EP2567599B1 - Verfahren und vorrichtung zur erzeugung eines nichtisothermischen plasmastrahls - Google Patents

Verfahren und vorrichtung zur erzeugung eines nichtisothermischen plasmastrahls Download PDF

Info

Publication number
EP2567599B1
EP2567599B1 EP11724269.3A EP11724269A EP2567599B1 EP 2567599 B1 EP2567599 B1 EP 2567599B1 EP 11724269 A EP11724269 A EP 11724269A EP 2567599 B1 EP2567599 B1 EP 2567599B1
Authority
EP
European Patent Office
Prior art keywords
plasma
gas
electrodes
jet
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11724269.3A
Other languages
English (en)
French (fr)
Other versions
EP2567599A1 (de
Inventor
Pavel Koulik
Anatoly Saychenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABENZ 81-40
Original Assignee
Abenz 81-40
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abenz 81-40 filed Critical Abenz 81-40
Publication of EP2567599A1 publication Critical patent/EP2567599A1/de
Application granted granted Critical
Publication of EP2567599B1 publication Critical patent/EP2567599B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3405Arrangements for stabilising or constricting the arc, e.g. by an additional gas flow

Definitions

  • the present invention consists of a method for controlled generation of non-isothermal plasma jet at a pressure close to atmospheric pressure and a device for carrying out this method.
  • the generation of plasma jets is related to the transformation technologies of matter, especially plasmochemistry, and more particularly the destruction of products and waste.
  • isothermal plasmas whose temperatures of the various components, especially heavy particles (molecules, atoms, radicals, ions) Ta, and electrons, Te, are substantially equal.
  • the plasmas generated by the generators mentioned above are usually isothermal. This means that the chemical reactions that occur there are local thermodynamic equilibrium relations, described, for example, by the well-known Arrhenius law.
  • concentration of the components of the isothermal plasma is described by the equation, also well known, of Saha.
  • the temperature of these plasmas is of the order of 6,000-12,000 K depending on the generation conditions.
  • thermochemical technologies Accompanied by a plasma quenching process (rapid cooling that prevents the recombination of many harmful molecular states, including dioxins and furans), these technologies have proven advantageous over traditional thermochemical technologies.
  • ZhukovM.F. Izv.SOAN USSR Ser. Techn.Nauk, 1970, V2 (58) P 12 - 18 ; Burov IS, Ermolaeva EM, Moss AL, Minsk ITMO 1975, p.71 - 78 ; see also www.europlasma.com).
  • the temperature level of the heavy components (T a ) would be of the order of 2000 - 2500 K, which is sufficient to achieve the intended chemical reactions for example, those necessary for the destruction of waste without the formation of harmful chemical components, while the temperature of the electrons would be of the order of 6 000 - 12 000 K, which would ensure an electric current sufficient to support the mechanism of electric discharge and the energy balance of the plasma jet.
  • Non-isothermal plasma generators have been proposed, protected by patents, and exploited at the industrial level (see, for example, Engelsht VS, Saichenko AN, GM Okopnik, Musin NU XI Vsesoyuznaya Konf. Po generatoram nizkotemperaturnoy plazmi, Novosibirsk, 1989; P 255 ; Desiatkov GA, Enguelsht VS, Saichenko AN, Musin NU, and Plasma Jets in the Development of New Materials Technology. Proc. Of the International Workshop September 3-9, Frunze, USSR Ed. OPSolonenko, AIFedorchenko.
  • the arc is propelled along these electrodes thanks to the electromagnetic force created by the field magnetic due to the current flowing through the electrode and the current flowing through the arc in a direction substantially perpendicular to the axis of the electrodes.
  • the movement of the arc may be, in addition, biased by a longitudinal stream of propellant gas which contributes to forming the plasma jet downstream of the electrodes.
  • a new discharge is then initiated again at the base of the electrodes and the process is repeated. So we have a perpetual movement of "back and forth” of the arc along the electrodes. In its movement, the arc creates around it a "plasma cloud” whose properties, and especially the life time, depend on the nature of the gas in which the discharge takes place, the presence of a hydrodynamic flow of gas , the level of the amplitude of the voltage between the electrodes, and the divergence geometry of the electrodes.
  • This plasma cloud can ensure the existence of a conductive area of electricity in the absence of electric current during its lifetime. It is therefore possible to feed the arc not only with direct current but also with pulse current, if the plasma cloud lifetime is greater than the pause between the voltage pulses between the electrodes. In particular, it is possible to feed the sliding arc with alternating current, for example of frequency 50Hz.
