EP2569197B1 - Drive for rail vehicles - Google Patents

Drive for rail vehicles Download PDF

Info

Publication number
EP2569197B1
EP2569197B1 EP11720750.6A EP11720750A EP2569197B1 EP 2569197 B1 EP2569197 B1 EP 2569197B1 EP 11720750 A EP11720750 A EP 11720750A EP 2569197 B1 EP2569197 B1 EP 2569197B1
Authority
EP
European Patent Office
Prior art keywords
drive
rotor
wheel
motor
drive motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11720750.6A
Other languages
German (de)
French (fr)
Other versions
EP2569197B2 (en
EP2569197A1 (en
Inventor
Erwin Skumawitz
Thomas KÜRSTEN
Michael Stockmayer
Werner Cepak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transportation Germany GmbH
Original Assignee
Bombardier Transportation GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44227790&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2569197(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bombardier Transportation GmbH filed Critical Bombardier Transportation GmbH
Publication of EP2569197A1 publication Critical patent/EP2569197A1/en
Application granted granted Critical
Publication of EP2569197B1 publication Critical patent/EP2569197B1/en
Publication of EP2569197B2 publication Critical patent/EP2569197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C9/00Locomotives or motor railcars characterised by the type of transmission system used; Transmission systems specially adapted for locomotives or motor railcars
    • B61C9/38Transmission systems in or for locomotives or motor railcars with electric motor propulsion
    • B61C9/48Transmission systems in or for locomotives or motor railcars with electric motor propulsion with motors supported on vehicle frames and driving axles, e.g. axle or nose suspension
    • B61C9/50Transmission systems in or for locomotives or motor railcars with electric motor propulsion with motors supported on vehicle frames and driving axles, e.g. axle or nose suspension in bogies

Definitions

  • the invention relates to a drive for rail vehicles with a drive motor and with at least one of the drive motor driven wheel or wheelset.
  • the wheel or the wheels of the wheelset roll during operation of the rail vehicle on the rails of a rail track.
  • the invention further relates to a method for producing such a drive.
  • the invention relates to a rail vehicle with such a drive.
  • Drive motors of rail vehicles are often supported on the bogie whose wheels drive the drive motor.
  • Support is understood to mean the absorption of the weight of the drive motor and of the dynamic forces by movements of the rail vehicle and impacts during operation as well as the support of the motor for generating the torque.
  • relative movements of the drive motor on the one hand and the driven wheel or wheel set on the other hand can occur.
  • the related problems will be discussed in more detail.
  • a support on the car body of the rail vehicle or components in question which are connected to the bogie and / or the car body.
  • These parts may also be movable relative to the carbody and / or the bogie, although they are mechanically coupled thereto.
  • a motor suspension which allows the drive motor to perform a pendulum motion relative to the car body.
  • the mentioned relative movement between the drive motor and the driven wheel or wheel set is due in large part to the fact that the wheel or the wheel set does not execute a straight, uniform movement during the travel of the rail vehicle (ie rolls straight on the running rail at a constant speed), but instead Longitudinal accelerations and lateral accelerations due to bumps, cornering and others Events is suspended.
  • the wheel or the wheel set relative to the bogie frame and against the suspension of the vehicle to perform movements in the vertical direction (z-direction).
  • the wheelset can move relative to the bogie in any direction from its neutral position, in particular tilt.
  • the pivot point of a tilting movement can not only be in the middle of the axle, but also in their end or near the wheels.
  • the axle can shift parallel to its neutral position.
  • the wheelset is subjected to torsional and bending vibrations.
  • the transmission means for transmitting the drive torque from the drive motor to the wheel or the wheel set shaft in such a way that an elasticity or mobility is present which protects the drive system from damage.
  • the hollow shaft drive wherein the wheelset is disposed within a hollow shaft and wherein the drive motor transmits the drive torque via the hollow shaft to a wheel of the wheelset or to the wheelset.
  • the hollow shaft is connected to the driven wheel via a coupling (eg rubber coupling, diaphragm coupling, tab coupling or toothed coupling).
  • a coupling eg rubber coupling, diaphragm coupling, tab coupling or toothed coupling
  • At the opposite end of the hollow shaft this is connected via a cardanically movable joint with a gear, which is driven by the drive motor.
  • Drives with hollow shafts are structurally and manufacturing technically complex. In addition, they limit the space available for the drive motor space, since the hollow shaft and coupled to the hollow shaft joints and / or gear require correspondingly large space.
  • a cardanically movable joint is understood as meaning a joint which allows the parts which are coupled to one another via the joint to move relative to one another about two mutually perpendicular rotary axes (also called rotation axes).
  • the axes of rotation can be imaginary axes of rotation act, which do not have to correspond to the axes of rotation of waves, as it is for example in the universal joint (also called universal joint) the case.
  • a cardanically movable joint also does not have to be designed in one piece. For example, it may consist of parts which each allow rotation about one of the two mutually perpendicular axes of rotation.
  • a relative movement of the parts coupled together via the joint from a neutral position of the joint to a deflected position of the joint can be connected to an elastic deformation, which leads to restoring forces in the neutral position.
  • parts of the joint consist of elastic materials, as is the case, for example, with the Hardy disc.
  • the gimbal joint itself has no linear mobility in the direction of the axis which is perpendicular to the two axes of rotation.
  • the cardanically movable joint does not itself allow a linear mobility in the direction of the two axes of rotation.
  • the gimbal movable joint is not rotationally movable about the axis which is perpendicular to the two axes of rotation.
  • a gimbal joint may e.g. also comprise components of high modulus (e.g., steel) materials, but which are elastically deformable in shape (e.g., spring elements such as steel leaf springs).
  • the elastic or non-elastic relative mobility of parts of the drive train can also be referred to as mass decoupling, since unwanted dynamic excitations and movements of masses (eg the wheel or the wheelset) are not or not completely transferred to other masses (eg the drive motor).
  • axial compliance in the powertrain i. a compliance in the direction of the axis of rotation, desired to rotate the one or more parts of the drive train to transmit the drive torque.
  • this torque is e.g. is converted by a gear in the drive train.
  • transverse drive is realized in which the axis of rotation of the rotor of the drive motor is approximately parallel to the axle of the driven wheelset.
  • the stator of the drive motor is supported on a cross member of the bogie.
  • the rotor shaft has a double curved tooth coupling. This coupling corresponds to the series connection of two joints with gimbal mobility, in addition also an axial mobility of the coupled via the gear coupling shaft sections is given.
  • a disadvantage of this type of mass decoupling is that only a short section of the drive train lies between the two cardanically movable joints in the axial direction of the drive train. Therefore, unlike the above-described decoupling with hollow shaft, only a relatively small offset of the wheelset axle can be compensated from its neutral position.
  • the end of the rotor shaft remote from the runner's view is via a so-called off-axis gear, i. a transmission, which is at least partially supported on the axle, coupled to the wheelset.
  • DE 9116159 U1 describes an axle drive, in particular for a wheelset axle arranged in a bogie, of a rail vehicle, wherein the axis of the drive motor runs parallel to the wheelset axle.
  • a spur gear On the axis of a spur gear is fixed, with which the axle is driven.
  • the spur gear is supported by a torque arm opposite the bogie.
  • the torque arm is on the one hand by a universal joint with the Bogie and on the other hand connected by a universal joint with the spur gear.
  • the universal joints allow limited pivoting and twisting of the torque arm relative to the articulation points.
  • a gimbal coupling connects the drive shaft to the drive motor, which is attached to the bogie.
  • DE 2925836 A1 describes a drive device for an electric locomotive with a drive motor, which is connected to a gearbox.
  • a drive end of the drive motor is provided with a ring which carries an elastic Gummringkupplung. This is pressed inside a flange.
  • a pinion of the transmission is connected by means of a fastening screw with the flange, wherein the contact surfaces of the pinion and the flange have teeth, which prevent the sliding of the contact surfaces.
  • the gearbox is supported by bearings on the axle shaft.
  • the non-drive end of the drive motor is provided with a bracket which is fastened with fastening screws.
  • the middle part of the bracket is connected to the bogie via a spherical bearing, which is rotatably mounted in brackets.
  • EP 1 197 412 A2 describes a drive unit for rail vehicles with a vehicle frame or on the suspension suspended electric motor, a transmission and a gimbal-acting clutch system, which is arranged between the wheelset and the transmission.
  • the drive unit is arranged on the outside of the wheelset and connected by means of fastening devices with the bogie.
  • EP 0 175 867 A1 describes a cardanic double clutch.
  • an angle gear is flange-mounted on the front sides of an electric motor lying longitudinally to the direction of travel, which drives by means of bevel gears hollow shafts one of the double clutches.
  • the electric motor is connected together with the angular gears by elastic suspensions to the bogie frame.
  • stator of the drive motor is supported via a cardanically movable suspension on a bogie of the rail vehicle, on a car body of the rail vehicle or on a construction connected to the bogie and / or the car body.
  • a gimbal-mounted suspension analogous to the above definition of a gimbal joint is understood a joint that allows the parts coupled together via the joint to move relative to each other about two mutually perpendicular axes of rotation, i. to rotate.
  • the cardanic mobile suspension may be linearly immovable with respect to the two axes of rotation, linearly immovable with respect to the axis perpendicular to the two axes of rotation, and also with respect to the axis perpendicular to the two axes of rotation be rotationally immobile.
  • a linear mobility in the direction of the axis can be provided, which is perpendicular to the two axes of rotation.
  • the gimbal-mounted suspension is not located in the drive train (between rotor and wheel or wheelset) and therefore does not rotate continuously to transmit torque.
  • the gimbal movable suspension supports the stator of the drive motor so that the torque of the rotor is transferable.
  • the two mutually perpendicular axes of rotation of the gimbal-mounted suspension are approximately perpendicular to the axis of rotation of the rotor.
  • the gimbals of the gimbal-mounted suspension need not necessarily cross each other, as is the case with a universal joint (so for the definition and execution of the gimbal joint).
  • the one axis of rotation crosses only a parallel of the other axis of rotation perpendicular.
  • the location of the axes of rotation in the space and relative to the stand and the supporting part (eg bogie frame) may vary slightly during rotation.
  • the stiffnesses and / or resistances of the rotational movements about the two axes of rotation of the gimbal mobile suspension need not be equal.
  • the gimbal mobile suspension can be realized in the same way as described above in the definition of the term gimbal movable joint.
  • it can consist of an arrangement of several parts which are not directly connected to each other, but are connected to each other only via the supporting structure and the stand.
  • one-piece gimbals eg the universal joint
  • the gimballed suspension is realized by two elongated elements of elastic material, in particular natural or synthetic rubber material.
  • the stiffness of the two elongated elements for linear movements in the direction of their longitudinal axis is substantially greater than for curvatures of the elements about their longitudinal axis.
  • the curvatures may be torsions about the longitudinal axis and / or curvatures of the longitudinal axis in two different mutually perpendicular directions.
  • the two elongated elements are arranged with their longitudinal axes parallel to each other, wherein in each case one end of the elongate member in the longitudinal direction of the car body of the rail vehicle or connected to the bogie and / or the car body construction is connected and each with the other, in the Longitudinally opposite end of the elongated member of the rotor of the drive motor is connected, so that due to the curvatures described rotational movements of the gimbal movable suspension are realized. It is further preferred that the Longitudinal axes of the elongated elements in the neutral position (see below) in the vertical direction.
  • the cardanically movable suspension is realized by two annular elements of elastic material, in particular of natural or synthetic rubber material.
  • the annular elements each extend about an axis, which is in particular a rotational axis of symmetry.
  • the two axes are parallel to each other at a distance.
  • the bogie or the other part of the supporting structure of the vehicle are interconnected.
  • one part of the two parts to be joined together (eg the motor housing) is connected to the radially inner surfaces of the annular elements and the other part (eg the bogie frame) is connected to the radially outer surface of the annular elements.
  • the rubber material may be vulcanized to a first annular sleeve on the radially inner side and to a second annular sleeve on the radially outer side.
  • the Sleeves in turn are firmly connected to the respective part to be connected.
  • the directional stiffness of the annular elastic members may now be selected and / or adjusted to achieve the desired cardan motion of the suspension.
  • a gimbal-mounted joint in the drive train and a separate gimbal-mounted suspension are easier to implement than two gimbal-mounted joints in the drive train. Therefore, the weight of the arrangement can be reduced. Generally, for all embodiments, the number of complex components for ensuring the offset (e.g., parallel offset of the rotational axis of a driveline portion) can be reduced.
  • An additional axial mobility of the rotor relative to the stator of the electric motor has the advantage that the gimbal-mounted joint in the drive train can be made simpler. For example, No curved tooth coupling with axial compliance is required.
  • the axial mobility of the motor also has the advantage that the bearing of the rotor by the magnetic field of the motor is completely friction and wear-free.
  • a neutral position can be defined, in which the axis of rotation of the rotor crosses the two axis of rotation of the gimbal-mounted suspension perpendicularly but not necessarily in the same point.
  • a joint chain is realized, wherein the drive motor is part of the joint chain.
  • the drive motor is located in the force flow between the supporting structure and the drive train between the gimbal movable suspension and the gimbal joint.
  • the following embodiment particularly relates to a transverse drive, i. the axis of rotation of the motor rotor is transverse to the direction of travel: in particular, the degrees of freedom of movement of the drive motor relative to the bogie of the rail vehicle relative to the railcar body or relative to that with the bogie and / or the gantry due to the gimbal mobile suspension Car Body connected construction can be the same degrees of freedom of the movement, which can perform the part of the drive train, which is coupled via the gimbal movable joint with the rotor relative to the rotor.
  • the rotor is coupled via the cardanically movable joint with a part of the drive train, which rotates during operation of the drive motor about an axis of rotation, which runs in a neutral position coaxial with the axis of rotation of the rotor.
  • the agreement in the degrees of freedom of the movement that the axis of rotation of said part of the drive train can be offset parallel to the neutral position, for. B. if appropriate deflections take place during operation.
  • the axis of rotation of the said part of the drive train can also be moved out of the neutral position in a different way than by parallel displacement or be permanently or predominantly in a deflected position.
  • the cardanically movable joint is located in the drive train between the rotor and a transmission, via which the driving forces generated by the engine are transmitted to the wheel or the wheelset.
  • the gimbal movable joint is located between the rotor and the first transmission in the course of the drive train, if several transmissions are present.
  • the stator of the drive motor and the immovable parts of the transmission are not connected.
  • the stand and the immovable parts of the housing are movably connected relative to each other.
  • the transmission of the drive torque can take place with the aid of a hollow shaft.
  • a hollow shaft On the principle of a hollow shaft has already been discussed above. It is preferred that in the case of the transverse drive, the torque transmission from the hollow shaft to the wheelset, which has two wheels connected to each other via an axle, takes place only on one of the wheels. Consequently, there is no direct transmission of the drive torque from the hollow shaft to the other impeller. This other impeller is driven only via the axle of the wheelset.
  • the following embodiment particularly relates to a longitudinal drive, i. the axis of rotation of the rotor extends in the direction of travel:
  • the rotor is coupled via an angle gear with the wheel or the wheelset.
  • the stator or the housing of the drive motor and the gear housing or the immovable parts of the transmission are fixed, i. immobile relative to each other, interconnected.
  • the motor and the angle gear therefore form a common drive module which is suspended by the gimbal-mounted suspension on the supporting structure of the vehicle, wherein the output side of the angular gear is coupled via the gimbal movable joint with the driven wheel or wheelset.
  • connection of the motor with the angular gear saves additional suspension, which would have to be designed accordingly movable.
  • the fixed connection between the motor and bevel gear prevents a linear movement of the bevel gear in the vertical direction without an additional suspension of the angular gear.
  • An angular gear is understood to mean a gear which converts a drive torque about a first rotational axis into a second drive torque about a second rotational axis, wherein the first and the second rotational axis extend transversely and in particular exactly perpendicular to one another.
  • the offset is understood in particular to mean the offset of the axis of rotation of the rotor or the offset of the drive train from the perspective of the rotor beyond the cardanically movable joint.
  • the offset angle of the deflections of the gimbal movable suspension and gimbal joint are lower.
  • gimbals movable joints are used, which have a smaller construction volume, because they allow only a lower deflection. This is especially true for curved gear couplings.
  • the invention is therefore particularly suitable for transverse drive and for operating situations in which particularly strong or rapid movements of the wheel or the wheelset relative to the drive motor are to be expected. This is e.g. at high speed trains the case.
  • transverse drive the length of the drive train in extension of the axis of rotation of the rotor is limited by the width transverse to the direction of travel, which is available for installation. If lower deflections are to be expected, lower demands can also be placed on the precision of the components of the gimbal-mounted joint in the drive train.
  • the axial mobility in the direction of the axis of rotation of the rotor and / or in the direction of the other connected to the rotor shaft via the gimbal movable joint further drive train can be achieved alternatively to an axial mobility of the rotor relative to the stator via a gimbal movable joint in the axial direction.
  • This variant is used when the motor has no axial mobility.
  • the motor has such an axial mobility, the axial mobility of the gimbal-type joint is dispensed with so that the rotor can not move freely in the axial direction between two end points.
  • a third possibility of axial mobility consists in a mobility of the gimbal mobile suspension, which is particularly preferred for the above-described embodiment of a longitudinal drive with fixedly connected engine and transmission.
  • neither the motor nor the gimbal movable joint are deflectable in the axial direction.
  • the axial mobility of the gimbal-mounted suspension prevents driving forces from being transmitted through the gimbal-mounted suspension.
  • driving forces are understood to mean forces which act between the wheel and the rail and are transmitted to the supporting structure of the vehicle for acceleration or braking of the vehicle.
  • the gimbal-mounted suspension and the gimbal-movable joint (viewed in the direction of the axis of rotation of the rotor) at opposite ends of the motor or even at a distance from the ends can be.
  • the gimbals movable suspension is arranged laterally of the engine. An embodiment will be discussed. Although this arrangement shortens the distance between the suspension and the joint. As a rule, however, the distance will still be significantly greater than with two cardanically movable joints in the drive train.
  • the lateral arrangement of the gimbal movable suspension further space for the arrangement of the engine and the drive train is saved.
  • a drive for rail vehicles which has a drive motor with a stator and a rotor and at least one driven by the drive motor wheel or a drive motor driven wheelset that rolls in the operation of the rail vehicle on the rails of a rail track.
  • the stator of the drive motor is supported via a gimbal-mounted suspension on a bogie of the rail vehicle, on a car body of the rail vehicle or on a construction connected to the bogie and / or the car body.
  • the rotor of the drive motor is coupled via a cardanically movable joint and / or a cardanically movable coupling with the wheel, with the wheelset, with at least one wheel of the wheelset and / or with a shaft of the wheelset, so that during operation of the rail vehicle, the driving force of Drive motor is transmitted via the joint and / or the clutch.
  • the rotor drives a drive shaft which drives a wheel of the wheelset or a wheelset shaft of the wheelset via a transmission.
  • the rotor may drive a drive shaft during operation of the drive, the gimbal movable joint coupling a first portion of the drive shaft connected to the rotor to a second portion of the drive shaft such that the rotational axes of the first portion and the second portion are angled relative to one another can.
  • the transmission mentioned in the previous paragraph is preferably located in the course of the drive train from the perspective of the runner beyond the second portion of the drive shaft, i. H.
  • the second portion of the drive shaft has a rotation axis coaxial with the axis of rotation of the rotor in a neutral position in which the gimbal-type joint does not lead to angling of the first and second portions of the drive shaft.
  • the axes of rotation of the drive shaft extend transversely to the direction of travel of the rail vehicle.
  • z. B. also a longitudinal drive possible, in which the axes of rotation of the drive shaft extend approximately in the direction of travel of the rail vehicle.
  • the joint allows axial relative movement of the first portion and the second portion in the direction of at least one of the axes of rotation of the sections.
  • the axial compliance or mobility is realized by the motor, relatively between rotor and stator, ie, the rotor is movably mounted in the direction of its axis of rotation, preferably solely by the magnetic field of the motor.
  • the scope of the invention also includes a rail vehicle, wherein the rail vehicle has a drive according to one of the described embodiments.
  • the drive motor drives the wheel or wheelset via a transmission.
  • the drive motor and a transmission form a drive module, wherein the stator of the drive motor and non-movable parts of the transmission (in particular the gear housing) are fixedly and immovably connected to each other.
  • the drive module is coupled via the cardanically movable joint and / or via the cardanically movable coupling with the wheel, with the wheelset, with at least one wheel of the wheelset and / or with the shaft of the wheelset.
  • the rotor of the drive motor may have a drive shaft or be rotatably connected to a drive shaft.
  • the drive shaft is coupled via the cardanically movable joint and / or the cardanically movable coupling with the wheel, the wheel or the shaft of the wheelset.
  • Fig. 1 shows a plan view of a bogie with a wheel, which is driven by a transverse drive.
  • the bogie has a bogie frame 100 with an open in the direction of travel H-shaped support profile, whose cross member is denoted by 9 and whose longitudinal members are designated 3a, 3b.
  • bearings 11 a and 11 b are arranged, in which the wheelset shaft 6 of the wheelset 7a, 7b is rotatably mounted.
  • the wheel set shaft 6 is driven by an axle riding gear 8, which suspended by an elastic suspension 25 on the cross member 9.
  • the drive torque is introduced via a drive shaft 19 in the transmission 8.
  • the drive shaft 19 is driven by a gimbal movable joint 5 of the rotor shaft 18 of an electric motor 1.
  • the cardanically movable joint 5 has an axial compliance or mobility in the direction of the axis of rotation of the rotor shaft 18.
  • the rotor of the drive motor 1 is denoted by 4.
  • On the stand 22, a fastening 21 is mounted, which is suspended via a gimbal movable suspension 2 on a longitudinal support 12 which is fixed to the cross member 9.
  • Fig. 2 shows the arrangement in a front view, wherein also still the suspension 16a, 16b can be seen, via which the wheel bearings 11 a, 11 b are resiliently connected to the car body 14 of the rail vehicle.
  • Fig. 3 shows a plan view
  • the top view in Fig. 1 is very similar, but the gimbal movable joint 5 is replaced by a gimbal movable joint 15, which has no axial compliance. Instead, the axial compliance in the direction of the rotor shaft is given by a mobility of the rotor 4 relative to the stator 22.
  • FIG. 4 A top view of an embodiment according to the prior art differs from that in FIG Fig. 1 in that the motor is suspended by a rigid suspension 29 on the cross member 9.
  • the rotor shaft 18 and the drive shaft 19 are coupled together via two gimbals movable joints 35a, 35b for transmitting the torque, wherein the gimbals movable joints 35 are movable relative to each other in the axial direction.
  • Fig. 1 . 3 and 4 are each represented by a triangular symbol bearing, which allow a rotation of the rotor shaft 18 and the rotor 4.
  • Fig. 1 has the gimbal movable joint 5 as mentioned on an axial compliance. Therefore, said rotary bearing does not allow axial mobility of the rotor shaft 18.
  • Fig. 4 the same applies.
  • Fig. 5 shows a plan view of an arrangement, the one embodiment of the arrangement according to Fig. 3 is.
  • the design relates to the gimbals movable suspension and the suspension of the transmission 8. These two suspensions can also be used in the in Fig. 1 shown arrangement can be used.
  • the gimbals movable suspension of the electric motor 1 connects the longitudinal support 12 with the stator 22 of the motor 1.
  • the suspension has two elongated elastic members 52a, 52b, whose longitudinal axes in the presentation of Fig. 5 perpendicular to the image plane.
  • the longitudinal support 12 extends at the level of the crossbeam 9 of the bogie frame 100.
  • the two elongate elements 52a, 52b are spaced apart in the longitudinal direction of the rail vehicle, ie in the direction of the longitudinal extension of the longitudinal support 12, and extend upwards in the direction of their longitudinal axes.
  • the elements 52 are connected to a bracket 51, which is fastened to the stand 22 in the upper region.
  • a bracket 51 which is fastened to the stand 22 in the upper region.
  • the elements 52 are stiff in the direction of their longitudinal axis, ie the length in the direction of the longitudinal axis does not change or only slightly by the action of the forces usually occurring during operation of the bogie.
  • the suspension 55 of the transmission 8 is also from the sectional drawing in Fig. 6 recognizable.
  • a C-shaped bracket is attached to the cross member 9 of the bogie.
  • rubber springs 61 a, 61 b At the opposite inner sides of the free ends of the C-shaped bracket 63 put rubber springs 61 a, 61 b, the opposite ends between them receive an end portion of the transmission 8 and are attached thereto.
  • the opposed rubber springs 61 each have a longitudinal axis which is aligned with the longitudinal axis of the other rubber spring and which intersects the drive shaft 10 perpendicular to its axis of rotation.
  • the longitudinal axes of the in Fig. 6 shown position and therefore intersect a parallel axis of rotation. Also recognizable in Fig.
  • Fig. 6 is the position of the wheelset shaft 6, which is driven via the transmission 8. Details of the gear design are out Fig. 6 not visible.
  • the suspension 55 allows in particular rotations of the drive shaft 10 by three mutually perpendicular axes of rotation. These axes of rotation run in Fig. 6 in the vertical and horizontal direction in the plane of the figure and perpendicular to the plane of the figure.
  • a pendulum carrier 71 is fixedly connected, which has at its upper end projecting in the direction of gear 8, a first joint 73, the rotational movement of a pendulum 77 about a perpendicular to the image plane of Fig. 7 running axis of rotation allowed.
  • the second joint 75 also allows a rotational movement about a perpendicular to the image plane of Fig. 7 extending axis of rotation.
  • the suspension mainly allows movements in the direction of the horizontal axis Fig. 7 to, which runs approximately at the height of the drive shaft 10 and the wheelset shaft 6.
  • the second joint 75 may also extend above or below the height of the drive shaft 10.
  • Fig. 8 is already based on Fig. 5 described gimbal movable suspension visible.
  • the cross member 9 sets (in Fig. 8 extending to the left) the longitudinal support 12, on the upper side of which the elongated elements 52a, 52b are fastened, namely at a distance from each other.
  • the bracket 51 At the upper ends of the elements 52 are connected to the bracket 51, which is secured in the upper part of the stator housing.
  • Fig. 9 shows in plan view a longitudinal drive for a wheel with wheels 7a, 7b.
  • the wheelset shaft 6 via wheel bearings 11 a, 11 b connected to the bogie frame 101, which is unilaterally open in the direction of travel.
  • the bogie on a cross member 91 to which the gimbal movable suspension 92 attaches, which also a linear movement of the motor 1 in the direction of travel (from top to bottom in Fig. 9 extending) relative to the cross member allows.
  • the suspension 92 can rotate about a horizontally, transversely to the direction of travel (in the plane of the figure Fig. 9 from left to right) and a rotation axis perpendicular to the plane of the figure Fig.
  • the motor 1 is fixed, ie immovable relative thereto, connected to a gear 98, which is coupled via a hollow shaft 109 and a gimbal movable coupling 95 with the wheelset shaft 6.
  • the rotor 4 of the motor 1 transmits the torque produced by it via the rotor shaft 108, the gear 98, the hollow shaft 109 and the cardanically movable coupling 95 to the wheelset shaft 6 and therefore drives them.
  • a longitudinal drive with the suspension of the engine according to the invention can also be different than based on Fig. 9 be realized explained.
  • the rotor of the supported via a gimbal on the cross member of the bogie motor directly without the interposition of a gimbal joint with a gear, for example, a bevel-helical gear to be coupled.
  • the rotor shaft of the motor rotor is therefore not gimbal movable relative to the transmission.
  • the gimbal mobility in the drive train is realized in this case in the area of the drive train between the gearbox and the wheelset.
  • a pinion of the transmission can drive a large gear, which is rotatably connected to the drive side of a gimbal joint.
  • This gimbal joint may be, for example, a curved tooth coupling.
  • the output side of the curved tooth coupling can for example be connected directly to the shaft of the driven wheelset.
  • Fig. 10 shows schematically the basic principle of the mobility of the arrangement according to the invention.
  • the supporting structure on the left in the image is designated by the reference numeral 90.
  • the motor 1 is suspended by its stand 22 via a connecting element 21 and the cardanically movable suspension 2.
  • the stator 22 is thus relative to the supporting structure 90 about two mutually perpendicular axes of rotation, in particular perpendicular to the image plane in Fig. 10 extending axis of rotation.
  • this axis of rotation extending perpendicular to the image plane may be, for example, the horizontal or the vertical axis.
  • Fig. 10 shows two rotational positions of the engine 1 and the movable parts of the assembly together with the motor 1.
  • One position is represented by the outlines shown by solid lines.
  • the other position is represented by the broken line parts. It can be seen that from the neutral position (position drawn by the solid lines) in the axis of rotation by the gimbal movable suspension 2, a rotational movement can take place, so that the connection 21, the stator 22, the rotor 4 and the rotor shaft 18 to an angle against the neutral position are aligned rotated. Due to the gimbal joint 5 at the transition between the rotor shaft 18 and the drive shaft 19, the drive shaft 19 only offset parallel to the neutral position but in the same direction run. However, it is also possible that in the deflected position, the drive shaft 19 is not aligned parallel to the neutral position, but unlike in Fig. 10 shown aligned at a point approximately at the right end of the drive shaft, on which it is suspended.
  • the axial mobility in the direction of the axis of rotation of the rotor shaft or the drive shaft is from the example of Fig. 10 not visible. Rather, the example corresponds for example to an axial mobility at the transition between the drive shaft and not in Fig. 10 shown gear.
  • Fig. 11 shows a variant in which the in Fig. 10 shown arrangement in its neutral position, but the connection 21 is not aligned in the direction of the rotor shaft, but already inclined with respect to the supporting structure 90 extends.
  • This example shows that the gimballed suspension 2 also allows the suspension to be set within certain limits without interfering with the function.
  • the arrangement according to the invention therefore allows within certain limits tolerances in the production and assembly, without jeopardizing the function.
  • Fig. 12 shows schematically that the gimbal movable suspension can also be arranged laterally of the engine 1.
  • the supporting structure 109 is connected via a connection 31 to the cardanically movable suspension 32, which acts on the motor 1 in the left-hand area of the stator housing.
  • FIG. 13 A concrete embodiment shows Fig. 13 , Supporting parts 19a, 19b can be seen on the right and left in the figure. About these parts, the suspension is connected, for example, with the cross member of a bogie. Of the supporting parts 19a, 19b extending in the direction of the other supporting part 19, a connecting element 131, 132 which is attached to the lower end of an elastic member 135a and 135b, respectively. At the upper end of the elastic element 135, a connecting element 136a, 136b of non-elastic material is fixed, which the elastic element 135a, 135b with the housing of the motor 1 connects.
  • the function of gimbal mobile suspension according to Fig. 13 is eg like in the Fig. 8 shown suspension. The function is still based on the 15 to 18 explained.
  • Fig. 14 shows an example of an elongate elastic member.
  • This element has a cylindrical shape. In practice, however, the shape does not have to be cylindrical, but rather can be as in Fig. 13 represented have a longitudinally curved course.
  • opposite ends of the element is in each case a disc-shaped part 141 a, 141 b of a non-elastic material, for example of metal, arranged.
  • Disc-shaped segments 142a to 142e of elastic material are located between these end discs 141 in the exemplary embodiment.
  • Through all disks 141, 142 through a bore extends in the longitudinal direction.
  • a tension element of non-elastic material extends through which the end disks 141 are braced against one another, so that the disks 142 of elastic material are clamped together in the longitudinal direction. Therefore, no or only a very small elastic deformation is possible in the longitudinal direction.
  • the tension is designed so that the elastic element can twist around its longitudinal axis and can bend so that the longitudinal axis is no longer straight, but curved.
  • Fig. 15 schematically shows an arrangement with two elastic elements 151 a, 151 b, whose longitudinal axes perpendicular to the image plane of Fig. 15 run. In the longitudinal direction at one end of the elements 151, these are connected to the supporting structure 150. At the other end, the elements 151 are each connected to a connecting structure 153a, 153b, wherein the connecting structures 153a, 153b can also be a single structure, ie they can also be fixed to one another be connected or form a piece.
  • the housing of the motor 1 is connected.
  • the rotor shaft 18 is connected via a gimbal movable joint 155 in the drive train to the drive shaft 19.
  • FIG. 12 shows the neutral position of the gimbals of the motor 1 realized by the elastic elements 151.
  • Fig. 16 shows a deflected position.
  • the end of the elastic members 151 fixedly connected to the supporting structure 150 is shown by a broken line, while the end connected to the connecting structure 153 is shown by a continuous line.
  • a rotation about a perpendicular to the image plane in Fig. 16 extending axis of rotation, which is located in the middle between the longitudinal axes of the elastic members 151 (the angle of rotation is ⁇ ), which has moved to the connecting structure 153a fixed end of the element 151 a slightly to the left, while the attached to the connecting structure 153 b end of the Elements 151 b has moved something to the right.
  • Both elements 151 have therefore carried out both a torsional movement about its longitudinal axis, as well as a bending movement, in which the longitudinal axis is slightly curved.
  • FIGS. 17 and 18 show the arrangement of Fig. 15 in a side view.
  • Fig. 17 shows the neutral position.
  • the elastic elements 151 are above the supporting structure 150 one behind the other. Therefore, only the outlines of one of the elements 151 can be seen.
  • Fig. 18 shows a different rotational position than Fig. 16
  • the connection structure 153 and the associated motor 1 are at a perpendicular to the image plane of FIGS. 17 and 18 extending axis of rotation turned up.
  • the elastic elements have made a movement in which their longitudinal axis (runs in FIGS. 17 and 18 in the vertical direction) has curved.
  • the longitudinal axis runs from bottom to top, leaning slightly to the left.
  • Fig. 19 schematically shows a plan view of another embodiment of a transverse drive according to the invention.
  • the wheelset 207a, 207b which is rotatably mounted on the wheelset shaft 6, via pivot bearings 11 a, 11 b attached to the bogie frame 200.
  • FIG. 19 With regard to the attachment of the drive motor 201 is already on the basis of Fig. 13 described embodiment.
  • Fig. 19 Thus, with respect to the arrangement of cross members 19a, 19b and the drive motor shows a plan view of the arrangement according to Fig. 13 ,
  • the dimensions of the drive motor 1 in relation to the dimensions of the attachment and the cross member may be chosen differently than in Fig. 13 , which is why in Fig. 19 for the drive motor, the reference numeral 201 is used.
  • a first cross member 19b of the bogie connects the opposite side members to which the pivot bearings 11 are mounted. Further connects a second cross member 19 a, the two side members (top in the figure).
  • Its rotor 221 is designed as a hollow shaft and concentrically surrounds the wheelset shaft 6.
  • the gimbal movable joint is referred to, however, differently than schematically shown as described above and as with hollow shafts can be realized with cardanic mobility usual over annular elastic elements.
  • the runner 221 is connected via the cardanically movable joint 205 to a transmission 208 or to a transmission element fixedly mounted on the wheel set shaft 6.
  • the stator of the electric motor 201 is also fastened to the cross members 19a, 19b via a cardanically movable suspension.
  • a cardanically movable suspension For this purpose, the description of the Fig. 13 Referenced.
  • the rotary axes of gimbal movable suspension run with respect to the image plane of Fig. 19 perpendicular to the image plane and vertically in the image plane, ie perpendicular to the axis of rotation of the wheelset shaft 6.
  • This in Fig. 20 illustrated drive module is formed by a drive motor 1 and an angle gear 181.
  • the stator 22 of the motor 1 is fixedly connected to the housing 190 of the angle gear 181, so that the motor and bevel gear are not movable relative to each other.
  • motor housing and gear housing are flanged together and bolted.
  • the drive module is attached to the bogie frame 9 via a suspension 182. At least one axle 6 of a wheel set with the wheels 7a and 7b is mounted on the bogie frame 9.
  • Fig. 20 represented by a left-to-right arrow having the lettering "x". This indicates that the direction of travel is usually referred to as the x-direction.
  • the suspension 182 has two recesses 192 (see Fig. 21 ), in each of which an annular elastic element 184 is introduced.
  • the elements 184 are substantially rotationally symmetrical, with a radially inner cylindrical sleeve 198 (see FIG Fig. 22 ) is secured to the radially inward surface of a rubber ring 199 and a second annular cylindrical sleeve 197 is secured to the radially outer surface of the rubber ring 199.
  • the two sleeves 197, 198 and also the rubber ring 199 are arranged coaxially to a rotational axis of symmetry.
  • a projection 191 of the motor 1 is inserted into the cylindrical interior of the annular element 184, which is formed radially inwardly by the inner sleeve 198.
  • the illustrated schematically angular gear 181 is rotatably connected to a first bevel gear 185 with the rotor shaft of the motor 1.
  • the first bevel gear 185 is part of a first angular gear, which transmits the drive torque to a first gear 187, which in turn drives a second gear 188.
  • the second gear 188 is non-rotatably mounted on an output shaft 186 of the angular gear 181, which drives the impeller 7b via a cardanically movable joint 180.
  • the right part of the impeller 7b is in Fig. 20 and Fig. 21 shown cut. It can be seen on the cut side and the gimbal joint movable, which is designed for example as Bogenzahnkupplungshboo.
  • the gear coupling half 180 can (as in Fig. 21 shown) via screws 194 and threaded holes 195 of the impeller 7b to be screwed.
  • an elastic bolt coupling can be used which, like the cardanically movable suspension, can have annular elastic elements for transmitting torque.
  • Fig. 21 extending axis of rotation (z-axis) and about a horizontal and perpendicular to the x-axis and z-axis extending second axis of rotation (y-axis).
  • a linear mobility of the annular elastic members 184 relative to the recesses 192 in the x-direction can also be achieved in other ways, for example by a corresponding relative mobility of the Projections 191 of the engine 1 relative to the annular elastic members 184.
  • This linear mobility prevents forces acting as driving forces or braking forces between the impellers 7 and the rails from being transmitted via the gimbal movable suspension 182.
  • the drive module can also be arranged within the bogie frame, ie between the wheels 7a, 7b.
  • a curved tooth coupling or elastic pin coupling can optionally be used in this case, a hollow shaft coupling, which also has a gimbal mobility.

