EP2567599B1 - Verfahren und vorrichtung zur erzeugung eines nichtisothermischen plasmastrahls - Google Patents
Verfahren und vorrichtung zur erzeugung eines nichtisothermischen plasmastrahls Download PDFInfo
- Publication number
- EP2567599B1 EP2567599B1 EP11724269.3A EP11724269A EP2567599B1 EP 2567599 B1 EP2567599 B1 EP 2567599B1 EP 11724269 A EP11724269 A EP 11724269A EP 2567599 B1 EP2567599 B1 EP 2567599B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- gas
- electrodes
- jet
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 26
- 239000002184 metal Substances 0.000 claims description 30
- 239000003380 propellant Substances 0.000 claims description 16
- 230000006641 stabilisation Effects 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000011105 stabilization Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- 238000010891 electric arc Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 230000033001 locomotion Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 230000000977 initiatory effect Effects 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 210000002381 plasma Anatomy 0.000 description 174
- 239000007789 gas Substances 0.000 description 64
- 230000004907 flux Effects 0.000 description 22
- 230000006378 damage Effects 0.000 description 12
- 239000002699 waste material Substances 0.000 description 9
- 239000011324 bead Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000002906 medical waste Substances 0.000 description 5
- 230000001141 propulsive effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010815 organic waste Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 2
- 238000003287 bathing Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000002013 dioxins Chemical class 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 150000002240 furans Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000031968 Cadaver Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/48—Generating plasma using an arc
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3405—Arrangements for stabilising or constricting the arc, e.g. by an additional gas flow
Definitions
- the present invention consists of a method for controlled generation of non-isothermal plasma jet at a pressure close to atmospheric pressure and a device for carrying out this method.
- the generation of plasma jets is related to the transformation technologies of matter, especially plasmochemistry, and more particularly the destruction of products and waste.
- isothermal plasmas whose temperatures of the various components, especially heavy particles (molecules, atoms, radicals, ions) Ta, and electrons, Te, are substantially equal.
- the plasmas generated by the generators mentioned above are usually isothermal. This means that the chemical reactions that occur there are local thermodynamic equilibrium relations, described, for example, by the well-known Arrhenius law.
- concentration of the components of the isothermal plasma is described by the equation, also well known, of Saha.
- the temperature of these plasmas is of the order of 6,000-12,000 K depending on the generation conditions.
- thermochemical technologies Accompanied by a plasma quenching process (rapid cooling that prevents the recombination of many harmful molecular states, including dioxins and furans), these technologies have proven advantageous over traditional thermochemical technologies.
- ZhukovM.F. Izv.SOAN USSR Ser. Techn.Nauk, 1970, V2 (58) P 12 - 18 ; Burov IS, Ermolaeva EM, Moss AL, Minsk ITMO 1975, p.71 - 78 ; see also www.europlasma.com).
- the temperature level of the heavy components (T a ) would be of the order of 2000 - 2500 K, which is sufficient to achieve the intended chemical reactions for example, those necessary for the destruction of waste without the formation of harmful chemical components, while the temperature of the electrons would be of the order of 6 000 - 12 000 K, which would ensure an electric current sufficient to support the mechanism of electric discharge and the energy balance of the plasma jet.
- Non-isothermal plasma generators have been proposed, protected by patents, and exploited at the industrial level (see, for example, Engelsht VS, Saichenko AN, GM Okopnik, Musin NU XI Vsesoyuznaya Konf. Po generatoram nizkotemperaturnoy plazmi, Novosibirsk, 1989; P 255 ; Desiatkov GA, Enguelsht VS, Saichenko AN, Musin NU, and Plasma Jets in the Development of New Materials Technology. Proc. Of the International Workshop September 3-9, Frunze, USSR Ed. OPSolonenko, AIFedorchenko.
- the arc is propelled along these electrodes thanks to the electromagnetic force created by the field magnetic due to the current flowing through the electrode and the current flowing through the arc in a direction substantially perpendicular to the axis of the electrodes.