  • the plasma jet In addition, given the short length of the plasma jet generated, it is difficult to perform object processing work by preventing the jet reflected by the treated object from altering the parts of the generator, including the electrodes. It is therefore highly desirable that the plasma jet be substantially longer. However, it is possible to extend the plasma jet according to existing technologies by increasing the incident power, the energy efficiency of such a generator is very low because the power losses increase almost proportionally to the square of the dimension of the jet, of shape close to the sphere.
  • an object of the present invention is to develop a stable non-isothermal plasma jet generation method, at a pressure close to atmospheric pressure or above atmospheric pressure, which can be used advantageously for the industrial production of plasmochemical reactions, particularly in the field of the destruction and recycling of waste, in particular organic waste.
  • a great advantage is any technology capable of providing variable controlled treatment depending on the composition of the feed gas, the shape, the nature, and the composition of the treated product.
  • the invention aims to solve the technical problems presented by a method of generating an axisymmetric non-isothermal plasma jet according to claim 1.
  • the invention also aims to solve the technical problems explained above by a device for implementing the method of generating a non-isothermal plasma axisymmetric jet according to claim 5.
  • the plasma in such a jet is in a non-thermal state as defined by the formulas [1] - [3], which gives principle advantages to the present invention.
  • the generated plasma jet is turbulent and the advantage of the non-thermal plasma remains practically unused, since the energy exchanges in a turbulent plasma are too intense and it becomes impossible to exploit them: electrons and that of excited particles and free radicals, possibly formed and in a metastable state, are "wasted" and lost in heat.
  • the present invention makes it possible, on the contrary, to exploit these advantages based on the limitation of the heat losses and the optimization of the use of the excited states of the particles.
  • a Reynolds critical number, Re * is the value of the Reynolds number at which the flow spontaneously passes from the laminar state to the turbulent state. For a flux in an axisymmetric tube this value is well known and is at the level of 2000. Experience shows that this spontaneous passage is determined by the velocity differences between the adjacent layers of the fluid or more precisely by the gradient of this velocity . It is conceivable, and the experience of the authors of the present invention confirms it, to have a base flow of high velocity and of restricted characteristic dimension for which the character of the exchanges remains molecular even if the Reynolds number is much greater than 2000. Flows of this kind are called pseudo-laminars by the authors of the present invention.
  • Re * can only be determined empirically.
  • the work done by the authors of the present invention has shown that, practically, Re * ⁇ 1.5.10 4 .
  • This result can be used for all mentioned plasma jet configurations and for all the implementers mentioned in the present invention.
  • the relationships [1] - [3] are a practical example of realizing the pseudo-laminarity condition claimed in the present invention.
  • the present invention therefore makes it possible, in particular, to minimize the energy exchanges between the plasma jet and the surrounding medium. Examples have shown that the plasma jet pseudo-laminarized, and thus stabilized, can be very long. It is therefore possible to control and optimize the shape and energy balance so as to optimize heat exchange and mass exchanges with the treated material load.
  • Such optimization is possible, for example, by applying a magnetic field perpendicular to the direction of the electric current which runs through the plasma cord generating the plasma jet.
  • the electromagnetic forces cause a rotation of the electric arc which stimulates the energy exchanges within the jet of non-thermal plasma.
  • Rotation of the non-thermal plasma jet is also achieved by introducing the propellant gas stream at an angle such that it forms a plasma vortex through which energy exchanges are stimulated in the plasma jet.
  • Magnetic fields can also be applied to each of the electrodes which makes it possible to modify the shape of the plasma bead, bringing it closer to the axis of the jet or moving it away according to the direction of application of the magnetic field (traversed by a current alternative) with respect to the direction of the electric current supplying the discharge.
  • a constant magnetic field can widen and shorten the shape of the jet.
  • the fig.1a shows the chaotic nature of the plasma cord 2 from the electrodes 1 of a standard device powered by a turbulent flow of gas, as used in practice and photographed multiple times by users.
  • the electrodes 1 emit a cord of plasma 2 of indeterminate form, unstable in space and time.