Description

Die Erfindung betrifft einen Antrieb für Schienenfahrzeuge mit einem Antriebsmotor und mit zumindest einem von dem Antriebsmotor angetriebenen Rad oder Radsatz. Das Rad oder die Räder des Radsatzes rollen beim Betrieb des Schienenfahrzeugs auf den Fahrschienen eines Schienenweges. Die Erfindung betrifft ferner ein Verfahren zum Herstellen eines derartigen Antriebs. Außerdem betrifft die Erfindung ein Schienenfahrzeug mit einem solchen Antrieb.The invention relates to a drive for rail vehicles with a drive motor and with at least one of the drive motor driven wheel or wheelset. The wheel or the wheels of the wheelset roll during operation of the rail vehicle on the rails of a rail track. The invention further relates to a method for producing such a drive. Moreover, the invention relates to a rail vehicle with such a drive.

Antriebsmotoren von Schienenfahrzeugen werden häufig am Drehgestell abgestützt, dessen Räder der Antriebsmotor antreiben soll. Unter Abstützung wird die Aufnahme der Gewichtskraft des Antriebsmotors und der dynamischen Kräfte durch Bewegungen des Schienenfahrzeugs und Stöße während des Betriebes sowie die Abstützung des Motors zur Erzeugung des Drehmomentes verstanden. Dabei können insbesondere Relativbewegungen des Antriebsmotors einerseits und des angetriebenen Rades oder Radsatzes andererseits auftreten. Auf die damit verbundenen Probleme wird noch näher eingegangen. Alternativ zu der Abstützung des Antriebsmotors am Drehgestell kommt eine Abstützung am Wagenkasten des Schienenfahrzeugs oder an Bauteilen infrage, die mit dem Drehgestell und/oder dem Wagenkasten verbunden sind. Diese Teile können auch relativ zu dem Wagenkasten und/oder dem Drehgestell beweglich sein, obwohl sie daran mechanisch angekoppelt sind. Z.B. kann am Wagenkasten eine Motoraufhängung befestigt sein, die es dem Antriebsmotor erlaubt, eine Pendelbewegung relativ zu dem Wagenkasten auszuführen.Drive motors of rail vehicles are often supported on the bogie whose wheels drive the drive motor. Support is understood to mean the absorption of the weight of the drive motor and of the dynamic forces by movements of the rail vehicle and impacts during operation as well as the support of the motor for generating the torque. In this case, in particular relative movements of the drive motor on the one hand and the driven wheel or wheel set on the other hand can occur. The related problems will be discussed in more detail. As an alternative to the support of the drive motor on the bogie is a support on the car body of the rail vehicle or components in question, which are connected to the bogie and / or the car body. These parts may also be movable relative to the carbody and / or the bogie, although they are mechanically coupled thereto. For example, may be attached to the car body, a motor suspension, which allows the drive motor to perform a pendulum motion relative to the car body.

Die erwähnte Relativbewegung zwischen dem Antriebsmotor und dem angetriebenen Rad oder Radsatz ist zu einem wesentlichen Teil darauf zurückzuführen, dass das Rad oder der Radsatz bei der Fahrt des Schienenfahrzeuges keine geradlinige, gleichförmige Bewegung ausführt (d.h. mit konstanter Geschwindigkeit geradeaus auf der Fahrschiene abrollt), sondern Längsbeschleunigungen und Querbeschleunigungen aufgrund von Stößen, Kurvenfahrten und anderen Ereignissen ausgesetzt ist. Insbesondere kann das Rad oder der Radsatz relativ zu dem Drehgestellrahmen und entgegen der Federung des Fahrzeuges Bewegungen in vertikaler Richtung (z-Richtung) ausführen. Bei einem Radsatz mit zwei einander gegenüberliegenden drehfest auf einer Radsatzwelle montierten Rädern z.B. kann sich die Radsatzwelle relativ zum Drehgestell in beliebigen Richtungen aus ihrer Neutralstellung herausbewegen, insbesondere verkippen. Der Drehpunkt einer Kippbewegung kann nicht nur in der Mitte der Radsatzwelle liegen, sondern z.B. auch in deren Endbereichen oder nahe den Rädern. Auch kann sich die Radsatzwelle parallel zu ihrer Neutralstellung verlagern. Außerdem ist die Radsatzwelle Torsionsund Biegeschwingungen ausgesetzt.The mentioned relative movement between the drive motor and the driven wheel or wheel set is due in large part to the fact that the wheel or the wheel set does not execute a straight, uniform movement during the travel of the rail vehicle (ie rolls straight on the running rail at a constant speed), but instead Longitudinal accelerations and lateral accelerations due to bumps, cornering and others Events is suspended. In particular, the wheel or the wheel set relative to the bogie frame and against the suspension of the vehicle to perform movements in the vertical direction (z-direction). In a wheel with two oppositely mounted wheels rotatably mounted on a wheelset, for example, the wheelset can move relative to the bogie in any direction from its neutral position, in particular tilt. The pivot point of a tilting movement can not only be in the middle of the axle, but also in their end or near the wheels. Also, the axle can shift parallel to its neutral position. In addition, the wheelset is subjected to torsional and bending vibrations.

