EP2559056B1 - Method and device for measuring glow discharge spectrometry in pulsed mode - Google Patents

Method and device for measuring glow discharge spectrometry in pulsed mode Download PDF

Info

Publication number
EP2559056B1
EP2559056B1 EP11730379.2A EP11730379A EP2559056B1 EP 2559056 B1 EP2559056 B1 EP 2559056B1 EP 11730379 A EP11730379 A EP 11730379A EP 2559056 B1 EP2559056 B1 EP 2559056B1
Authority
EP
European Patent Office
Prior art keywords
impedance
measurement
matching device
pulsed
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11730379.2A
Other languages
German (de)
French (fr)
Other versions
EP2559056A1 (en
Inventor
Patrick Chapon
Olivier Rogerieux
Agnès TEMPEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba France SAS
Original Assignee
Horiba France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba France SAS filed Critical Horiba France SAS
Publication of EP2559056A1 publication Critical patent/EP2559056A1/en
Application granted granted Critical
Publication of EP2559056B1 publication Critical patent/EP2559056B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/36Radio frequency spectrometers, e.g. Bennett-type spectrometers, Redhead-type spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]

Definitions

  • the present invention relates to a method and a device for measuring pulsed-mode glow discharge spectrometry.
  • Glow discharge spectrometry is used for the quantitative analysis of the elemental chemical composition of solid samples or thin film stacks, this analysis can be solved in depth.
  • a sample to be analyzed is exposed to an etching plasma that performs surface ablation.
  • plasma provides, through various physicochemical mechanisms, the excitation and ionization of eroded species.
  • the tracking of the species present in the plasma, by an optical spectrometer for the excited species and / or by a mass spectrometer for the ionised species makes it possible to obtain the profile of the chemical composition of a sample according to the depth of the sample. erosion with submicron resolution.
  • SDL Glow Discharge Spectrometer
  • An SDL device generally comprises a mechanical device called "lamp” in which is placed a sample to be analyzed, the body of the lamp being connected to an optical spectrometer and / or mass.
  • the figure 1 schematically represents a cross-sectional view of a discharge lamp according to the state of the art.
  • the discharge lamp 1 comprises an anode tube 3 inside a vacuum chamber 2.
  • a sample 4 placed in the lamp facing one end of the anode tube 3 forms the second electrode of the device.
  • a pumping system 7 makes it possible to carry out a primary vacuum in the lamp, then a gas 8, said carrier gas (generally argon) is introduced under low pressure.
  • An electric generator 6 makes it possible to apply an electric field to the electrodes of the lamp and to generate a plasma 9 consisting of electrons 11, neutral atoms in a ground state or excited state 12 and ionized species 13, the remaining plasma 9 confined inside the anodic tube 3.
  • a plasma 9 consisting of electrons 11, neutral atoms in a ground state or excited state 12 and ionized species 13, the remaining plasma 9 confined inside the anodic tube 3.
  • the plasma 9 erodes the surface of the sample facing the end of the anode tube so as to form on the surface of the sample a crater whose diameter is close the diameter of the anode tube.
  • the ionized species present in the plasma 9 are measured by a mass spectrometer and / or the species excited by an optical spectrometer.
  • a mass spectrometer includes a mass analyzer which separates the ions according to their mass-to-charge ratio (m / z), where m represents the atomic mass and z the electric charge of an ionized species.
  • a glow discharge spectrometer thus enables the analysis of materials and thin layers.
  • the erosion rate of SDL sources being high (of the order of 2 to 100 nm per second), it is necessary to have spectrometers for rapid acquisition and providing multi-elemental information. This can be achieved by using a multichannel optical spectrometer and / or an extremely fast flight time mass spectrometer.
  • the combination of an optical spectrometer and a mass spectrometer is also envisaged and has been carried out in experimental assemblies.
  • an RF generator supplies the electric power to the discharge lamp, for example by means of an RF applicator 5 in contact with the sample 4.
  • the RF generator has an output impedance of 50 ohms .
  • the generator must in principle always be connected to an electrical circuit having an impedance adapted to the output impedance of the generator, that is to say 50 ohms.
  • An impedance matching device placed between the electric generator and the discharge lamp makes it possible to match the output impedance of the generator to the impedance of the electrical system formed by the discharge lamp, the plasma and the sample.
  • the impedance of the electrical system varies depending on the plasma conditions as well as the nature of the sample.
  • the impedance matching device is slaved to an impedance mismatch measurement system, based for example on a measurement of the reflected power.
  • the enslaved impedance matching system optimizes the transfer of power to the plasma by minimizing the reflected power.
  • An impedance matching device generally comprises electrical components of variable capacitance and / or variable inductance for adjusting the impedance of the device. Since the power supplied by the generator is quite high (from a few Watts to more than a hundred Watts) the variable impedance components are generally electromechanical components such as variable capacitors or variable inductance coils which are compatible with the power delivered over a wide range of impedance variation.
  • the figure 2 schematically represents an embodiment of known impedance matching system 17 comprising an inductor 17a and two variable capacitors 17b, 17c.
  • a mechanical control makes it possible to modify the value of the impedance of a component (capacitance or impedance) so as to modify the real part (Re ⁇ ) and the imaginary part (Im ⁇ ) of the impedance of the tuning device.
  • the known variable capacitors are, for example, plate capacitors whose distance is mechanically variable.
  • a known variable impedance coil is for example a coil whose electrical contact point varies so as to change the number of turns used.
  • Impedance matching devices are modeled in the literature by complex notations (real and imaginary values) and it is necessary to control two parameters to minimize the reflected power.
  • the impedance match can be manually performed by an operator before the start of the SDL measurements or motorized so as to slave the position of the electromechanical components to a measurement of the power reflected by the sample and / or the current-voltage phase shift. .
  • a controlled impedance matching device thus makes it possible to minimize the reflected power and to bring the current-voltage phase shift closer to 0 degrees at start-up and during spectrometric measurements.
  • the impedance agreement is necessarily slow because of the slowness of the measurement system of a signal representative of the impedance mismatch and because of the slowness of the electromechanical tuning device. impedance.
  • the response time to obtain an impedance match is of the order of 0.5 to 10 seconds.
  • An impedance matching device may optionally be coupled to a frequency deviation device which allows the frequency of the generator to be changed and the impedance mismatch to be modified.
  • a frequency deviation device has a fast response time, of the order of 0.1s, however, it allows only one electrical parameter to be changed and does not always allow on its own to minimize the reflected power completely.
  • Another way to compensate for impedance mismatch is to increase the power provided by the RF generator.
  • the additional power delivered dissipates, especially in the form of thermal energy that can induce heat stress in the sample.
  • the presence of a cooling circuit in contact with the sample is not always sufficient to reduce the thermal heating induced on the sample, even for optimized power, particularly in the case of fragile materials or multilayer samples, for which heat stress can be harmful.
  • a pulsed RF source makes it possible, by optimizing the duty cycle of the pulses, to independently control the instantaneous power, responsible for the erosion of the material and the obtaining of the analytical signals, and the average power supplied to the sample which is responsible for its thermal heating.
  • the main benefit of using a pulsed RF source lies in the minimization of induced thermal stresses, especially for fragile materials.
  • the figure 3A schematically represents the power supplied P f by the RF generator to generate an electric pulse 20 for a duration ⁇ 1 .
  • the figure 3B schematically represents a measurement obtained by mass spectrometry just before the start of the electric pulse, during the pulse and after stopping this electrical pulse.
  • the mass spectrometry signal can be analyzed in different time zones, respectively "prepeak” 31, "plateau” 32 and “afterglow” 33 offering original and rich analytical combinations of information not only for fragile materials but for any type of materials and stacks of thin layers.
  • the two curves respectively represented in solid lines and in dashed lines correspond to the monitoring by a mass analyzer of two different elements, for example the carrier gas for the solid line curve and an element originating from the sample for the dashed curve.
  • the ionic signals generally appear more intense in the "afterglow" zone 33 after the extinction of a plasma pulse.
  • N. Tuccito et al. indicates that the temporal distribution of the mass spectrometry signal maxima is specific to each element.
  • This publication also demonstrates that we can not only optimize the measurement of each element with a time-of-flight mass spectrometer but also analyze ionized molecular fragments, which makes it possible to discriminate polymers of similar elemental composition but of different molecular structure. .
  • the impedance of the material changes as a function of the erosion depth.
  • impedance matching systems have a very high response time and the measurement systems of impedance mismatch are provided for continuous signals.
  • the enslaved impedance matching devices existing up to now do not work satisfactorily in pulsed mode because they generally cause an erratic movement of the electromechanical components of the tuning box and do not minimize the power reflected at startup or when changing diapers.
  • the solution to avoid these erratic movements of the electromechanical components of the tuning box and thus erratic impedance changes is generally to inhibit the control system of the tuning box.
  • ISSN: 1618-2650 discloses a device and method for measuring by glow discharge mass spectrometry of a solid sample using a pulsed RF electric field in which an impedance match is optimized on a silicon wafer prior to measuring the sample. There is no such thing as an impedance matching device or an impedance mismatch measurement system for real-time impedance matching servocontrol with a response time of less than 0.5s and capable of transmitting electrical power up to 200 W. There is no system of impedance matching and impedance mismatch measurement compatible with pulsed RF generator operation until now. .
  • the object of the present invention is to remedy these drawbacks and to improve a pulsed mode mass spectrometry measurement method and apparatus.
  • the object of the invention is in particular to optimize the coupling of electrical power with a pulsed discharge mass spectrometer operating in pulsed mode while reducing the induced heat stress, in particular for multilayer samples.
  • the duty ratio of the pulses ⁇ 1 ⁇ F 1 is between 5% and 50%.
  • the glow discharge spectrometry device comprises a fast digital measurement system able to measure a signal representative of the impedance mismatch ⁇ between the generator and the discharge lamp, said measurement system comprising an acquisition system fast, synchronized with the plasma pulses, having an acquisition frequency F 3 greater than or equal to 1 / ⁇ 1 and being able to provide the impedance matching device with a signal representative of the impedance mismatch ⁇ for at least one part of said pulses.
  • the tuning device adapts the impedance ⁇ according to the measurement representative of the impedance mismatch, so as to minimize the impedance mismatch ⁇ in a continuous manner.
  • the electromechanical components are able to vary continuously over a cycle of several pulses said variable electrical impedance ⁇ .
  • the invention will find a particularly advantageous application in the glow discharge mass spectrometry operating in pulsed mode.
  • the present invention also relates to the features which will emerge in the course of the description which follows and which will have to be considered individually or in all their technically possible combinations.
  • the figure 5 schematically represents a glow discharge spectrometry apparatus which comprises an electric generator 6, a tuning device impedance 17, a discharge lamp 1 and an impedance mismatch measuring system 18.
  • the discharge lamp 1 is a conventional lamp such as for example the discharge lamp detailed in connection with the figure 1 .
  • the discharge lamp 1 comprises a tubular electrode 3.
  • a sample 4 to be analyzed forms the second electrode.
  • An RF applicator transmits the power delivered by the generator to the discharge lamp through the sample.
  • the electric generator 6 is an RF generator that can operate in continuous mode or in pulsed mode.
  • the electric generator 6 delivers a maximum RF power of 150 W.
  • the RF frequency of the generator is generally the normalized frequency of 13.56 MHz. However, there are also RF generators operating at other RF frequencies and compatible with the operating principle detailed below.
  • the Figure 4A schematically represents the electric power P R supplied by the RF generator in pulsed mode.
  • the generator 6 delivers pulses of duration ⁇ 1 and repetition frequency F 1 (the variations due to the RF frequency are not represented on the figure 4 , because the RF frequency is extremely high compared to the pulse repetition frequency and the pulse duration).
  • the repetition frequency F 1 of the pulses can be set to a value generally between 0.1 kHz to 20 kHz and the duty cycle of the pulses ⁇ 1 ⁇ F 1 can be set to a value typically between 5% and 50 %.
  • the duration of a pulse is generally between a few microseconds and a few milliseconds. The lower the duty cycle, the lower the risk of heating the sample.
  • the Figure 4B schematically represents the acquisition sequences by mass spectrometry in pulsed mode.
  • Digital acquisitions are made at a frequency F 2 equal to 1 / ⁇ 2 much greater than the frequency 1 / ⁇ 1 so as to acquire enough spectra respectively on the "prepeak", “plateau” and “afterglow” zones of each period. of the RF source.
  • An acquisition sequence by the detector of the mass spectrometer extends over a duration T 2 greater than the duration ⁇ 1 of a pulse of the RF generator.
  • an acquisition sequence of the mass spectrometer starts a little before the electrical pulse so as to acquire the baseline of the mass spectra before the start of the pulse (zone 21), then continues at the beginning of the pulse (zone 22 "prepeak"), during the pulse (zone 23 “plateau”) and finally ends after the end of the pulse so as to acquire spectra (zone 24 "afterglow”).
  • the mass analyzer makes it possible to obtain simultaneously or almost simultaneously the intensity of the signals as a function of the m / z ratio, which makes it possible to deduce from them a multi-elemental and / or molecular chemical analysis of the sample resolved in depth.
  • the RF generator has an output impedance of 50 ohms.
  • the generator is connected to an electrical circuit whose impedance must in principle always be adapted to the output impedance of the generator, that is to say 50 ohms, to optimize the transfer of electrical power between the generator and the plasma .
  • the impedance of the load connected to the generator is formed by the impedances placed in series (or in parallel according to the electric circuit) respectively of the discharge lamp 1, the plasma 9, the sample 4 and the tuning device.
  • this impedance varies depending on the plasma conditions as well as the nature of the sample. In practice, the impedance of the discharge lamp 1 varies little while the impedance of the sample 4 varies during the measurement.
  • Table I shows the impedances measured experimentally for different types of samples.
  • the impedance of a sample in a glow discharge lamp is essentially capacitive in nature and, on the other hand, that the value of the impedance varies considerably depending on whether the sample is conducting, semiconductor or insulation.
  • the impedance of the sample varies during measurement of GD-MS as a function of the plasma-exposed layer.
  • Table I complex impedances of different materials
  • the figure 5 schematically represents the electrical circuit connecting the pulsed RF electric field generator 6 to the glow discharge lamp 1.
  • the glow discharge spectrometry device uses a conventional impedance matching device 17 placed between the generator 6 and the system formed by the discharge lamp 1 and the sample 4.
  • the impedance matching device 17 comprises for example an inductor 17a and two capacitors 17b, 17c with variable capacitances (C T , C L ), respectively a capacitor 17b in series and a capacitor 17c in parallel.
  • the impedance matching box has a variable impedance ⁇ as a function of the respective capacitance values (C L , C T ) of the capacitors 17b, 17c and the inductance of the coil 17a.
  • the capacity of a capacitor is variable mechanically, for example by decreasing the distance between the plates of a capacitor (vacuum capacitor for example) or by changing the surface between plates (finned capacitor for example).
  • a component of the impedance matching system is replaced by two components: for example the variable capacitor 17b is replaced by two capacitors in parallel, a capacitor of large capacity and a capacitor of small capacity.
  • the motorization of the small capacity allows a fast response, while the large capacity in parallel allows an adaptation to the strong variations of impedance with a longer response time.
  • the impedance matching system comprises two inductance coils mechanically variable by modifying the electrical contact point of the circuit and therefore the number of turns used for each coil.
  • Variable capacitors allow for continuous impedance variation while variable impedance systems have incremental impedance variations. These systems are robust and support high electrical powers (several tens or even hundreds of watts). However, the impedance variation is controlled by a mechanical movement which remains slow even when it is motorized.
  • the innovative part of the device represented in figure 5 resides in the impedance mismatch measuring device 18 and in the slaving of the impedance matching system 17 to this measuring device 18 during the application of a pulsed RF electric field.
  • the impedance matching system 17 is continuously slaved to an analog measurement representative of the impedance mismatch, such as, for example, a measurement of the reflected power, and / or a phase shift measurement. current-voltage.
  • the impedance of the components of the tuning system 17 is modified by a mechanical movement which is relatively slow compared to the duration of pulsed pulses and compared to the repetition frequency of the pulses (from 10 Hz to 20 kHz).
  • the device of the invention comprises a device 18 connected to the impedance matching device 17.
  • a device 18 comprising a fast digital system for measuring a signal representative of the disagreement d impedance ⁇ .
  • These control signals are measured in a manner synchronized with the plasma pulses so as to take into account only the signals measured when the plasma is on.
  • the acquisition system of a measurement representative of impedance mismatch (reflected power and / or current-voltage phase shift) is represented symbolically on the figure 5 by the link 19a between the output of the impedance matching device 17 and the input of the system 18.
  • One or more values representative of the impedance mismatch ⁇ are thus acquired at a high acquisition frequency for each electrical pulse c that is for each plasma pulse.
  • a calculator is used to determine how much to vary the real part (Re ⁇ ) and the imaginary part (Im ⁇ ) of the impedance matching device, to minimize the impedance mismatch or to minimize the reflected power according to an algorithm predetermined servocontrol.
  • a preliminary calibration thus makes it possible to determine which movement (s) to apply to the electromechanical components in order to modify their respective impedances according to the determined value.
  • the servo control algorithm of the computer can be based on a function proportional to the impedance mismatch measured ⁇ , to correct the errors observed, and / or on a differential function as a function of the rate of change of ⁇ , so as to anticipate variations in impedance mismatch.
  • the slaving between the measuring device 18 and the tuning device is represented symbolically by the link 19b which makes it possible to act on the value of the capacitors 17b, 17c as a function of the measurement, for example of the reflected power.
  • the feedback loop formed by the two links 19a and 19b makes it possible, for example, to minimize the reflected power P r , and thus to obtain the impedance match between a pulsed mode RF generator 6 and its charge constituted by the light source. discharge, plasma and sample.
  • the measuring device can also be used to act by frequency deviation on the generator 6 via the link 19c so as to minimize a measurement representative of the impedance mismatch.
  • the frequency deviation changes the nominative RF frequency of 13.56 MHz by +/- 300 kHz.
  • the device of the invention thus makes it possible to act on an impedance matching device coupled to a pulsed mode RF generator, although this impedance matching device has an extremely slow response time compared to the durations of the devices. pulses as well as the time interval between two successive pulses.
  • the figure 6 represents a series of plasma pulses as a function of time, as well as the measurements of incident and reflected power.
  • Curves I 1 and I 2 represent optical spectrometry analysis signals, which have maxima during the plasma pulse.
  • the curve P f represents a measure of the power supplied by the RF generator, in other words the incident power.
  • the curve P r represents a measure of the reflected power.
  • the ordinate scale is in arbitrary units. The incident power measurements P f and the reflected power P r between two successive pulses are filtered. Only the power measurements taken during the pulses are kept.
  • Reflected power and / or phase-to-voltage phase shifts allow control of the reflected power and also allows the reflected power to be minimized through feedback to the impedance matching system which slaves capacitor values and / or or variable inductances.
  • the impedance matching of the impedance matching device is not effective during the pulse where the measurement is made, due to the response times of the mechanical movements to adjust the impedances of the device. agreement.
  • the impedance change is performed continuously on a cycle of several pulses.
  • the impedance matching box comprises mechanically variable capacitors
  • the capacitances (17b, 17c) are continuously varied, smoothing the impedance variations.
  • the impedance change can occur several pulses after the measurement of the disagreement. From one impulse to the next, a reduction in the reflected power P f enslaved as a function of time to the evolution of the impedance of the discharge lamp and of the sample is thereby obtained step by step. It is not therefore a real time enslavement.
  • the impedance adaptation in a continuous way corresponds well to the analyzed materials, because even in the case where the interfaces are clear, one passes progressively from one layer to another.
  • the optimization of the power transfer and in particular the minimization of the reflected power make it possible to protect the sample from dissipation of energy in the form of heat. This optimization also protects the generator because the power reflected towards the electric generator may damage it.
  • the digital impedance mismatch and impedance matching system can be operated in either continuous or pulsed mode. This device allows impedance matching at the start of the measurement and during a measurement, in particular at each interface of a multi-layer sample.
  • the extraction frequency of the mass spectrometer is of the order of 30 kHz, that is to say, much higher than the repetition frequency of the pulses, so as to extract a profile comprising enough points for each pulse.
  • the Mass spectrometry measurements are averaged over a predetermined number of source periods following the depth resolution required to form a series of mass spectra of the sample. The evolution of the signal of one or more ionic species as a function of time makes it possible to construct the profile of the sample analyzed.
  • the discharge lamp may optionally be coupled to an optical spectrometer for optical emission measurements.
  • the method and the device of the invention make it possible to optimize the impedance matching in pulsed mode, although the impedance matching system can remain based on components (capacitor (s) and / or inductance (s) variable) whose impedance variation is controlled by a slow mechanical movement.
  • the method and apparatus of the invention allow for pulsed-mode glow discharge mass spectrometry analysis under conditions where the impedance matching of the plasma is optimized according to a measurement taken only during the pulses. which allows the optimal transfer of the power to the plasma in pulsed mode without increasing the power supplied.
  • the method and apparatus of the invention avoids a test on a sample to optimize the impedance matching start conditions, which limits the loss of samples, particularly in the case of small sample size to be analyzed. or fragile sample.
  • the method and the device of the invention allow the analysis of fragile samples without inducing adverse thermal stress and allow accurate analysis of multilayer samples, without drifting agreement conditions during layer changes.
  • the method of the invention thus makes it possible to obtain measurements having a better accuracy, a better depth resolution and / or a faster speed, over a wide range of impedance matching, compared to a non-pulsed RF mode method. enslaved impedance and also compared to a pulsed RF mode without impedance servo.
  • the method and the device of the invention not only make it possible to improve the analytical performance of a GD-MS apparatus, but also to effectively protect the RF generator by effectively minimizing the power reflected back to the generator, capable of damage the electrical generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Electron Tubes For Measurement (AREA)