  • the plasma area 3 around the cord is also unstable in time and space. This configuration strongly limits the applications of this type of plasma which can not be called a plasma jet.
  • the fig.1b shows the principle result of the use of a propellant gas flow distribution device.
  • the plasma cord 2 is stabilized.
  • the plasma jet 4 is embedded in the jet of gas 5 from the distributor 6. It is of stable and uniform configuration.
  • the Fig. 1 C gives a principle comparison of the two cases mentioned above: the plasma cord 2, the plasma zone 3 are substantially stretched and of greater length than in the case of the standard device. Appears a jet of plasma 4 stabilized by the jet of gas 5.
  • the device for implementing the method of generating a stabilized non-thermal plasma jet as defined in the present invention is illustrated by the fig.2 .
  • a high-voltage discharge in the form of a plasma bead of substantially constant cross section, 2 is initiated between two electrodes 1, parallel or diverging at a given angle relative to the axis of symmetry of the generator, connected by the intermediate metal rods 7 and a metal cone 8 to an AC source 9.
  • the metal cone is connected to the power supply system via a capacitor 10 and can be moved along its axis of in order to vary the distance separating it from the metal rods.
  • the feed gas, propelling and stabilizing the non-thermal plasma jet 4 is introduced via a conduit 11 provided with a collector 12, a screen-mesh 13 and a distribution device. speed (speed) 14.
  • the manifold is supplied with gas via the inlet conduit 15. Gaseous components, liquid or in the form of sprayed droplets, can be added to the gas flow via the conduit 16.
  • the flow distributor 14 can be used to predetermine and control the radial distribution of the flow rate of the gas flow. It may consist, in particular, of a set of small diameter tubes arranged in honeycomb, as shown in FIG. fig.2 . The profile of the lengths of these tubes determines the profile of the hydrodynamic resistances according to the radius of the distributor. This makes it possible to create a velocity profile 17 (V (r)) which predetermines the stability of the gas flow and therefore of the resulting flow of plasma. In particular, it is possible in this way to form a gas flow whose central portion 18 of diameter D has a constant speed and the peripheral portion, limited to the diameter D 0 (19), has a predetermined radial profile (17).
  • the device according to the present invention is characterized in that the device for forming the propellant gas flow velocity profile (14) is an axially symmetrical system of coaxial tubes arranged in honeycomb and traversed longitudinally. by the conductive supports of the electrodes, the axis of the tubes being parallel to the flow axis and the current length of the tubes inversely proportional to the local velocity of the gas flow.
  • the rods 7 are constructed so as to represent a minimum hydrodynamic resistance for the flow of gas so as to disturb only locally the character of the gas flow.
  • the electrodes 1 which support the heat releases due to the passage of the electric charges from the metal zone to the gas (auto-electronic emission) and are inevitably subjected to erosion can be cooled by a gas flow (the electrode 1 can in this case where it is crossed by a gas channel 20 which runs through them as shown by fig.2 b) or by a stream of water (the electrode 1, in this case, is traversed by a stream of water 21 as shown in FIG. fig.2 c) .
  • the metal cone (8) which allows the initiation of the discharge between the electrodes can be replaced by a longitudinally milled body (35) as illustrated in FIG. figure 10 , which makes it possible to reduce its hydrodynamic resistance.
  • the latter can also be reduced if the metal cone 8 is replaced by radial metal plates (36) fixed on the electrodes and designed so that the distance between the plates is minimal in the part of the electrodes most upstream of the axial flow of gas, as shown in figure 11
  • the device operates as follows: at the time of priming the discharge, a short arc lights up between the cone 8 and the rods 7.
  • the fig.3 illustrates an implementation scheme of the present invention according to which the plasma bead 2 is generated by three electrodes 1 by means of a metal cone 8 connected to a three-phase electric power generator with ballast elements in the form of inductances 23 which allows to have a particularly high energy efficiency.
  • the system is stabilized by a flow of gas from a gas distributor 6 for coating the electrodes and the plasma beads with a flow of gas whose radial profile of the flow is predetermined so as to stabilize the discharge and laminarize the plasma jet.
  • the plasma cord 2 is generated by six electrodes 1 via the metal cone 8, connected to a generator of three - phase electric current 9.
  • the set of electrodes is bathed by a laminarized flow of stabilizing gas 5 coming from a distributor 14.
  • the electrode connections are made in a triangle (as shown by the connection 9 'of the Fig. 4b ) or star (as shown by the 9 "connection of the Fig. 4c )