Daher ist es üblich, die Übertragungsmittel zum Übertragen des AntriebsDrehmoments vom Antriebsmotor auf das Rad oder die Radsatzwelle so auszugestalten, dass eine Elastizität oder Beweglichkeit gegeben ist, die das Antriebssystem vor Schäden bewahrt. Bekannt ist z.B. der Hohlwellenantrieb, bei dem die Radsatzwelle innerhalb einer Hohlwelle angeordnet ist und wobei der Antriebsmotor das Antriebs-Drehmoment über die Hohlwelle auf ein Rad des Radsatzes oder auf den Radsatz überträgt. Die Hohlwelle ist über eine Kupplung (z. B. Gummikupplung, Membrankupplung, Laschenkupplung oder Zahnkupplung) mit dem angetriebenen Rad verbunden. Am gegenüberliegenden Ende der Hohlwelle ist diese über ein kardanisch bewegliches Gelenk mit einem Getriebe verbunden, welches von dem Antriebsmotor angetrieben wird. Antriebe mit Hohlwellen sind konstruktiv und herstellungstechnisch aufwendig. Außerdem beschränken sie den für den Antriebsmotor zur Verfügung stehenden Bauraum, da die Hohlwelle und die mit der Hohlwelle gekoppelten Gelenke und/oder Getriebe entsprechend großen Bauraum benötigen.Therefore, it is customary to design the transmission means for transmitting the drive torque from the drive motor to the wheel or the wheel set shaft in such a way that an elasticity or mobility is present which protects the drive system from damage. It is known e.g. the hollow shaft drive, wherein the wheelset is disposed within a hollow shaft and wherein the drive motor transmits the drive torque via the hollow shaft to a wheel of the wheelset or to the wheelset. The hollow shaft is connected to the driven wheel via a coupling (eg rubber coupling, diaphragm coupling, tab coupling or toothed coupling). At the opposite end of the hollow shaft, this is connected via a cardanically movable joint with a gear, which is driven by the drive motor. Drives with hollow shafts are structurally and manufacturing technically complex. In addition, they limit the space available for the drive motor space, since the hollow shaft and coupled to the hollow shaft joints and / or gear require correspondingly large space.

Unter einem kardanisch beweglichen Gelenk wird ein Gelenk verstanden, das den über das Gelenk miteinander gekoppelten Teilen ermöglicht, sich relativ zueinander um zwei zueinander senkrecht stehende Drehachsen (auch Rotationsachsen genannt) zu bewegen. Bei den Drehachsen kann es sich um gedachte Drehachsen handeln, die nicht den Rotationsachsen von Wellen entsprechen müssen, wie es z.B. bei dem Kreuzgelenk (auch Kardangelenk genannt) der Fall ist. Ein kardanisch bewegliches Gelenk muss auch nicht einstückig ausgestaltet sein. Z.B. kann es aus Teilen bestehen, die jeweils die Rotation um eine der beiden zueinander senkrecht stehenden Rotationsachsen ermöglichen. Außerdem kann eine Relativbewegung der über das Gelenk miteinander gekoppelten Teile aus einer Neutralstellung des Gelenks in eine ausgelenkte Stellung des Gelenks mit einer elastischen Verformung verbunden sein, die zu Rückstellkräften in die Neutralstellung führt. Dies ist insbesondere dann der Fall, wenn Teile des Gelenks aus elastischen Materialen bestehen, wie es z.B. bei der Hardy-Scheibe der Fall ist.A cardanically movable joint is understood as meaning a joint which allows the parts which are coupled to one another via the joint to move relative to one another about two mutually perpendicular rotary axes (also called rotation axes). The axes of rotation can be imaginary axes of rotation act, which do not have to correspond to the axes of rotation of waves, as it is for example in the universal joint (also called universal joint) the case. A cardanically movable joint also does not have to be designed in one piece. For example, it may consist of parts which each allow rotation about one of the two mutually perpendicular axes of rotation. In addition, a relative movement of the parts coupled together via the joint from a neutral position of the joint to a deflected position of the joint can be connected to an elastic deformation, which leads to restoring forces in the neutral position. This is especially the case when parts of the joint consist of elastic materials, as is the case, for example, with the Hardy disc.

Insbesondere hat das kardanisch bewegliche Gelenk selbst keine lineare Beweglichkeit in der Richtung der Achse, die senkrecht zu den beiden Rotationsachsen steht. Ebenfalls ermöglicht das kardanisch bewegliche Gelenk nicht selbst eine lineare Beweglichkeit in Richtung der beiden Rotationsachsen. Ferner ist das kardanisch bewegliche Gelenk nicht rotationsbeweglich um die Achse, die senkrecht zu den beiden Rotationsachsen verläuft.In particular, the gimbal joint itself has no linear mobility in the direction of the axis which is perpendicular to the two axes of rotation. Likewise, the cardanically movable joint does not itself allow a linear mobility in the direction of the two axes of rotation. Further, the gimbal movable joint is not rotationally movable about the axis which is perpendicular to the two axes of rotation.

Die oben beschriebene Ankopplung der Hohlwelle über eine Gummikupplung mit ringförmigem Gummielement an das angetriebene Rad ist ein weiteres Beispiel für ein kardanisch bewegliches Gelenk mit elastischen Rückstellkräften. Anstelle von Gummimaterialien kann ein kardanisch bewegliches Gelenk z.B. auch Bauteile aus Materialien mit hohem Elastizitätsmodul (z.B. Stahl) aufweisen, die jedoch elastisch formveränderlich sind (z.B. Federelemente wie Blattfedern aus Stahl).The above-described coupling of the hollow shaft via a rubber coupling with annular rubber element to the driven wheel is another example of a gimbal joint with elastic restoring forces. Instead of rubber materials, a gimbal joint may e.g. also comprise components of high modulus (e.g., steel) materials, but which are elastically deformable in shape (e.g., spring elements such as steel leaf springs).

Die elastische oder nicht elastische Relativbeweglichkeit von Teilen des Antriebsstranges kann auch als Masseentkopplung bezeichnet werden, da unerwünschte dynamische Anregungen und Bewegungen von Massen (z.B. des Rades oder des Radsatzes) nicht oder nicht vollständig auf andere Massen übertragen werden (z.B. den Antriebsmotor).The elastic or non-elastic relative mobility of parts of the drive train can also be referred to as mass decoupling, since unwanted dynamic excitations and movements of masses (eg the wheel or the wheelset) are not or not completely transferred to other masses (eg the drive motor).

Zur Masseentkopplung von Komponenten des Antriebsstranges können außer dem beschriebenen Hohlwellensystem auch andere Spezialkupplungen, spezielle Getriebe und/oder Gelenkwellen eingesetzt werden. Häufig ist auch eine axiale Nachgiebigkeit im Antriebsstrang, d.h. eine Nachgiebigkeit in Richtung der Rotationsachse, gewünscht, um die ein Teil oder mehrere Teile des Antriebsstrangs rotieren, um das Antriebs-Drehmoment zu übertragen. Wenn hier von dem Antriebs-Drehmoment die Rede ist, so schließt dies selbstverständlich den Fall ein, dass dieses Drehmoment z.B. durch ein Getriebe im Antriebsstrang gewandelt wird. Z.B. bei dem im ICE 3 der Deutschen Bahn AG verwendeten Antrieb ist ein so genannter Querantrieb realisiert, bei dem die Rotationsachse des Läufers des Antriebsmotors etwa parallel zur Radsatzwelle des angetriebenen Radsatzes verläuft. Der Ständer des Antriebsmotors ist an einem Querträger des Drehgestells abgestützt. Die Läuferwelle weist eine doppelte Bogenzahnkupplung auf. Diese Kupplung entspricht der Hintereinanderschaltung von zwei Gelenken mit kardanischer Beweglichkeit, wobei außerdem noch eine axiale Beweglichkeit der über die Bogenzahnkupplung miteinander gekoppelten Wellenabschnitte gegeben ist. Nachteilig an dieser Art der Masseentkopplung ist, dass zwischen den beiden kardanisch beweglichen Gelenken in axialer Richtung des Antriebsstrangs lediglich ein kurzer Abschnitt des Antriebsstrangs liegt. Daher kann anders als bei der oben beschriebenen Entkopplung mit Hohlwelle lediglich ein relativ kleiner Versatz der Radsatzwellenachse aus ihrer Neutralstellung ausgeglichen werden. Bei dem Querantrieb ist das aus Sicht des Läufers entfernte Ende der Läuferwelle über ein so genanntes achsreitendes Getriebe, d.h. ein Getriebe, welches sich zumindest teilweise auf der Radsatzwelle abstützt, mit der Radsatzwelle gekoppelt.For mass decoupling of components of the drive train other special clutches, special gear and / or propeller shafts can be used in addition to the described hollow shaft system. Often, axial compliance in the powertrain, i. a compliance in the direction of the axis of rotation, desired to rotate the one or more parts of the drive train to transmit the drive torque. Of course, when we speak of the driving torque, this obviously includes the case where this torque is e.g. is converted by a gear in the drive train. For example, in the drive used in ICE 3 Deutsche Bahn AG, a so-called transverse drive is realized in which the axis of rotation of the rotor of the drive motor is approximately parallel to the axle of the driven wheelset. The stator of the drive motor is supported on a cross member of the bogie. The rotor shaft has a double curved tooth coupling. This coupling corresponds to the series connection of two joints with gimbal mobility, in addition also an axial mobility of the coupled via the gear coupling shaft sections is given. A disadvantage of this type of mass decoupling is that only a short section of the drive train lies between the two cardanically movable joints in the axial direction of the drive train. Therefore, unlike the above-described decoupling with hollow shaft, only a relatively small offset of the wheelset axle can be compensated from its neutral position. In the transverse drive, the end of the rotor shaft remote from the runner's view is via a so-called off-axis gear, i. a transmission, which is at least partially supported on the axle, coupled to the wheelset.

DE 9116159 U1 beschreibt einen Achsantrieb, insbesondere für eine in einem Drehgestell angeordnete Radsatzachse, eines Schienenfahrzeuges, wobei die Achse des Antriebsmotors parallel zur Radsatzachse verläuft. Auf der Achse ist ein Stirnradgetriebe fest angeordnet, mit welchem die Radsatzachse angetrieben wird. Das Stirnradgetriebe wird durch eine Drehmomentstütze gegenüber dem Drehgestell abgestützt. Die Drehmomentstütze ist einerseits durch ein Universalgelenk mit dem Drehgestell und andererseits durch ein Universalgelenk mit dem Stirnradgetriebe verbunden. Die Universalgelenke erlauben ein begrenztes Schwenken und Verdrehen der Drehmomentstütze gegenüber den Anlenkpunkten. Eine kardanische Kupplung verbindet die Antriebswelle mit dem Antriebsmotor, welcher am Drehgestell befestigt ist. DE 9116159 U1 describes an axle drive, in particular for a wheelset axle arranged in a bogie, of a rail vehicle, wherein the axis of the drive motor runs parallel to the wheelset axle. On the axis of a spur gear is fixed, with which the axle is driven. The spur gear is supported by a torque arm opposite the bogie. The torque arm is on the one hand by a universal joint with the Bogie and on the other hand connected by a universal joint with the spur gear. The universal joints allow limited pivoting and twisting of the torque arm relative to the articulation points. A gimbal coupling connects the drive shaft to the drive motor, which is attached to the bogie.

DE 2925836 A1 beschreibt eine Antriebsvorrichtung für ein elektrisches Triebfahrzeug mit einem Triebmotor, der mit einem Getriebekasten verbunden ist. Ein Antriebsende des Triebmotors ist mit einem Ring versehen, der eine elastische Gummiringkupplung trägt. Diese ist im Inneren eines Flansches eingepresst. Ein Ritzel des Getriebes ist mit Hilfe einer Befestigungsschraube mit dem Flansch verbunden, wobei die Kontaktflächen des Ritzels und des Flansches Verzahnungen aufweisen, die das Gleiten der Kontaktflächen verhindern. Der Getriebekasten ist über Lager auf der Achswelle abgestützt. Das Nicht-Antriebsende des Triebmotors ist mit einem Bügel versehen, der mit Befestigungsschrauben befestigt ist. Der mittlere Teil des Bügels ist über ein Sphärolager, das in Halterungen drehbar gelagert ist, mit dem Drehgestell verbunden. Zur Verbindung des Triebmotors und des Getriebekastens dienen ein mit dem Triebmotor verbundener innerer Ring und ein mit dem Getriebekasten verbundener äußerer Ring, zwischen welchen eine elastische Gummiringkupplung eingepresst ist. In der gabelförmigen Verlängerung 9' des Getriebekastens ist drehbar ein Sphärolager befestigt, das über eine Drehmomentstütze und einen Befestigungsarm mit dem Drehgestell verbunden ist. DE 2925836 A1 describes a drive device for an electric locomotive with a drive motor, which is connected to a gearbox. A drive end of the drive motor is provided with a ring which carries an elastic Gummringkupplung. This is pressed inside a flange. A pinion of the transmission is connected by means of a fastening screw with the flange, wherein the contact surfaces of the pinion and the flange have teeth, which prevent the sliding of the contact surfaces. The gearbox is supported by bearings on the axle shaft. The non-drive end of the drive motor is provided with a bracket which is fastened with fastening screws. The middle part of the bracket is connected to the bogie via a spherical bearing, which is rotatably mounted in brackets. To connect the drive motor and the gear box serve a connected to the drive motor inner ring and connected to the gear box outer ring, between which an elastic Gummiringkupplung is pressed. In the fork-shaped extension 9 'of the gear box rotatably mounted a spherical bearing, which is connected via a torque arm and a mounting arm to the bogie.

EP 1 197 412 A2 beschreibt eine Antriebseinheit für Schienenfahrzeuge mit einem am Fahrzeugrahmen oder am Fahrwerk aufgehängten Elektromotor, einem Getriebe und einem kardanisch wirkenden Kupplungssystem, das zwischen der Radsatzwelle und dem Getriebe angeordnet ist. In einer Ausführungsform ist die Antriebseinheit an der Außenseite des Radsatzes angeordnet und mittels Befestigungseinrichtungen mit dem Drehgestell verbunden. EP 1 197 412 A2 describes a drive unit for rail vehicles with a vehicle frame or on the suspension suspended electric motor, a transmission and a gimbal-acting clutch system, which is arranged between the wheelset and the transmission. In one embodiment, the drive unit is arranged on the outside of the wheelset and connected by means of fastening devices with the bogie.

EP 0 175 867 A1 beschreibt eine kardanische Doppelkupplung. Bei einer Anwendung der Doppelkupplung in einem Doppelachsantrieb für Schienenfahrzeuge ist an den Stirnseiten eines längs zur Fahrtrichtung liegenden Elektromotors je ein Winkelgetriebe angeflanscht, welches mit Hilfe von Kegelrädern Hohlwellen einer der Doppelkupplungen antreibt. Der Elektromotor ist zusammen mit den Winkelgetrieben durch elastische Aufhängungen mit dem Drehgestellrahmen verbunden. EP 0 175 867 A1 describes a cardanic double clutch. In an application of the double clutch in a double axle for rail vehicles an angle gear is flange-mounted on the front sides of an electric motor lying longitudinally to the direction of travel, which drives by means of bevel gears hollow shafts one of the double clutches. The electric motor is connected together with the angular gears by elastic suspensions to the bogie frame.

Es ist eine Aufgabe der vorliegenden Erfindung, einen Antrieb für Schienenfahrzeuge anzugeben, der bei geringem benötigtem Bauraum Relativbewegungen des angetriebenen Rades oder Radsatzes einerseits und des Antriebsmotors andererseits über einen möglichst weiten Bewegungsbereich ermöglicht. Ferner ist es eine Aufgabe der vorliegenden Erfindung, ein Herstellungsverfahren für ein derartiges Getriebe und ein Schienenfahrzeug mit einem derartigen Getriebe anzugeben.It is an object of the present invention to provide a drive for rail vehicles, which allows relative movement of the driven wheel or wheelset on the one hand and the drive motor on the other hand over the widest possible range of motion with little space required. Furthermore, it is an object of the present invention to provide a manufacturing method for such a transmission and a rail vehicle with such a transmission.

Die beigefügten Patentansprüche definieren den Schutzumfang.The appended claims define the scope of protection.

Es wird vorgeschlagen, dass der Ständer des Antriebsmotors über eine kardanisch bewegliche Aufhängung an einem Drehgestell des Schienenfahrzeugs, an einem Wagenkasten des Schienenfahrzeugs oder an einer mit dem Drehgestell und/oder den Wagenkasten verbundenen Konstruktion abgestützt ist.It is proposed that the stator of the drive motor is supported via a cardanically movable suspension on a bogie of the rail vehicle, on a car body of the rail vehicle or on a construction connected to the bogie and / or the car body.

Unter einer kardanisch beweglichen Aufhängung wird analog zu der oben genannten Definition eines kardanisch beweglichen Gelenks ein Gelenk verstanden, das den über das Gelenk miteinander gekoppelten Teilen ermöglicht, sich relativ zueinander um zwei zueinander senkrecht stehende Drehachsen zu bewegen, d.h. zu rotieren. Insbesondere kann die kardanisch bewegliche Aufhängung in derselben Weise, wie oben für das kardanisch bewegliche Gelenk beschrieben, bezüglich der beiden Rotationsachsen linear unbeweglich sein, bezüglich der senkrecht zu den beiden Rotationsachsen stehenden Achse linear unbeweglich sein und auch bezüglich der senkrecht zu den beiden Rotationsachsen verlaufenden Achse rotatorisch unbeweglich sein. Allerdings kann, wie noch näher ausgeführt wird, zusätzlich zu dem eigentlichen kardanisch beweglichen Gelenk oder der kardanisch beweglichen Aufhängung eine lineare Beweglichkeit in Richtung der Achse vorgesehen werden, die senkrecht zu den beiden Rotationsachsen steht.Under a gimbal-mounted suspension analogous to the above definition of a gimbal joint is understood a joint that allows the parts coupled together via the joint to move relative to each other about two mutually perpendicular axes of rotation, i. to rotate. In particular, in the same manner as described above for the gimbal joint, the cardanic mobile suspension may be linearly immovable with respect to the two axes of rotation, linearly immovable with respect to the axis perpendicular to the two axes of rotation, and also with respect to the axis perpendicular to the two axes of rotation be rotationally immobile. However, as will be explained in more detail, in addition to the actual cardanically movable joint or gimbal mobile suspension, a linear mobility in the direction of the axis can be provided, which is perpendicular to the two axes of rotation.

Die kardanisch bewegliche Aufhängung ist jedoch nicht im Antriebsstrang (zwischen Läufer und Rad oder Radsatz) angeordnet und rotiert daher nicht kontinuierlich, um ein Drehmoment zu übertragen. Andererseits stützt die kardanisch bewegliche Aufhängung den Ständer des Antriebsmotors derart ab, dass das Drehmoment des Läufers übertragbar ist. Die zwei zueinander senkrecht stehenden Drehachsen der kardanisch beweglichen Aufhängung stehen etwa senkrecht zu der Drehachse des Läufers.However, the gimbal-mounted suspension is not located in the drive train (between rotor and wheel or wheelset) and therefore does not rotate continuously to transmit torque. On the other hand, the gimbal movable suspension supports the stator of the drive motor so that the torque of the rotor is transferable. The two mutually perpendicular axes of rotation of the gimbal-mounted suspension are approximately perpendicular to the axis of rotation of the rotor.

Je nach Ausführung müssen die Drehachsen der kardanisch beweglichen Aufhängung nicht unbedingt einander kreuzen, wie es bei einem Kreuzgelenk der Fall ist (s.o. zur Definition und zu Ausführungen des kardanisch beweglichen Gelenks).Depending on the design, the gimbals of the gimbal-mounted suspension need not necessarily cross each other, as is the case with a universal joint (so for the definition and execution of the gimbal joint).

Unter senkrecht wird auch verstanden, dass die eine Drehachse lediglich eine Parallele der anderen Drehachse senkrecht kreuzt. Auch kann sich die Lage der Drehachsen im Raum und relativ zu dem Ständer und dem abstützenden Teil (z. B. Drehgestellrahmen) während der Drehung leicht verändern. Ferner müssen die Steifigkeiten und/oder Widerstände der Rotationsbewegungen um die beiden Drehachsen der kardanisch beweglichen Aufhängung nicht gleich sein.Under perpendicular is also understood that the one axis of rotation crosses only a parallel of the other axis of rotation perpendicular. Also, the location of the axes of rotation in the space and relative to the stand and the supporting part (eg bogie frame) may vary slightly during rotation. Furthermore, the stiffnesses and / or resistances of the rotational movements about the two axes of rotation of the gimbal mobile suspension need not be equal.