- the movement of the arc may be, in addition, biased by a longitudinal stream of propellant gas which contributes to forming the plasma jet downstream of the electrodes.
- a new discharge is then initiated again at the base of the electrodes and the process is repeated. So we have a perpetual movement of "back and forth” of the arc along the electrodes. In its movement, the arc creates around it a "plasma cloud” whose properties, and especially the life time, depend on the nature of the gas in which the discharge takes place, the presence of a hydrodynamic flow of gas , the level of the amplitude of the voltage between the electrodes, and the divergence geometry of the electrodes.
- This plasma cloud can ensure the existence of a conductive area of electricity in the absence of electric current during its lifetime. It is therefore possible to feed the arc not only with direct current but also with pulse current, if the plasma cloud lifetime is greater than the pause between the voltage pulses between the electrodes. In particular, it is possible to feed the sliding arc with alternating current, for example of frequency 50Hz.
- the plasma jet In addition, given the short length of the plasma jet generated, it is difficult to perform object processing work by preventing the jet reflected by the treated object from altering the parts of the generator, including the electrodes. It is therefore highly desirable that the plasma jet be substantially longer. However, it is possible to extend the plasma jet according to existing technologies by increasing the incident power, the energy efficiency of such a generator is very low because the power losses increase almost proportionally to the square of the dimension of the jet, of shape close to the sphere.
- an object of the present invention is to develop a stable non-isothermal plasma jet generation method, at a pressure close to atmospheric pressure or above atmospheric pressure, which can be used advantageously for the industrial production of plasmochemical reactions, particularly in the field of the destruction and recycling of waste, in particular organic waste.
- a great advantage is any technology capable of providing variable controlled treatment depending on the composition of the feed gas, the shape, the nature, and the composition of the treated product.
- the invention aims to solve the technical problems presented by a method of generating an axisymmetric non-isothermal plasma jet according to claim 1.
- the invention also aims to solve the technical problems explained above by a device for implementing the method of generating a non-isothermal plasma axisymmetric jet according to claim 5.
- the plasma in such a jet is in a non-thermal state as defined by the formulas [1] - [3], which gives principle advantages to the present invention.
- the generated plasma jet is turbulent and the advantage of the non-thermal plasma remains practically unused, since the energy exchanges in a turbulent plasma are too intense and it becomes impossible to exploit them: electrons and that of excited particles and free radicals, possibly formed and in a metastable state, are "wasted" and lost in heat.
- the present invention makes it possible, on the contrary, to exploit these advantages based on the limitation of the heat losses and the optimization of the use of the excited states of the particles.
- a Reynolds critical number, Re * is the value of the Reynolds number at which the flow spontaneously passes from the laminar state to the turbulent state. For a flux in an axisymmetric tube this value is well known and is at the level of 2000. Experience shows that this spontaneous passage is determined by the velocity differences between the adjacent layers of the fluid or more precisely by the gradient of this velocity . It is conceivable, and the experience of the authors of the present invention confirms it, to have a base flow of high velocity and of restricted characteristic dimension for which the character of the exchanges remains molecular even if the Reynolds number is much greater than 2000. Flows of this kind are called pseudo-laminars by the authors of the present invention.
- Re * can only be determined empirically.
- the work done by the authors of the present invention has shown that, practically, Re * ⁇ 1.5.10 4 .
- This result can be used for all mentioned plasma jet configurations and for all the implementers mentioned in the present invention.
- the relationships [1] - [3] are a practical example of realizing the pseudo-laminarity condition claimed in the present invention.
- the present invention therefore makes it possible, in particular, to minimize the energy exchanges between the plasma jet and the surrounding medium. Examples have shown that the plasma jet pseudo-laminarized, and thus stabilized, can be very long. It is therefore possible to control and optimize the shape and energy balance so as to optimize heat exchange and mass exchanges with the treated material load.
- Such optimization is possible, for example, by applying a magnetic field perpendicular to the direction of the electric current which runs through the plasma cord generating the plasma jet.
- the electromagnetic forces cause a rotation of the electric arc which stimulates the energy exchanges within the jet of non-thermal plasma.