  • one or the other of the solutions is preferable.
  • the fig.5 illustrates another possible embodiment of the present invention.
  • the stabilized non-thermal plasma jet 4 is formed by plasma cords 2 connecting the three electrodes fed by a three-phase AC source 9 to an annular electrode 5.
  • the annular electrode 25, arranged to overheat due to its contact with the plasma jet can be cooled, for example by means of a stream of water supplied and discharged through the conduits 26.
  • the protuberances 27 are optionally practiced in order to locate and fix the base of the plasma cords.
  • the device claimed in the present invention is characterized in that it is provided with an electrode (25) to the ground, circular, coaxial with the laminarized jet and surrounding it inside the zone of laminarization so as to locate the discharge in the laminar zone of the generated jet.
  • Stabilization (see Fig. 5 b) is carried out by a flow of gas 5 from a distributor 6 in which the honeycomb device 14 of the Fig. 2 is replaced by a sudden expansion system 27 which makes it possible to create a velocity profile 17 of the flow empirically adapted to the diagram of the figure 5 . It can be seen that the propellant gas introduced into the distributor 6 creates a vortex 29 in the stream of profiled gas 30 directed towards the screen-grid 13, thus forming the desired velocity profile V (r) 17.
  • the fig.6a illustrates the case of addition of solenoids 31 creating magnetic fields perpendicular to the plasma cords 2 from each of the electrodes 1.
  • the flow of propellant gas from the distributor 6 and stabilizing the plasma jet 4 is organized so as to coat the entire configuration of the plasma cords, that these are concentrated by the magnetic field, generated by alternating current, towards the axis of the generator (see Fig. 6 b) , or pushed outwards (see Fig. 6 c) following that the oscillations of the field and the current are in phase or in counter-phase, or else, forced by a constant magnetic field in time, oscillating between the two situations of fig.6b and fig.6 c as shown in fig.6d .
  • the fig.7a shows the cross section of another embodiment of the present invention, according to which the flow of propellant gas 28, and consequently the plasma cords 2 coming from the six electrodes 1, after having left the metal cone 8, are swirled by hydrodynamic deflectors 32 or by a magnetic field generated by a solenoid 31, a magnetic field whose oscillations are synchronized with the alternating current supply discharges.
  • the 7B shows the angle ⁇ between the axis of the deflectors and the direction of the flow of propellant gas.
  • the 7C shows the angle ⁇ 'between the deflector axis and the tangent to the radial attachment circle of the deflectors.
  • ⁇ ⁇ 90 ° and ⁇ ' ⁇ 90 ° We have ⁇ ⁇ 90 ° and ⁇ ' ⁇ 90 °.
  • the device according to the present invention may also be characterized in that it comprises solenoids (31) traversed by a direct or alternating electric current, in particular synchronized with the current supplying the discharge, the solenoids being arranged so as to create a magnetic field directed at an angle ⁇ between 0 ° and 90 ° with respect to the direction of the discharge current and at an angle ⁇ between 0 ° and 90 ° with respect to the direction of the laminarized flow.
  • the Fig. 8 shows the longitudinal section of a propellant gas distribution device 28 according to which the position of the plasma cord 2 and the configuration of the plasma zone 3 coming from the electrodes 1 after leaving the metal cone 8 are controlled by a device 33 provided valves 34 ensuring a distribution of the propellant gas 28, in portions, along the metal cone, through the electrodes (especially to cool them) and the periphery of the generator.
  • the fig.9 illustrates the dependence of the length of the plasma jet, L (m) of the propulsion gas velocity, V (m / s) for different values of the voltage applied to the electrodes.
  • the present invention may be advantageously used in the chemical, plasmochemical and pharmaceutical industries, in particular for the manufacture of powders and in particular nanopowder.
  • Non-thermal plasma jet generators can be advantageously used in different industries for instant sterilization of contaminated surfaces.
  • the use of the present invention is exceptionally effective and advantageous, particularly economically for the destruction of household, industrial medical waste and especially for the incineration of organic waste by plasma.
  • it makes it possible in particular to eliminate harmful residual gases such as dioxins and furans and to recycle organic waste by transforming it into combustible products such as syngas.
  • the figure 9 illustrates the variation in the length of the arc generating the non-isothermal plasma jet as a function of the speed of the air flow propelling the non-thermal plasma jet, for the two values of the voltage illustrated in the two examples below. above, according to the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (13)

