EP2552310A1 - Verfahren zur bildgebung mittels magnetischer kleinstpartikel sowie vorrichtung hierfür - Google Patents

Verfahren zur bildgebung mittels magnetischer kleinstpartikel sowie vorrichtung hierfür

Info

Publication number
EP2552310A1
EP2552310A1 EP11716372A EP11716372A EP2552310A1 EP 2552310 A1 EP2552310 A1 EP 2552310A1 EP 11716372 A EP11716372 A EP 11716372A EP 11716372 A EP11716372 A EP 11716372A EP 2552310 A1 EP2552310 A1 EP 2552310A1
Authority
EP
European Patent Office
Prior art keywords
field
gradient
magnetic
frequency
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11716372A
Other languages
English (en)
French (fr)
Other versions
EP2552310B1 (de
Inventor
Martin Rückert
Volker C. Behr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEHR, VOLKER C.
RUECKERT, MARTIN
Original Assignee
Hochschule fur Angewandte Wissenschaften Fachhochschule Wuerzburg-Schweinfurt
Julius Maximilians Universitaet Wuerzburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochschule fur Angewandte Wissenschaften Fachhochschule Wuerzburg-Schweinfurt, Julius Maximilians Universitaet Wuerzburg filed Critical Hochschule fur Angewandte Wissenschaften Fachhochschule Wuerzburg-Schweinfurt
Publication of EP2552310A1 publication Critical patent/EP2552310A1/de
Application granted granted Critical
Publication of EP2552310B1 publication Critical patent/EP2552310B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0515Magnetic particle imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/5695Mycobacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1269Measuring magnetic properties of articles or specimens of solids or fluids of molecules labeled with magnetic beads

