013-04-10

Family

ID=43534329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11723466.6A Withdrawn EP2577292A2 (fr) 2010-06-04 2011-06-06 Installation de distribution d'eau comprenant un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau

Country Status (6)

Country Link
US (1) US20130205879A1 (fr)
EP (1) EP2577292A2 (fr)
CN (1) CN103026226A (fr)
CA (1) CA2800921A1 (fr)
FR (1) FR2960971A1 (fr)
WO (1) WO2011151467A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024545B1 (fr) * 2014-07-30 2018-05-18 Suez Environnement Systeme de mesure intelligent au point de livraison d'un fluide
CN113588905B (zh) * 2021-08-06 2023-06-16 宁波水表(集团)股份有限公司 一种供水管网的水质在线监测系统
CN114088505A (zh) * 2021-11-18 2022-02-25 光大水务科技发展(南京)有限公司 一种水处理水质检测仪表预处理装置系统及其工作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701252A (en) * 1982-06-16 1987-10-20 Matsushita Electric Industrial Co., Ltd. Dissolved gas and ion measuring electrode system
CN2280094Y (zh) * 1996-12-17 1998-04-29 江苏省激光研究所 双电解废水处理装置
DE19818192A1 (de) * 1998-04-23 1999-10-28 Abb Research Ltd Verfahren und Vorrichtung zur Bestimmung der Oelkonzentration in Flüssigkeiten mittels Fluoreszenzanregung durch eine Excimerlampe
ATE487130T1 (de) * 2001-08-22 2010-11-15 Instrumentation Lab Co Verfahren und vorrichtung zur kalibrierung von sensoren
US6798347B2 (en) * 2002-02-06 2004-09-28 In-Situ, Inc. Sensor head component
US7043038B2 (en) * 2002-07-24 2006-05-09 Phonak Ag In-the-ear hearing device
US20040197922A1 (en) * 2003-04-01 2004-10-07 The Regents Of The University Of California Detection of contamination of municipal water distribution systems
EP1739421A1 (fr) * 2005-06-27 2007-01-03 CLR Srl Analyseur électrochimique pour la mesure sélective des chlorites dans l'eau
GB0522015D0 (en) 2005-10-28 2005-12-07 Intellitect Water Ltd Improvements in or relating to sensing apparatus
US20090074619A1 (en) * 2006-05-01 2009-03-19 Masakazu Akechi Device for measuring total organic carbon
JP4346102B2 (ja) * 2006-08-29 2009-10-21 株式会社オメガ 水質測定システム
FR2909447B1 (fr) * 2006-12-01 2009-07-31 Millipore Corp Dispositif de mesure de conductivite, sa fabrication et son utilisation
US8102071B2 (en) * 2007-10-18 2012-01-24 Catlin Christopher S River and tidal power harvester
CH699850A2 (de) * 2008-11-05 2010-05-14 Age Sa Sensoranordnung und Verfahren zur Überwachung der Wasserqualität.
CN102020354B (zh) * 2009-09-22 2013-01-09 中国环境科学研究院 一种均匀集布水和内部机理准确掌握的人工湿地装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011151467A2 *

Also Published As

Publication number Publication date
CN103026226A (zh) 2013-04-03
WO2011151467A2 (fr) 2011-12-08
CA2800921A1 (fr) 2011-12-08
FR2960971A1 (fr) 2011-12-09
US20130205879A1 (en) 2013-08-15
WO2011151467A3 (fr) 2012-09-13

Similar Documents

Publication Publication Date Title
FR2698865A1 (fr) Module de désinfection à ultraviolets.
EP2577292A2 (fr) Installation de distribution d'eau comprenant un dispositif de mesure de la valeur d'au moins un paramètre représentatif de la qualité d'une eau
FR2631731A1 (fr) Ensemble d'entrainement de support de sonde pour la detection de defauts dans des tubes, notamment des tubes de generateurs de vapeur
CA2323144A1 (fr) Dispositif assurant la recuperation des flottants dans des bassins de decantation
FR3042808A1 (fr) Appareil nettoyeur de piscine a dispositif de franchissement d'obstacle
CA1132483A (fr) Appareil detartreur de type electronique pourvu d'un detecteur d'ecoulement de liquide
EP0654635A1 (fr) Générateur de vapeur rechargeable
EP2049441B1 (fr) Dispositif et procédé pour la capture de substances génératrices d'odeurs et/ou de goûts présentes dans l'eau circulant dans un réseau
EP4136426A1 (fr) Surveillance de l'huile d'un dispositif de lubrification
FR3008908A1 (fr) Recipient pour le nettoyage d'un objet immerge dans un fluide comprenant des composants ferromagnetiques
FR2708347A1 (fr) Chambre de mesure, notamment pour le contrôle de l'eau d'une piscine.
FR2461254A1 (fr) Installation de mesure de la qualite d'une eau douce ou saumatre a nettoyage integre
FR2969296A1 (fr) Dispositif de controle du pouvoir oxydant d'une masse d'eau, s'appliquant notamment a l'eau d'une piscine
WO2021214656A1 (fr) Dispositif d'analyse d'eau autonome et piscine equipée d'un tel dispositif
EP0017588B1 (fr) Dispositif électromagnétique de séparation d'inclusions contenues dans un fluide électriquement conducteur
EP3519671B1 (fr) Appareil de régulation de pression d'injection pour la récuperation assistée du pétrole par polymère
FR2815257A1 (fr) Appareil pour la desinfection de conduites, branchements et analogues et procede de desinfection mettant en oeuvre ledit appareil
FR3018517A1 (fr) Dispositif de traitement de fluide par electrolyse integrant une ouverture d'injection de produit correctif
FR2654018A1 (fr) Dispositif a ultra-sons notamment pour le nettoyage et l'entretien d'appareils immerges.
FR2865506A1 (fr) Procede perfectionne d'entrainement en rotation d'une roue a aubes et roue a aubes permettant de mettre en oeuvre ce procede
FR3002786A1 (fr) Dispositif de transformation d'energie hydrocinetique ou aerocinetique
FR2488345A1 (fr) Pompe a engrenages chauffable
FR3111953A1 (fr) Installation hydraulique pour réseau d’alimentation en eau et réseau d’alimentation en eau comportant une telle installation
EP1987335A2 (fr) Compteur d'energie thermique
FR3123389A1 (fr) Système de production d’énergie électrique pour descente de gouttière

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121127

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GENIN, ARNAUD

Inventor name: MONSOREZ, ALBIN

Inventor name: LEMOINE, CYRILLE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160316

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GENIN, ARNAUD

Inventor name: MONSOREZ, ALBIN

Inventor name: LEMOINE, CYRILLE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160727