  1. Verfahren zur Erzeugung eines achsensymmetrischen, nicht-isothermen Plasmastrahls mit Hilfe einer elektrischen Entladung unter Hochspannung in einem Gasstrom, mit:
    • Anordnen wenigstens zweier Elektroden (1) für die Bildung eines Lichtbogens (4);
    • Anordnen einer Gleich-oder Wechselstromquelle (9);
    • Verbinden jeder der Elektroden (1) mit der Stromquelle (9);
    • Anordnen eines Gasverteilers (6), um einen Gasstrom in die Zone der Bildung des Bogens (4) einzuleiten;
    - Verbinden jeder der Elektroden (1) mit der Stromquelle (9) mittels eines Metallstiftes (7),
    - Anordnen eines Metallkegels (8) in der Nähe der Metallstifte (7), der mit der Stromquelle (9) mittels eines Kondensators (10) verbunden ist und der entlang seiner Achse verschoben werden kann, derart, dass dieser den Abstand variieren kann, der die Metallstifte (7) trennt, wobei der Metallkegel (8) die Zündung der Entladung zwischen den Metallstiften (7) erlaubt, derart, dass der Lichtbogen durch die elektromagnetische Kraft und durch die Widerstandskraft des Gasstroms entlang der Metallstifte (7) und der Elektroden (1) angetrieben wird;
    und
    • Anordnen einer Anordnung zur Bildung des Geschwindigkeitsprofils (14) des Gases in dem Gasverteiler (6), genauso, dass der den Lichtbogen antreibende Gasstrom an all den Punkten des resultierenden Plasmas stabilisiert wird, an denen die Bedingung der Stabilisierung unter Auferlegung eines Geschwindigkeitsprofils erhalten wird, das der Beziehung des Typs entspricht: r * < D * : V * r * = 1.
    Figure imgb0016
    D * r * 1 : V * r * = 1 cos r * 1 / 2 D * 1 ,
    Figure imgb0017
    und dass die Bedingung einer hydrodynamischen Stabilisierung des Bogens erfüllt wird: V Re * . η / ρ . D ,
    Figure imgb0018
    in welcher D*=D/D0; r*=2r/D0;
    D und D0 sind jeweils der Außendurchmesser des Strahls und der Durchmesser der Laminarisierungszone, und das D≤D0 ist;
    r ist der Radius des Punkts des Strahls, an welchem die aktuelle Geschwindigkeit V bestimmt wird;
    V0 ist die Geschwindigkeit des laminarisierten Stroms.
    Re* ist die kritische Reynoldszahl des stabilisierten Stroms;
    η und ρ sind jeweils die dynamische Viskosität und die Dichte des Antriebsgases und die Temperatur des Betriebsstroms.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Bogen Der Wirkung eines magnetischen Feldes senkrecht zum elektrischen Strom ausgesetzt wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektrische Strom des Bogens oder der Bögen gelenkt wird parallel oder unter Winkeln δ≤ 90° in Bezug zu der Achse des antreibenden Gasstroms und δ'≤ 90° in Bezug zu der Kreistangente, auf welcher hydrodynamische Deflektoren (3) positioniert sind, welche eine turbulente Bewegung des Plasmastrahls (1) provozieren.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, der antreibende Gasstrom molekulare Bestandteile enthält, zum Beispiel Wasserdampf, die sich bei Kontakt mit dem nicht-thermischen Plasma in angeregte metastabile Teilchen und in Radikale zersetzen.
  5. Vorrichtung zur Durchführung des Verfahrens zur Erzeugung eines axensymmetrischen nicht-isothermischen Plasmastrahls nach den Ansprüchen 1 bis 4, mit wenigstens zwei Elektroden (1), die mit Gleich- oder Wechselstrom in Monophase oder Triphase versorgt werden, um einen Lichtbogen (10) zwischen diesen zu erzeugen;
    - einer Gleich- oder Wechselstromquelle (9);
    - einem Gasverteiler (6), um einen Gasstrom in der Zone zur Bildung des Bogens (4) einzuführen;
    dadurch gekennzeichnet, dass
    jede der Elektroden (1) mittels eines Metallstifts (7) mit der Stromquelle (9) verbunden ist;
    und dadurch, dass