Description

La présente invention concerne un procédé et un dispositif de mesure de spectrométrie de décharge luminescente en mode pulsé. La spectrométrie de décharge luminescente est utilisée pour l'analyse quantitative de la composition chimique élémentaire d'échantillons solides ou d'empilements de couches minces, cette analyse pouvant être résolue en profondeur.The present invention relates to a method and a device for measuring pulsed-mode glow discharge spectrometry. Glow discharge spectrometry is used for the quantitative analysis of the elemental chemical composition of solid samples or thin film stacks, this analysis can be solved in depth.

Dans un spectromètre à décharge luminescente, un échantillon à analyser est exposé à un plasma de gravure qui effectue une ablation de surface. Par ailleurs, le plasma assure, via différents mécanismes physico-chimiques, l'excitation et l'ionisation des espèces érodées. Le suivi des espèces présentes dans le plasma, par un spectromètre optique pour les espèces excitées et/ou par un spectromètre de masse pour les espèces ionisées permet d'obtenir le profil de la composition chimique d'un échantillon en fonction de la profondeur d'érosion avec une résolution submicrométrique.In a glow discharge spectrometer, a sample to be analyzed is exposed to an etching plasma that performs surface ablation. In addition, plasma provides, through various physicochemical mechanisms, the excitation and ionization of eroded species. The tracking of the species present in the plasma, by an optical spectrometer for the excited species and / or by a mass spectrometer for the ionised species makes it possible to obtain the profile of the chemical composition of a sample according to the depth of the sample. erosion with submicron resolution.

Initialement limitée aux matériaux et aux couches conductrices du fait de l'utilisation de sources à courant continu (DC), la spectrométrie de décharge luminescente permet désormais l'analyse de matériaux semi-conducteurs et d'isolants grâce à l'utilisation de sources radio-fréquence (RF).Initially limited to materials and conductive layers due to the use of direct current (DC) sources, glow discharge spectrometry now allows the analysis of semiconductor materials and insulators through the use of radio sources Frequency (RF).