- Rotation of the non-thermal plasma jet is also achieved by introducing the propellant gas stream at an angle such that it forms a plasma vortex through which energy exchanges are stimulated in the plasma jet.
- Magnetic fields can also be applied to each of the electrodes which makes it possible to modify the shape of the plasma bead, bringing it closer to the axis of the jet or moving it away according to the direction of application of the magnetic field (traversed by a current alternative) with respect to the direction of the electric current supplying the discharge.
- a constant magnetic field can widen and shorten the shape of the jet.
- the fig.1a shows the chaotic nature of the plasma cord 2 from the electrodes 1 of a standard device powered by a turbulent flow of gas, as used in practice and photographed multiple times by users.
- the electrodes 1 emit a cord of plasma 2 of indeterminate form, unstable in space and time.
- the plasma area 3 around the cord is also unstable in time and space. This configuration strongly limits the applications of this type of plasma which can not be called a plasma jet.
- the fig.1b shows the principle result of the use of a propellant gas flow distribution device.
- the plasma cord 2 is stabilized.
- the plasma jet 4 is embedded in the jet of gas 5 from the distributor 6. It is of stable and uniform configuration.
- the Fig. 1 C gives a principle comparison of the two cases mentioned above: the plasma cord 2, the plasma zone 3 are substantially stretched and of greater length than in the case of the standard device. Appears a jet of plasma 4 stabilized by the jet of gas 5.
- the device for implementing the method of generating a stabilized non-thermal plasma jet as defined in the present invention is illustrated by the fig.2 .
- a high-voltage discharge in the form of a plasma bead of substantially constant cross section, 2 is initiated between two electrodes 1, parallel or diverging at a given angle relative to the axis of symmetry of the generator, connected by the intermediate metal rods 7 and a metal cone 8 to an AC source 9.
- the metal cone is connected to the power supply system via a capacitor 10 and can be moved along its axis of in order to vary the distance separating it from the metal rods.
- the feed gas, propelling and stabilizing the non-thermal plasma jet 4 is introduced via a conduit 11 provided with a collector 12, a screen-mesh 13 and a distribution device. speed (speed) 14.
- the manifold is supplied with gas via the inlet conduit 15. Gaseous components, liquid or in the form of sprayed droplets, can be added to the gas flow via the conduit 16.
- the flow distributor 14 can be used to predetermine and control the radial distribution of the flow rate of the gas flow. It may consist, in particular, of a set of small diameter tubes arranged in honeycomb, as shown in FIG. fig.2 . The profile of the lengths of these tubes determines the profile of the hydrodynamic resistances according to the radius of the distributor. This makes it possible to create a velocity profile 17 (V (r)) which predetermines the stability of the gas flow and therefore of the resulting flow of plasma. In particular, it is possible in this way to form a gas flow whose central portion 18 of diameter D has a constant speed and the peripheral portion, limited to the diameter D 0 (19), has a predetermined radial profile (17).
- the device according to the present invention is characterized in that the device for forming the propellant gas flow velocity profile (14) is an axially symmetrical system of coaxial tubes arranged in honeycomb and traversed longitudinally. by the conductive supports of the electrodes, the axis of the tubes being parallel to the flow axis and the current length of the tubes inversely proportional to the local velocity of the gas flow.
- the rods 7 are constructed so as to represent a minimum hydrodynamic resistance for the flow of gas so as to disturb only locally the character of the gas flow.
- the electrodes 1 which support the heat releases due to the passage of the electric charges from the metal zone to the gas (auto-electronic emission) and are inevitably subjected to erosion can be cooled by a gas flow (the electrode 1 can in this case where it is crossed by a gas channel 20 which runs through them as shown by fig.2 b) or by a stream of water (the electrode 1, in this case, is traversed by a stream of water 21 as shown in FIG. fig.2 c) .
- the metal cone (8) which allows the initiation of the discharge between the electrodes can be replaced by a longitudinally milled body (35) as illustrated in FIG. figure 10 , which makes it possible to reduce its hydrodynamic resistance.