    die Vorrichtung ferner einen Metallkegel (8) umfasst, der mit der Stromquelle (9) mittels eines Kondensators (10) verbunden ist und der entlang seiner Achse verschoben werden kann, derart, dass dieser den Abstand variieren kann, der die Metallstifte (7) trennt, wobei der Metallkegel (8) die Zündung der Entladung zwischen den Metallstiften (7) ermöglicht;
    und dadurch, dass
    der Gasverteiler (6) umfasst
    - einen Eingangskollektor (12),
    - eine Einrichtung zur Bildung des Geschwindigkeitsprofils (14) des Gases; und ein Gittersieb (13).
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Einrichtung zur Bildung des Geschwindigkeitsprofils (14) des antreibenden Gasstroms (28) ein achsensymmetrisches System aus koaxialen Rohren ist, die wabenartig angeordnet sind und in Längsrichtung durch die Leiterträger der Elektroden hindurch verlaufen, wobei die Achsen der Rohre parallel zur Achse des Stroms verlaufen und die laufende Länge der Rohre umgekehrt proportional zu der lokalen Geschwindigkeit des Gasstroms ist, wie dieser im Anspruch 1 bestimmt ist.
  7. Vorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Einrichtung zur Bildung des Geschwindigkeitsprofils (14) des antreibenden Gasstroms (28) einen Kollektor (12), einen stark expandierenden Ring (27) und ein Gittersieb (13) umfasst.
  8. Vorrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass diese Solenoide (31) umfasst, die von einem elektrischen Gleich- oder Wechselstrom durchlaufen werden, insbesondere synchronisiert mit dem Versorgungsstrom der Entladung, wobei die Solenoide derart angeordnet sind, dass diese ein Magnetfeld erzeugen, das unter einem Winkel β zwischen 0° und 90° in Bezug zu der Richtung des Stroms der Entladung und unter einem Winkel γ zwischen 0° und 90° in Bezug zu der Richtung des laminarisierten Stroms gelenkt ist.
  9. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der Kollektor der Einrichtung zur Laminarisierung mit Versorgungsleitungen (15, 16) für Bestandteile in Form von Flüssigkeiten, pulverisierten Strahlen oder Gas vorgesehen ist.
  10. Vorrichtung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass diese eine Massenelektrode (25), kreisförmig, koaxial mit dem laminarisierten Strahl und das Innere der Laminarisierungszone umgebend vorgesehen ist, derart, dass die Entladung in der Laminarisierungszone des erzeugten Strahls lokalisiert ist.
  11. Vorrichtung nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass zwei Elektroden (1), parallel oder unter einem bestimmten Winkel divergierend in Bezug zu der Symmetrieachse eines Generators mittels der Metallstifte (7) und eines Metallkegels (8) mit einer Wechselstromquelle (9) verbunden sind, derart, dass zwischen den Elektroden (1) eine Hochspannungsentladung in Form eines Plasmastrangs mit praktisch konstantem Querschnitt gezündet wird.
  12. Vorrichtung nach dem vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass der die Zündung der Entladung zwischen den Elektroden (1) erlaubende Metallkegel (8) durch einen in Längsrichtung durchbohrten Körper (35) ersetzt wird, welcher es erlaubt, den hydrodynamischen Widerstand zu vermindern.
  13. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Metallkegel (8) durch radiale Metallplatten (36) ersetzt wird, welche auf den Elektroden (1) fixiert sind und in der Weise ausgebildet sind, dass der Abstand zwischen den Platten in dem am weitesten stromaufwärts vom axialen Gasstrom liegenden Bereich der Elektroden minimal ist.
EP11724269.3A 2010-05-05 2011-05-04 Verfahren und vorrichtung zur erzeugung eines nichtisothermischen plasmastrahls Active EP2567599B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001928A FR2959906B1 (fr) 2010-05-05 2010-05-05 Procede et dispositif pour la generation d'un jet de plasma non-isothermique.
PCT/FR2011/000277 WO2011138525A1 (fr) 2010-05-05 2011-05-04 Procede et dispositif pour la generation d'un jet de plasma non- isothermique