Des spectromètres à décharge luminescente (SDL ou GDS en anglais pour Glow Discharge Spectrometer) sont connus. Un appareil de SDL comprend généralement un dispositif mécanique dit « lampe » dans lequel est placé un échantillon à analyser, le corps de la lampe étant relié à un spectromètre optique et/ou de masse. La figure 1 représente schématiquement une vue en coupe transversale d'une lampe à décharge selon l'état de la technique. La lampe à décharge 1 comprend un tube anodique 3 à l'intérieur d'une enceinte à vide 2. Un échantillon 4 placé dans la lampe face à une extrémité du tube anodique 3 forme la deuxième électrode du dispositif. Un système de pompage 7 permet d'effectuer un vide primaire dans la lampe, puis un gaz 8, dit gaz porteur (généralement de l'argon) est introduit sous faible pression. Un générateur électrique 6 permet d'appliquer un champ électrique aux électrodes de la lampe et de générer un plasma 9 constitué d'électrons 11, d'atomes neutres dans un état fondamental ou excité 12 et d'espèces ionisées 13, le plasma 9 restant confiné à l'intérieur du tube anodique 3. Par bombardement ionique, le plasma 9 érode la surface de l'échantillon en regard de l'extrémité du tube anodique de manière à former en surface de l'échantillon un cratère dont le diamètre est proche du diamètre du tube anodique. Les espèces ionisées 13 présentes dans le plasma 9 sont mesurées par un spectromètre de masse 15 et/ou les espèces excitées par un spectromètre optique. Plus particulièrement, un spectromètre de masse comprend un analyseur de masse qui sépare les ions en fonction de leur rapport masse sur charge (m/z), où m représente la masse atomique et z la charge électrique d'une espèce ionisée. Un spectromètre de décharge luminescente permet ainsi l'analyse de matériaux et de couches minces. Toutefois, la vitesse d'érosion des sources SDL étant élevée (de l'ordre de 2 à 100 nm par seconde), il est nécessaire de disposer de spectromètres permettant une acquisition rapide et fournissant des informations multi-élémentaires. Ceci peut être obtenu en utilisant un spectromètre optique multicanal et/ou un spectromètre de masse à temps de vol extrêmement rapide. La combinaison d'un spectromètre optique et d'un spectromètre de masse est également envisagée et a été réalisée dans des montages expérimentaux.Glow Discharge Spectrometer (SDL or GDS) spectrometers are known. An SDL device generally comprises a mechanical device called "lamp" in which is placed a sample to be analyzed, the body of the lamp being connected to an optical spectrometer and / or mass. The figure 1 schematically represents a cross-sectional view of a discharge lamp according to the state of the art. The discharge lamp 1 comprises an anode tube 3 inside a vacuum chamber 2. A sample 4 placed in the lamp facing one end of the anode tube 3 forms the second electrode of the device. A pumping system 7 makes it possible to carry out a primary vacuum in the lamp, then a gas 8, said carrier gas (generally argon) is introduced under low pressure. An electric generator 6 makes it possible to apply an electric field to the electrodes of the lamp and to generate a plasma 9 consisting of electrons 11, neutral atoms in a ground state or excited state 12 and ionized species 13, the remaining plasma 9 confined inside the anodic tube 3. By ion bombardment, the plasma 9 erodes the surface of the sample facing the end of the anode tube so as to form on the surface of the sample a crater whose diameter is close the diameter of the anode tube. The ionized species present in the plasma 9 are measured by a mass spectrometer and / or the species excited by an optical spectrometer. More particularly, a mass spectrometer includes a mass analyzer which separates the ions according to their mass-to-charge ratio (m / z), where m represents the atomic mass and z the electric charge of an ionized species. A glow discharge spectrometer thus enables the analysis of materials and thin layers. However, the erosion rate of SDL sources being high (of the order of 2 to 100 nm per second), it is necessary to have spectrometers for rapid acquisition and providing multi-elemental information. This can be achieved by using a multichannel optical spectrometer and / or an extremely fast flight time mass spectrometer. The combination of an optical spectrometer and a mass spectrometer is also envisaged and has been carried out in experimental assemblies.

Dans un spectromètre de décharge luminescente RF, un générateur RF fournit la puissance électrique à la lampe à décharge, par exemple au moyen d'un applicateur RF 5 en contact avec l'échantillon 4. Le générateur RF a une impédance de sortie de 50 ohms. Le générateur doit en principe être toujours relié à un circuit électrique ayant une impédance adaptée à l'impédance de sortie du générateur, c'est-à-dire 50 ohms. Un dispositif d'accord d'impédance placé entre le générateur électrique et la lampe à décharge permet d'adapter l'impédance de sortie du générateur à l'impédance du système électrique formé par la lampe à décharge, le plasma et l'échantillon. Cependant, l'impédance du système électrique varie en fonction des conditions du plasma ainsi que de la nature de l'échantillon.In an RF glow discharge spectrometer, an RF generator supplies the electric power to the discharge lamp, for example by means of an RF applicator 5 in contact with the sample 4. The RF generator has an output impedance of 50 ohms . The generator must in principle always be connected to an electrical circuit having an impedance adapted to the output impedance of the generator, that is to say 50 ohms. An impedance matching device placed between the electric generator and the discharge lamp makes it possible to match the output impedance of the generator to the impedance of the electrical system formed by the discharge lamp, the plasma and the sample. However, the impedance of the electrical system varies depending on the plasma conditions as well as the nature of the sample.

Dans un spectromètre de décharge luminescente RF non pulsé, le dispositif d'accord d'impédance est asservi à un système de mesure du désaccord d'impédance, basé par exemple sur une mesure de la puissance réfléchie. Le système d'accord d'impédance ainsi asservi permet d'optimiser le transfert de puissance vers le plasma en minimisant la puissance réfléchie.In a non-pulsed RF glow discharge spectrometer, the impedance matching device is slaved to an impedance mismatch measurement system, based for example on a measurement of the reflected power. The enslaved impedance matching system optimizes the transfer of power to the plasma by minimizing the reflected power.

Un dispositif d'accord d'impédance comprend généralement des composants électriques de capacité variable et/ou d'inductance variable permettant de régler l'impédance du dispositif. La puissance fournie par le générateur étant assez élevée (de quelques Watts à plus d'une centaine de Watts) les composants à impédance variable sont généralement des composants de type électromécanique tels que des condensateurs variables ou des bobines d'inductance variable qui sont compatibles avec la puissance délivrée sur une gamme étendue de variation d'impédance. La figure 2 représente schématiquement un exemple de réalisation de système 17 d'accord d'impédance connu comprenant une bobine d'inductance 17a et deux condensateurs variables 17b, 17c. Une commande mécanique permet de modifier la valeur de l'impédance d'un composant (capacité ou impédance) de manière à modifier la partie réelle (ReΩ) et la partie imaginaire (ImΩ) de l'impédance du dispositif d'accord. Les condensateurs variables connus sont par exemple des condensateurs à plaques dont la distance est variable mécaniquement. Une bobine d'impédance variable connue est par exemple une bobine dont le point de contact électrique varie de manière à modifier le nombre de spires utilisées. Les dispositifs d'accord d'impédance sont modélisés dans la littérature par des notations complexes (valeur réelle et imaginaire) et il est nécessaire de contrôler deux paramètres pour minimiser la puissance réfléchie. L'accord d'impédance peut être réalisé manuellement par un opérateur avant le démarrage des mesures SDL ou être motorisé de manière à asservir la position des composants électromécaniques à une mesure de la puissance réfléchie par l'échantillon et/ou du déphasage courant-tension.An impedance matching device generally comprises electrical components of variable capacitance and / or variable inductance for adjusting the impedance of the device. Since the power supplied by the generator is quite high (from a few Watts to more than a hundred Watts) the variable impedance components are generally electromechanical components such as variable capacitors or variable inductance coils which are compatible with the power delivered over a wide range of impedance variation. The figure 2 schematically represents an embodiment of known impedance matching system 17 comprising an inductor 17a and two variable capacitors 17b, 17c. A mechanical control makes it possible to modify the value of the impedance of a component (capacitance or impedance) so as to modify the real part (ReΩ) and the imaginary part (ImΩ) of the impedance of the tuning device. The known variable capacitors are, for example, plate capacitors whose distance is mechanically variable. A known variable impedance coil is for example a coil whose electrical contact point varies so as to change the number of turns used. Impedance matching devices are modeled in the literature by complex notations (real and imaginary values) and it is necessary to control two parameters to minimize the reflected power. The impedance match can be manually performed by an operator before the start of the SDL measurements or motorized so as to slave the position of the electromechanical components to a measurement of the power reflected by the sample and / or the current-voltage phase shift. .

Dans un spectromètre de décharge luminescente RF non pulsé, un dispositif d'accord d'impédance asservi permet ainsi de minimiser la puissance réfléchie et de rapprocher le déphasage courant-tension de 0 degré au démarrage et pendant les mesures spectrométriques. Cependant, l'accord d'impédance est nécessairement lent du fait d'une part de la lenteur du système de mesure d'un signal représentatif du désaccord d'impédance et d'autre part de la lenteur du dispositif électromécanique d'accord d'impédance. Le temps de réponse pour obtenir un accord d'impédance est de l'ordre de 0.5 à 10 secondes.In a non-pulsed RF glow discharge spectrometer, a controlled impedance matching device thus makes it possible to minimize the reflected power and to bring the current-voltage phase shift closer to 0 degrees at start-up and during spectrometric measurements. However, the impedance agreement is necessarily slow because of the slowness of the measurement system of a signal representative of the impedance mismatch and because of the slowness of the electromechanical tuning device. impedance. The response time to obtain an impedance match is of the order of 0.5 to 10 seconds.

Un dispositif d'accord d'impédance peut éventuellement être couplé à un dispositif d'excursion de fréquence qui permet de modifier la fréquence du générateur et de modifier le désaccord d'impédance. Un dispositif d'excursion de fréquence a un temps de réponse rapide, de l'ordre de 0.1s, toutefois, il ne permet de modifier qu'un seul paramètre électrique et ne permet pas toujours à lui seul de minimiser complètement la puissance réfléchie.An impedance matching device may optionally be coupled to a frequency deviation device which allows the frequency of the generator to be changed and the impedance mismatch to be modified. A frequency deviation device has a fast response time, of the order of 0.1s, however, it allows only one electrical parameter to be changed and does not always allow on its own to minimize the reflected power completely.

Une autre façon de compenser un désaccord d'impédance consiste à augmenter la puissance fournie par le générateur RF. Toutefois, le surcroît de puissance délivré se dissipe notamment sous forme d'énergie thermique susceptible d'induire un stress thermique dans l'échantillon. La présence d'un circuit de refroidissement en contact avec l'échantillon ne suffit pas toujours à réduire l'échauffement thermique induit sur l'échantillon, même pour une puissance optimisée, en particulier dans le cas de matériaux fragiles ou d'échantillons multicouches, pour lesquels un stress thermique peut être dommageable.Another way to compensate for impedance mismatch is to increase the power provided by the RF generator. However, the additional power delivered dissipates, especially in the form of thermal energy that can induce heat stress in the sample. The presence of a cooling circuit in contact with the sample is not always sufficient to reduce the thermal heating induced on the sample, even for optimized power, particularly in the case of fragile materials or multilayer samples, for which heat stress can be harmful.

Dans les dernières années, l'avancée majeure en spectrométrie de décharge luminescente a été réalisée par l'introduction de sources RF puisées. Une source RF pulsée permet, en optimisant le rapport cyclique des impulsions, de contrôler indépendamment la puissance instantanée, responsable de l'érosion du matériau et de l'obtention des signaux analytiques et la puissance moyenne fournie à l'échantillon qui est responsable de son échauffement thermique.In recent years, the major advance in glow discharge spectrometry has been achieved by the introduction of pulsed RF sources. A pulsed RF source makes it possible, by optimizing the duty cycle of the pulses, to independently control the instantaneous power, responsible for the erosion of the material and the obtaining of the analytical signals, and the average power supplied to the sample which is responsible for its thermal heating.

En spectrométrie optique de décharge luminescente, le principal bénéfice de l'utilisation d'une source RF pulsée réside dans la minimisation des contraintes thermiques induites, notamment pour les matériaux fragiles.In optical glow discharge spectrometry, the main benefit of using a pulsed RF source lies in the minimization of induced thermal stresses, especially for fragile materials.

En spectrométrie de masse de décharge luminescente, l'utilisation d'une source RF pulsée offre des avantages additionnels remarquables du fait que les mécanismes d'ionisation des espèces présentes dans le plasma varient durant la période de la source RF. La figure 3A représente schématiquement la puissance fournie Pf par le générateur RF pour générer une impulsion électrique 20 pendant une durée τ1. La figure 3B représente schématiquement une mesure obtenue par spectrométrie de masse juste avant le début de l'impulsion électrique, pendant l'impulsion et après l'arrêt de cette impulsion électrique. Le signal de spectrométrie de masse peut être analysé sur différentes zones temporelles dites respectivement « prepeak » 31, « plateau » 32 et « afterglow » 33 offrant des combinaisons analytiques originales et riches d'informations non seulement pour les matériaux fragiles mais pour tout type de matériaux et empilements de couches minces. Sur la figure 3B, les deux courbes représentées respectivement en trait plein et en pointillés correspondent au suivi par un analyseur de masse de deux éléments différents, par exemple le gaz porteur pour la courbe en trait plein et un élément provenant de l'échantillon pour la courbe en pointillés.In glow discharge mass spectrometry, the use of a pulsed RF source offers remarkable additional advantages because the ionization mechanisms of the species present in the plasma vary during the period of the RF source. The figure 3A schematically represents the power supplied P f by the RF generator to generate an electric pulse 20 for a duration τ 1 . The figure 3B schematically represents a measurement obtained by mass spectrometry just before the start of the electric pulse, during the pulse and after stopping this electrical pulse. The mass spectrometry signal can be analyzed in different time zones, respectively "prepeak" 31, "plateau" 32 and "afterglow" 33 offering original and rich analytical combinations of information not only for fragile materials but for any type of materials and stacks of thin layers. On the figure 3B the two curves respectively represented in solid lines and in dashed lines correspond to the monitoring by a mass analyzer of two different elements, for example the carrier gas for the solid line curve and an element originating from the sample for the dashed curve.