Die kardanisch bewegliche Aufhängung kann in gleicher Weise wie oben bei der Definition des Begriffs kardanisch bewegliches Gelenk beschrieben realisiert werden. Insbesondere kann sie aus einer Anordnung von mehreren Teilen bestehen, die nicht direkt miteinander verbunden sind, sondern lediglich über die abstützende Konstruktion und über den Ständer miteinander verbunden sind. Wie ebenfalls oben erwähnt, kommen jedoch auch einstückige kardanisch bewegliche Gelenke (z. B. das Kreuzgelenk) für die Aufhängung infrage.The gimbal mobile suspension can be realized in the same way as described above in the definition of the term gimbal movable joint. In particular, it can consist of an arrangement of several parts which are not directly connected to each other, but are connected to each other only via the supporting structure and the stand. However, as also mentioned above, one-piece gimbals (eg the universal joint) are also suitable for the suspension.

Bei einer bevorzugten Ausführungsform wird die kardanisch bewegliche Aufhängung durch zwei langgestreckte Elemente aus elastischem Material, insbesondere aus natürlichem oder künstlichem Gummimaterial, realisiert. Dabei ist die Steifigkeit der beiden langgestreckten Elemente für Linearbewegungen in Richtung ihrer Längsachse (der Achse, in der die Elemente langgestreckt sind) wesentlich größer als für Verkrümmungen der Elemente um ihre Längsachse. Die Verkrümmungen können Torsionen um die Längsachse sein und/oder Krümmungen der Längsachse in zwei verschiedene zueinander senkrecht stehende Richtungen. Die beiden langgestreckten Elemente sind mit ihren Längsachsen parallel zueinander angeordnet, wobei jeweils mit dem einen Ende des langgestreckten Elements in dessen Längsrichtung der Wagenkasten des Schienenfahrzeugs oder die mit dem Drehgestell und/oder dem Wagenkasten verbundene Konstruktion verbunden ist und jeweils mit dem anderen, in der Längsrichtung entgegengesetzten Ende des langgestreckten Elements der Läufer des Antriebsmotors verbunden ist, so dass aufgrund der Verkrümmungen die beschriebenen Drehbewegungen der kardanisch beweglichen Aufhängung realisiert sind. Dabei wird ferner bevorzugt, dass die Längsachsen der langgestreckten Elemente in der Neutralstellung (siehe unten) in vertikaler Richtung verlaufen. Da die langgestreckten Elemente in dieser Richtung sehr steif ausgestaltet sind, führt das von ihnen getragene Gewicht des Antriebsmotors und gegebenenfalls eines Teils des Antriebsstranges nicht zu einer ungleichen Längenänderung der beiden gleich ausgestalteten langgestreckten Elemente. Insbesondere führt daher eine gleiche Verbiegung beider langgestreckten Elemente um ihre Längsachsen zu einer Drehbewegung um eine Drehachse, die die beiden Längsachsen der langgestreckten Elemente etwa senkrecht kreuzt. Ferner führen Torsionsbewegungen der beiden langgestreckten Elemente zu einer Drehbewegung des Ständers relativ zu der abstützenden Konstruktion, wobei diese zweite Drehachse etwa mittig zu den beiden Längsachsen der langgestreckten Elemente in Richtung der Längsachsen in Neutralstellung, d.h. parallel zu den Längsachsen in Neutralstellung verläuft. Kombinationen der Drehbewegungen um die beiden genannten Drehachsen sind ebenfalls möglich, wobei es zu einer leichten Verschiebung der Lage der beiden Drehachsen kommen kann.In a preferred embodiment, the gimballed suspension is realized by two elongated elements of elastic material, in particular natural or synthetic rubber material. The stiffness of the two elongated elements for linear movements in the direction of their longitudinal axis (the axis in which the elements are elongated) is substantially greater than for curvatures of the elements about their longitudinal axis. The curvatures may be torsions about the longitudinal axis and / or curvatures of the longitudinal axis in two different mutually perpendicular directions. The two elongated elements are arranged with their longitudinal axes parallel to each other, wherein in each case one end of the elongate member in the longitudinal direction of the car body of the rail vehicle or connected to the bogie and / or the car body construction is connected and each with the other, in the Longitudinally opposite end of the elongated member of the rotor of the drive motor is connected, so that due to the curvatures described rotational movements of the gimbal movable suspension are realized. It is further preferred that the Longitudinal axes of the elongated elements in the neutral position (see below) in the vertical direction. Since the elongated elements are designed very stiff in this direction, carried by them weight of the drive motor and optionally a portion of the drive train does not lead to an uneven change in length of the two identically designed elongated elements. In particular, therefore, an equal bending of both elongate elements about their longitudinal axes leads to a rotational movement about an axis of rotation, which crosses the two longitudinal axes of the elongated elements approximately perpendicularly. Further torsional movements of the two elongate elements lead to a rotational movement of the stator relative to the supporting structure, said second axis of rotation approximately in the middle of the two longitudinal axes of the elongated elements in the direction of the longitudinal axes in the neutral position, ie parallel to the longitudinal axes in neutral position. Combinations of the rotational movements about the two said axes of rotation are also possible, which may lead to a slight shift in the position of the two axes of rotation.

Gemäß einer weiteren bevorzugten Ausführungsform, die insbesondere für einen Längsantrieb (die Rotationsachse des Läufers des Antriebsmotors erstreckt sich in Fahrtrichtung) geeignet ist, wird die kardanisch bewegliche Aufhängung durch zwei ringförmige Elemente aus elastischem Material, insbesondere aus natürlichem oder künstlichem Gummimaterial, realisiert. Die ringförmigen Elemente erstrecken sich jeweils um eine Achse, die insbesondere eine Rotationssymmetrieachse ist. Die beiden Achsen verlaufen parallel zueinander in einem Abstand. Über die beiden ringförmigen Elemente sind das Drehgestell oder der andere Teil der tragenden Konstruktion des Fahrzeugs miteinander verbunden. Dabei ist der eine Teil der beiden miteinander zu verbindenden Teile (z.B. das Motorgehäuse) mit den radial innenliegenden Oberflächen der ringförmigen Elemente verbunden und ist der andere Teil (z.B. der Drehgestellrahmen) mit der radial außenliegenden Oberfläche der ringförmigen Elemente verbunden. Z.B. kann das Gummimaterial an der radial innenliegenden Seite an eine erste ringförmige Hülse und an der radial außenliegenden Seite an eine zweite ringförmige Hülse anvulkanisiert sein. Die Hülsen wiederum sind fest mit dem jeweils zu verbindenden Teil verbunden. Die richtungsabhängige Steifigkeit der ringförmigen, elastischen Elemente kann nun so gewählt und/oder eingestellt werden, dass die gewünschte kardanische Beweglichkeit der Aufhängung erzielt wird.According to a further preferred embodiment, which is suitable in particular for a longitudinal drive (the axis of rotation of the rotor of the drive motor extends in the direction of travel), the cardanically movable suspension is realized by two annular elements of elastic material, in particular of natural or synthetic rubber material. The annular elements each extend about an axis, which is in particular a rotational axis of symmetry. The two axes are parallel to each other at a distance. About the two annular elements, the bogie or the other part of the supporting structure of the vehicle are interconnected. In this case, one part of the two parts to be joined together (eg the motor housing) is connected to the radially inner surfaces of the annular elements and the other part (eg the bogie frame) is connected to the radially outer surface of the annular elements. For example, the rubber material may be vulcanized to a first annular sleeve on the radially inner side and to a second annular sleeve on the radially outer side. The Sleeves in turn are firmly connected to the respective part to be connected. The directional stiffness of the annular elastic members may now be selected and / or adjusted to achieve the desired cardan motion of the suspension.

Ein kardanisch bewegliches Gelenk im Antriebsstrang und eine separate kardanisch bewegliche Aufhängung sind einfacher zu realisieren als zwei kardanisch bewegliche Gelenke im Antriebsstrang. Daher kann auch das Gewicht der Anordnung reduziert werden. Generell gilt für alle Ausführungsformen, dass die Anzahl der komplexen Bauteile für die Gewährleistung des Versatzes (z.B. Parallelversatz der Rotationsachse eines Antriebsstrang-Teils) reduziert werden kann.A gimbal-mounted joint in the drive train and a separate gimbal-mounted suspension are easier to implement than two gimbal-mounted joints in the drive train. Therefore, the weight of the arrangement can be reduced. Generally, for all embodiments, the number of complex components for ensuring the offset (e.g., parallel offset of the rotational axis of a driveline portion) can be reduced.

Eine zusätzliche axiale Beweglichkeit des Läufers gegenüber dem Ständer des Elektromotors hat den Vorteil, dass das kardanisch bewegliche Gelenk im Antriebsstrang einfacher ausgeführt werden kann. Z.B. wird keine Bogenzahnkupplung mit axialer Nachgiebigkeit benötigt. Die axiale Beweglichkeit des Motors hat ferner den Vorteil, dass die Lagerung des Läufers durch das magnetische Feld des Motors vollständig reibungs- und verschleißfrei ist.An additional axial mobility of the rotor relative to the stator of the electric motor has the advantage that the gimbal-mounted joint in the drive train can be made simpler. For example, No curved tooth coupling with axial compliance is required. The axial mobility of the motor also has the advantage that the bearing of the rotor by the magnetic field of the motor is completely friction and wear-free.

Für die kardanisch bewegliche Aufhängung kann eine Neutralstellung definiert werden, in der die Rotationsachse des Läufers die beiden Drehachse der kardanisch beweglichen Aufhängung jeweils senkrecht jedoch nicht zwangsläufig in demselben Punkt kreuzt.For the gimbal-mounted suspension, a neutral position can be defined, in which the axis of rotation of the rotor crosses the two axis of rotation of the gimbal-mounted suspension perpendicularly but not necessarily in the same point.

Da - wie erwähnt - Drehbewegungen des Ständers und des abstützenden Teils um die beiden Drehachse der kardanisch beweglichen Aufhängung möglich sind und da sich auch im Antriebsstrang ein kardanisch bewegliches Gelenk befindet, ist eine Gelenkkette realisiert, wobei der Antriebsmotor Teil der Gelenkkette ist. Der Antriebsmotor befindet sich hinsichtlich des Kraftflusses zwischen der abstützenden Konstruktion und dem Antriebsstrang zwischen der kardanisch beweglichen Aufhängung und dem kardanisch beweglichen Gelenk.Since - as mentioned - rotational movements of the stator and the supporting part about the two axis of rotation of the gimbal movable suspension are possible and there is also a gimbal movable joint in the drive train, a joint chain is realized, wherein the drive motor is part of the joint chain. The drive motor is located in the force flow between the supporting structure and the drive train between the gimbal movable suspension and the gimbal joint.

Die folgende Ausgestaltung betrifft insbesondere einen Querantrieb, d.h. die Rotationsachse des Motor-Läufers verläuft quer zur Fahrtrichtung: Insbesondere können die Freiheitsgrade der Bewegung, die der Antriebsmotor aufgrund der kardanisch beweglichen Aufhängung relativ zu dem Drehgestell des Schienenfahrzeugs, relativ zu dem Wagenkasten des Schienenfahrzeugs oder relativ zu der mit dem Drehgestell und/oder dem Wagenkasten verbundenen Konstruktion ausführen kann, dieselben Freiheitsgrade der Bewegung sein, die der Teil des Antriebsstranges, der über das kardanisch bewegliche Gelenk mit dem Läufer gekoppelt ist, relativ zu dem Läufer ausführen kann. Dies bedeutet, dass der Läufer über das kardanisch bewegliche Gelenk mit einem Teil des Antriebsstranges gekoppelt ist, der beim Betrieb des Antriebsmotors um eine Rotationsachse rotiert, welche in einer Neutralstellung koaxial zu der Rotationsachse des Läufers verläuft. Allerdings ermöglicht es die Übereinstimmung in den Freiheitsgraden der Bewegung, dass die Rotationsachse des genannten Teils des Antriebsstranges parallel gegen die Neutralstellung versetzt werden kann, z. B. wenn im Betrieb entsprechende Auslenkungen stattfinden. Selbstverständlich kann die Rotationsachse des genannten Teils des Antriebsstrangs auch auf andere Weise als durch Parallelverschiebung aus der Neutralstellung herausbewegt werden oder sich permanent oder vorwiegend in einer ausgelenkten Stellung befinden.The following embodiment particularly relates to a transverse drive, i. the axis of rotation of the motor rotor is transverse to the direction of travel: in particular, the degrees of freedom of movement of the drive motor relative to the bogie of the rail vehicle relative to the railcar body or relative to that with the bogie and / or the gantry due to the gimbal mobile suspension Car Body connected construction can be the same degrees of freedom of the movement, which can perform the part of the drive train, which is coupled via the gimbal movable joint with the rotor relative to the rotor. This means that the rotor is coupled via the cardanically movable joint with a part of the drive train, which rotates during operation of the drive motor about an axis of rotation, which runs in a neutral position coaxial with the axis of rotation of the rotor. However, the agreement in the degrees of freedom of the movement that the axis of rotation of said part of the drive train can be offset parallel to the neutral position, for. B. if appropriate deflections take place during operation. Of course, the axis of rotation of the said part of the drive train can also be moved out of the neutral position in a different way than by parallel displacement or be permanently or predominantly in a deflected position.

Im Fall des Querantriebs wird es insbesondere bevorzugt, dass sich das kardanisch bewegliche Gelenk im Antriebsstrang zwischen dem Läufer und einem Getriebe befindet, über das die vom Motor erzeugten Antriebskräfte auf das Rad oder den Radsatz übertragen werden. Insbesondere befindet sich das kardanisch beweglich Gelenk zwischen dem Läufer und dem im Verlauf des Antriebsstrangs ersten Getriebes, wenn mehrere Getriebe vorhanden sind. Dies bedeutet, dass der Ständer des Antriebsmotors und die unbeweglichen Teile des Getriebes (insbesondere das Getriebegehäuse) nicht verbunden sind. Gemäß einer Ausgestaltung, die nicht zum Umfang der Ansprüche gehört, sind der Ständer und die unbeweglichen Teile des Gehäuses beweglich relativ zueinander verbunden.In the case of transverse drive, it is particularly preferred that the cardanically movable joint is located in the drive train between the rotor and a transmission, via which the driving forces generated by the engine are transmitted to the wheel or the wheelset. In particular, the gimbal movable joint is located between the rotor and the first transmission in the course of the drive train, if several transmissions are present. This means that the stator of the drive motor and the immovable parts of the transmission (in particular the gear housing) are not connected. According to an embodiment, which does not belong to the scope of the claims, the stand and the immovable parts of the housing are movably connected relative to each other.

Ferner kann insbesondere bei einem Querantrieb die Übertragung des Antriebsdrehmoments mit Hilfe einer Hohlwelle erfolgen. Auf das Prinzip einer Hohlwelle wurde bereits oben eingegangen. Dabei wird es bevorzugt, dass im Fall des Querantriebs die Drehmomentübertragung von der Hohlwelle auf den Radsatz, welcher zwei über eine Achse miteinander verbundene Laufräder aufweist, nur an einem der Laufräder erfolgt. Folglich findet an dem anderen Laufrad keine direkte Übertragung des Antriebsdrehmoments von der Hohlwelle statt. Dieses andere Laufrad wird lediglich über die Achse des Radsatzes angetrieben.Furthermore, in particular in the case of a transverse drive, the transmission of the drive torque can take place with the aid of a hollow shaft. On the principle of a hollow shaft has already been discussed above. It is preferred that in the case of the transverse drive, the torque transmission from the hollow shaft to the wheelset, which has two wheels connected to each other via an axle, takes place only on one of the wheels. Consequently, there is no direct transmission of the drive torque from the hollow shaft to the other impeller. This other impeller is driven only via the axle of the wheelset.

Die folgende Ausgestaltung betrifft insbesondere einen Längsantrieb, d.h. die Rotationsachse des Läufers verläuft in Fahrtrichtung: Insbesondere kann eine Rotationsachse der kardanisch beweglichen Aufhängung parallel zu einer Rotationsachse des kardanisch beweglichen Gelenks im Antriebsstrang verlaufen und die andere Rotationsachse der kardanisch beweglichen Aufhängung senkrecht zur anderen Rotationsachse des kardanisch beweglichen Gelenks verlaufen. Dabei ist der Läufer über ein Winkelgetriebe mit dem Rad oder dem Radsatz gekoppelt. Dabei sind der Ständer bzw. das Gehäuse des Antriebsmotors und das Getriebegehäuse bzw. die unbeweglichen Teile des Getriebes fest, d.h. relativ zueinander unbeweglich, miteinander verbunden. Der Motor und das Winkelgetriebe bilden daher ein gemeinsames Antriebsmodul, das durch die kardanisch bewegliche Aufhängung an der tragenden Konstruktion des Fahrzeugs aufgehängt ist, wobei die Abtriebsseite des Winkelgetriebes über das kardanisch bewegliche Gelenk mit dem angetriebenen Rad oder Radsatz gekoppelt ist.The following embodiment particularly relates to a longitudinal drive, i. the axis of rotation of the rotor extends in the direction of travel: In particular, a rotational axis of the gimbal movable suspension parallel to a rotational axis of the gimbal joint in the drive train run and the other axis of rotation of the gimbal movable suspension perpendicular to the other axis of rotation of the gimbal joint. The rotor is coupled via an angle gear with the wheel or the wheelset. In this case, the stator or the housing of the drive motor and the gear housing or the immovable parts of the transmission are fixed, i. immobile relative to each other, interconnected. The motor and the angle gear therefore form a common drive module which is suspended by the gimbal-mounted suspension on the supporting structure of the vehicle, wherein the output side of the angular gear is coupled via the gimbal movable joint with the driven wheel or wheelset.

Die Verbindung des Motors mit dem Winkelgetriebe erspart zusätzliche Aufhängungen, die entsprechend beweglich ausgestaltet werden müssten. Die feste Verbindung zwischen Motor und Winkelgetriebe verhindert ohne eine zusätzliche Aufhängung des Winkelgetriebes eine lineare Bewegung des Winkelgetriebes in vertikaler Richtung.The connection of the motor with the angular gear saves additional suspension, which would have to be designed accordingly movable. The fixed connection between the motor and bevel gear prevents a linear movement of the bevel gear in the vertical direction without an additional suspension of the angular gear.

Unter einem Winkelgetriebe wird ein Getriebe verstanden, das ein Antriebsdrehmoment um eine erste Rotationsachse in ein zweites Antriebsdrehmoment um eine zweite Rotationsachse umsetzt, wobei die erste und die zweite Rotationsachse quer und insbesondere exakt senkrecht zueinander verlaufen.An angular gear is understood to mean a gear which converts a drive torque about a first rotational axis into a second drive torque about a second rotational axis, wherein the first and the second rotational axis extend transversely and in particular exactly perpendicular to one another.

Im Gegensatz zu der oben erwähnten Anordnung von zwei Bogenzahnkupplungen im Antriebsstrang kann durch die Kombination der kardanisch beweglichen Aufhängung mit dem kardanisch beweglichen Gelenk im Antriebsstrang ein wesentlich größerer Versatz ausgeglichen werden. Unter dem Versatz wird insbesondere der Versatz der Rotationsachse des Läufers oder der Versatz des Antriebsstrangs aus Sicht des Läufers jenseits des kardanisch beweglichen Gelenks verstanden. Bei gleichem Versatz sind die Winkel der Auslenkungen der kardanisch beweglichen Aufhängung und des kardanisch beweglichen Gelenks geringer. Es können daher z.B. kardanisch bewegliche Gelenke eingesetzt werden, die ein geringeres Bauvolumen haben, weil sie nur eine geringere Auslenkung ermöglichen. Dies gilt insbesondere bei Bogenzahnkupplungen. Die Erfindung eignet sich daher besonders für den Querantrieb und für Betriebssituationen, in denen besonders starke oder schnelle Bewegungen des Rades oder des Radsatzes gegenüber dem Antriebsmotor zu erwarten sind. Dies ist z.B. bei Hochgeschwindigkeitszügen der Fall. Beim Querantrieb ist die Länge des Antriebsstrangs in Verlängerung der Rotationsachse des Läufers durch die Breite quer zur Fahrtrichtung begrenzt, die für den Einbau zur Verfügung steht. Wenn geringere Auslenkungen zu erwarten sind, können auch an die Präzision der Bauteile des kardanisch beweglichen Gelenks im Antriebsstrang geringere Anforderungen gestellt werden.In contrast to the above-mentioned arrangement of two gear couplings in the drive train can be compensated by the combination of the gimbal mobile suspension with the gimbal joint in the drive train a much larger offset. The offset is understood in particular to mean the offset of the axis of rotation of the rotor or the offset of the drive train from the perspective of the rotor beyond the cardanically movable joint. At the same offset angle of the deflections of the gimbal movable suspension and gimbal joint are lower. Thus, e.g. gimbals movable joints are used, which have a smaller construction volume, because they allow only a lower deflection. This is especially true for curved gear couplings. The invention is therefore particularly suitable for transverse drive and for operating situations in which particularly strong or rapid movements of the wheel or the wheelset relative to the drive motor are to be expected. This is e.g. at high speed trains the case. In transverse drive, the length of the drive train in extension of the axis of rotation of the rotor is limited by the width transverse to the direction of travel, which is available for installation. If lower deflections are to be expected, lower demands can also be placed on the precision of the components of the gimbal-mounted joint in the drive train.