Publications (2)

Publication Number Publication Date
EP2567599A1 EP2567599A1 (de) 2013-03-13
EP2567599B1 true EP2567599B1 (de) 2016-03-09

Family

ID=43734277

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11724269.3A Active EP2567599B1 (de) 2010-05-05 2011-05-04 Verfahren und vorrichtung zur erzeugung eines nichtisothermischen plasmastrahls

Country Status (4)

Country Link
EP (1) EP2567599B1 (de)
CN (1) CN103229601B (de)
FR (1) FR2959906B1 (de)
WO (1) WO2011138525A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781157B (zh) * 2012-07-17 2014-12-17 西安电子科技大学 平面射流等离子体产生装置
FR2998440B1 (fr) 2012-11-19 2022-03-11 Abenz 81 40 Procede et dispositif de traitement de matiere fragmentee par flux de plasma reactif a pression atmospherique
FR3039548B1 (fr) * 2015-07-30 2019-05-31 Centre National De La Recherche Scientifique (C.N.R.S) Nouveau procede de polymerisation de sucres
DE102016201459A1 (de) 2016-02-01 2017-08-03 Siemens Aktiengesellschaft Plasmaerzeugungsvorrichtung umfassend eine Hochspannungsquelle
WO2020188344A1 (fr) 2019-03-21 2020-09-24 Abenz 81-40 Dispositif et procede pour le traitement de matiere fractionnee par plasma a temperatures intermediaires
CN113101389B (zh) * 2021-04-26 2022-04-08 北京农学院 一种等离子体杀菌装置、杀菌气体的制备方法及杀菌方法
WO2022248981A1 (fr) 2021-05-23 2022-12-01 Abenz 81-40 Procédé pour le traitement de gaz et mélanges de gaz, par plasma à températures intermédiaires dit pit pttm, dispositif et utilisation.
CN117313585B (zh) * 2023-11-28 2024-02-20 中国人民解放军陆军装甲兵学院 磁场方向影响导电气流流动和传热特性的分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003221300A1 (en) * 2002-03-28 2003-10-13 Apit Corp. S.A. Atmospheric plasma surface treatment method and device for same
JP4658506B2 (ja) * 2004-03-31 2011-03-23 浩史 滝川 パルスアークプラズマ生成用電源回路及びパルスアークプラズマ処理装置
CN101296552B (zh) * 2007-04-25 2011-04-20 烟台龙源电力技术股份有限公司 等离子发生器的输送弧装置