Plus précisément, les signaux ioniques apparaissent généralement plus intenses dans la zone « afterglow » 33 après l'extinction d'une impulsion plasma. La publication de N. Tuccito et al. (Rapid Comm. Mass Spectrom. 2009, 23 : 549-556 ) indique que la distribution temporelle des maxima de signaux de spectrométrie de masse est propre à chaque élément. Cette publication démontre également que l'on peut non seulement optimiser la mesure de chaque élément avec un spectromètre de masse à temps de vol mais aussi analyser des fragments moléculaires ionisés, ce qui permet de discriminer des polymères de composition élémentaire similaire mais de structure moléculaire différente. La publication de L.Lobo et al. (A Comparison of non-pulsed radiofrequency and pulsed radiofrequency glow discharge orthogonal time-of-flight mass spectrometry for analytical purposes, J. Anal. At. Spectrom., 2009, 24, 1373-1381 ) a montré qu'il est possible d'obtenir en spectrométrie de masse de décharge luminescente des rapports signal/fond et donc des sensibilités bien supérieures en mode pulsé à celles obtenues en mode continu (non puisé). De plus, la publication Lobo et al. met en évidence qu'une sélection précise de l'intervalle temporel d'intégration en mode pulsé permet d'optimiser les performances en terme de séparation ionique et de précision et reproductibilité des mesures de ratios d'isotopes.More specifically, the ionic signals generally appear more intense in the "afterglow" zone 33 after the extinction of a plasma pulse. The publication of N. Tuccito et al. (Rapid Comm, Mass Spectrom 2009, 23: 549-556 ) indicates that the temporal distribution of the mass spectrometry signal maxima is specific to each element. This publication also demonstrates that we can not only optimize the measurement of each element with a time-of-flight mass spectrometer but also analyze ionized molecular fragments, which makes it possible to discriminate polymers of similar elemental composition but of different molecular structure. . The publication of L.Lobo et al. (A comparison of non-pulsed radiofrequency and pulsed radiofrequency orthogonal glow discharge time-of-flight mass spectrometry for analytical purposes, J. Anal. At. Spectrom., 2009, 24, 1373-1381. ) has shown that it is possible to obtain signal / background ratios in luminescent discharge mass spectrometry and therefore much higher sensitivities in pulsed mode than those obtained in continuous (non-pulsed) mode. In addition, the publication Lobo et al. highlights that a precise selection of the time interval of integration in pulsed mode makes it possible to optimize the performances in term of ionic separation and of precision and reproducibility of the measurements of ratios of isotopes.

Il apparaît aujourd'hui tout à fait décisif de pouvoir réaliser des mesures en spectrométrie de masse simultanée ou quasi simultanée (comme dans les appareils temps de vol) en mode pulsé.It is now very decisive to be able to perform measurements in simultaneous or near simultaneous mass spectrometry (as in time of flight devices) in pulsed mode.

Cependant, dans le cas d'un échantillon multicouches par exemple, l'impédance du matériau change en fonction de la profondeur d'érosion. Or les systèmes d'accord d'impédance ont un temps de réponse très élevé et les systèmes de mesure de désaccord d'impédance sont prévus pour des signaux continus. Les dispositifs d'accord d'impédance asservis existant jusqu'à présent ne fonctionnent pas de manière satisfaisante en mode pulsé car ils entraînent généralement un mouvement erratique des composants électromécaniques de la boîte d'accord et ne permettent pas de minimiser la puissance réfléchie au démarrage ou lors d'un changement de couche. La solution pour éviter ces mouvements erratiques des composants électromécanique de la boîte d'accord et donc des changements erratiques d'impédance est généralement d'inhiber le système d'asservissement de la boîte d'accord. L'opérateur souhaitant optimiser les mesures doit alors procéder par une série d'essais et erreurs, en préréglant le dispositif d'accord d'impédance à des positions fixes, de manière à minimiser au démarrage la puissance réfléchie, puis en compensant les petits écarts par une augmentation de la puissance incidente au cours de l'érosion de l'échantillon. Cette méthode d'essais et erreurs peut être destructrice pour l'échantillon qui n'est parfois disponible qu'en un seul exemplaire. De plus, l'augmentation de la puissance appliquée induit nécessairement un stress thermique dans l'échantillon, alors qu'un des buts de l'utilisation du mode pulsé est justement de réduire le stress thermique induit. Le document Valledor R et al : « Direct chemical in-depth profile analysis and thickness quantification of nanometer multilayers using pulsed-rf-GD-TOFMS. », Analytical and Bioanalytical Chemistry, Springer, vol. 396, no.8, 16 janvier 2010 (2010-01-16), pages 2881-2887, XP019798714, ISSN :1618-2650 , divulgue un dispositif et un procédé de mesure par spectrométrie de masse de décharge luminescente d'un échantillon solide en utilisant un champ électrique RF pulsé dans lequel un accord d'impédance est optimisé sur plaque de silicium avant la mesure de l'échantillon. Il n'existe pas jusqu'à présent de dispositif d'accord d'impédance ni de système de mesure du désaccord d'impédance permettant d'obtenir un asservissement de l'accord d'impédance en temps réel avec un temps de réponse inférieur à 0.5s et apte à transmettre une puissance électrique jusqu'à 200 W. Il n'existe pas jusqu'à présent de système d'accord d'impédance et de mesure du désaccord d'impédance compatible avec un fonctionnement du générateur RF en mode pulsé.However, in the case of a multilayer sample for example, the impedance of the material changes as a function of the erosion depth. However, impedance matching systems have a very high response time and the measurement systems of impedance mismatch are provided for continuous signals. The enslaved impedance matching devices existing up to now do not work satisfactorily in pulsed mode because they generally cause an erratic movement of the electromechanical components of the tuning box and do not minimize the power reflected at startup or when changing diapers. The solution to avoid these erratic movements of the electromechanical components of the tuning box and thus erratic impedance changes is generally to inhibit the control system of the tuning box. The operator wishing to optimize the measurements must then proceed with a series of trial and error, by presetting the impedance matching device at fixed positions, so as to minimize the reflected power at start-up, and then compensating for small deviations. by an increase in incident power during erosion of the sample. This method of trial and error can be destructive for the sample, which is sometimes only available in one copy. In addition, the increase in the power applied necessarily induces heat stress in the sample, while one of the purposes of the use of the pulsed mode is precisely to reduce the induced heat stress. The document Valledor R et al: "Direct chemical in-depth profile analysis and thickness quantification of nanometer multilayers using pulsed-rf-GD-TOFMS. Analytical and Bioanalytical Chemistry, Springer, vol. 396, No. 8, January 16, 2010 (2010-01-16), pages 2881-2887, XP019798714, ISSN: 1618-2650 discloses a device and method for measuring by glow discharge mass spectrometry of a solid sample using a pulsed RF electric field in which an impedance match is optimized on a silicon wafer prior to measuring the sample. There is no such thing as an impedance matching device or an impedance mismatch measurement system for real-time impedance matching servocontrol with a response time of less than 0.5s and capable of transmitting electrical power up to 200 W. There is no system of impedance matching and impedance mismatch measurement compatible with pulsed RF generator operation until now. .

La présente invention a pour but de remédier à ces inconvénients et d'améliorer un procédé et un dispositif de mesure par spectrométrie de masse en mode pulsé. L'invention a notamment pour but d'optimiser le couplage de la puissance électrique à un spectromètre de masse de décharge luminescente fonctionnant en mode pulsé tout en réduisant le stress thermique induit, en particulier pour des échantillons multicouches.The object of the present invention is to remedy these drawbacks and to improve a pulsed mode mass spectrometry measurement method and apparatus. The object of the invention is in particular to optimize the coupling of electrical power with a pulsed discharge mass spectrometer operating in pulsed mode while reducing the induced heat stress, in particular for multilayer samples.

La présente invention concerne plus particulièrement un procédé de mesure d'un échantillon solide par spectrométrie de décharge luminescente en mode pulsé comprenant les étapes suivantes :

  • a) application d'un champ électrique RF pulsé aux bornes des électrodes d'une lampe à décharge luminescente en présence d'un gaz porteur et d'un échantillon à analyser, ladite lampe étant couplée électriquement à un dispositif d'accord d'impédance ayant une impédance électrique Ω variable, le dispositif d'accord d'impédance étant constitué de composants électromécaniques, de manière à générer un plasma de décharge luminescente en mode pulsé, la durée d'une impulsion électrique étant égale à τ1, la fréquence de répétition des impulsions étant égale à F1 comprise entre 0.1 kHz et 20 kHz et le rapport cyclique d'une impulsion étant égal à τ1 X F1 ;
  • b) mesure par spectrométrie de masse d'au moins un signal représentatif d'une espèce ionisée ayant un rapport m/z prédéterminé, ladite mesure étant effectuée à une fréquence d'acquisition F2 supérieure à 1/τ1 ;
  • c) mesure d'un signal représentatif du désaccord d'impédance ΔΩ entre le générateur de champ électrique RF pulsé et les électrodes de la lampe à décharge pendant au moins une partie des impulsions plasma au moyen d'un système d'acquisition numérique rapide de mesure synchronisé avec lesdites impulsions, ledit système d'acquisition rapide ayant une fréquence d'acquisition F3 supérieure à 1/τ1,
  • d) détermination d'une variation d'impédance dΩ à appliquer au dispositif d'accord d'impédance en fonction de la mesure d'un signal représentatif du désaccord d'impédance ΔΩ ;
  • e) modification de l'impédance Ω du dispositif d'accord d'impédance, les composants électromécaniques étant aptes à faire varier de manière continue sur un cycle de plusieurs impulsions ladite impédance électrique Ω variable en fonction de la valeur de dΩ déterminée à l'étape d) ;
  • f) répétition des étapes c) à e) de manière à minimiser le désaccord d'impédance ΔΩ.
The present invention more particularly relates to a method for measuring a solid sample by pulsed mode glow discharge spectrometry comprising the following steps:
  • a) applying a pulsed RF electric field across the electrodes of a glow discharge lamp in the presence of a carrier gas and a sample to be analyzed, said lamp being electrically coupled to an impedance matching device having a variable electrical impedance Ω, the impedance matching device consisting of electromechanical components, so as to generate a pulsed-mode glow discharge plasma, the duration of an electrical pulse being equal to τ 1 , the frequency of repetition of the pulses being equal to F 1 between 0.1 kHz and 20 kHz and the duty cycle of a pulse being equal to τ 1 XF 1 ;
  • b) measuring by mass spectrometry of at least one signal representative of an ionized species having a predetermined m / z ratio, said measurement being performed at an acquisition frequency F 2 greater than 1 / τ 1 ;
  • c) measuring a signal representative of the impedance mismatch ΔΩ between the pulsed RF electric field generator and the discharge lamp electrodes during at least a portion of the plasma pulses by means of a fast digital acquisition system of measurement synchronized with said pulses, said fast acquisition system having an acquisition frequency F 3 greater than 1 / τ 1 ,
  • d) determining an impedance variation dΩ to be applied to the impedance matching device as a function of the measurement of a signal representative of the impedance mismatch ΔΩ;
  • e) modifying the impedance Ω impedance matching device, the electromechanical components being able to vary continuously over a cycle of several pulses said variable electrical impedance Ω as a function of the value of dΩ determined at the step d);
  • f) repeating steps c) to e) so as to minimize the impedance mismatch ΔΩ.