- the latter can also be reduced if the metal cone 8 is replaced by radial metal plates (36) fixed on the electrodes and designed so that the distance between the plates is minimal in the part of the electrodes most upstream of the axial flow of gas, as shown in figure 11
- the device operates as follows: at the time of priming the discharge, a short arc lights up between the cone 8 and the rods 7.
- the fig.3 illustrates an implementation scheme of the present invention according to which the plasma bead 2 is generated by three electrodes 1 by means of a metal cone 8 connected to a three-phase electric power generator with ballast elements in the form of inductances 23 which allows to have a particularly high energy efficiency.
- the system is stabilized by a flow of gas from a gas distributor 6 for coating the electrodes and the plasma beads with a flow of gas whose radial profile of the flow is predetermined so as to stabilize the discharge and laminarize the plasma jet.
- the plasma cord 2 is generated by six electrodes 1 via the metal cone 8, connected to a generator of three - phase electric current 9.
- the set of electrodes is bathed by a laminarized flow of stabilizing gas 5 coming from a distributor 14.
- the electrode connections are made in a triangle (as shown by the connection 9 'of the Fig. 4b ) or star (as shown by the 9 "connection of the Fig. 4c )
- one or the other of the solutions is preferable.
- the fig.5 illustrates another possible embodiment of the present invention.
- the stabilized non-thermal plasma jet 4 is formed by plasma cords 2 connecting the three electrodes fed by a three-phase AC source 9 to an annular electrode 5.
- the annular electrode 25, arranged to overheat due to its contact with the plasma jet can be cooled, for example by means of a stream of water supplied and discharged through the conduits 26.
- the protuberances 27 are optionally practiced in order to locate and fix the base of the plasma cords.
- the device claimed in the present invention is characterized in that it is provided with an electrode (25) to the ground, circular, coaxial with the laminarized jet and surrounding it inside the zone of laminarization so as to locate the discharge in the laminar zone of the generated jet.
- Stabilization (see Fig. 5 b) is carried out by a flow of gas 5 from a distributor 6 in which the honeycomb device 14 of the Fig. 2 is replaced by a sudden expansion system 27 which makes it possible to create a velocity profile 17 of the flow empirically adapted to the diagram of the figure 5 . It can be seen that the propellant gas introduced into the distributor 6 creates a vortex 29 in the stream of profiled gas 30 directed towards the screen-grid 13, thus forming the desired velocity profile V (r) 17.
- the fig.6a illustrates the case of addition of solenoids 31 creating magnetic fields perpendicular to the plasma cords 2 from each of the electrodes 1.
- the flow of propellant gas from the distributor 6 and stabilizing the plasma jet 4 is organized so as to coat the entire configuration of the plasma cords, that these are concentrated by the magnetic field, generated by alternating current, towards the axis of the generator (see Fig. 6 b) , or pushed outwards (see Fig. 6 c) following that the oscillations of the field and the current are in phase or in counter-phase, or else, forced by a constant magnetic field in time, oscillating between the two situations of fig.6b and fig.6 c as shown in fig.6d .
- the fig.7a shows the cross section of another embodiment of the present invention, according to which the flow of propellant gas 28, and consequently the plasma cords 2 coming from the six electrodes 1, after having left the metal cone 8, are swirled by hydrodynamic deflectors 32 or by a magnetic field generated by a solenoid 31, a magnetic field whose oscillations are synchronized with the alternating current supply discharges.
- the 7B shows the angle ⁇ between the axis of the deflectors and the direction of the flow of propellant gas.
- the 7C shows the angle ⁇ 'between the deflector axis and the tangent to the radial attachment circle of the deflectors.
- ⁇ ⁇ 90 ° and ⁇ ' ⁇ 90 ° We have ⁇ ⁇ 90 ° and ⁇ ' ⁇ 90 °.