Also Published As

Publication number Publication date
EP2567599A1 (de) 2013-03-13
CN103229601A (zh) 2013-07-31
CN103229601B (zh) 2017-03-01
WO2011138525A1 (fr) 2011-11-10
FR2959906A1 (fr) 2011-11-11
FR2959906B1 (fr) 2012-05-04

Similar Documents

Publication Publication Date Title
EP2567599B1 (de) Verfahren und vorrichtung zur erzeugung eines nichtisothermischen plasmastrahls
EP1488669B1 (de) Verfahren zur oberflächenbehandlung durch atmosphärisches plasma und vorrichtung zu seiner herstellung
Schoenbach et al. 20 years of microplasma research: a status report
EP2923535A1 (de) Verfahren und vorrichtung zur behandlung von zweiphasigem fragmentiertem oder staubförmigem gut durch nichtisothermischen reaktiven plasmafluss
Wang et al. Uniformity optimization and dynamic studies of plasma jet array interaction in argon
Lu et al. Atmospheric pressure nonthermal plasma sources
CZ308532B6 (cs) Zařízení pro čištění kapalin a způsob čištění kapalin s využitím tohoto zařízení
Furmanski et al. Triple-coupled intense atmospheric pressure plasma jet from honeycomb structural plasma device
Sohbatzadeh et al. The effect of voltage waveform and tube diameter on transporting cold plasma strings through a flexible dielectric tube
FR2639172A1 (fr) Dispositif de generation de plasmas basse temperature par formation de decharges electriques glissantes
EP2586276A1 (de) Vorrichtung zur erzeugung eines plasmastrahls
Fadeev et al. The influence of transverse acoustic oscillations on contraction of the glow discharge
CN112004304B (zh) 一种电晕复合介质阻挡放电等离子体射流发生装置
Laroussi et al. Cold atmospheric pressure plasma sources for cancer applications
EP3981226A1 (de) Vorrichtung und verfahren zur plasmabehandlung von fragmentiertem material bei mittleren temperaturen
Suzuki et al. Research and development of steady-state MPD thrusters with permanent magnets and multi hollow cathodes for in-space propulsion
Huang et al. Computational fluid dynamic modeling of gas flow characteristics of the high-power CW CO2 laser
Nedybaliuk et al. Peculiarities of Plasma Assisted Stearine Combustion
Čech et al. Rotating Gliding Arc: Innovative Source for VOC Remediation
Nedybaliuk et al. Plasma-liquid system with reverse vortex flow of “tornado” type (TORNADO-LE)
EP4153348A1 (de) Verfahren und system zur umwandlung eines gasgemischs mit gepulstem plasma
RU2225533C2 (ru) Электрический ракетный двигатель
Gabdrakhmanov et al. Study of gas flow in a discharge chamber of a pulse plasma generator
Cui et al. A large-scale cold plasma jet: generation mechanism and application effect
RU2593297C2 (ru) Способ получения газовой смеси, содержащей окись азота

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151022

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABENZ 81-40

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 780319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011023835

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160609

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 780319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011023835

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

26N No opposition filed

Effective date: 20161212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160609

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160504

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011023835

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110504

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210524

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210527

Year of fee payment: 11

Ref country code: GB

Payment date: 20210531

Year of fee payment: 11

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230511

Year of fee payment: 13

Ref country code: DE

Payment date: 20230525

Year of fee payment: 13