Selon différents aspects le procédé de l'invention comprend en outre l'une ou plusieurs des étapes suivantes :

  • la mesure d'un signal représentatif du désaccord d'impédance ΔΩ comprend une mesure de la puissance électrique réfléchie et/ou une mesure du déphasage courant-tension ;
  • les variations de la partie réelle Re(Ω) et de la partie imaginaire lm(Ω) de l'impédance Ω dudit dispositif d'accord sont obtenues par modification des valeurs des impédances d'au moins deux composants du dispositif d'accord ;
  • excursion de la fréquence RF du générateur de manière à minimiser le désaccord d'impédance ΔΩ.
In various aspects, the method of the invention further comprises one or more of the following steps:
  • measuring a signal representative of the impedance mismatch ΔΩ comprises a measurement of the reflected electrical power and / or a measurement of the current-voltage phase shift;
  • the variations of the real part Re (Ω) and the imaginary part lm (Ω) of the impedance Ω of said tuning device are obtained by modifying the values of the impedances of at least two components of the tuning device;
  • RF frequency deviation of the generator so as to minimize the impedance mismatch ΔΩ.

Selon un mode de réalisation préféré du procédé de l'invention, le rapport cyclique des impulsions τ1 x F1 est compris entre 5% et 50%.According to a preferred embodiment of the method of the invention, the duty ratio of the pulses τ 1 × F 1 is between 5% and 50%.

La présente invention concerne également un dispositif de spectrométrie de décharge, pour la mesure d'un échantillon solide, comprenant :

  • un générateur de champ électrique RF utilisable en mode pulsé apte à générer un champ électrique RF comprenant des impulsions électriques de durée τ1 et de fréquence de répétition F1 comprise entre 0.1 kHz et 20 kHz,
  • une lampe à décharge comprenant des électrodes, des moyens de pompage et des moyens d'introduction d'un gaz porteur, ladite lampe à décharge étant apte à recevoir un échantillon solide à analyser et apte à générer un plasma de décharge luminescente,
  • un spectromètre de masse relié à ladite lampe à décharge et apte à mesurer au moins un signal représentatif d'une espèce ionisée du plasma présentant un rapport m/z prédéterminé, à une fréquence d'acquisition F2 supérieure à 1/τ1 et
  • un dispositif d'accord d'impédance relié électriquement d'une part au générateur de champ électrique RF pulsé et d'autre part aux électrodes de la lampe à décharge, ledit dispositif d'accord étant apte à transférer la puissance électrique fournie par le générateur RF en mode pulsé vers la lampe à décharge et ledit dispositif d'accord ayant une impédance électrique Ω variable.
The present invention also relates to a discharge spectrometry device, for measuring a solid sample, comprising:
  • an electric field generator RF usable in pulsed mode suitable for generating an electric field RF comprising electrical pulses of duration τ 1 and repetition frequency F 1 of between 0.1 kHz and 20 kHz,
  • a discharge lamp comprising electrodes, pumping means and means for introducing a carrier gas, said discharge lamp being able to receive a solid sample to be analyzed and capable of generating a glow discharge plasma,
  • a mass spectrometer connected to said discharge lamp and capable of measuring at least one signal representative of an ionized species of the plasma having a predetermined m / z ratio, at an acquisition frequency F 2 greater than 1 / τ 1 and
  • an impedance matching device electrically connected on the one hand to the pulsed RF electric field generator and on the other hand to the electrodes of the discharge lamp, said tuning device being able to transfer the electric power supplied by the generator RF in pulsed mode to the discharge lamp and said tuning device having a variable electrical impedance Ω.

Selon l'invention, le dispositif de spectrométrie de décharge luminescente comprend un système numérique rapide de mesure apte à mesurer un signal représentatif du désaccord d'impédance ΔΩ entre le générateur et la lampe à décharge, ledit système de mesure comprenant un système d'acquisition rapide, synchronisé avec les impulsions plasma, ayant une fréquence d'acquisition F3 supérieure ou égale à 1/τ1 et étant apte à fournir au dispositif d'accord d'impédance un signal représentatif du désaccord d'impédance ΔΩ pour au moins une partie desdites impulsions.According to the invention, the glow discharge spectrometry device comprises a fast digital measurement system able to measure a signal representative of the impedance mismatch ΔΩ between the generator and the discharge lamp, said measurement system comprising an acquisition system fast, synchronized with the plasma pulses, having an acquisition frequency F 3 greater than or equal to 1 / τ 1 and being able to provide the impedance matching device with a signal representative of the impedance mismatch ΔΩ for at least one part of said pulses.

Selon l'invention, le dispositif d'accord adapte l'impédance Ω en fonction de la mesure représentative du désaccord d'impédance, de manière à minimiser le désaccord d'impédance ΔΩ de manière continue. Dans l'invention, les composants électromécaniques sont aptes à faire varier de manière continue sur un cycle de plusieurs impulsions ladite impédance électrique Ω variable.According to the invention, the tuning device adapts the impedance Ω according to the measurement representative of the impedance mismatch, so as to minimize the impedance mismatch ΔΩ in a continuous manner. In the invention, the electromechanical components are able to vary continuously over a cycle of several pulses said variable electrical impedance Ω.

Selon différents aspects du dispositif de spectrométrie de l'invention :

  • le dispositif d'accord d'impédance comprend au moins deux composants électromécaniques à capacité(s) variable(s) et/ou à inductance(s) variable(s) aptes à modifier la partie réelle Re(Ω) et la partie imaginaire lm(Ω) de l'impédance Ω dudit dispositif d'accord ;
  • le dispositif de spectrométrie comprend en outre un dispositif d'excursion de fréquence apte à faire varier la fréquence RF du générateur et asservi à la mesure du désaccord d'impédance ΔΩ ;
  • le système de mesure du désaccord d'impédance comprend une mesure de la puissance électrique réfléchie et/ou une mesure du déphasage courant/tension ;
  • le spectromètre de masse est un spectromètre à temps de vol, ou un spectromètre quadripolaire ou un spectromètre à secteur magnétique ou un spectromètre de masse à transformée de Fourier.
According to various aspects of the spectrometry device of the invention:
  • the impedance matching device comprises at least two electromechanical components with variable capacity (s) and / or variable inductance (s) able to modify the real part Re (Ω) and the imaginary part lm (Ω) the impedance Ω of said tuning device;
  • the spectrometry device further comprises a frequency deviation device adapted to vary the RF frequency of the generator and slaved to the measurement of the impedance mismatch ΔΩ;
  • the impedance mismatch measuring system comprises a measurement of the reflected electrical power and / or a phase shift measurement current / voltage;
  • the mass spectrometer is a time-of-flight spectrometer, or a quadrupole spectrometer or a magnetic sector spectrometer or a Fourier transform mass spectrometer.

L'invention trouvera une application particulièrement avantageuse dans la spectrométrie de masse de décharge luminescente fonctionnant en mode pulsé.The invention will find a particularly advantageous application in the glow discharge mass spectrometry operating in pulsed mode.

La présente invention concerne également les caractéristiques qui ressortiront au cours de la description qui va suivre et qui devront être considérées isolément ou selon toutes leurs combinaisons techniquement possibles.The present invention also relates to the features which will emerge in the course of the description which follows and which will have to be considered individually or in all their technically possible combinations.

Cette description, donnée à titre d'exemple non limitatif, fera mieux comprendre comment l'invention peut être réalisée en référence aux dessins annexés sur lesquels :

  • la figure 1 représente schématiquement une vue en coupe d'une lampe à décharge luminescente selon l'état antérieur de la technique ;
  • la figure 2 représente schématiquement un circuit électrique de couplage entre un générateur électrique, un système d'accord d'impédance et une lampe à décharge selon l'art antérieur ;
  • la figure 3A représente schématiquement une impulsion appliquée par un générateur en mode pulsé en fonction du temps ; la figure 3B représente schématiquement deux signaux temporels obtenus par spectrométrie de masse pour deux éléments distincts et indique les trois zones de mesure respectivement « prepeak », « plateau » et « afterglow » ;
  • la figure 4A représente schématiquement une série d'impulsions électriques de durée τ1 et de fréquence de répétition F1 et la figure 4B représente schématiquement une série d'acquisition numériques correspondant aux différentes zones de mesure par spectromètre de masse ;
  • la figure 5 représente schématiquement un système électrique de couplage entre un générateur électrique, une lampe à décharge, un système d'accord d'impédance et un système d'asservissement de l'impédance et/ou d'excursion de fréquence selon un mode de réalisation de l'invention ;
  • la figure 6 représente une mesure temporelle d'intensité de la puissance électrique appliquée pendant une série d'impulsions électriques, ainsi qu'une mesure numérique rapide d'un signal représentatif de la puissance réfléchie, ainsi que des signaux de spectrométrie optique.
This description, given by way of non-limiting example, will better understand how the invention can be made with reference to the accompanying drawings in which:
  • the figure 1 schematically shows a sectional view of a glow discharge lamp according to the prior art;
  • the figure 2 schematically represents an electrical coupling circuit between an electric generator, an impedance matching system and a discharge lamp according to the prior art;
  • the figure 3A schematically represents a pulse applied by a pulsed mode generator as a function of time; the figure 3B schematically represents two time signals obtained by mass spectrometry for two distinct elements and indicates the three measurement zones respectively "prepeak", "plateau" and "afterglow";
  • the Figure 4A schematically represents a series of electrical pulses of duration τ 1 and repetition frequency F 1 and the Figure 4B schematically represents a series of digital acquisitions corresponding to the different measurement zones by mass spectrometer;
  • the figure 5 schematically represents an electrical coupling system between an electric generator, a discharge lamp, an impedance matching system and an impedance and / or frequency deviation control system according to an embodiment of the invention. invention;
  • the figure 6 represents a time measurement of the intensity of the electric power applied during a series of electrical pulses, as well as a fast digital measurement of a signal representative of the reflected power, as well as optical spectrometry signals.

Nous détaillons maintenant la structure et le fonctionnement d'un appareil de spectrométrie de décharge luminescente RF en mode pulsé selon un mode de réalisation de l'invention.We now detail the structure and operation of a pulse-mode RF glow discharge spectrometry apparatus according to one embodiment of the invention.

La figure 5 représente schématiquement un appareil de spectrométrie de décharge luminescente qui comprend un générateur électrique 6, un dispositif d'accord d'impédance 17, une lampe à décharge 1 et un système de mesure du désaccord d'impédance 18.The figure 5 schematically represents a glow discharge spectrometry apparatus which comprises an electric generator 6, a tuning device impedance 17, a discharge lamp 1 and an impedance mismatch measuring system 18.

La lampe à décharge 1 est une lampe classique telle que par exemple la lampe à décharge détaillée en lien avec la figure 1. La lampe à décharge 1 comprend une électrode tubulaire 3. Un échantillon 4 à analyser forme la seconde électrode. Un applicateur RF permet de transmettre la puissance délivrée par le générateur à la lampe à décharge à travers l'échantillon.The discharge lamp 1 is a conventional lamp such as for example the discharge lamp detailed in connection with the figure 1 . The discharge lamp 1 comprises a tubular electrode 3. A sample 4 to be analyzed forms the second electrode. An RF applicator transmits the power delivered by the generator to the discharge lamp through the sample.

Le générateur électrique 6 est un générateur RF qui peut fonctionner en mode continu ou en mode pulsé. Le générateur électrique 6 délivre une puissance RF maximum de 150 W. La fréquence RF du générateur est généralement la fréquence normalisée de 13.56 MHz. Toutefois, il existe également des générateurs RF fonctionnant à d'autres fréquences RF et compatibles avec le principe de fonctionnement détaillé plus loin.The electric generator 6 is an RF generator that can operate in continuous mode or in pulsed mode. The electric generator 6 delivers a maximum RF power of 150 W. The RF frequency of the generator is generally the normalized frequency of 13.56 MHz. However, there are also RF generators operating at other RF frequencies and compatible with the operating principle detailed below.