- the device according to the present invention may also be characterized in that it comprises solenoids (31) traversed by a direct or alternating electric current, in particular synchronized with the current supplying the discharge, the solenoids being arranged so as to create a magnetic field directed at an angle ⁇ between 0 ° and 90 ° with respect to the direction of the discharge current and at an angle ⁇ between 0 ° and 90 ° with respect to the direction of the laminarized flow.
- the Fig. 8 shows the longitudinal section of a propellant gas distribution device 28 according to which the position of the plasma cord 2 and the configuration of the plasma zone 3 coming from the electrodes 1 after leaving the metal cone 8 are controlled by a device 33 provided valves 34 ensuring a distribution of the propellant gas 28, in portions, along the metal cone, through the electrodes (especially to cool them) and the periphery of the generator.
- the fig.9 illustrates the dependence of the length of the plasma jet, L (m) of the propulsion gas velocity, V (m / s) for different values of the voltage applied to the electrodes.
- the present invention may be advantageously used in the chemical, plasmochemical and pharmaceutical industries, in particular for the manufacture of powders and in particular nanopowder.
- Non-thermal plasma jet generators can be advantageously used in different industries for instant sterilization of contaminated surfaces.
- the use of the present invention is exceptionally effective and advantageous, particularly economically for the destruction of household, industrial medical waste and especially for the incineration of organic waste by plasma.
- it makes it possible in particular to eliminate harmful residual gases such as dioxins and furans and to recycle organic waste by transforming it into combustible products such as syngas.
- the figure 9 illustrates the variation in the length of the arc generating the non-isothermal plasma jet as a function of the speed of the air flow propelling the non-thermal plasma jet, for the two values of the voltage illustrated in the two examples below. above, according to the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Plasma Technology (AREA)
Claims (13)
- Verfahren zur Erzeugung eines achsensymmetrischen, nicht-isothermen Plasmastrahls mit Hilfe einer elektrischen Entladung unter Hochspannung in einem Gasstrom, mit:• Anordnen wenigstens zweier Elektroden (1) für die Bildung eines Lichtbogens (4);• Anordnen einer Gleich-oder Wechselstromquelle (9);• Verbinden jeder der Elektroden (1) mit der Stromquelle (9);• Anordnen eines Gasverteilers (6), um einen Gasstrom in die Zone der Bildung des Bogens (4) einzuleiten;- Verbinden jeder der Elektroden (1) mit der Stromquelle (9) mittels eines Metallstiftes (7),- Anordnen eines Metallkegels (8) in der Nähe der Metallstifte (7), der mit der Stromquelle (9) mittels eines Kondensators (10) verbunden ist und der entlang seiner Achse verschoben werden kann, derart, dass dieser den Abstand variieren kann, der die Metallstifte (7) trennt, wobei der Metallkegel (8) die Zündung der Entladung zwischen den Metallstiften (7) erlaubt, derart, dass der Lichtbogen durch die elektromagnetische Kraft und durch die Widerstandskraft des Gasstroms entlang der Metallstifte (7) und der Elektroden (1) angetrieben wird;
und• Anordnen einer Anordnung zur Bildung des Geschwindigkeitsprofils (14) des Gases in dem Gasverteiler (6), genauso, dass der den Lichtbogen antreibende Gasstrom an all den Punkten des resultierenden Plasmas stabilisiert wird, an denen die Bedingung der Stabilisierung unter Auferlegung eines Geschwindigkeitsprofils erhalten wird, das der Beziehung des Typs entspricht:in welcher D*=D/D0; r*=2r/D0;D und D0 sind jeweils der Außendurchmesser des Strahls und der Durchmesser der Laminarisierungszone, und das D≤D0 ist;r ist der Radius des Punkts des Strahls, an welchem die aktuelle Geschwindigkeit V bestimmt wird;V0 ist die Geschwindigkeit des laminarisierten Stroms.Re* ist die kritische Reynoldszahl des stabilisierten Stroms;η und ρ sind jeweils die dynamische Viskosität und die Dichte des Antriebsgases und die Temperatur des Betriebsstroms. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Bogen Der Wirkung eines magnetischen Feldes senkrecht zum elektrischen Strom ausgesetzt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektrische Strom des Bogens oder der Bögen gelenkt wird parallel oder unter Winkeln δ≤ 90° in Bezug zu der Achse des antreibenden Gasstroms und δ'≤ 90° in Bezug zu der Kreistangente, auf welcher hydrodynamische Deflektoren (3) positioniert sind, welche eine turbulente Bewegung des Plasmastrahls (1) provozieren.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, der antreibende Gasstrom molekulare Bestandteile enthält, zum Beispiel Wasserdampf, die sich bei Kontakt mit dem nicht-thermischen Plasma in angeregte metastabile Teilchen und in Radikale zersetzen.