Die oben erwähnte Kombination von zwei Bodenzahnkupplungen im Antriebsstrang ermöglicht den bei Auslenkung bzw. Versatz des Antriebsstrangs erforderlichen Längenausgleich in Richtung der Rotationsachse des Antriebsstrangs. Bei gängigen Antriebsmotoren mit einem Läufer, der innerhalb des Ständers über das Magnetfeld gelagert ist, kann eine axiale Bewegung des Läufers in Richtung seiner Rotationsachse relativ zum Ständer stattfinden. Da die kardanisch bewegliche Aufhängung und das typischerweise am anderen Ende des Motors oder sogar noch deutlich weiter entfernt vom Motor angeordnete kardanisch bewegliche Gelenk im Vergleich zu der Kombination zweier Bodenzahnkupplungen sehr weit auseinander liegen, ist auch der axiale Ausgleich in Richtung der Rotationsachse des Läufers vergleichsweise gering. Gängige Antriebsmotoren ermöglichen ohne konstruktive Änderung den erforderlichen axialen Ausgleich.The above-mentioned combination of two bottom gear couplings in the drive train enables the length compensation in the direction of the axis of rotation of the drive train required during deflection or offset of the drive train. In conventional drive motors with a rotor which is mounted within the stator via the magnetic field, an axial movement of the rotor in the direction of its Rotation axis take place relative to the stator. Since the gimbal-mounted suspension and typically at the other end of the engine or even further away from the engine arranged gimbal joint are very far apart compared to the combination of two bottom teeth couplings, the axial compensation in the direction of the axis of rotation of the rotor is comparatively low , Common drive motors allow the required axial compensation without any structural change.

Die axiale Beweglichkeit in Richtung der Rotationsachse des Läufers und/oder in Richtung des mit der Läuferwelle über das kardanisch bewegliche Gelenk verbundenen weiteren Antriebsstrangs kann alternativ zu einer axialen Beweglichkeit des Läufers relativ zum Stator auch über ein in axialer Richtung bewegliches kardanisch bewegliches Gelenk erzielt werden. Diese Variante wird eingesetzt, wenn der Motor keine axiale Beweglichkeit besitzt. Besitzt der Motor dagegen eine solche axiale Beweglichkeit, wird auf die axiale Beweglichkeit des kardanisch beweglichen Gelenks verzichtet, damit der Läufer sich nicht frei in axialer Richtung zwischen zwei Endpunkten hin und her bewegen kann. Eine dritte Möglichkeit der axialen Beweglichkeit besteht in einer Beweglichkeit der kardanisch beweglichen Aufhängung, die insbesondere für die oben beschriebene Ausführungsform eines Längsantriebes mit fest miteinander verbundenem Motor und Getriebe bevorzugt wird. In diesem Fall sind weder der Motor noch das kardanisch bewegliche Gelenk in axialer Richtung auslenkbar. Im Fall des Antriebsmoduls mit fest verbundenem Motor und Winkelgetriebe verhindert die axiale Beweglichkeit der kardanisch beweglichen Aufhängung, dass Antriebskräfte über die kardanisch bewegliche Aufhängung übertragen werden. Unter Antriebskräften werden in diesem Fall Kräfte verstanden, die zwischen Rad und Schiene wirken und zur Beschleunigung oder Bremsung des Fahrzeugs auf die tragende Konstruktion des Fahrzeugs übertragen werden.The axial mobility in the direction of the axis of rotation of the rotor and / or in the direction of the other connected to the rotor shaft via the gimbal movable joint further drive train can be achieved alternatively to an axial mobility of the rotor relative to the stator via a gimbal movable joint in the axial direction. This variant is used when the motor has no axial mobility. On the other hand, if the motor has such an axial mobility, the axial mobility of the gimbal-type joint is dispensed with so that the rotor can not move freely in the axial direction between two end points. A third possibility of axial mobility consists in a mobility of the gimbal mobile suspension, which is particularly preferred for the above-described embodiment of a longitudinal drive with fixedly connected engine and transmission. In this case, neither the motor nor the gimbal movable joint are deflectable in the axial direction. In the case of the drive module with fixed motor and bevel gear, the axial mobility of the gimbal-mounted suspension prevents driving forces from being transmitted through the gimbal-mounted suspension. In this case, driving forces are understood to mean forces which act between the wheel and the rail and are transmitted to the supporting structure of the vehicle for acceleration or braking of the vehicle.

Es wurde erwähnt, dass sich die kardanisch bewegliche Aufhängung und das kardanisch bewegliche Gelenk (betrachtet in Richtung der Rotationsachse des Läufers) an gegenüberliegenden Enden des Motors oder sogar in einer Entfernung von den Enden befinden können. Es ist jedoch auch möglich, dass die kardanisch bewegliche Aufhängung seitlich des Motors angeordnet ist. Auf eine Ausführungsform wird noch eingegangen. Diese Anordnung verkürzt zwar den Abstand zwischen Aufhängung und Gelenk. Der Abstand wird aber in aller Regel immer noch deutlich größer sein als bei zwei kardanisch beweglichen Gelenken im Antriebsstrang. Durch die seitliche Anordnung der kardanisch beweglichen Aufhängung wird weiterer Bauraum für die Anordnung des Motors und des Antriebsstrangs gespart.It has been mentioned that the gimbal-mounted suspension and the gimbal-movable joint (viewed in the direction of the axis of rotation of the rotor) at opposite ends of the motor or even at a distance from the ends can be. However, it is also possible that the gimbals movable suspension is arranged laterally of the engine. An embodiment will be discussed. Although this arrangement shortens the distance between the suspension and the joint. As a rule, however, the distance will still be significantly greater than with two cardanically movable joints in the drive train. The lateral arrangement of the gimbal movable suspension further space for the arrangement of the engine and the drive train is saved.

Wenn zuvor oder im Folgenden von dem kardanisch beweglichen Gelenk im Antriebsstrang die Rede ist, so schließt dies mit ein, dass statt des kardanisch beweglichen Gelenks eine kardanisch bewegliche Kupplung im Antriebsstrang vorgesehen ist. Gemäß der obigen Definition von dem Begriff kardanisch bewegliches Gelenk ist darunter auch eine Kupplung mit kardanischer Beweglichkeit zu verstehen. In der Praxis werden bereits Bauteile und Baugruppen eingesetzt, die mit dem Begriff Kupplung bezeichnet sind. Daher wird klargestellt, dass es sich bei dem Element oder der Baugruppe mit kardanischer Beweglichkeit im Antriebsstrang auch um eine Kupplung handeln kann.If previously or in the following the gimbal articulated joint in the drive train is mentioned, this implies that instead of the gimbal movable joint a gimbal movable coupling is provided in the drive train. According to the above definition of the term cardanically movable joint, this also means a coupling with gimbal mobility. In practice, components and assemblies are already used, which are designated by the term coupling. Therefore, it will be understood that the element or assembly with gimbal mobility in the powertrain may also be a clutch.

Insbesondere wird ein Antrieb für Schienenfahrzeuge vorgeschlagen, der einen Antriebsmotor mit einem Ständer und einem Läufer und zumindest ein vom Antriebsmotor angetriebenes Rad oder einen vom Antriebsmotor angetriebenen Radsatz, das/der beim Betrieb des Schienenfahrzeugs auf den Fahrschienen eines Schienenweges rollt, aufweist. Der Ständer des Antriebsmotors ist über eine kardanisch bewegliche Aufhängung an einem Drehgestell des Schienenfahrzeugs, an einem Wagenkasten des Schienenfahrzeugs oder an einer mit dem Drehgestell und/oder dem Wagenkasten verbundenen Konstruktion abgestützt. Der Läufer des Antriebsmotors ist über ein kardanisch bewegliches Gelenk und/oder über eine kardanisch bewegliche Kupplung mit dem Rad, mit dem Radsatz, mit zumindest einem Rad des Radsatzes und/oder mit einer Welle des Radsatzes gekoppelt, sodass beim Betrieb des Schienenfahrzeugs die Antriebskraft des Antriebsmotors über das Gelenk und/oder die Kupplung übertragen wird.In particular, a drive for rail vehicles is proposed, which has a drive motor with a stator and a rotor and at least one driven by the drive motor wheel or a drive motor driven wheelset that rolls in the operation of the rail vehicle on the rails of a rail track. The stator of the drive motor is supported via a gimbal-mounted suspension on a bogie of the rail vehicle, on a car body of the rail vehicle or on a construction connected to the bogie and / or the car body. The rotor of the drive motor is coupled via a cardanically movable joint and / or a cardanically movable coupling with the wheel, with the wheelset, with at least one wheel of the wheelset and / or with a shaft of the wheelset, so that during operation of the rail vehicle, the driving force of Drive motor is transmitted via the joint and / or the clutch.

Insbesondere treibt der Läufer beim Betrieb des Antriebes eine Antriebswelle an, die über ein Getriebe ein Rad des Radsatzes oder eine Radsatzwelle des Radsatzes antreibt.In particular, during operation of the drive, the rotor drives a drive shaft which drives a wheel of the wheelset or a wheelset shaft of the wheelset via a transmission.

Der Läufer kann beim Betrieb des Antriebes eine Antriebswelle antreiben, wobei das kardanisch bewegliche Gelenk einen ersten Abschnitt der Antriebswelle, der mit dem Läufer verbunden ist, mit einem zweiten Abschnitt der Antriebswelle koppelt, sodass die Rotationsachsen des ersten Abschnitts und des zweiten Abschnitts gegeneinander abgewinkelt verlaufen können. In diesem Fall befindet sich das Getriebe, das in dem vorangegangen Absatz erwähnt wurde, vorzugsweise im Verlauf des Antriebsstranges aus Sicht des Läufers jenseits des zweiten Abschnitts der Antriebswelle, d. h. der zweite Abschnitt der Antriebswelle hat insbesondere eine Rotationsachse, die in einer Neutralstellung, in der das kardanisch bewegliche Gelenk nicht zu einer Abwinklung des ersten und zweiten Abschnitts der Antriebswelle führt, koaxial zur Drehachse des Läufers verläuft.The rotor may drive a drive shaft during operation of the drive, the gimbal movable joint coupling a first portion of the drive shaft connected to the rotor to a second portion of the drive shaft such that the rotational axes of the first portion and the second portion are angled relative to one another can. In this case, the transmission mentioned in the previous paragraph is preferably located in the course of the drive train from the perspective of the runner beyond the second portion of the drive shaft, i. H. In particular, the second portion of the drive shaft has a rotation axis coaxial with the axis of rotation of the rotor in a neutral position in which the gimbal-type joint does not lead to angling of the first and second portions of the drive shaft.

Bei einer Realisierung als Querantrieb verlaufen die Rotationsachsen der Antriebswelle quer zur Fahrtrichtung des Schienenfahrzeugs. Jedoch ist z. B. auch ein Längsantrieb möglich, bei dem die Rotationsachsen der Antriebswelle ungefähr in Fahrtrichtung des Schienenfahrzeugs verlaufen.In a realization as a transverse drive, the axes of rotation of the drive shaft extend transversely to the direction of travel of the rail vehicle. However, z. B. also a longitudinal drive possible, in which the axes of rotation of the drive shaft extend approximately in the direction of travel of the rail vehicle.

Bei einer speziellen Ausgestaltung erlaubt das Gelenk eine axiale Relativbewegung des ersten Abschnitts und des zweiten Abschnitts in Richtung zumindest einer der Rotationsachsen der Abschnitte. Bevorzugt wird jedoch, dass die axiale Nachgiebigkeit bzw. Beweglichkeit durch den Motor, relativ zwischen Läufer und Ständer, realisiert ist, d.h. der Läufer ist in Richtung seiner Rotationsachse beweglich gelagert, vorzugsweise allein durch das Magnetfeld des Motors.In a specific embodiment, the joint allows axial relative movement of the first portion and the second portion in the direction of at least one of the axes of rotation of the sections. However, it is preferred that the axial compliance or mobility is realized by the motor, relatively between rotor and stator, ie, the rotor is movably mounted in the direction of its axis of rotation, preferably solely by the magnetic field of the motor.

Eine mit dem Läufer verbundene Antriebswelle kann wie üblich an einer ersten Seite des Motors (so genannte A-Seite) angeordnet sein und die kardanisch bewegliche Aufhängung am Ständer des Motors kann

  • an einer der ersten Seite gegenüberliegenden zweiten Seite des Motors (so genannte B-Seite) angeordnet sein und/oder
  • zwischen der ersten und der zweiten Seite des Motors angeordnet sein, insbesondere näher an der zweiten Seite des Motors als an der ersten Seite.
A drive shaft connected to the rotor can, as usual, be arranged on a first side of the motor (so-called A side) and can be the gimbal-mounted suspension on the stator of the motor
  • be arranged on one of the first side opposite the second side of the engine (so-called B-side) and / or
  • be arranged between the first and the second side of the engine, in particular closer to the second side of the engine than on the first side.

Zum Umfang der Erfindung gehört auch ein Schienenfahrzeug, wobei das Schienenfahrzeug einen Antrieb gemäß einer der beschriebenen Ausgestaltungen aufweist.The scope of the invention also includes a rail vehicle, wherein the rail vehicle has a drive according to one of the described embodiments.

Ferner gehört zum Umfang der Erfindung ein Verfahren zum Herstellen eines Antriebs für ein Schienenfahrzeug, wobei folgendes bereitgestellt wird:

  • ein Antriebsmotor mit einem Ständer und einem Läufer und
  • zumindest ein vom Antriebsmotor angetriebenes Rad oder ein vom Antriebsmotor angetriebener Radsatz, das/der beim Betrieb des Schienenfahrzeugs auf den Fahrschienen eines Schienenweges rollt,
wobei
  • der Ständer des Antriebsmotors über eine kardanisch bewegliche Aufhängung an einem Drehgestell des Schienenfahrzeugs, an einem Wagenkasten des Schienenfahrzeugs, oder an einer mit dem Drehgestell und/oder dem Wagenkasten verbundenen Konstruktion abgestützt wird und
  • der Läufer des Antriebsmotors über ein kardanisch bewegliches Gelenk und/oder über eine kardanisch bewegliche Kupplung mit dem Rad, mit dem Radsatz, mit zumindest einem Rad des Radsatzes und/oder mit einer Welle des Radsatzes gekoppelt wird, sodass beim Betrieb des Schienenfahrzeugs die Antriebskraft des Antriebsmotors über das Gelenk und/oder die Kupplung übertragen wird.
Further, within the scope of the invention is a method of manufacturing a drive for a rail vehicle, the following being provided:
  • a propulsion engine with a stand and a runner and
  • at least one wheel driven by the drive motor or a wheel set driven by the drive motor, which rolls on the rails of a rail track during operation of the rail vehicle,
in which
  • the stator of the drive motor is supported via a gimbal-mounted suspension on a bogie of the rail vehicle, on a car body of the rail vehicle, or on a construction connected to the bogie and / or the car body, and
  • the rotor of the drive motor is coupled via a cardanically movable joint and / or via a cardanically movable coupling to the wheel, to the wheelset, to at least one wheel of the wheelset and / or to a shaft of the wheelset, so that during operation of the rail vehicle the driving force of the Drive motor is transmitted via the joint and / or the clutch.

Insbesondere treibt der Antriebsmotor das Rad oder den Radsatz über ein Getriebe an.In particular, the drive motor drives the wheel or wheelset via a transmission.

Wie oben bereits anhand einer besonderen Ausführungsform beschrieben, können der Antriebsmotor und ein Getriebe, insbesondere ein Winkelgetriebe, ein Antriebsmodul bilden, wobei der Ständer des Antriebsmotors und nicht bewegliche Teile des Getriebes (insbesondere das Getriebegehäuse) fest und relativ zueinander unbeweglich miteinander verbunden sind. In diesem Fall ist das Antriebsmodul über das kardanisch bewegliche Gelenk und/oder über die kardanisch bewegliche Kupplung mit dem Rad, mit dem Radsatz, mit zumindest einem Rad des Radsatzes und/oder mit der Welle des Radsatzes gekoppelt.As already described above with reference to a particular embodiment, the drive motor and a transmission, in particular a bevel gear, form a drive module, wherein the stator of the drive motor and non-movable parts of the transmission (in particular the gear housing) are fixedly and immovably connected to each other. In this case, the drive module is coupled via the cardanically movable joint and / or via the cardanically movable coupling with the wheel, with the wheelset, with at least one wheel of the wheelset and / or with the shaft of the wheelset.

Wie üblich kann der Läufer des Antriebsmotors eine Antriebswelle aufweisen oder mit einer Antriebswelle drehfest verbunden sein. In diesem Fall ist die Antriebswelle über das kardanisch bewegliche Gelenk und/oder die kardanisch bewegliche Kupplung mit dem Rad, dem Radsatz oder der Welle des Radsatzes gekoppelt.As usual, the rotor of the drive motor may have a drive shaft or be rotatably connected to a drive shaft. In this case, the drive shaft is coupled via the cardanically movable joint and / or the cardanically movable coupling with the wheel, the wheel or the shaft of the wheelset.

Weitere Ausgestaltungen und Ausführungsbeispiele der Erfindung werden nun unter Bezugnahme auf die beigefügte Zeichnung beschrieben. Die einzelnen Figuren der Zeichnung zeigen:

Fig. 1
schematisch eine erste Ausgestaltung eines Querantriebes, wobei die axiale Nachgiebigkeit durch eine Beweglichkeit des kardanisch beweglichen Gelenks im Antriebsstrang realisiert ist,
Fig. 2
eine Frontalansicht der Draufsicht gemäß Fig. 1 in Richtung des Pfeils A in Fig. 1,
Fig. 3
eine Ausgestaltung ähnlich der in Fig. 1, wobei jedoch die axiale Beweglichkeit durch eine Relativbeweglichkeit des Läufers und des Ständers des Antriebsmotors gegeben ist,
Fig. 4
eine Draufsicht ähnlich der in Fig. 1 und Fig. 3, wobei jedoch gemäß dem Stand der Technik keine kardanisch bewegliche Aufhängung des Motors vorgesehen ist, sondern zwei kardanisch bewegliche Gelenke mit axialer Beweglichkeit relativ zueinander im Antriebsstrang,
Fig. 5
eine Draufsicht ähnlich der in Fig. 1, 3 und 4, die schematisch eine Ausführungsform des in Fig. 1 oder Fig. 3 gezeigten Querantriebs zeigt,
Fig. 6
einen Schnitt entlang der Linie B-B in Fig. 5, um die elastische Aufhängung des Getriebes darzustellen,
Fig. 7
eine Variante der Aufhängung des Getriebes zu der Ausführungsform von Fig. 6,
Fig. 8
einen Schnitt entlang der Linie C-C in Fig. 5, wobei die Schnittebene wie auch bei den Fig. 6 und 7 senkrecht zu der Bildebene der Fig. 5 verläuft,
Fig. 9
eine Ausführungsform bei einem Längsantrieb in Draufsicht,
Fig. 10
schematisch eine Neutralstellung einer Anordnung mit einem Antriebsmotor, der über eine kardanisch bewegliche Aufhängung aufgehängt ist und dessen Läufer über ein kardanisch bewegliches Gelenk einen Antriebsstrang antreibt,
Fig. 11
schematisch eine Anordnung wie in Fig. 10, wobei jedoch die Anordnung nicht nur dem Ausgleich eines parallelen Versatzes der Antriebswelle dient, sondern eine asymmetrische Anordnung der kardanisch beweglichen Aufhängung ausgleicht,
Fig. 12
schematisch eine Variante der kardanisch beweglichen Aufhängung bei einer Anordnung wie in Fig. 10 und Fig. 11, wobei die kardanisch bewegliche Aufhängung seitlich des Motors angeordnet ist,
Fig. 13
eine Ansicht auf eine Ausführungsform der seitlich des Motors angeordneten kardanisch beweglichen Aufhängung,
Fig. 14
eine Ausführungsform eines langgestreckten Elements, das als Gummifeder zur Realisierung der kardanisch beweglichen Aufhängung ausgestaltet ist,
Fig. 15
eine Draufsicht auf eine Anordnung, bei der mit Hilfe von zwei langgestreckten elastisch verformbaren Elementen eine kardanisch bewegliche Aufhängung realisiert ist,
Fig. 16
die Anordnung von Fig. 15, wobei jedoch die Anordnung in einem ausgelenkten Zustand gegenüber der Neutralstellung aus Fig. 15 zu sehen ist, bei der bezüglich einer Drehachse der kardanisch beweglichen Aufhängung, die parallel zu den Längsachsen der langgestreckten Elemente verläuft, eine Auslenkung um den Winkel α stattgefunden hat,
Fig. 17
eine Seitenansicht auf die Anordnung gemäß Fig. 15, die die Neutralstellung zeigt,
Fig. 18
die Anordnung von Fig. 17, wobei jedoch eine Auslenkung um eine Drehachse der kardanisch beweglichen Aufhängung stattgefunden hat, die senkrecht zu den Längsachsen der langgestreckten Elemente verläuft, wobei eine Auslenkung um den Winkel β stattgefunden hat,
Fig. 19
eine Draufsicht ähnlich der von Fig. 1 und Fig. 3, wobei jedoch die Welle des Radsatzes in einer Hohlwelle des Motors angeordnet ist und der Motor an einem Querträger des Drehgestells über eine kardanisch bewegliche Aufhängung aufgehängt ist,
Fig. 20
in Draufsicht von oben schematisch ein Drehgestell mit einem außenliegenden Antriebsmodul, wobei ein angetriebenes Laufrad teilweise aufgeschnitten dargestellt ist,
Fig. 21
eine vergrößerte Darstellung des Antriebsmoduls, der Aufhängung des Antriebsmoduls und des von dem Antriebsmodul angetriebenen Laufrades, wobei die drei genannten Teile und Baugruppen in Explosionsdarstellung, d.h. noch nicht miteinander verbunden, dargestellt sind, und
Fig. 22
in vergrößerter Darstellung ein ringförmiges elastisches Element zur Realisierung der kardanischen Beweglichkeit der Aufhängung des Antriebsmoduls gemäß Fig. 20 und Fig. 21.
Further embodiments and embodiments of the invention will now be described with reference to the accompanying drawings. The individual figures of the drawing show:
Fig. 1
schematically a first embodiment of a transverse drive, wherein the axial compliance is realized by a mobility of the gimbal joint in the drive train,
Fig. 2
a frontal view of the top view according Fig. 1 in the direction of the arrow A in Fig. 1 .
Fig. 3
an embodiment similar to the one in Fig. 1 but wherein the axial mobility is given by a relative mobility of the rotor and the stator of the drive motor,
Fig. 4
a plan view similar to the one in Fig. 1 and Fig. 3 However, according to the prior art, no gimbal movable suspension of the engine is provided, but two gimbals movable joints with axial mobility relative to each other in the drive train,
Fig. 5
a plan view similar to the one in Fig. 1 . 3 and 4 schematically showing an embodiment of the in Fig. 1 or Fig. 3 shown transverse drive,
Fig. 6
a section along the line BB in Fig. 5 to represent the elastic suspension of the transmission,
Fig. 7
a variant of the suspension of the transmission to the embodiment of Fig. 6 .
Fig. 8
a section along the line CC in Fig. 5 , where the section plane as well as the Fig. 6 and 7 perpendicular to the image plane of the Fig. 5 runs,
Fig. 9
an embodiment in a longitudinal drive in plan view,
Fig. 10
schematically a neutral position of an arrangement with a drive motor, which is suspended via a gimbal-mounted suspension and the rotor drives a drive train via a gimbal movable joint,
Fig. 11
schematically an arrangement as in Fig. 10 However, the arrangement not only compensates for a parallel offset of the drive shaft, but compensates for an asymmetric arrangement of the gimbal movable suspension,
Fig. 12
schematically a variant of the gimbal mobile suspension in an arrangement as in 10 and FIG. 11 in which the cardanically movable suspension is arranged laterally of the motor,
Fig. 13
a view of an embodiment of the side of the motor arranged gimbal mobile suspension,
Fig. 14
An embodiment of an elongated element, which is designed as a rubber spring for the realization of the gimbal movable suspension,
Fig. 15
a plan view of an arrangement in which is realized by means of two elongated elastically deformable elements a gimbal movable suspension,
Fig. 16
the arrangement of Fig. 15 However, wherein the arrangement in a deflected state from the neutral position Fig. 15 can be seen, with respect to a rotational axis of the gimbal movable Suspension, which runs parallel to the longitudinal axes of the elongate elements, a deflection has taken place by the angle α,
Fig. 17
a side view of the arrangement according to Fig. 15 showing the neutral position,
Fig. 18
the arrangement of Fig. 17 however, a deflection has taken place about an axis of rotation of the gimbal-mounted suspension, which is perpendicular to the longitudinal axes of the elongate elements, with a deflection having taken place by the angle β,
Fig. 19
a plan view similar to that of Fig. 1 and Fig. 3 wherein, however, the shaft of the wheel set is disposed in a hollow shaft of the engine and the motor is suspended on a cross member of the bogie via a gimbal movable suspension,
Fig. 20
schematically a top view from above of a bogie with an external drive module, wherein a driven impeller is shown partially cut away,
Fig. 21
an enlarged view of the drive module, the suspension of the drive module and driven by the drive module impeller, wherein the three parts and assemblies in an exploded view, that is not yet connected to each other, are shown, and
Fig. 22
in an enlarged view of an annular elastic element for the realization of the cardan motion of the suspension of the drive module according to Fig. 20 and Fig. 21 ,