La figure 4A représente schématiquement la puissance électrique PR fournie par le générateur RF en mode pulsé. Le générateur 6 délivre des impulsions de durée τ1 et de fréquence de répétition F1 (les variations dues à la fréquence RF ne sont pas représentées sur la figure 4, du fait que la fréquence RF est extrêmement élevée comparée à la fréquence de répétition des impulsions et à la durée des impulsions). En mode pulsé, la fréquence de répétition F1 des impulsions peut être fixée à une valeur comprise généralement entre 0.1 kHz à 20 kHz et le rapport cyclique des impulsions τ1 x F1 peut être réglé à une valeur comprise typiquement entre 5% et 50%. La durée d'une impulsion est donc généralement comprise entre quelques microsecondes et quelques millisecondes. Plus le rapport cyclique est faible, plus le risque d'échauffement de l'échantillon est réduit. La figure 4B représente schématiquement les séquences d'acquisition par spectrométrie de masse en mode pulsé. On effectue des acquisitions numériques à une fréquence F2 égale à 1/τ2 très supérieure à la fréquence 1/τ1 de manière à acquérir suffisamment de spectres respectivement sur les zones «prepeak », « plateau » et « afterglow » de chaque période de la source RF. Une séquence d'acquisition par le détecteur du spectromètre de masse s'étend sur une durée T2 supérieure à la durée τ1 d'une impulsion du générateur RF. Comme illustré sur la figure 4B, une séquence d'acquisition du spectromètre de masse démarre un peu avant l'impulsion électrique de manière à acquérir la ligne de base des spectres de masse avant le début de l'impulsion (zone 21), puis se poursuit au début de l'impulsion (zone 22 « prepeak »), pendant l'impulsion (zone 23 « plateau ») et enfin se termine après la fin de l'impulsion de manière à acquérir des spectres (zone 24 « afterglow »). A chaque acquisition, l'analyseur de masse permet d'obtenir de manière simultanée ou quasi-simultanée l'intensité des signaux en fonction du rapport m/z, ce qui permet d'en déduire une analyse chimique multi élémentaire et/ou moléculaire de l'échantillon résolue en profondeur.The Figure 4A schematically represents the electric power P R supplied by the RF generator in pulsed mode. The generator 6 delivers pulses of duration τ 1 and repetition frequency F 1 (the variations due to the RF frequency are not represented on the figure 4 , because the RF frequency is extremely high compared to the pulse repetition frequency and the pulse duration). In pulsed mode, the repetition frequency F 1 of the pulses can be set to a value generally between 0.1 kHz to 20 kHz and the duty cycle of the pulses τ 1 × F 1 can be set to a value typically between 5% and 50 %. The duration of a pulse is generally between a few microseconds and a few milliseconds. The lower the duty cycle, the lower the risk of heating the sample. The Figure 4B schematically represents the acquisition sequences by mass spectrometry in pulsed mode. Digital acquisitions are made at a frequency F 2 equal to 1 / τ 2 much greater than the frequency 1 / τ 1 so as to acquire enough spectra respectively on the "prepeak", "plateau" and "afterglow" zones of each period. of the RF source. An acquisition sequence by the detector of the mass spectrometer extends over a duration T 2 greater than the duration τ 1 of a pulse of the RF generator. As illustrated on the Figure 4B , an acquisition sequence of the mass spectrometer starts a little before the electrical pulse so as to acquire the baseline of the mass spectra before the start of the pulse (zone 21), then continues at the beginning of the pulse (zone 22 "prepeak"), during the pulse (zone 23 "plateau") and finally ends after the end of the pulse so as to acquire spectra (zone 24 "afterglow"). At each acquisition, the mass analyzer makes it possible to obtain simultaneously or almost simultaneously the intensity of the signals as a function of the m / z ratio, which makes it possible to deduce from them a multi-elemental and / or molecular chemical analysis of the sample resolved in depth.

Par construction, le générateur RF a une impédance de sortie de 50 ohms. Le générateur est relié à un circuit électrique dont l'impédance doit en principe être toujours adaptée à l'impédance de sortie du générateur, c'est-à-dire 50 ohms, pour optimiser le transfert de puissance électrique entre le générateur et le plasma. L'impédance de la charge reliée au générateur est formée par les impédances mises en série (ou en parallèle selon le circuit électrique) respectivement de la lampe à décharge 1, du plasma 9, de l'échantillon 4 et du dispositif d'accord d'impédance 17. Cependant, comme détaillé plus haut, cette impédance varie en fonction des conditions du plasma ainsi que de la nature de l'échantillon. En pratique, l'impédance de la lampe à décharge 1 varie peu tandis que l'impédance de l'échantillon 4 varie au cours de la mesure. Le tableau I indique les impédances mesurées expérimentalement pour différents types d'échantillons. On observe d'une part que l'impédance d'un échantillon dans une lampe à décharge luminescente est essentiellement de nature capacitive et d'autre part que la valeur de l'impédance varie considérablement selon que l'échantillon est conducteur, semi-conducteur ou isolant. De plus, pour un échantillon multicouches, l'impédance de l'échantillon varie pendant la mesure de GD-MS en fonction de la couche exposée au plasma. Tableau I : impédances complexes de différents matériaux Matériau Impédance complexe Acier 1261 22Ω-j427Ω Acier peint 25Ω-j281Ω Semi-conducteur 53Ω-j338Ω Verre métallisé 48Ω-j535Ω Céramique épaisse 40Ω-j500Ω Verre 33Ω-522Ω Plaque aluminium 46Ω-j314Ω By construction, the RF generator has an output impedance of 50 ohms. The generator is connected to an electrical circuit whose impedance must in principle always be adapted to the output impedance of the generator, that is to say 50 ohms, to optimize the transfer of electrical power between the generator and the plasma . The impedance of the load connected to the generator is formed by the impedances placed in series (or in parallel according to the electric circuit) respectively of the discharge lamp 1, the plasma 9, the sample 4 and the tuning device. However, as detailed above, this impedance varies depending on the plasma conditions as well as the nature of the sample. In practice, the impedance of the discharge lamp 1 varies little while the impedance of the sample 4 varies during the measurement. Table I shows the impedances measured experimentally for different types of samples. On the one hand, it can be observed that the impedance of a sample in a glow discharge lamp is essentially capacitive in nature and, on the other hand, that the value of the impedance varies considerably depending on whether the sample is conducting, semiconductor or insulation. In addition, for a multilayer sample, the impedance of the sample varies during measurement of GD-MS as a function of the plasma-exposed layer. Table I: complex impedances of different materials Material Complex impedance 1261 steel 22Ω-j427Ω Painted steel 25Ω-j281Ω Semiconductor 53Ω-j338Ω Metallic glass 48Ω-j535Ω Thick ceramics 40Ω-j500Ω Glass 33Ω, 522Ω Aluminum plate 46Ω-j314Ω

La figure 5 représente schématiquement le circuit électrique reliant le générateur 6 de champ électrique RF pulsé à la lampe à décharge luminescente 1. Le dispositif de spectrométrie de décharge luminescente utilise un dispositif classique d'accord d'impédance 17 placé entre le générateur 6 et le système formé par la lampe à décharge 1 et l'échantillon 4. Le dispositif d'accord d'impédance 17 comprend par exemple une bobine d'inductance 17a et deux condensateurs 17b, 17c à capacités variables (CT, CL), respectivement un condensateur 17b en série et un condensateur 17c en parallèle. La boîte d'accord d'impédance présente une impédance Ω variable en fonction des valeurs respectives des capacités (CL, CT) des condensateurs 17b, 17c et de l'inductance de la bobine 17a. Dans un premier exemple, la capacité d'un condensateur est variable mécaniquement, par exemple en diminuant la distance entre les plaques d'un condensateur (condensateur à vide par exemple) ou en modifiant la surface entre plaques (condensateur à ailettes par exemple). Dans un second exemple, un composant du système d'accord d'impédance est remplacé par deux composants : par exemple le condensateur variable 17b est remplacé par deux condensateurs en parallèle, un condensateur de grosse capacité et un condensateur de petite capacité. La motorisation de la petite capacité permet une réponse rapide, tandis que la grosse capacité en parallèle permet une adaptation aux fortes variations d'impédance avec un temps de réponse plus long. Dans un autre exemple de réalisation, le système d'accord d'impédance comprend deux bobines d'inductance variable mécaniquement en modifiant le point de contact électrique du circuit et donc le nombre de spires utilisées pour chaque bobine. Les condensateurs variables permettent une variation continue d'impédance tandis que les systèmes à impédance variable présentent des variations d'impédance incrémentales. Ces systèmes sont robustes et supportent des puissances électriques élevées (plusieurs dizaines voire centaines de Watt). Toutefois, la variation d'impédance est pilotée par un mouvement mécanique qui reste lent même lorsqu'il est motorisé.The figure 5 schematically represents the electrical circuit connecting the pulsed RF electric field generator 6 to the glow discharge lamp 1. The glow discharge spectrometry device uses a conventional impedance matching device 17 placed between the generator 6 and the system formed by the discharge lamp 1 and the sample 4. The impedance matching device 17 comprises for example an inductor 17a and two capacitors 17b, 17c with variable capacitances (C T , C L ), respectively a capacitor 17b in series and a capacitor 17c in parallel. The impedance matching box has a variable impedance Ω as a function of the respective capacitance values (C L , C T ) of the capacitors 17b, 17c and the inductance of the coil 17a. In a first example, the capacity of a capacitor is variable mechanically, for example by decreasing the distance between the plates of a capacitor (vacuum capacitor for example) or by changing the surface between plates (finned capacitor for example). In a second example, a component of the impedance matching system is replaced by two components: for example the variable capacitor 17b is replaced by two capacitors in parallel, a capacitor of large capacity and a capacitor of small capacity. The motorization of the small capacity allows a fast response, while the large capacity in parallel allows an adaptation to the strong variations of impedance with a longer response time. In another exemplary embodiment, the impedance matching system comprises two inductance coils mechanically variable by modifying the electrical contact point of the circuit and therefore the number of turns used for each coil. Variable capacitors allow for continuous impedance variation while variable impedance systems have incremental impedance variations. These systems are robust and support high electrical powers (several tens or even hundreds of watts). However, the impedance variation is controlled by a mechanical movement which remains slow even when it is motorized.

La partie innovante du dispositif représenté à la figure 5 réside dans le dispositif 18 de mesure du désaccord d'impédance et dans l'asservissement du système d'accord d'impédance 17 à ce dispositif de mesure 18 pendant l'application d'un champ électrique RF pulsé.The innovative part of the device represented in figure 5 resides in the impedance mismatch measuring device 18 and in the slaving of the impedance matching system 17 to this measuring device 18 during the application of a pulsed RF electric field.

Dans les appareils RF en mode non pulsé, le système d'accord d'impédance 17 est asservi en continu à une mesure analogique représentative du désaccord d'impédance, comme par exemple une mesure de la puissance réfléchie, et/ou une mesure du déphasage courant-tension. L'impédance des composants du système d'accord 17 est modifiée par un mouvement mécanique qui est relativement lent comparé à la durée des impulsions en mode pulsé et comparé à la fréquence de répétition des impulsions (de 10 Hz à 20 kHz).In the non-pulsed RF apparatus, the impedance matching system 17 is continuously slaved to an analog measurement representative of the impedance mismatch, such as, for example, a measurement of the reflected power, and / or a phase shift measurement. current-voltage. The impedance of the components of the tuning system 17 is modified by a mechanical movement which is relatively slow compared to the duration of pulsed pulses and compared to the repetition frequency of the pulses (from 10 Hz to 20 kHz).

Toutefois, lorsque le générateur 6 fonctionne en mode pulsé, un système classique à asservissement continu est incompatible avec le fonctionnement en mode pulsé.However, when the generator 6 operates in pulsed mode, a conventional continuous servo system is incompatible with the pulsed mode operation.

Dans les appareils antérieurs de spectrométrie de masse fonctionnant en mode pulsé, l'asservissement entre le système d'accord d'impédance et le système analogique de mesure du désaccord d'impédance est désactivé pour éviter les mouvements erratiques d'impédance de la boîte d'accord.In prior mass spectrometry apparatus operating in pulsed mode, the slaving between the impedance matching system and the analog impedance mismatch measurement system is disabled to avoid the erratic impedance of the transmission box. 'agreement.