- Vorrichtung zur Durchführung des Verfahrens zur Erzeugung eines axensymmetrischen nicht-isothermischen Plasmastrahls nach den Ansprüchen 1 bis 4, mit wenigstens zwei Elektroden (1), die mit Gleich- oder Wechselstrom in Monophase oder Triphase versorgt werden, um einen Lichtbogen (10) zwischen diesen zu erzeugen;- einer Gleich- oder Wechselstromquelle (9);- einem Gasverteiler (6), um einen Gasstrom in der Zone zur Bildung des Bogens (4) einzuführen;dadurch gekennzeichnet, dass
jede der Elektroden (1) mittels eines Metallstifts (7) mit der Stromquelle (9) verbunden ist;
und dadurch, dass
die Vorrichtung ferner einen Metallkegel (8) umfasst, der mit der Stromquelle (9) mittels eines Kondensators (10) verbunden ist und der entlang seiner Achse verschoben werden kann, derart, dass dieser den Abstand variieren kann, der die Metallstifte (7) trennt, wobei der Metallkegel (8) die Zündung der Entladung zwischen den Metallstiften (7) ermöglicht;
und dadurch, dass
der Gasverteiler (6) umfasst- einen Eingangskollektor (12),- eine Einrichtung zur Bildung des Geschwindigkeitsprofils (14) des Gases; und ein Gittersieb (13). - Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Einrichtung zur Bildung des Geschwindigkeitsprofils (14) des antreibenden Gasstroms (28) ein achsensymmetrisches System aus koaxialen Rohren ist, die wabenartig angeordnet sind und in Längsrichtung durch die Leiterträger der Elektroden hindurch verlaufen, wobei die Achsen der Rohre parallel zur Achse des Stroms verlaufen und die laufende Länge der Rohre umgekehrt proportional zu der lokalen Geschwindigkeit des Gasstroms ist, wie dieser im Anspruch 1 bestimmt ist.
- Vorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Einrichtung zur Bildung des Geschwindigkeitsprofils (14) des antreibenden Gasstroms (28) einen Kollektor (12), einen stark expandierenden Ring (27) und ein Gittersieb (13) umfasst.
- Vorrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass diese Solenoide (31) umfasst, die von einem elektrischen Gleich- oder Wechselstrom durchlaufen werden, insbesondere synchronisiert mit dem Versorgungsstrom der Entladung, wobei die Solenoide derart angeordnet sind, dass diese ein Magnetfeld erzeugen, das unter einem Winkel β zwischen 0° und 90° in Bezug zu der Richtung des Stroms der Entladung und unter einem Winkel γ zwischen 0° und 90° in Bezug zu der Richtung des laminarisierten Stroms gelenkt ist.
- Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der Kollektor der Einrichtung zur Laminarisierung mit Versorgungsleitungen (15, 16) für Bestandteile in Form von Flüssigkeiten, pulverisierten Strahlen oder Gas vorgesehen ist.
- Vorrichtung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass diese eine Massenelektrode (25), kreisförmig, koaxial mit dem laminarisierten Strahl und das Innere der Laminarisierungszone umgebend vorgesehen ist, derart, dass die Entladung in der Laminarisierungszone des erzeugten Strahls lokalisiert ist.