Fig. 1 zeigt eine Draufsicht auf ein Drehgestell mit einem Radsatz, der über einen Querantrieb angetrieben wird. Das Drehgestell weist einen Drehgestellrahmen 100 mit einem in Fahrtrichtung offenen H-förmigen Tragprofil auf, dessen Querträger mit 9 bezeichnet ist und dessen Längsträger mit 3a, 3b bezeichnet sind. An gegenüberliegenden Längsträgern des Drehgestellrahmens 100 sind Lager 11 a und 11 b angeordnet, in denen die Radsatzwelle 6 des Radsatzes 7a, 7b drehbar gelagert ist. Die Radsatzwelle 6 wird über ein achsreitendes Getriebe 8 angetrieben, welches über eine elastische Aufhängung 25 an dem Querträger 9 aufgehängt ist. Das Antriebsmoment wird über eine Antriebswelle 19 in das Getriebe 8 eingeleitet. Fig. 1 shows a plan view of a bogie with a wheel, which is driven by a transverse drive. The bogie has a bogie frame 100 with an open in the direction of travel H-shaped support profile, whose cross member is denoted by 9 and whose longitudinal members are designated 3a, 3b. On opposite longitudinal members of the bogie frame 100 bearings 11 a and 11 b are arranged, in which the wheelset shaft 6 of the wheelset 7a, 7b is rotatably mounted. The wheel set shaft 6 is driven by an axle riding gear 8, which suspended by an elastic suspension 25 on the cross member 9. The drive torque is introduced via a drive shaft 19 in the transmission 8.

Die Antriebswelle 19 ist über ein kardanisch bewegliches Gelenk 5 von der Läuferwelle 18 eines Elektromotors 1 angetrieben. Das kardanisch bewegliche Gelenk 5 weist in Richtung der Rotationsachse der Läuferwelle 18 eine axiale Nachgiebigkeit bzw. Beweglichkeit auf. Der Läufer des Antriebsmotors 1 ist mit 4 bezeichnet. An dem Ständer 22 ist eine Befestigung 21 angebracht, die über eine kardanisch bewegliche Aufhängung 2 an einer Längsstütze 12 aufgehängt ist, welche an dem Querträger 9 befestigt ist.The drive shaft 19 is driven by a gimbal movable joint 5 of the rotor shaft 18 of an electric motor 1. The cardanically movable joint 5 has an axial compliance or mobility in the direction of the axis of rotation of the rotor shaft 18. The rotor of the drive motor 1 is denoted by 4. On the stand 22, a fastening 21 is mounted, which is suspended via a gimbal movable suspension 2 on a longitudinal support 12 which is fixed to the cross member 9.

Fig. 2 zeigt die Anordnung in einer Frontansicht, wobei außerdem noch die Federung 16a, 16b zu erkennen ist, über die die Radlager 11 a, 11 b federnd mit dem Wagenkasten 14 des Schienenfahrzeugs verbunden sind. Fig. 2 shows the arrangement in a front view, wherein also still the suspension 16a, 16b can be seen, via which the wheel bearings 11 a, 11 b are resiliently connected to the car body 14 of the rail vehicle.

In den folgenden Figuren werden für gleiche oder einander entsprechende Teile dieselben Bezugszeichen verwendet wie in Fig. 1 oder wie in verschiedenen der folgenden Figuren.In the following figures, the same reference numerals are used for the same or corresponding parts as in Fig. 1 or as in various of the following figures.

Fig. 3 zeigt eine Draufsicht, die der Draufsicht in Fig. 1 sehr ähnlich ist, wobei jedoch das kardanisch bewegliche Gelenk 5 durch ein kardanisch bewegliches Gelenk 15 ersetzt ist, welche keine axiale Nachgiebigkeit aufweist. Stattdessen ist die axiale Nachgiebigkeit in Richtung der Läuferwelle durch eine Beweglichkeit des Läufers 4 relativ zum Ständer 22 gegeben. Fig. 3 shows a plan view, the top view in Fig. 1 is very similar, but the gimbal movable joint 5 is replaced by a gimbal movable joint 15, which has no axial compliance. Instead, the axial compliance in the direction of the rotor shaft is given by a mobility of the rotor 4 relative to the stator 22.

Die in Fig. 4 dargestellte Draufsicht auf eine Ausführungsform gemäß dem Stand der Technik unterscheidet sich von der in Fig. 1 dadurch, dass der Motor über eine starre Aufhängung 29 an dem Querträger 9 aufgehängt ist. Außerdem sind die Läuferwelle 18 und die Antriebswelle 19 über zwei kardanisch bewegliche Gelenke 35a, 35b zur Übertragung des Drehmoments miteinander gekoppelt, wobei die kardanisch beweglichen Gelenke 35 in axialer Richtung relativ zueinander beweglich sind.In the Fig. 4 A top view of an embodiment according to the prior art differs from that in FIG Fig. 1 in that the motor is suspended by a rigid suspension 29 on the cross member 9. In addition, the rotor shaft 18 and the drive shaft 19 are coupled together via two gimbals movable joints 35a, 35b for transmitting the torque, wherein the gimbals movable joints 35 are movable relative to each other in the axial direction.

In Fig. 1, 3 und 4 sind durch jeweils ein Dreieckssymbol Lager dargestellt, die eine Rotation der Läuferwelle 18 bzw. des Läufers 4 ermöglichen. Dabei ist jedoch die weitere Funktion des jeweils rechts von dem Läufer 4 dargestellten Drehlagers in den Fällen der Fig. 1, 3 und 4 verschieden. In dem Fall der Fig. 1 weist das kardanisch bewegliche Gelenk 5 wie erwähnt eine axiale Nachgiebigkeit auf. Daher erlaubt das genannte Drehlager keine axiale Beweglichkeit der Läuferwelle 18. Für den Fall der Fig. 4 gilt das gleiche. Dagegen besitzt das kardanisch bewegliche Gelenk 15 in der Ausführungsform der Fig. 3 keine axiale Nachgiebigkeit. Daher ermöglicht das genannte Drehlager eine axiale Beweglichkeit der Läuferwelle 18.In Fig. 1 . 3 and 4 are each represented by a triangular symbol bearing, which allow a rotation of the rotor shaft 18 and the rotor 4. However, the further function of the pivot bearing shown in each case on the right of the rotor 4 in the cases of Fig. 1 . 3 and 4 different. In the case of Fig. 1 has the gimbal movable joint 5 as mentioned on an axial compliance. Therefore, said rotary bearing does not allow axial mobility of the rotor shaft 18. In the case of Fig. 4 the same applies. In contrast, has the gimbal movable joint 15 in the embodiment of Fig. 3 no axial compliance. Therefore, said rotary bearing allows axial mobility of the rotor shaft 18th

Fig. 5 zeigt eine Draufsicht auf eine Anordnung, die eine Ausgestaltung der Anordnung gemäß Fig. 3 ist. Die Ausgestaltung betrifft die kardanisch bewegliche Aufhängung und die Aufhängung des Getriebes 8. Diese beiden Aufhängungen können auch bei der in Fig. 1 dargestellten Anordnung verwendet werden. Fig. 5 shows a plan view of an arrangement, the one embodiment of the arrangement according to Fig. 3 is. The design relates to the gimbals movable suspension and the suspension of the transmission 8. These two suspensions can also be used in the in Fig. 1 shown arrangement can be used.

Die kardanisch bewegliche Aufhängung des Elektromotors 1 verbindet die Längsstütze 12 mit dem Ständer 22 des Motors 1. Um die Drehbeweglichkeit der kardanisch beweglichen Aufhängung um die zwei senkrecht zueinander stehenden Drehachsen zu gewährleisten, weist die Aufhängung zwei langgestreckte elastische Elemente 52a, 52b auf, deren Längsachsen in der Darstellung von Fig. 5 senkrecht zur Bildebene verlaufen. Auf Höhe des Querträgers 9 des Drehgestellrahmens 100 erstreckt sich die Längsstütze 12. Die beiden langgestreckten Elemente 52a, 52b sind in Längsrichtung des Schienenfahrzeugs, d.h. in der Richtung der Längserstreckung der Längsstütze 12, voneinander beabstandet und erstrecken sich in Richtung ihrer Längsachsen nach oben. An ihrem oberen Ende sind die Elemente 52 mit einer Konsole 51 verbunden, die im oberen Bereich am Ständer 22 befestigt ist. Eine ähnliche Anordnung wird noch anhand der Fig. 15 bis 18 beschrieben. Daran wird auch die Beweglichkeit der langgestreckten Elemente 52 erläutert. Die Elemente 52 sind in Richtung ihrer Längsachse steif, d.h. die Länge in Richtung der Längsachse verändert sich durch die Einwirkung der üblicherweise beim Betrieb des Drehgestells auftretenden Kräfte nicht oder nur geringfügig.The gimbals movable suspension of the electric motor 1 connects the longitudinal support 12 with the stator 22 of the motor 1. In order to ensure the rotational mobility of the gimbal mobile suspension about the two mutually perpendicular axes of rotation, the suspension has two elongated elastic members 52a, 52b, whose longitudinal axes in the presentation of Fig. 5 perpendicular to the image plane. The longitudinal support 12 extends at the level of the crossbeam 9 of the bogie frame 100. The two elongate elements 52a, 52b are spaced apart in the longitudinal direction of the rail vehicle, ie in the direction of the longitudinal extension of the longitudinal support 12, and extend upwards in the direction of their longitudinal axes. At its upper end, the elements 52 are connected to a bracket 51, which is fastened to the stand 22 in the upper region. A similar arrangement is still based on the 15 to 18 described. This also explains the mobility of the elongated elements 52. The elements 52 are stiff in the direction of their longitudinal axis, ie the length in the direction of the longitudinal axis does not change or only slightly by the action of the forces usually occurring during operation of the bogie.

Die Aufhängung 55 des Getriebes 8 ist auch aus der Schnittzeichnung in Fig. 6 erkennbar. Wie Fig. 6 zeigt, ist ein C-förmiger Bügel an dem Querträger 9 des Drehgestells befestigt. An den einander gegenüberliegenden Innenseiten der freien Enden des C-förmigen Bügels 63 setzen Gummifedern 61 a, 61 b an, deren entgegengesetzte Enden zwischen sich einen Endbereich des Getriebes 8 aufnehmen und daran befestigt sind. Die einander gegenüberliegenden Gummifedern 61 weisen jeweils eine Längsachse auf, die mit der Längsachse der anderen Gummifeder fluchtet und die die Antriebswelle 10 senkrecht zu deren Rotationsachse schneidet. Es ist jedoch auch möglich, dass die Längsachsen aus der in Fig. 6 gezeigten Position versetzt sind und daher eine Parallele der Rotationsachse schneiden. Ebenfalls erkennbar in Fig. 6 ist die Lage der Radsatzwelle 6, die über das Getriebe 8 angetrieben wird. Details der Getriebekonstruktion sind aus Fig. 6 nicht erkennbar. Die Aufhängung 55 erlaubt insbesondere Drehungen der Antriebswelle 10 um drei aufeinander senkrecht stehende Drehachsen. Diese Drehachsen verlaufen in Fig. 6 in vertikaler und horizontaler Richtung in der Figurenebene sowie senkrecht zur Figurenebene.The suspension 55 of the transmission 8 is also from the sectional drawing in Fig. 6 recognizable. As Fig. 6 shows, a C-shaped bracket is attached to the cross member 9 of the bogie. At the opposite inner sides of the free ends of the C-shaped bracket 63 put rubber springs 61 a, 61 b, the opposite ends between them receive an end portion of the transmission 8 and are attached thereto. The opposed rubber springs 61 each have a longitudinal axis which is aligned with the longitudinal axis of the other rubber spring and which intersects the drive shaft 10 perpendicular to its axis of rotation. However, it is also possible that the longitudinal axes of the in Fig. 6 shown position and therefore intersect a parallel axis of rotation. Also recognizable in Fig. 6 is the position of the wheelset shaft 6, which is driven via the transmission 8. Details of the gear design are out Fig. 6 not visible. The suspension 55 allows in particular rotations of the drive shaft 10 by three mutually perpendicular axes of rotation. These axes of rotation run in Fig. 6 in the vertical and horizontal direction in the plane of the figure and perpendicular to the plane of the figure.

Die in Fig. 7 dargestellte Variante einer Aufhängung des Getriebes 8 weist eine Pendelstütze auf. Mit dem Querträger 9 ist ein Pendelträger 71 fest verbunden, der an seinem oberen, in Richtung Getriebe 8 vorspringendem Ende ein erstes Gelenk 73 aufweist, das eine Drehbewegung eines Pendels 77 um eine senkrecht zur Bildebene von Fig. 7 verlaufende Drehachse erlaubt. Am unteren Ende des Pendels 77 ist dieses über ein weiteres Gelenk 75 mit dem Getriebe verbunden. Das zweite Gelenk 75 erlaubt ebenfalls eine Drehbewegung um eine senkrecht zur Bildebene von Fig. 7 verlaufende Drehachse. Somit lässt die Aufhängung hauptsächlich Bewegungen in Richtung der horizontalen Achse in Fig. 7 zu, die etwa auf Höhe der Antriebswelle 10 und der Radsatzwelle 6 verläuft. Anders als in Fig. 7 gezeigt, kann das zweite Gelenk 75 auch oberhalb oder unterhalb der Höhe der Antriebswelle 10 verlaufen.In the Fig. 7 illustrated variant of a suspension of the transmission 8 has a pendulum support. With the cross member 9, a pendulum carrier 71 is fixedly connected, which has at its upper end projecting in the direction of gear 8, a first joint 73, the rotational movement of a pendulum 77 about a perpendicular to the image plane of Fig. 7 running axis of rotation allowed. At the lower end of the pendulum 77 this is connected via a further joint 75 to the transmission. The second joint 75 also allows a rotational movement about a perpendicular to the image plane of Fig. 7 extending axis of rotation. Thus, the suspension mainly allows movements in the direction of the horizontal axis Fig. 7 to, which runs approximately at the height of the drive shaft 10 and the wheelset shaft 6. Unlike in Fig. 7 shown, the second joint 75 may also extend above or below the height of the drive shaft 10.

Aus Fig. 8 ist die bereits anhand von Fig. 5 beschriebene kardanisch bewegliche Aufhängung erkennbar. An dem Querträger 9 setzt (in Fig. 8 nach links erstreckend) die Längsstütze 12 an, auf deren Oberseite die langgestreckten Elemente 52a, 52b befestigt sind, und zwar in einem Abstand zueinander. An deren oberen Enden sind die Elemente 52 mit der Konsole 51 verbunden, die im oberen Bereich an dem Ständergehäuse befestigt ist.Out Fig. 8 is already based on Fig. 5 described gimbal movable suspension visible. On the cross member 9 sets (in Fig. 8 extending to the left) the longitudinal support 12, on the upper side of which the elongated elements 52a, 52b are fastened, namely at a distance from each other. At the upper ends of the elements 52 are connected to the bracket 51, which is secured in the upper part of the stator housing.

Fig. 9 zeigt in Draufsicht einen Längsantrieb für einen Radsatz mit Rädern 7a, 7b. Wiederum ist die Radsatzwelle 6 über Radlager 11 a, 11 b mit dem Drehgestellrahmen 101 verbunden, der in Fahrtrichtung einseitig offen ist. An dem der Öffnung des Rahmens gegenüberliegenden Ende weist das Drehgestell einen Querträger 91 auf, an dem die kardanisch bewegliche Aufhängung 92 ansetzt, welche auch eine lineare Bewegung des Motors 1 in Fahrtrichtung (von oben nach unten in Fig. 9 verlaufend) relativ zu dem Querträger ermöglicht. Die Aufhängung 92 lässt über eine mit dem Ständer des Motors 1 verbundene Trägerstruktur 97 Drehbewegungen um eine horizontal, quer zur Fahrtrichtung (in der Figurenebene der Fig. 9 von links nach rechts) verlaufende Drehachse und um eine senkrecht zu der Figurenebene von Fig. 9 verlaufende Drehachse zu. Dagegen werden Drehbewegungen um die in Fahrtrichtung verlaufende Achse verhindert, die mit der Drehachse der Läuferwelle 108 fluchtet. Der Motor 1 ist fest, d.h. relativ dazu unbeweglich, mit einem Getriebe 98 verbunden, welches über eine Hohlwelle 109 und eine kardanisch bewegliche Kupplung 95 mit der Radsatzwelle 6 gekoppelt ist. Fig. 9 shows in plan view a longitudinal drive for a wheel with wheels 7a, 7b. Again, the wheelset shaft 6 via wheel bearings 11 a, 11 b connected to the bogie frame 101, which is unilaterally open in the direction of travel. At the opposite end of the opening of the frame, the bogie on a cross member 91, to which the gimbal movable suspension 92 attaches, which also a linear movement of the motor 1 in the direction of travel (from top to bottom in Fig. 9 extending) relative to the cross member allows. The suspension 92 can rotate about a horizontally, transversely to the direction of travel (in the plane of the figure Fig. 9 from left to right) and a rotation axis perpendicular to the plane of the figure Fig. 9 extending axis of rotation. In contrast, rotational movements are prevented by the axis extending in the direction of travel, which is aligned with the axis of rotation of the rotor shaft 108. The motor 1 is fixed, ie immovable relative thereto, connected to a gear 98, which is coupled via a hollow shaft 109 and a gimbal movable coupling 95 with the wheelset shaft 6.