Le dispositif de l'invention comprend un dispositif 18 relié au dispositif d'accord d'impédance 17. Selon le mode de réalisation préféré de l'invention, on utilise un dispositif 18 comprenant un système numérique rapide pour mesurer un signal représentatif du désaccord d'impédance ΔΩ. Selon un exemple de réalisation, on mesure l'intensité de la puissance électrique réfléchie Pr et/ou le déphasage courant-tension à haute cadence, le temps de mesure de la puissance réfléchie ou du déphasage courant tension étant très nettement inférieur à la durée des impulsions les plus courtes. On réalise la mesure de ces signaux de pilotage de manière synchronisée avec les impulsions plasma de manière à ne prendre en compte que les signaux mesurés lorsque le plasma est allumé. Le système d'acquisition d'une mesure représentative d'un désaccord d'impédance (puissance réfléchie et/ou déphasage courant-tension) est représenté symboliquement sur la figure 5 par la liaison 19a entre la sortie du dispositif d'accord d'impédance 17 et l'entrée du système 18. On acquiert ainsi à une fréquence d'acquisition élevée une ou plusieurs valeurs représentatives du désaccord d'impédance ΔΩ pour chaque impulsion électrique c'est-à-dire pour chaque pulse plasma.The device of the invention comprises a device 18 connected to the impedance matching device 17. According to the preferred embodiment of the invention, there is used a device 18 comprising a fast digital system for measuring a signal representative of the disagreement d impedance ΔΩ. According to an exemplary embodiment, measuring the intensity of the reflected electrical power P r and / or the current-voltage phase-shift at a high rate, the measurement time of the reflected power or phase-shift current being very much lower than the duration of the shortest pulses. These control signals are measured in a manner synchronized with the plasma pulses so as to take into account only the signals measured when the plasma is on. The acquisition system of a measurement representative of impedance mismatch (reflected power and / or current-voltage phase shift) is represented symbolically on the figure 5 by the link 19a between the output of the impedance matching device 17 and the input of the system 18. One or more values representative of the impedance mismatch ΔΩ are thus acquired at a high acquisition frequency for each electrical pulse c that is for each plasma pulse.

Un calculateur permet de déterminer de quelle quantité il faut faire varier la partie réelle (ReΩ) et la partie imaginaire (ImΩ) du dispositif d'accord d'impédance, pour minimiser le désaccord d'impédance ou pour minimiser la puissance réfléchie selon un algorithme d'asservissement prédéterminé. Un calibrage préalable permet ainsi de déterminer quel(s) mouvement(s) appliquer aux composants électromécaniques pour modifier leurs impédances respectives selon la valeur déterminée. L'algorithme d'asservissement du calculateur peut être basé sur une fonction proportionnelle au désaccord d'impédance mesuré ΔΩ, pour corriger les erreurs constatées, et/ou sur une fonction différentielle en fonction du taux de variation de ΔΩ, de manière à anticiper des variations de désaccord d'impédance.A calculator is used to determine how much to vary the real part (ReΩ) and the imaginary part (ImΩ) of the impedance matching device, to minimize the impedance mismatch or to minimize the reflected power according to an algorithm predetermined servocontrol. A preliminary calibration thus makes it possible to determine which movement (s) to apply to the electromechanical components in order to modify their respective impedances according to the determined value. The servo control algorithm of the computer can be based on a function proportional to the impedance mismatch measured ΔΩ, to correct the errors observed, and / or on a differential function as a function of the rate of change of ΔΩ, so as to anticipate variations in impedance mismatch.

L'asservissement entre le dispositif de mesure 18 et le dispositif d'accord est représenté symboliquement par la liaison 19b qui permet d'agir sur la valeur des condensateurs 17b, 17c en fonction de la mesure, par exemple de la puissance réfléchie. La boucle de rétroaction formée par les deux liaisons 19a et 19b permet de minimiser par exemple la puissance réfléchie Pr, et ainsi d'obtenir l'accord d'impédance entre un générateur RF 6 en mode pulsé et sa charge constituée de la lampe à décharge, du plasma et de l'échantillon.The slaving between the measuring device 18 and the tuning device is represented symbolically by the link 19b which makes it possible to act on the value of the capacitors 17b, 17c as a function of the measurement, for example of the reflected power. The feedback loop formed by the two links 19a and 19b makes it possible, for example, to minimize the reflected power P r , and thus to obtain the impedance match between a pulsed mode RF generator 6 and its charge constituted by the light source. discharge, plasma and sample.

De manière optionnelle, le dispositif de mesure peut aussi permettre d'agir par excursion de fréquence sur le générateur 6 via la liaison 19c de manière à minimiser une mesure représentative du désaccord d'impédance. L'excursion de fréquence modifie la fréquence RF nominative de 13.56 MHz de +/-300 kHz.Optionally, the measuring device can also be used to act by frequency deviation on the generator 6 via the link 19c so as to minimize a measurement representative of the impedance mismatch. The frequency deviation changes the nominative RF frequency of 13.56 MHz by +/- 300 kHz.

Le dispositif de l'invention permet donc d'agir sur un dispositif d'accord d'impédance couplé à un générateur RF en mode pulsé, bien que ce dispositif d'accord d'impédance ait un temps de réponse extrêmement lent comparé aux durées des impulsions ainsi qu'à l'intervalle de temps entre deux impulsions successives.The device of the invention thus makes it possible to act on an impedance matching device coupled to a pulsed mode RF generator, although this impedance matching device has an extremely slow response time compared to the durations of the devices. pulses as well as the time interval between two successive pulses.

La figure 6 représente une série d'impulsions plasma en fonction du temps, ainsi que les mesures de la puissance incidente et réfléchie. Les courbes I1 et I2 représentent des signaux d'analyse de spectrométrie optique, qui présentent des maxima pendant l'impulsion plasma. La courbe Pf représente une mesure de la puissance fournie par le générateur RF, autrement dit la puissance incidente. La courbe Pr représente une mesure de la puissance réfléchie. L'échelle des ordonnées est en unités arbitraires. Les mesures de puissance incidente Pf et puissance réfléchie Pr entre deux impulsions successives sont filtrées. On ne conserve que les mesures de puissance prises pendant les impulsions. Les acquisitions de puissance réfléchie et/ou de déphasage courant-tension permettent de contrôler la puissance réfléchie et permettent aussi de minimiser la puissance réfléchie au travers d'une rétroaction vers le système d'accord d'impédance qui asservit les valeurs des condensateurs et/ou inductances variables. La modification de l'impédance du dispositif d'accord d'impédance n'est pas effective au cours de l'impulsion où la mesure est faite, du fait des temps de réponse des mouvements mécaniques permettant d'ajuster les impédances du dispositif d'accord. Dans l'invention, la modification d'impédance est effectuée de manière continue sur un cycle de plusieurs impulsions. Dans la cas où la boîte d'accord d'impédance comprend des capacités variables mécaniquement, on fait varier les capacités (17b, 17c) de manière continue, ce qui lisse les variations d'impédance. En fonction de la fréquence de répétition et du rapport cyclique des impulsion d'une part et du temps de réponse du système d'accord d'autre part, la modification d'impédance peut intervenir plusieurs impulsions après la mesure du désaccord. D'une impulsion à l'autre, on obtient ainsi de proche en proche une minimisation de la puissance réfléchie Pf asservie en fonction du temps à l'évolution de l'impédance de la lampe à décharge et de l'échantillon. Il ne s'agit donc pas d'un asservissement en temps réel. L'adaptation d'impédance de manière continue correspond bien aux matériaux analysés, car même dans le cas où les interfaces sont nettes, on passe progressivement d'une couche à une autre.The figure 6 represents a series of plasma pulses as a function of time, as well as the measurements of incident and reflected power. Curves I 1 and I 2 represent optical spectrometry analysis signals, which have maxima during the plasma pulse. The curve P f represents a measure of the power supplied by the RF generator, in other words the incident power. The curve P r represents a measure of the reflected power. The ordinate scale is in arbitrary units. The incident power measurements P f and the reflected power P r between two successive pulses are filtered. Only the power measurements taken during the pulses are kept. Reflected power and / or phase-to-voltage phase shifts allow control of the reflected power and also allows the reflected power to be minimized through feedback to the impedance matching system which slaves capacitor values and / or or variable inductances. The impedance matching of the impedance matching device is not effective during the pulse where the measurement is made, due to the response times of the mechanical movements to adjust the impedances of the device. agreement. In the invention, the impedance change is performed continuously on a cycle of several pulses. In the case where the impedance matching box comprises mechanically variable capacitors, the capacitances (17b, 17c) are continuously varied, smoothing the impedance variations. Depending on the repetition rate and pulse duty cycle on the one hand and the response time of the tuning system on the other hand, the impedance change can occur several pulses after the measurement of the disagreement. From one impulse to the next, a reduction in the reflected power P f enslaved as a function of time to the evolution of the impedance of the discharge lamp and of the sample is thereby obtained step by step. It is not therefore a real time enslavement. The impedance adaptation in a continuous way corresponds well to the analyzed materials, because even in the case where the interfaces are clear, one passes progressively from one layer to another.

Le procédé et le dispositif décrits ici, au-dehors de l'invention comme revendiquée, permettent néanmoins une adaptation d'impédance en mode pulsé dans des conditions où le transfert de puissance est optimisé. L'optimisation du transfert de puissance et en particulier la minimisation de la puissance réfléchie permettent de protéger l'échantillon d'une dissipation d'énergie sous forme de chaleur. Cette optimisation permet aussi de protéger le générateur car la puissance réfléchie en direction du générateur électrique risque d'endommager celui-ci.The method and device described herein, outside of the invention as claimed, nevertheless allow impedance matching in pulsed mode under conditions where power transfer is optimized. The optimization of the power transfer and in particular the minimization of the reflected power make it possible to protect the sample from dissipation of energy in the form of heat. This optimization also protects the generator because the power reflected towards the electric generator may damage it.

Le dispositif numérique de mesure du désaccord d'impédance et de pilotage du système d'accord d'impédance peut fonctionner en mode continu ou en mode pulsé. Ce dispositif permet l'adaptation d'impédance au démarrage de la mesure et au cours d'une mesure, en particulier à chaque interface d'un échantillon multi-couches.The digital impedance mismatch and impedance matching system can be operated in either continuous or pulsed mode. This device allows impedance matching at the start of the measurement and during a measurement, in particular at each interface of a multi-layer sample.

La fréquence d'extraction du spectromètre de masse est de l'ordre de 30 kHz, c'est-à-dire très supérieure à la fréquence de répétition des impulsions, de manière à extraire un profil comprenant suffisamment de points pour chaque impulsion. Les mesures de spectrométrie de masse sont moyennées sur un nombre prédéterminé de périodes de source suivant la résolution en profondeur nécessaire pour former une série de spectres de masse de l'échantillon. L'évolution du signal d'une ou de plusieurs espèces ioniques en fonction du temps permet de construire le profil de l'échantillon analysé.The extraction frequency of the mass spectrometer is of the order of 30 kHz, that is to say, much higher than the repetition frequency of the pulses, so as to extract a profile comprising enough points for each pulse. The Mass spectrometry measurements are averaged over a predetermined number of source periods following the depth resolution required to form a series of mass spectra of the sample. The evolution of the signal of one or more ionic species as a function of time makes it possible to construct the profile of the sample analyzed.

On obtient ainsi un appareil de spectrométrie de masse fonctionnant en mode RF pulsé extrêmement puissant.This produces a mass spectrometry apparatus operating in extremely powerful pulsed RF mode.

La lampe à décharge peut éventuellement être couplée à un spectromètre optique pour des mesures d'émission optique.The discharge lamp may optionally be coupled to an optical spectrometer for optical emission measurements.

Le procédé et le dispositif de l'invention permettent d'optimiser l'accord d'impédance en mode pulsé bien que le système d'accord d'impédance puisse rester basé sur des composants (condensateur(s) et/ou inductance(s) variable) dont la variation d'impédance est commandée par un mouvement mécanique lent.The method and the device of the invention make it possible to optimize the impedance matching in pulsed mode, although the impedance matching system can remain based on components (capacitor (s) and / or inductance (s) variable) whose impedance variation is controlled by a slow mechanical movement.

Le procédé et le dispositif de l'invention permettent l'analyse par spectrométrie de masse de décharge luminescente en mode pulsé dans des conditions où l'adaptation d'impédance du plasma est optimisée en fonction d'une mesure prise uniquement pendant les impulsions, ce qui permet le transfert optimal de la puissance vers le plasma en mode pulsé sans augmenter la puissance fournie.The method and apparatus of the invention allow for pulsed-mode glow discharge mass spectrometry analysis under conditions where the impedance matching of the plasma is optimized according to a measurement taken only during the pulses. which allows the optimal transfer of the power to the plasma in pulsed mode without increasing the power supplied.

Le procédé et le dispositif de l'invention évitent un test sur un échantillon pour optimiser les conditions de départ d'adaptation d'impédance, ce qui limite les pertes d'échantillons, en particulier dans le cas d'échantillon à analyser de petite taille ou d'échantillon fragile.The method and apparatus of the invention avoids a test on a sample to optimize the impedance matching start conditions, which limits the loss of samples, particularly in the case of small sample size to be analyzed. or fragile sample.