- Vorrichtung nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass zwei Elektroden (1), parallel oder unter einem bestimmten Winkel divergierend in Bezug zu der Symmetrieachse eines Generators mittels der Metallstifte (7) und eines Metallkegels (8) mit einer Wechselstromquelle (9) verbunden sind, derart, dass zwischen den Elektroden (1) eine Hochspannungsentladung in Form eines Plasmastrangs mit praktisch konstantem Querschnitt gezündet wird.
- Vorrichtung nach dem vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass der die Zündung der Entladung zwischen den Elektroden (1) erlaubende Metallkegel (8) durch einen in Längsrichtung durchbohrten Körper (35) ersetzt wird, welcher es erlaubt, den hydrodynamischen Widerstand zu vermindern.
- Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Metallkegel (8) durch radiale Metallplatten (36) ersetzt wird, welche auf den Elektroden (1) fixiert sind und in der Weise ausgebildet sind, dass der Abstand zwischen den Platten in dem am weitesten stromaufwärts vom axialen Gasstrom liegenden Bereich der Elektroden minimal ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1001928A FR2959906B1 (fr) | 2010-05-05 | 2010-05-05 | Procede et dispositif pour la generation d'un jet de plasma non-isothermique. |
PCT/FR2011/000277 WO2011138525A1 (fr) | 2010-05-05 | 2011-05-04 | Procede et dispositif pour la generation d'un jet de plasma non- isothermique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2567599A1 EP2567599A1 (de) | 2013-03-13 |
EP2567599B1 true EP2567599B1 (de) | 2016-03-09 |
Family
ID=43734277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11724269.3A Active EP2567599B1 (de) | 2010-05-05 | 2011-05-04 | Verfahren und vorrichtung zur erzeugung eines nichtisothermischen plasmastrahls |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2567599B1 (de) |
CN (1) | CN103229601B (de) |
FR (1) | FR2959906B1 (de) |
WO (1) | WO2011138525A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102781157B (zh) * | 2012-07-17 | 2014-12-17 | 西安电子科技大学 | 平面射流等离子体产生装置 |
FR2998440B1 (fr) | 2012-11-19 | 2022-03-11 | Abenz 81 40 | Procede et dispositif de traitement de matiere fragmentee par flux de plasma reactif a pression atmospherique |
FR3039548B1 (fr) * | 2015-07-30 | 2019-05-31 | Centre National De La Recherche Scientifique (C.N.R.S) | Nouveau procede de polymerisation de sucres |
DE102016201459A1 (de) | 2016-02-01 | 2017-08-03 | Siemens Aktiengesellschaft | Plasmaerzeugungsvorrichtung umfassend eine Hochspannungsquelle |
WO2020188344A1 (fr) | 2019-03-21 | 2020-09-24 | Abenz 81-40 | Dispositif et procede pour le traitement de matiere fractionnee par plasma a temperatures intermediaires |
CN111970807A (zh) * | 2020-09-17 | 2020-11-20 | 清华苏州环境创新研究院 | 一种基于滑动弧放电激发微波等离子体的装置 |
CN113101389B (zh) * | 2021-04-26 | 2022-04-08 | 北京农学院 | 一种等离子体杀菌装置、杀菌气体的制备方法及杀菌方法 |
WO2022248981A1 (fr) | 2021-05-23 | 2022-12-01 | Abenz 81-40 | Procédé pour le traitement de gaz et mélanges de gaz, par plasma à températures intermédiaires dit pit pttm, dispositif et utilisation. |
CN117313585B (zh) * | 2023-11-28 | 2024-02-20 | 中国人民解放军陆军装甲兵学院 | 磁场方向影响导电气流流动和传热特性的分析方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050118350A1 (en) * | 2002-03-28 | 2005-06-02 | Pavel Koulik | Atmospheric plasma surface treatment method and device for same |
JP4658506B2 (ja) * | 2004-03-31 | 2011-03-23 | 浩史 滝川 | パルスアークプラズマ生成用電源回路及びパルスアークプラズマ処理装置 |
CN101296552B (zh) * | 2007-04-25 | 2011-04-20 | 烟台龙源电力技术股份有限公司 | 等离子发生器的输送弧装置 |
-
2010
- 2010-05-05 FR FR1001928A patent/FR2959906B1/fr active Active
-
2011
- 2011-05-04 EP EP11724269.3A patent/EP2567599B1/de active Active
- 2011-05-04 CN CN201180033388.XA patent/CN103229601B/zh active Active
- 2011-05-04 WO PCT/FR2011/000277 patent/WO2011138525A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
FR2959906A1 (fr) | 2011-11-11 |
FR2959906B1 (fr) | 2012-05-04 |
CN103229601A (zh) | 2013-07-31 |
EP2567599A1 (de) | 2013-03-13 |
WO2011138525A1 (fr) | 2011-11-10 |
CN103229601B (zh) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2567599B1 (de) | Verfahren und vorrichtung zur erzeugung eines nichtisothermischen plasmastrahls | |