Der Läufer 4 des Motors 1 überträgt das von ihm produzierte Drehmoment über die Läuferwelle 108, das Getriebe 98, die Hohlwelle 109 und die kardanisch bewegliche Kupplung 95 auf die Radsatzwelle 6 und treibt diese daher an.The rotor 4 of the motor 1 transmits the torque produced by it via the rotor shaft 108, the gear 98, the hollow shaft 109 and the cardanically movable coupling 95 to the wheelset shaft 6 and therefore drives them.

Ein Längsantrieb mit der erfindungsgemäßen Aufhängung des Motors kann auch anders als anhand von Fig. 9 erläutert realisiert werden. Zum Beispiel kann der Läufer des über eine kardanische Aufhängung an dem Querträger des Drehgestells abgestützten Motors direkt, ohne Zwischenschaltung eines kardanischen Gelenks mit einem Getriebe, zum Beispiel einem Kegel-Stirnradgetriebe, gekoppelt sein. Die Läuferwelle des Motorläufers ist daher nicht relativ zu dem Getriebe kardanisch beweglich. Die kardanische Beweglichkeit im Antriebsstrang ist in diesem Fall in dem Bereich des Antriebsstranges zwischen dem Getriebe und dem Radsatz realisiert. Zum Beispiel kann ein Ritzel des Getriebes ein Großrad antreiben, welches drehfest mit der Antriebsseite eines kardanischen Gelenks verbunden ist. Bei diesem kardanischen Gelenk kann es sich zum Beispiel um eine Bogenzahnkupplung handeln. Die Abtriebseite der Bogenzahnkupplung kann zum Beispiel unmittelbar mit der Welle des anzutreibenden Radsatzes verbunden sein.A longitudinal drive with the suspension of the engine according to the invention can also be different than based on Fig. 9 be realized explained. For example, the rotor of the supported via a gimbal on the cross member of the bogie motor directly, without the interposition of a gimbal joint with a gear, for example, a bevel-helical gear to be coupled. The rotor shaft of the motor rotor is therefore not gimbal movable relative to the transmission. The gimbal mobility in the drive train is realized in this case in the area of the drive train between the gearbox and the wheelset. For example, a pinion of the transmission can drive a large gear, which is rotatably connected to the drive side of a gimbal joint. This gimbal joint may be, for example, a curved tooth coupling. The output side of the curved tooth coupling can for example be connected directly to the shaft of the driven wheelset.

Fig. 10 zeigt schematisch das Grundprinzip der Beweglichkeit der erfindungsgemäßen Anordnung. Die tragende Struktur links im Bild ist mit dem Bezugszeichen 90 bezeichnet. An dieser tragenden Struktur 90 ist der Motor 1 mit seinem Ständer 22 über ein Verbindungselement 21 und die kardanisch bewegliche Aufhängung 2 aufgehängt. Drehbeweglich ist der Ständer 22 somit relativ zur tragenden Struktur 90 um zwei zueinander senkrecht verlaufende Drehachsen, insbesondere die senkrecht zur Bildebene in Fig. 10 verlaufende Drehachse. In der Praxis kann diese senkrecht zur Bildebene verlaufende Drehachse z.B. die horizontale oder die vertikale Achse sein. Fig. 10 shows schematically the basic principle of the mobility of the arrangement according to the invention. The supporting structure on the left in the image is designated by the reference numeral 90. At this supporting structure 90, the motor 1 is suspended by its stand 22 via a connecting element 21 and the cardanically movable suspension 2. Rotatable, the stator 22 is thus relative to the supporting structure 90 about two mutually perpendicular axes of rotation, in particular perpendicular to the image plane in Fig. 10 extending axis of rotation. In practice, this axis of rotation extending perpendicular to the image plane may be, for example, the horizontal or the vertical axis.

Fig. 10 zeigt zwei Drehstellungen des Motors 1 und der gemeinsam mit dem Motor 1 beweglichen Teile der Anordnung. Die eine Stellung ist durch die mit durchgezogenen Linien dargestellten Umrisse repräsentiert. Die andere Stellung ist durch die mit unterbrochenen Linien dargestellten Teile repräsentiert. Man erkennt, dass aus der Neutralstellung (Stellung, die mit den durchgezogenen Linien gezeichnet ist) in der Drehachse durch die kardanisch bewegliche Aufhängung 2 eine Drehbewegung stattfinden kann, so dass die Verbindung 21, der Ständer 22, der Läufer 4 und die Läuferwelle 18 um einen Winkel gegen die Neutralstellung gedreht ausgerichtet sind. Aufgrund des kardanisch beweglichen Gelenks 5 am Übergang zwischen der Läuferwelle 18 und der Antriebswelle 19 kann die Antriebswelle 19 lediglich parallel versetzt zu der Neutralstellung aber in die gleiche Richtung verlaufen. Es ist jedoch auch möglich, dass in der ausgelenkten Stellung die Antriebswelle 19 nicht parallel zu der Neutralstellung ausgerichtet ist, sondern anders als in Fig. 10 gezeigt auf einen Punkt ungefähr am rechten Ende der Antriebswelle ausgerichtet verläuft, an dem sie aufgehängt ist. Fig. 10 shows two rotational positions of the engine 1 and the movable parts of the assembly together with the motor 1. One position is represented by the outlines shown by solid lines. The other position is represented by the broken line parts. It can be seen that from the neutral position (position drawn by the solid lines) in the axis of rotation by the gimbal movable suspension 2, a rotational movement can take place, so that the connection 21, the stator 22, the rotor 4 and the rotor shaft 18 to an angle against the neutral position are aligned rotated. Due to the gimbal joint 5 at the transition between the rotor shaft 18 and the drive shaft 19, the drive shaft 19 only offset parallel to the neutral position but in the same direction run. However, it is also possible that in the deflected position, the drive shaft 19 is not aligned parallel to the neutral position, but unlike in Fig. 10 shown aligned at a point approximately at the right end of the drive shaft, on which it is suspended.

Die axiale Beweglichkeit in Richtung der Rotationsachse der Läuferwelle oder der Antriebswelle ist aus dem Beispiel von Fig. 10 nicht erkennbar. Das Beispiel entspricht vielmehr z.B. einer Axialbeweglichkeit am Übergang zwischen der Antriebswelle und dem nicht in Fig. 10 gezeigten Getriebe.The axial mobility in the direction of the axis of rotation of the rotor shaft or the drive shaft is from the example of Fig. 10 not visible. Rather, the example corresponds for example to an axial mobility at the transition between the drive shaft and not in Fig. 10 shown gear.

Fig. 11 zeigt eine Variante, in der die in Fig. 10 gezeigt Anordnung in ihrer Neutralstellung ist, wobei jedoch die Verbindung 21 nicht in Richtung der Läuferwelle ausgerichtet ist, sondern bereits geneigt bezüglich der tragenden Struktur 90 verläuft. Dieses Beispiel zeigt, dass die kardanisch bewegliche Aufhängung 2 auch gestattet, die Aufhängung in gewissen Grenzen zu versetzen, ohne die Funktion zu behindern. Die erfindungsgemäße Anordnung erlaubt daher in gewissen Grenzen Toleranzen bei der Fertigung und Montage, ohne die Funktion zu gefährden. Fig. 11 shows a variant in which the in Fig. 10 shown arrangement in its neutral position, but the connection 21 is not aligned in the direction of the rotor shaft, but already inclined with respect to the supporting structure 90 extends. This example shows that the gimballed suspension 2 also allows the suspension to be set within certain limits without interfering with the function. The arrangement according to the invention therefore allows within certain limits tolerances in the production and assembly, without jeopardizing the function.

Fig. 12 zeigt schematisch, dass die kardanisch bewegliche Aufhängung auch seitlich des Motors 1 angeordnet sein kann. Die tragende Struktur 109 ist über eine Verbindung 31 mit der kardanisch beweglichen Aufhängung 32 verbunden, die im linken Bereich des Ständergehäuses an den Motor 1 angreift. Fig. 12 shows schematically that the gimbal movable suspension can also be arranged laterally of the engine 1. The supporting structure 109 is connected via a connection 31 to the cardanically movable suspension 32, which acts on the motor 1 in the left-hand area of the stator housing.

Eine konkrete Ausführungsform zeigt Fig. 13. Tragende Teile 19a, 19b sind rechts und links in der Figur erkennbar. Über diese Teile ist die Aufhängung z.B. mit dem Querträger eines Drehgestells verbunden. Von den tragenden Teilen 19a, 19b erstreckt sich jeweils in Richtung des anderen tragenden Teils 19 ein Verbindungselement 131, 132, das am unteren Ende eines elastischen Elements 135a bzw. 135b befestigt ist. Am oberen Ende des elastischen Elements 135 ist jeweils ein Verbindungselement 136a, 136b aus nicht elastischem Werkstoff befestigt, welches das elastische Element 135a, 135b mit dem Gehäuse des Motors 1 verbindet. Die Funktion der kardanisch beweglichen Aufhängung gemäß Fig. 13 ist z.B. wie bei der in Fig. 8 gezeigten Aufhängung. Die Funktion wird auch noch anhand der Fig. 15 bis 18 erläutert.A concrete embodiment shows Fig. 13 , Supporting parts 19a, 19b can be seen on the right and left in the figure. About these parts, the suspension is connected, for example, with the cross member of a bogie. Of the supporting parts 19a, 19b extending in the direction of the other supporting part 19, a connecting element 131, 132 which is attached to the lower end of an elastic member 135a and 135b, respectively. At the upper end of the elastic element 135, a connecting element 136a, 136b of non-elastic material is fixed, which the elastic element 135a, 135b with the housing of the motor 1 connects. The function of gimbal mobile suspension according to Fig. 13 is eg like in the Fig. 8 shown suspension. The function is still based on the 15 to 18 explained.

Fig. 14 zeigt ein Beispiel für ein langgestrecktes elastisches Element. Dieses Element hat eine zylindrische Form. In der Praxis muss die Form jedoch nicht zylindrisch sein, sondern kann vielmehr z.B. wie in Fig. 13 dargestellt einen in Längsrichtung gekrümmten Verlauf haben. Fig. 14 shows an example of an elongate elastic member. This element has a cylindrical shape. In practice, however, the shape does not have to be cylindrical, but rather can be as in Fig. 13 represented have a longitudinally curved course.

An den in Längsrichtung (horizontale Richtung in Fig. 14) gegenüberliegenden Enden des Elements ist jeweils ein scheibenförmiger Teil 141 a, 141 b aus einem nicht elastischen Material, z.B. aus Metall, angeordnet. Zwischen diesen End-Scheiben 141 befinden sich im Ausführungsbeispiel 5 scheibenförmige Segmente 142a bis 142e aus elastischem Material, z.B. aus natürlichem oder künstlichem Gummimaterial. Durch alle Scheiben 141, 142 hindurch erstreckt sich eine Bohrung in Längsrichtung. Nicht dargestellt ist in Fig. 14, dass sich bei dem betriebsfertigen elastischen Element ein Zugelement aus nicht elastischem Material hindurcherstreckt, über das die End-Scheiben 141 gegeneinander verspannt sind, so dass die Scheiben 142 aus elastischem Material in Längsrichtung zusammengespannt werden. Daher ist in Längsrichtung keine oder nur eine sehr geringe elastische Verformung möglich. Dagegen ist die Verspannung so ausgeführt, dass das elastische Element um seine Längsachse tordieren kann und sich so verbiegen kann, dass die Längsachse nicht mehr gradlinig, sondern gekrümmt verläuft.At the longitudinal direction (horizontal direction in Fig. 14 ) opposite ends of the element is in each case a disc-shaped part 141 a, 141 b of a non-elastic material, for example of metal, arranged. Disc-shaped segments 142a to 142e of elastic material, for example of natural or synthetic rubber material, are located between these end discs 141 in the exemplary embodiment. Through all disks 141, 142 through a bore extends in the longitudinal direction. Not shown in Fig. 14 in that, in the case of the ready-to-operate elastic element, a tension element of non-elastic material extends through which the end disks 141 are braced against one another, so that the disks 142 of elastic material are clamped together in the longitudinal direction. Therefore, no or only a very small elastic deformation is possible in the longitudinal direction. In contrast, the tension is designed so that the elastic element can twist around its longitudinal axis and can bend so that the longitudinal axis is no longer straight, but curved.

Fig. 15 zeigt schematisch eine Anordnung mit zwei elastischen Elementen 151 a, 151 b, deren Längsachsen senkrecht zur Bildebene von Fig. 15 verlaufen. In Längsrichtung an einem Ende der Elemente 151 sind diese mit der tragenden Struktur 150 verbunden. Am anderen Ende sind die Elemente 151 mit jeweils einer Verbindungsstruktur 153a, 153b verbunden, wobei die Verbindungsstrukturen 153a, 153b auch eine einzige Struktur sein können, d.h. sie können auch fest miteinander verbunden sein oder ein Stück bilden. Mit der tragenden Struktur 153 ist das Gehäuse des Motors 1 verbunden. Wiederum ist die Läuferwelle 18 über ein kardanisch bewegliches Gelenk 155 im Antriebsstrang mit der Antriebswelle 19 verbunden. Fig. 15 schematically shows an arrangement with two elastic elements 151 a, 151 b, whose longitudinal axes perpendicular to the image plane of Fig. 15 run. In the longitudinal direction at one end of the elements 151, these are connected to the supporting structure 150. At the other end, the elements 151 are each connected to a connecting structure 153a, 153b, wherein the connecting structures 153a, 153b can also be a single structure, ie they can also be fixed to one another be connected or form a piece. With the supporting structure 153, the housing of the motor 1 is connected. Again, the rotor shaft 18 is connected via a gimbal movable joint 155 in the drive train to the drive shaft 19.

Fig. 15 zeigt die Neutralstellung der durch die elastischen Elemente 151 realisierten kardanisch beweglichen Aufhängung des Motors 1. Fig. 15 FIG. 12 shows the neutral position of the gimbals of the motor 1 realized by the elastic elements 151.

Fig. 16 zeigt eine ausgelenkte Stellung. In der Figur ist das fest mit der tragenden Struktur 150 verbundene Ende der elastischen Elemente 151 durch eine gestrichelte Kreislinie dargestellt, während das fest mit der Verbindungsstruktur 153 verbundene Ende durch eine ununterbrochene Linie dargestellt ist. Man erkennt, dass durch eine Drehung um eine senkrecht zur Bildebene in Fig. 16 verlaufende Drehachse, die sich in der Mitte zwischen den Längsachsen der elastischen Elemente 151 befindet (der Drehwinkel beträgt α), das an der Verbindungsstruktur 153a befestigte Ende des Elements 151 a geringfügig nach links bewegt hat, während sich das an der Verbindungsstruktur 153b befestigte Ende des Elements 151 b etwas nach rechts bewegt hat. Beide Elemente 151 haben daher sowohl eine Torsionsbewegung um ihre Längsachse ausgeführt, als auch eine Biegebewegung, bei der die Längsachse leicht gekrümmt verläuft. Fig. 16 shows a deflected position. In the figure, the end of the elastic members 151 fixedly connected to the supporting structure 150 is shown by a broken line, while the end connected to the connecting structure 153 is shown by a continuous line. It can be seen that by a rotation about a perpendicular to the image plane in Fig. 16 extending axis of rotation, which is located in the middle between the longitudinal axes of the elastic members 151 (the angle of rotation is α), which has moved to the connecting structure 153a fixed end of the element 151 a slightly to the left, while the attached to the connecting structure 153 b end of the Elements 151 b has moved something to the right. Both elements 151 have therefore carried out both a torsional movement about its longitudinal axis, as well as a bending movement, in which the longitudinal axis is slightly curved.

Fig. 17 und Fig. 18 zeigen die Anordnung von Fig. 15 in einer Seitenansicht. Fig. 17 zeigt dabei die Neutralstellung. In der Ansicht von Fig. 17 befinden sich die elastischen Elemente 151 oberhalb der tragenden Struktur 150 hintereinander. Daher sind nur die Umrisse eines der Elemente 151 erkennbar. FIGS. 17 and 18 show the arrangement of Fig. 15 in a side view. Fig. 17 shows the neutral position. In the view of Fig. 17 the elastic elements 151 are above the supporting structure 150 one behind the other. Therefore, only the outlines of one of the elements 151 can be seen.

Fig. 18 zeigt eine andere Drehstellung als Fig. 16. Die Verbindungsstruktur 153 und der damit verbundene Motor 1 sind um eine senkrecht zur Bildebene der Fig. 17 und 18 verlaufende Drehachse nach oben gedreht. Um dies zu ermöglichen, haben die elastischen Elemente eine Bewegung ausgeführt, bei der sich ihre Längsachse (verläuft in Fig. 17 und 18 in vertikaler Richtung) verkrümmt hat. Die Längsachse verläuft von unten nach oben, wobei sie sich leicht nach links neigt. Fig. 18 shows a different rotational position than Fig. 16 , The connection structure 153 and the associated motor 1 are at a perpendicular to the image plane of FIGS. 17 and 18 extending axis of rotation turned up. To make this possible, the elastic elements have made a movement in which their longitudinal axis (runs in FIGS. 17 and 18 in the vertical direction) has curved. The longitudinal axis runs from bottom to top, leaning slightly to the left.

Fig. 19 zeigt schematisch eine Draufsicht auf eine andere erfindungsgemäße Ausführungsform eines Querantriebes. Wiederum ist der Radsatz 207a, 207b, der drehfest auf der Radsatzwelle 6 montiert ist, über Drehlager 11 a, 11 b an dem Drehgestellrahmen 200 befestigt. Fig. 19 schematically shows a plan view of another embodiment of a transverse drive according to the invention. Again, the wheelset 207a, 207b, which is rotatably mounted on the wheelset shaft 6, via pivot bearings 11 a, 11 b attached to the bogie frame 200.

Bezüglich der Befestigung des Antriebsmotors 201 wird auf die bereits anhand von Fig. 13 beschriebene Ausführungsform Bezug genommen. Fig. 19 zeigt also bezüglich der Anordnung aus Querträgern 19a, 19b und des Antriebsmotors eine Draufsicht der Anordnung gemäß Fig. 13. Allerdings können die Abmessungen des Antriebsmotors 1 im Verhältnis zu den Abmessungen der Befestigung und der Querträger anders gewählt sein als in Fig. 13, weshalb in Fig. 19 für den Antriebsmotor das Bezugszeichen 201 verwendet wird. Ein erster Querträger 19b des Drehgestells verbindet die gegenüberliegenden Längsträger, an denen die Drehlager 11 montiert sind. Ferner verbindet ein zweiter Querträger 19a die beiden Längsträger (oben in der Figur).With regard to the attachment of the drive motor 201 is already on the basis of Fig. 13 described embodiment. Fig. 19 Thus, with respect to the arrangement of cross members 19a, 19b and the drive motor shows a plan view of the arrangement according to Fig. 13 , However, the dimensions of the drive motor 1 in relation to the dimensions of the attachment and the cross member may be chosen differently than in Fig. 13 , which is why in Fig. 19 for the drive motor, the reference numeral 201 is used. A first cross member 19b of the bogie connects the opposite side members to which the pivot bearings 11 are mounted. Further connects a second cross member 19 a, the two side members (top in the figure).

Zwischen den Rädern 207 befindet sich der Antriebsmotor 201. Sein Läufer 221 ist als Hohlwelle ausgestaltet und umfängt konzentrisch die Radsatzwelle 6. Durch die Bezugszeichen 205a, 205b ist das kardanisch bewegliche Gelenk bezeichnet, das jedoch anders als schematisch dargestellt wie oben beschrieben und wie bei Hohlwellen mit kardanischer Beweglichkeit üblich über ringförmige elastische Elemente realisiert werden kann. Im Ergebnis ist der Läufer 221 über das kardanisch bewegliche Gelenk 205 mit einem Getriebe 208 oder mit einem fest auf der Radsatzwelle 6 montierten Übertragungselement verbunden.Its rotor 221 is designed as a hollow shaft and concentrically surrounds the wheelset shaft 6. By the reference numerals 205a, 205b, the gimbal movable joint is referred to, however, differently than schematically shown as described above and as with hollow shafts can be realized with cardanic mobility usual over annular elastic elements. As a result, the runner 221 is connected via the cardanically movable joint 205 to a transmission 208 or to a transmission element fixedly mounted on the wheel set shaft 6.

Erfindungsgemäß ist auch der Ständer des Elektromotors 201 über eine kardanisch bewegliche Aufhängung an den Querträgern 19a, 19b befestigt. Hierzu wird auf die Beschreibung der Fig. 13 Bezug genommen. Die Drehachsen der kardanisch beweglichen Aufhängung verlaufen bezüglich der Bildebene von Fig. 19 senkrecht zu der Bildebene und vertikal in der Bildebene, d.h. senkrecht zur Rotationsachse der Radsatzwelle 6.According to the invention, the stator of the electric motor 201 is also fastened to the cross members 19a, 19b via a cardanically movable suspension. For this purpose, the description of the Fig. 13 Referenced. The rotary axes of gimbal movable suspension run with respect to the image plane of Fig. 19 perpendicular to the image plane and vertically in the image plane, ie perpendicular to the axis of rotation of the wheelset shaft 6.