Le procédé et le dispositif de l'invention permettent l'analyse d'échantillons fragiles sans induire de stress thermique néfaste et permettent l'analyse précise d'échantillons multicouches, sans dérive des conditions d'accord lors des changements de couches. Le procédé de l'invention permet ainsi d'obtenir des mesures présentant une meilleure précision, une meilleure résolution en profondeur et/ou une rapidité supérieures, sur une large gamme d'adaptation d'impédance, comparé à un procédé en mode RF non pulsé asservi en impédance et également comparé à un procédé en mode RF pulsé sans asservissement d'impédance.The method and the device of the invention allow the analysis of fragile samples without inducing adverse thermal stress and allow accurate analysis of multilayer samples, without drifting agreement conditions during layer changes. The method of the invention thus makes it possible to obtain measurements having a better accuracy, a better depth resolution and / or a faster speed, over a wide range of impedance matching, compared to a non-pulsed RF mode method. enslaved impedance and also compared to a pulsed RF mode without impedance servo.

Le procédé et le dispositif de l'invention permettent non seulement d'améliorer les performances analytiques d'un appareil de GD-MS, mais aussi de protéger efficacement le générateur RF grâce à la minimisation efficace de la puissance réfléchie vers le générateur, susceptible de détériorer le générateur électrique.The method and the device of the invention not only make it possible to improve the analytical performance of a GD-MS apparatus, but also to effectively protect the RF generator by effectively minimizing the power reflected back to the generator, capable of damage the electrical generator.

Claims (10)

  1. A method for the measurement of a solid sample by pulsed glow discharge spectrometry, comprising the following steps:
    a) applying a pulsed RF electric field at the terminals of the electrodes (3) of a glow discharge lamp (1) in the presence of a carrier gas and a sample (4) to be analysed, said lamp being electrically coupled to an impedance matching device (17) having a variable electric impedance Ω, the impedance matching device (17) being consisted of electromechanical components, so as to generate a pulsed glow discharge plasma (9), the duration of an electric pulse being equal to τ1 the pulse repetition frequency being equal to F1 comprised between 0.1 kHz and 20 kHz and the cyclic ratio of a pulse being equal to τ1 x F1;
    b) measuring by mass spectrometry at least one signal representative of an ionised species having a predetermined m/z ratio, said measurement being carried out at an acquisition frequency F2 higher than 1/τ1,
    characterized by the steps:
    c) measuring a signal representative of the impedance mismatch ΔΩ between the pulsed RF electric field generator (6) and the electrodes of the discharge lamp during at least a part of the plasma pulses by means of a fast numerical measurement acquisition system synchronised with said pulses, said fast acquisition system having an acquisition frequency F3 higher than 1/τ1 ;
    d) determining an impedance variation dΩ to be applied to the impedance matching device as a function of the measurement of a signal representative of the impedance mismatch ΔΩ;
    e) modifying the impedance Ωof the impedance matching device, the electromechanical components being capable of varying continuously said variable electric impedance Ω over a cycle of several pulses as a function of the value of dΩ determined at step d);
    f) repeating steps c) to e) so as to minimize the impedance mismatch ΔΩ.
  2. A method of measurement according to claim 1, characterized in that the measurement of a signal representative of the impedance mismatch ΔΩ comprises a measurement of the reflected electric power and/or a measurement of the current-voltage phase shift.
  3. A method according to one of claims 1 to 2, characterized in that the variations of the real part Re(Ω) and the imaginary part Im(Ω) of the impedance Ω of said matching device are obtained by modifying the impedance values of at least two components (17a, 17b, 17c) of the matching device (17).
  4. A method according to one of claims 1 to 3, characterized in that it further comprises a step of excursion of the RF frequency of the generator (6) so as to minimize the impedance mismatch ΔΩ.
  5. A method according to one of claims 1 to 4, characterized in that the pulse cyclic ratio τ1 x F1 is comprised between 5 % and 50 %.
  6. A glow discharge spectrometry device for the measurement of a solid sample, comprising:
    - a RF electric field generator (6) operable in pulsed mode, capable of generating a RF electric field comprising electric pulses (20) of duration τ1 and of repetition frequency F1 comprised between 0.1 kHz and 20 kHz;
    - a discharge lamp (1) comprising electrodes, pumping means (7) and means for introducing a carrier gas (8), said discharge lamp being capable of receiving a solid sample (4) to be analysed and of generating a glow discharge plasma (9);
    - a mass spectrometer (15) connected to said discharge lamp (1) and capable of measuring at least one signal representative of an ionised species of the plasma having a predetermined m/z ratio, at an acquisition frequency F2 higher than 1/τ1; and
    - an impedance matching device (17) electrically connected, on the one hand, to the pulsed RF electric field generator (6), and on the other hand, to the electrodes of the discharge lamp (1), said matching device (17) being capable of transferring the electric power provided by the pulsed RF generator (6) toward the discharge lamp (1) and said matching device (17) having a variable electric impedance Ω,
    characterized in that it comprises:
    - a fast numerical measurement system (18) capable of measuring a signal representative of the impedance mismatch ΔΩ between the generator (6) and the discharge lamp (1), said measurement system (18) comprising a fast acquisition system, synchronised with the plasma pulses, having an acquisition frequency F3 higher than or equal to 1/τ1 and being capable of providing the impedance matching device (17) with a signal representative of the impedance mismatch ΔΩ for at least a part of said pulses
    - and wherein the impedance matching device (17) is consisted of electromechanical components, said electromechanical components being capable of varying continuously said variable electric impedance Ω over a cycle of several pulses, so as to minimize the impedance mismatch ΔΩ.
  7. A glow discharge spectrometry device according to claim 6, characterized in that the impedance matching device (17) comprises at least two variable capacitance and/or variable inductance electromagnetic components (17a, 17b, 17c), capable of modifying the real part Re(Ω) and the imaginary part Im(Ω) of the impedance Ω of said matching device (17).
  8. A device according to one of claims 6 to 7, characterized in that it further comprises a frequency excursion device capable of varying the RF frequency of the generator and driven by the measurement of the impedance mismatch ΔΩ.
  9. A device according to one of claims 6 to 8, characterized in that the impedance mismatch measurement system (18) comprises a measurement of the reflected electric power and/or a measurement of the current-voltage phase shift.
  10. A device according to one of claims 6 to 9, characterized in that the mass spectrometer (15) is a time-of-flight spectrometer or a quadripolar spectrometer or a magnetic sector spectrometer or a Fourier transform mass spectrometer.
EP11730379.2A 2010-04-15 2011-04-14 Method and device for measuring glow discharge spectrometry in pulsed mode Active EP2559056B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1052883A FR2959015B1 (en) 2010-04-15 2010-04-15 METHOD AND DEVICE FOR MEASURING LUMINESCENT DISCHARGE SPECTROMETRY IN PULSE MODE
PCT/FR2011/050865 WO2011128600A1 (en) 2010-04-15 2011-04-14 Method and device for measuring glow discharge spectrometry in pulsed mode

Publications (2)

Publication Number Publication Date
EP2559056A1 EP2559056A1 (en) 2013-02-20
EP2559056B1 true EP2559056B1 (en) 2019-04-17

Family

ID=43303986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11730379.2A Active EP2559056B1 (en) 2010-04-15 2011-04-14 Method and device for measuring glow discharge spectrometry in pulsed mode

Country Status (5)

Country Link
US (1) US8581180B2 (en)
EP (1) EP2559056B1 (en)
JP (1) JP5965388B2 (en)
FR (1) FR2959015B1 (en)
WO (1) WO2011128600A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620334B2 (en) * 2012-12-17 2017-04-11 Lam Research Corporation Control of etch rate using modeling, feedback and impedance match
FR3007140B1 (en) * 2013-06-17 2016-06-10 Horiba Jobin Yvon Sas METHOD AND DEVICE FOR LUMINESCENT DISCHARGE MASS SPECTROMETRY
FR3019298B1 (en) * 2014-03-31 2016-04-15 Horiba Jobin Yvon Sas METHOD AND APPARATUS FOR MEASURING AN ORGANIC SOLID SAMPLE BY LUMINESCENT DISCHARGE SPECTROMETRY
KR101814030B1 (en) * 2014-05-05 2018-01-30 후아웨이 테크놀러지 컴퍼니 리미티드 Remote electrical tilt antenna, base station, and method for matching rcu with rf port
US9875884B2 (en) * 2015-02-28 2018-01-23 Agilent Technologies, Inc. Ambient desorption, ionization, and excitation for spectrometry
JP6623557B2 (en) * 2015-05-27 2019-12-25 株式会社島津製作所 ICP analyzer
KR101881536B1 (en) * 2017-02-24 2018-07-24 주식회사 뉴파워 프라즈마 Power supply apparatus able to control output current and power supply method using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982496A (en) * 1995-09-12 1997-03-28 Jeol Ltd High frequency device
JP2000150478A (en) * 1998-11-12 2000-05-30 Matsushita Electronics Industry Corp Plasma generating method and device therefor
US6472822B1 (en) * 2000-04-28 2002-10-29 Applied Materials, Inc. Pulsed RF power delivery for plasma processing
JP4079919B2 (en) * 2003-10-20 2008-04-23 株式会社堀場製作所 Glow discharge emission analysis apparatus and glow discharge emission analysis method
JP2006078455A (en) * 2004-09-13 2006-03-23 Horiba Ltd System and method for analyzing glow discharge emission
KR100915613B1 (en) * 2007-06-26 2009-09-07 삼성전자주식회사 Pulse plasma matching system and method therefor
US7839223B2 (en) * 2008-03-23 2010-11-23 Advanced Energy Industries, Inc. Method and apparatus for advanced frequency tuning
US20090294275A1 (en) * 2008-05-29 2009-12-03 Applied Materials, Inc. Method of plasma load impedance tuning by modulation of a source power or bias power rf generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8581180B2 (en) 2013-11-12
JP5965388B2 (en) 2016-08-03
JP2013524471A (en) 2013-06-17
FR2959015B1 (en) 2012-06-22
WO2011128600A1 (en) 2011-10-20
US20130200257A1 (en) 2013-08-08
EP2559056A1 (en) 2013-02-20
FR2959015A1 (en) 2011-10-21

Similar Documents

Publication Publication Date Title
EP2559056B1 (en) Method and device for measuring glow discharge spectrometry in pulsed mode
US20180269119A1 (en) Surface modification control for etch metric enhancement
TWI541893B (en) Process apparatus and method for plasma etching process
JP2015532544A (en) Plasma endpoint detection using multivariate analysis
EP1727924A1 (en) Deposition by magnetron cathodic pulverization in a pulsed mode with preionization
Cui et al. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer
WO2018087189A1 (en) Circuit for impedance matching between a generator and a load at multiple frequencies, assembly comprising such a circuit and related use
WO2018094219A1 (en) Compositional optical emission spectroscopy for detection of particle induced arcs in a fabrication process
FR2756098A1 (en) HELICOID WAVE EXCITATION FOR PRODUCING HIGH ENERGY ELECTRONS TO MANUFACTURE SEMICONDUCTORS
BE1018836A3 (en) DEVICE AND METHOD FOR MEASURING AN ENERGY BEAM.
GB2542500A (en) Blanking out of pulses in pulsed lasers for LDI mass spectrometers
WO2015150677A1 (en) Process and apparatus for measuring an organic solid sample by glow discharge spectromety
EP2984203B1 (en) Ion-implantation machine having increased productivity
Ding et al. XUV pump–XUV probe transient absorption spectroscopy at FELs
WO2024091319A1 (en) Method for oes data collection and endpoint detection
WO2013121021A1 (en) Device and method for emitting electrons and device comprising such a system for emitting electrons
WO2014184357A1 (en) Extended plasma generator comprising integrated elementary generators
Mozetic et al. Interaction of oxygen plasma with aluminium substrates
WO2016083717A1 (en) Method for analysing a solid sample by flight time mass spectrometry
JP2003240717A (en) High-frequency glow discharge emission spectrometric apparatus
FR3062951A1 (en) POSITIVE ION SOURCE FOR A GROUND MASS SPECTROMETER
Hosokai et al. High brightness extreme ultraviolet (at 13.5 nm) emission from time-of-flight controlled discharges with coaxial fuel injection
WO2021001383A1 (en) Pulsed generator of electrically charged particles and method of use of a pulsed generator of electrically charged particles
TW202433540A (en) Method for oes data collection and endpoint detection
JPH11311605A (en) Method for correcting light interference at high frequency glow-discharge emission spectral analysis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170822

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HORIBA FRANCE SAS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011058125

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1122476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1122476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011058125

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240301

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240304

Year of fee payment: 14