EP2923535A1 (de) | Verfahren und vorrichtung zur behandlung von zweiphasigem fragmentiertem oder staubförmigem gut durch nichtisothermischen reaktiven plasmafluss | |
EP1488669B1 (de) | Verfahren zur oberflächenbehandlung durch atmosphärisches plasma und vorrichtung zu seiner herstellung | |
Schoenbach et al. | 20 years of microplasma research: a status report | |
Lu et al. | Atmospheric pressure nonthermal plasma sources | |
Wang et al. | Uniformity optimization and dynamic studies of plasma jet array interaction in argon | |
CZ2019772A3 (cs) | Zařízení pro čištění kapalin a způsob čištění kapalin s využitím tohoto zařízení | |
Furmanski et al. | Triple-coupled intense atmospheric pressure plasma jet from honeycomb structural plasma device | |
FR2639172A1 (fr) | Dispositif de generation de plasmas basse temperature par formation de decharges electriques glissantes | |
EP2586276A1 (de) | Vorrichtung zur erzeugung eines plasmastrahls | |
Tupikin et al. | Diffusion flame in an electric field with a variable spatial configuration | |
Fadeev et al. | The influence of transverse acoustic oscillations on contraction of the glow discharge | |
CN112004304B (zh) | 一种电晕复合介质阻挡放电等离子体射流发生装置 | |
Laroussi et al. | Cold atmospheric pressure plasma sources for cancer applications | |
Omran et al. | Single channel atmospheric pressure transporting plasma and plasma stream demultiplexing: physical characterization and application to E. coli bacteria inactivation | |
WO2020188344A1 (fr) | Dispositif et procede pour le traitement de matiere fractionnee par plasma a temperatures intermediaires | |
Huang et al. | Computational fluid dynamic modeling of gas flow characteristics of the high-power CW CO2 laser | |
Nedybaliuk et al. | Peculiarities of Plasma Assisted Stearine Combustion | |
Liao et al. | Application of plasma discharges to the ignition of a jet diffusion flame | |
Nedybaliuk et al. | Plasma-liquid system with reverse vortex flow of “tornado” type (TORNADO-LE) | |
EP4153348A1 (de) | Verfahren und system zur umwandlung eines gasgemischs mit gepulstem plasma | |
Fang et al. | Plasma Jet Array Driven by Nanosecond Pulses | |
RU2593297C2 (ru) | Способ получения газовой смеси, содержащей окись азота | |
Izawa et al. | Effect of a Magnetic Nozzle in an MPD Thruster | |
WO2002000330A1 (fr) | Procede et dispositif de traitement par decharge electrique d'effluents organiques volatils gazeux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121203 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20141216 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151022 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABENZ 81-40 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 780319 Country of ref document: AT Kind code of ref document: T Effective date: 20160315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011023835 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160610 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160609 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 780319 Country of ref document: AT Kind code of ref document: T Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160711 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011023835 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
26N | No opposition filed |
Effective date: 20161212 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160609 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160504 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602011023835 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110504 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210524 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20210527 Year of fee payment: 11 Ref country code: GB Payment date: 20210531 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220504 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220504 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240528 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240531 Year of fee payment: 14 |