Das in Fig. 20 dargestellte Antriebsmodul wird durch einen Antriebsmotor 1 und ein Winkelgetriebe 181 gebildet. Der Ständer 22 des Motors 1 ist fest mit dem Gehäuse 190 des Winkelgetriebes 181 verbunden, so dass Motor und Winkelgetriebe nicht relativ zueinander beweglich sind. Beispielsweise werden Motorgehäuse und Getriebegehäuse aneinander angeflanscht und verschraubt. Das Antriebsmodul ist über eine Aufhängung 182 an dem Drehgestellrahmen 9 befestigt. An dem Drehgestellrahmen 9 wird zumindest eine Achse 6 eines Radsatzes mit den Laufrädern 7a und 7b gelagert.This in Fig. 20 illustrated drive module is formed by a drive motor 1 and an angle gear 181. The stator 22 of the motor 1 is fixedly connected to the housing 190 of the angle gear 181, so that the motor and bevel gear are not movable relative to each other. For example, motor housing and gear housing are flanged together and bolted. The drive module is attached to the bogie frame 9 via a suspension 182. At least one axle 6 of a wheel set with the wheels 7a and 7b is mounted on the bogie frame 9.

Die Fahrtrichtung des Fahrzeugs ist in Fig. 20 durch einen von links nach rechts verlaufenden Pfeil dargestellt, der die Beschriftung "x" aufweist. Dadurch wird angedeutet, dass die Fahrtrichtung üblicherweise als x-Richtung bezeichnet wird.The direction of travel of the vehicle is in Fig. 20 represented by a left-to-right arrow having the lettering "x". This indicates that the direction of travel is usually referred to as the x-direction.

Die Aufhängung 182 weist zwei Aussparungen 192 auf (siehe Fig. 21), in die jeweils ein ringförmiges elastisches Element 184 eingebracht ist. Die Elemente 184 sind im Wesentlichen rotationssymmetrisch gestaltet, wobei eine radial innere, zylindrische Hülse 198 (siehe Fig. 22) an der radial innenliegenden Oberfläche eines Gummirings 199 befestigt ist und wobei eine zweite ringförmige, zylindrische Hülse 197 an der radial äußeren Oberfläche des Gummirings 199 befestigt ist. Die beiden Hülsen 197, 198 und auch der Gummiring 199 sind koaxial zu einer Rotationssymmetrieachse angeordnet.The suspension 182 has two recesses 192 (see Fig. 21 ), in each of which an annular elastic element 184 is introduced. The elements 184 are substantially rotationally symmetrical, with a radially inner cylindrical sleeve 198 (see FIG Fig. 22 ) is secured to the radially inward surface of a rubber ring 199 and a second annular cylindrical sleeve 197 is secured to the radially outer surface of the rubber ring 199. The two sleeves 197, 198 and also the rubber ring 199 are arranged coaxially to a rotational axis of symmetry.

Zur Herstellung der kardanisch beweglichen Aufhängung werden zwei solcher ringförmigen elastischen Elemente 184 in die entsprechenden Aussparungen 192 der Aufhängung 182 eingesetzt, wobei die Aussparungen 192 in Anlage zum Außenumfang des ringförmigen Elements 184 gelangen und außerdem dessen lineare Beweglichkeit in Richtung der Rotationssymmetrieachse z.B. durch eine Verengung 193 in einer Richtung begrenzen.To make the gimbals movable suspension two such annular elastic members 184 are inserted into the corresponding recesses 192 of the suspension 182, wherein the recesses 192 come into contact with the outer periphery of the annular member 184 and also its Limit linear mobility in the direction of the axis of rotational symmetry, for example by a constriction 193 in one direction.

Vor oder nach dem Einführen der ringförmigen Elemente 184 in die Aussparungen 192 wird in den zylindrischen Innenraum des ringförmigen Elements 184, der radial innenseitig durch die innere Hülse 198 gebildet wird, jeweils ein Vorsprung 191 des Motors 1 eingesetzt.Before or after the insertion of the annular elements 184 into the recesses 192, a projection 191 of the motor 1 is inserted into the cylindrical interior of the annular element 184, which is formed radially inwardly by the inner sleeve 198.

Das schematisch dargestellte Winkelgetriebe 181 ist mit einem ersten Kegelrad 185 mit der Läuferwelle des Motors 1 drehfest verbunden. Das erste Kegelrad 185 ist Teil eines ersten Winkelgetriebes, welches das Antriebsdrehmoment auf ein erstes Zahnrad 187 überträgt, welches wiederum ein zweites Zahnrad 188 antreibt. Das zweite Zahnrad 188 ist drehfest auf einer Abtriebswelle 186 des Winkelgetriebes 181 angeordnet, die über ein kardanisch bewegliches Gelenk 180 das Laufrad 7b antreibt. Der rechte Teil des Laufrades 7b ist in Fig. 20 und Fig. 21 aufgeschnitten dargestellt. Man erkennt auf der aufgeschnitten Seite auch das kardanisch bewegliche Gelenk, welches z.B. als Bogenzahnkupplungshälfte ausgestaltet ist. Die Bogenzahnkupplungshälfte 180 kann (wie in Fig. 21 dargestellt) über Schrauben 194 und Gewindebohrungen 195 des Laufrades 7b eingeschraubt sein. Alternativ zu einer Bogenzahnkupplung kann beispielsweise eine elastische Bolzenkupplung verwendet werden, die ähnlich wie die kardanisch bewegliche Aufhängung ringförmige elastische Elemente zur Drehmomentübertragung aufweisen kann.The illustrated schematically angular gear 181 is rotatably connected to a first bevel gear 185 with the rotor shaft of the motor 1. The first bevel gear 185 is part of a first angular gear, which transmits the drive torque to a first gear 187, which in turn drives a second gear 188. The second gear 188 is non-rotatably mounted on an output shaft 186 of the angular gear 181, which drives the impeller 7b via a cardanically movable joint 180. The right part of the impeller 7b is in Fig. 20 and Fig. 21 shown cut. It can be seen on the cut side and the gimbal joint movable, which is designed for example as Bogenzahnkupplungshälfte. The gear coupling half 180 can (as in Fig. 21 shown) via screws 194 and threaded holes 195 of the impeller 7b to be screwed. As an alternative to a curved tooth coupling, for example, an elastic bolt coupling can be used which, like the cardanically movable suspension, can have annular elastic elements for transmitting torque.

Aufgrund der ringförmigen elastischen Elementen 184 der Aufhängung 182 besteht in dem dargestellten Fall eine Drehbeweglichkeit des Antriebsmoduls relativ zu der Aufhängung 182 um eine vertikal zur Bildebene der Fig. 20 bzw. Fig. 21 verlaufenden Drehachse (z-Achse) und um eine horizontal und senkrecht zur x-Achse und z-Achse verlaufende zweite Drehachse (y-Achse). Ferner ist eine lineare Beweglichkeit der ringförmigen elastischen Elemente 184 relativ zu den Aussparungen 192 in x-Richtung gegeben. Diese lineare Beweglichkeit in x-Richtung kann auch auf andere Weise erreicht werden, z.B. durch eine entsprechende Relativbeweglichkeit der Vorsprünge 191 des Motors 1 relativ zu den ringförmigen elastischen Elementen 184. Diese Linearbeweglichkeit verhindert, dass Kräfte, die zwischen den Laufrädern 7 und den Fahrschienen als Antriebskräfte oder Bremskräfte wirken, über die kardanisch bewegliche Aufhängung 182 übertragen werden.Due to the annular elastic elements 184 of the suspension 182 in the illustrated case, a rotational mobility of the drive module relative to the suspension 182 about a vertical to the image plane of the Fig. 20 respectively. Fig. 21 extending axis of rotation (z-axis) and about a horizontal and perpendicular to the x-axis and z-axis extending second axis of rotation (y-axis). Further, there is a linear mobility of the annular elastic members 184 relative to the recesses 192 in the x-direction. This linear mobility in the x-direction can also be achieved in other ways, for example by a corresponding relative mobility of the Projections 191 of the engine 1 relative to the annular elastic members 184. This linear mobility prevents forces acting as driving forces or braking forces between the impellers 7 and the rails from being transmitted via the gimbal movable suspension 182.

Alternativ zu der außenliegenden Konstruktion gemäß Fig. 20, bei der das Antriebsmodul außerhalb des Drehgestellrahmens 9 angeordnet ist, kann das Antriebsmodul auch innerhalb des Drehgestellrahmens, d.h. zwischen den Laufrädern 7a, 7b angeordnet werden. Statt einer Bogenzahnkupplung oder elastischen Bolzenkupplung kann in diesem Fall optional eine Hohlwellenkupplung eingesetzt werden, die ebenfalls eine kardanische Beweglichkeit aufweist.Alternatively to the external construction according to Fig. 20 in that the drive module is arranged outside the bogie frame 9, the drive module can also be arranged within the bogie frame, ie between the wheels 7a, 7b. Instead of a curved tooth coupling or elastic pin coupling can optionally be used in this case, a hollow shaft coupling, which also has a gimbal mobility.

Claims (10)

  1. A drive for rail vehicles, comprising
    - a drive motor (1) having a stator (22) and a rotor (4) and
    - at least one wheel (7) driven by the drive motor (1) or a wheel set (7a, 7b) driven by the drive motor, which wheel or wheel set rolls on the rails of a track during operation of the rail vehicle,
    wherein
    - the stator (22) of the drive motor (1) is supported by means of a cardanically movable suspension (2; 92) on a bogie (100) of the rail vehicle, on a car body of the rail vehicle, or on a structure connected to the bogie and/or the car body.
    - the rotor (4) of the drive motor (1) is coupled by means of a cardanically movable joint (5; 95) and/or by means of a cardanically movable coupling to the wheel (7), to the wheel set (7a, 7b), to at least one wheel of the wheel set and/or to a shaft of the wheel set, such that, during operation of the rail vehicle, the driving force of the drive motor (1) is transferred via the joint (5; 95) and/or the coupling, and
    - the rotor (4) drives a driveshaft (19) during operation of the drive, which driveshaft drives the wheel (7) or the wheel set shaft (6) of the wheel set (7a, 7b) by means of a transmission,
    characterised in that
    - the stator (22) is not connected to stationary parts of the transmission (8), or in that the stator is fixedly connected to the stationary parts of the transmission (98).
  2. The drive according to claim 1, wherein the rotor (4) during operation of the drive drives a driveshaft, wherein the cardanically movable joint (5) couples a first portion (18) of the driveshaft, which is connected to the rotor (4), to a second portion (19) of the driveshaft, such that the axes of rotation of the first portion (18) and of the second portion (19) can extend angled relative to one another.
  3. The drive according to the preceding claim, wherein the axes of rotation of the driveshaft (18, 19) run transversely to the direction of travel of the rail vehicle.
  4. The drive according to claim 2 or 3, wherein the joint (5) permits an axial relative movement of the first portion (18) and of the second portion (19) in the direction of at least one of the axes of rotation of the portions.
  5. The drive according to any one of claims 1 to 3, wherein the rotor (4) is mounted linearly movably in the direction of its axis of rotation.
  6. The drive according to any one of the preceding claims, wherein a driveshaft (18, 19) connected to the rotor (4) is arranged on a first side of the motor (A side), and wherein the cardanically movable suspension (2) at the stator (22) of the motor (1)
    - is fastened on a second side of the motor (B side) opposite the first side and/or
    - is fastened between the first and the second side of the motor, closer to the second side of the motor.
  7. The drive according to any one of the preceding claims, wherein the cardanically movable suspension has two elongate elements (52a, 52b) made of resilient material, the rigidity of which for linear movements in direction of their longitudinal axis is essentially greater than for bendings of the elements about their longitudinal axis, wherein the two elongate elements (52a, 52b) are arranged with their longitudinal axes parallel to one another, and wherein the car body of the rail vehicle or the structure connected to the bogie (9) and/or the car body is connected to one end of each of the elongate elements (52a, 52b) and the rotor (4) of the drive motor (1) is connected to the other end of each of the elongate elements (52a, 52b), said ends being opposite in the longitudinal direction of the elongate element, such that the cardanically movable suspension is provided on account of the bendings.
  8. The drive according to any one of claims 1 to 6, wherein the cardanically movable suspension (182) has two annular elements (184) made of resilient material, which each extend about an axis, wherein the axes of the two annular elements (184) extend parallel to one another and at a distance from one another, wherein the bogie (9) or the other part of the supporting structure of the vehicle are connected to each other by means of the two annular elements, wherein the one part of the two parts connected to each other by means of the annular elements (184) is connected to the radially inner surfaces of the annular elements (184) and the other part is connected to the radially outer surface of the annular elements (184).
  9. A rail vehicle, wherein the rail vehicle has a drive according to any one of the preceding claims.
  10. A method for producing a drive for a rail vehicle, wherein the following is provided:
    - a drive motor (1) having a stator (22) and a rotor (4), and
    - at least one wheel (7) driven by the drive motor or a wheel set (7a, 7b) driven by the drive motor, which wheel or wheel set rolls on the rail of a track during operation of the rail vehicle,
    wherein
    - the stator (22) of the drive motor (1) is supported by means of a cardanically movable suspension (2; 92) on a bogie (100) of the rail vehicle, on a car body of the rail vehicle, or on a structure connected to the bogie and/or the car body,
    - the rotor (4) of the drive motor (1) is coupled by means of a cardanically movable joint (5; 95) and/or by means of a cardanically movable coupling to the wheel (7), to the wheel set (7a, 7b), to at least one wheel of the wheel set and/or to a shaft of the wheel set, such that, during operation of the rail vehicle, the driving force of the drive motor (1) is transferred via the joint (5; 95) and/or the coupling,
    - the rotor (4) drives a driveshaft (19) during operation of the drive, which driveshaft drives the wheel (7) or the wheel set shaft (6) of the wheel set (7a, 7b) by means of a transmission, and
    - the stator (22) is not connected to stationary parts of the transmission (8), or the stator is fixedly connected to the stationary parts of the transmission (98).
EP11720750.6A 2010-05-12 2011-05-11 Drive for rail vehicles Active EP2569197B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010020981A DE102010020981A1 (en) 2010-05-12 2010-05-12 Drive for rail vehicles
PCT/EP2011/057612 WO2011141510A1 (en) 2010-05-12 2011-05-11 Drive for rail vehicles

Publications (3)

Publication Number Publication Date
EP2569197A1 EP2569197A1 (en) 2013-03-20
EP2569197B1 true EP2569197B1 (en) 2017-05-10
EP2569197B2 EP2569197B2 (en) 2022-01-19

Family

ID=44227790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11720750.6A Active EP2569197B2 (en) 2010-05-12 2011-05-11 Drive for rail vehicles

Country Status (6)

Country Link
EP (1) EP2569197B2 (en)
CN (1) CN103108790B (en)
DE (1) DE102010020981A1 (en)
ES (1) ES2635592T5 (en)
PL (1) PL2569197T3 (en)
WO (1) WO2011141510A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318965B2 (en) * 2018-12-27 2022-05-03 Bombardier Transportation Gmbh Locomotive bogie having an anti-pitching geometry

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772761B2 (en) * 2012-08-13 2015-09-02 新日鐵住金株式会社 Bogie frame for railway vehicles
EP3020611A1 (en) * 2014-11-14 2016-05-18 Siemens Aktiengesellschaft Railway drive with braking device
DE102015211064A1 (en) * 2015-06-16 2016-12-22 Bombardier Transportation Gmbh Drive arrangement for rail vehicle, rail vehicle with drive arrangement and method for producing the drive arrangement and the rail vehicle
DE102015222125A1 (en) 2015-11-10 2017-05-11 Bombardier Transportation Gmbh Drive arrangement for a rail vehicle, rail vehicle with the drive assembly and method for manufacturing
US20220355831A1 (en) 2019-09-30 2022-11-10 Siemens Mobility Austria Gmbh Chassis for a Rail Vehicle
AT523285B1 (en) * 2020-06-04 2021-07-15 Siemens Mobility Austria Gmbh Undercarriage for a rail vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1916078A1 (en) 1969-03-25 1970-10-01 Siemens Ag Single axle drive for an electric motor vehicle
DE1530034A1 (en) 1965-07-15 1971-07-29 Siemens Ag Single axle drive for an electric motor vehicle
DE2925836A1 (en) 1979-05-11 1980-11-13 Bbc Brown Boveri & Cie DRIVING DEVICE FOR AN ELECTRIC MOTOR VEHICLE
DE3514124A1 (en) 1984-09-14 1986-03-20 Thyssen Industrie Ag, 4300 Essen CARDANIC DOUBLE COUPLING
DE9116159U1 (en) 1991-01-17 1992-03-19 A. Friedr. Flender Ag, 4290 Bocholt, De
EP1197412A2 (en) * 2000-10-13 2002-04-17 ZF FRIEDRICHSHAFEN Aktiengesellschaft Drive unit for railway vehicles
WO2002079660A1 (en) 2001-03-19 2002-10-10 Compact Dynamics Gmbh Power shift automatic gearbox for motor vehicles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1276078B (en) * 1957-03-04 1968-08-29 Licentia Gmbh Cardan shaft drive for electric traction vehicles
DE3302639A1 (en) * 1983-01-27 1984-08-02 Thyssen Industrie Ag, 4300 Essen DRIVE ROTATION FOR RAILWAY VEHICLES LIKE TRAMS
CN2405826Y (en) * 2000-01-17 2000-11-15 襄樊轨道车辆工厂 Electric driving apparatus for railway track vehicles
AT505902B1 (en) 2007-10-31 2009-05-15 Siemens Transportation Systems ROTATING FRAME FOR A LOCOMOTIVE WITH AXISALLY ORIENTED GEARS

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1530034A1 (en) 1965-07-15 1971-07-29 Siemens Ag Single axle drive for an electric motor vehicle
DE1916078A1 (en) 1969-03-25 1970-10-01 Siemens Ag Single axle drive for an electric motor vehicle
DE2925836A1 (en) 1979-05-11 1980-11-13 Bbc Brown Boveri & Cie DRIVING DEVICE FOR AN ELECTRIC MOTOR VEHICLE
DE3514124A1 (en) 1984-09-14 1986-03-20 Thyssen Industrie Ag, 4300 Essen CARDANIC DOUBLE COUPLING
EP0175867A1 (en) * 1984-09-14 1986-04-02 Thyssen Industrie Ag Double coupling with a cardan joint
DE9116159U1 (en) 1991-01-17 1992-03-19 A. Friedr. Flender Ag, 4290 Bocholt, De
EP1197412A2 (en) * 2000-10-13 2002-04-17 ZF FRIEDRICHSHAFEN Aktiengesellschaft Drive unit for railway vehicles
WO2002079660A1 (en) 2001-03-19 2002-10-10 Compact Dynamics Gmbh Power shift automatic gearbox for motor vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Kardanwelle, Wikipedia", 15 April 2008 (2008-04-15), pages 1, XP055463463, Retrieved from the Internet <URL:https://de.wikipedia.org/w/index.php?title=Kardanwelle&oldid=44941460>

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318965B2 (en) * 2018-12-27 2022-05-03 Bombardier Transportation Gmbh Locomotive bogie having an anti-pitching geometry

Also Published As

Publication number Publication date
EP2569197B2 (en) 2022-01-19
ES2635592T5 (en) 2022-05-13
PL2569197T3 (en) 2017-09-29
ES2635592T3 (en) 2017-10-04
CN103108790A (en) 2013-05-15
WO2011141510A1 (en) 2011-11-17
CN103108790B (en) 2017-06-09
DE102010020981A1 (en) 2011-11-17
EP2569197A1 (en) 2013-03-20

Similar Documents

Publication Publication Date Title
EP2569197B1 (en) Drive for rail vehicles
DE1605826C3 (en) Bogie for railway wagons with at least two wheelsets
AT505902B1 (en) ROTATING FRAME FOR A LOCOMOTIVE WITH AXISALLY ORIENTED GEARS
CH670228A5 (en)
DE2905453C2 (en) Homokinetic double joint coupling
EP2776299B1 (en) Transmission unit
EP3272614B1 (en) Undercarriage for a rail vehicle
DE3123858A1 (en) Running gear for a rail vehicle
EP0420801B1 (en) Rail vehicle
EP0308616B1 (en) Driving unit for rail vehicles
EP3544875B1 (en) Chassis for rail vehicles
DE4143519C2 (en) Rail vehicle bogie structure
WO2009144319A1 (en) Bogie with divided frame and motor-transmission coupling unit
EP1685014A2 (en) Driven chassis for rail vehicles in particular bogies for low-floor vehicles
WO2017081032A1 (en) Drive arrangement for a rail vehicle, rail vehicle having the drive arrangement and manufacturing method
EP1532033B1 (en) Driven bogie for a rail vehicle
DE2106662C3 (en) Drive for electric traction vehicles
AT407980B (en) DRIVE FOR RAIL VEHICLES
DE3904203C2 (en) Running gear for rail vehicles
DE2837302C2 (en)
EP3470288B1 (en) Rail vehicle with compact direct drive
EP0930210B1 (en) Running gear for railway vehicles and railway vehicle with at least one such running gear
DE102013210235A1 (en) Torque support for a rail vehicle
EP0838386A1 (en) Railway vehicle with at least one running gear and running gear for such a vehicle
DE2929896A1 (en) RAIL VEHICLE WITH ONE VEHICLE BOX AND TWO BOGIES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20161201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 891988

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012218

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2635592

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011012218

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20180208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170511

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170511

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 891988

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170511

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110511

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210527

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210429

Year of fee payment: 11

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220119

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502011012218

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2635592

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20220513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230526

Year of fee payment: 13

Ref country code: DE

Payment date: 20230519

Year of fee payment: 13

Ref country code: CZ

Payment date: 20230503

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 13

Ref country code: ES

Payment date: 20230724

Year of fee payment: 13