Definitions

  • the invention relates to a novel method for imaging by means of magnetic microparticles. Furthermore, the invention relates to a device suitable for carrying out this method.
  • a method of the type mentioned at the outset, also called “magnetic particle imaging”, and a device suitable for carrying out the method are known from the article "Tomography Imaging Using the Non-Linear Response of Magnetic Particles", Bernhard Gleich, Jürgen Weizenecker, Nature, Vol 435, June 30, 2005.
  • the non-linear relationship between the magnetization of a ferromagnetic microparticle with respect to an external magnetic field is used for a spatial imaging of the given distribution of the microparticles. This is exploited in particular that the magnetization reaches a saturation value in the case of strong magnetic fields, while an approximately linear dependence on the field strength is given in a region around the zero point of the field strength.
  • the magnetization signal is thus composed of a sum of the harmonics of the fundamental frequency of the incident magnetic field.
  • the inductively tapped off signal of the magnetization can be easily separated from the irradiated excitation signal by the base frequency component is separated off.
  • CONFIRMATION COPY at the field-free point.
  • the field-free point can be moved either by an actual movement of the measuring apparatus or by a corresponding control of the gradient field, also called selection field.
  • the known method for imaging by means of magnetic micro-particles a distribution of the magnetic micro-particles can be observed spatially resolved both in vitro and in vivo.
  • a magnetic microparticle-containing contrast agent By using a magnetic microparticle-containing contrast agent, spatial images of tissues, organs or a vascular system can be obtained.
  • metabolic processes can be observed by attaching the minute magnetic particles, for example, to specific organic macromolecules participating in metabolic processes.
  • the temporal resolution of the distribution of the contrast agent may also include dynamic processes such as e.g. the blood flow through an organ, etc. are displayed or displayed.
  • the achievable with the known method spatial resolution are set by the necessary gradient of the selection field limits.
  • the spatial resolution becomes better the greater the gradient of the selection field is selected.
  • gradients of about 5 T / m (tesla per meter) and above are typically required to achieve sub-millimeter spatial resolution.
  • Typical gradient fields known from the nuclear magnetic resonance method move at about 100 mT / m for comparison.
  • a higher spatial resolution of the known method is associated with a deterioration of the signal-to-noise ratio. Namely, the steeper the gradient of the selection field is selected, the smaller is the range of a linear response of the magnetization of the smallest particles and the less minute particles contribute to the measurement signal as a whole.
  • the object of the invention has been found to provide a method for imaging by means of magnetic microparticles and a device suitable for this, which can be compared to the prior art, an improved spatial resolution can be achieved and their realization is associated with lower costs.
  • This object is achieved with respect to the method according to the invention in that by means of a rotating about a longitudinal axis of external magnetic field of suitable field frequency and suitable rotational frequency, the magnetizations of the micro particles are placed in a magnetic asynchronous rotation, resulting in a particle ensemble asynchronous from the field strength average rotational frequency in that by means of a magnetic gradient field the asynchronous average rotational frequency of respective particle ensembles is imposed a location dependence, that the frequency components of the superpositioned transverse magnetization of the particle ensemble are detected, and that by means of the frequency components a spatially resolved distribution of the transverse magnetization of the smallest particles is determined and output.
  • the invention thereby surprisingly dissolves from the path which has hitherto been taken by experts to use the non-linear relationship of the magnetization of an external magnetic field for imaging by means of magnetic microparticles.
  • the imaging invention utilizes the fact that the rotation of the minute magnetic particles or their magnetization in an external rotating magnetic field, depending on field strength and rotational frequency, decays into a range of synchronous and asynchronous rotation. This is in the case of a mechanically rotating miniature Particles at Reibsterstermen opposite the environment. If the magnetization in the crystal lattice of the microparticle rotates, then other friction terms are responsible. If the torque transmitted by the external magnetic field is too small compared with the friction terms, then the magnetization or the
  • the magnetization of the microparticle rotates in dependence on the field strength of the external magnetic field on average up to a critical frequency ü c in synchronism with the rotation of the magnetic field. If the rotational frequency of the magnetic field exceeds the critical rotational frequency Q C) , the magnetization of the microparticle rotates asynchronously with a reduced average rotational frequency. This mean asynchronous rotation of the magnetization can be observed as a frequency term of the magnetization.
  • This profile of the mean rotational frequency of the magnetization of the microparticle is shown in FIG. 1. At lower field strength results in a lower critical mean rotational frequency Q c than at a larger field strength. This can be inferred from the drawn curves a and b in FIG. 1.
  • the relationship between the critical mean rotational frequency Q c and the field strength B of the external magnetic field is given by:
  • describes a friction term which, in the case of a mechanical rotation of the microparticle, includes the viscosity of the environment and a form factor of the microparticle. In the case of a rotation of the magnetization in the crystal lattice of the microparticle, the friction term ⁇ must be determined empirically.
  • the invention recognizes that the asynchronous rotation of the magnetization of the microparticles can be used for imaging, since in this case the detectable frequency of the opposite of the external magnetic field rotating magnetization of the frequency of the exciter field is different.
  • the mean rotational frequency of the magnetization can be easily separated by measurement from the frequency of the exciter field.
  • the corresponding frequency term can be determined by detecting the superpositioned transverse magnetization (with respect to the longitudinal axis around which the external magnetic field rotates). This can be done, for example, inductively with a suitable measuring coil.
  • the critical rotational frequency Q c is dependent on the field strength of the external magnetic field. This results in the possibility, similar to the nuclear magnetic resonance method by applying a magnetic gradient field to perform a spatial encoding.
  • a different average asynchronous rotational frequency of the magnetization of the minute particles is set at the same rotational frequency of the magnetic field as a function of the external field strength.
  • the mean asynchronous rotation frequency of the magnetization of the minute particles is impressed with location information which is used for imaging.
  • a magnetic gradient field is generated along a given axis or spatial direction
  • the observable asynchronous rotation of the superpositioned transverse magnetization decays into bands of equal frequencies perpendicular to this axis.
  • a projection of the distribution of the superposed transverse magnetization on the axis of the gradient field is generated.
  • the magnetic gradient field is thus used for a spatial coding via the resulting frequency distribution. This possibility is therefore also referred to below as a method of frequency coding.
  • the average asynchronous rotation frequency of the magnetization of the minute particles is influenced by the chemical environment.
  • phase encoding It is also possible to impress a location-dependent phase position on the particle ensemble via a gradient field which is switched on for a predetermined period of time, and to use this phase position for imaging.
  • the magnetic gradient field is turned on, namely the individual small magnetic particles rotate depending on location, each with different asynchronous rotational frequencies, resulting in a location-dependent phase position after switching off, which can also be used to measure a spatially resolved distribution.
  • the gradient field is used prior to the actual measurement to a spatial encoding on the self-adjusting phase position. This possibility is referred to below as a method of phase encoding.
  • the present invention offers the enormous advantage that no static polarization field is required for alignment. Rather, the magnetic microparticles are directly manipulated by the magnetic rotating field. While for the alignment of the nuclear spins field strengths of about 1, 5 T are necessary to use about 3 ppm of the existing proton spins for signal generation, are sufficient to produce an asynchronous rotation with about 0.1% to close to 100% of the existing magnetization of the smallest particles Field strengths between 0.1 and 100 mT. While the polarization field in nuclear magnetic resonance only works with expensive, supraleal In order to achieve a suitable image quality for clinical routine use, the magnetic rotating field can be generated to visualize the rotating magnetization of the minute particles with favorable air coils or water-cooled coils.
  • the measuring signal can be further generated by about 60 MHz only by switching • radiate a high-frequency magnetic field at the Larmor frequency.
  • a rotating magnetic field with a frequency between about 1 kHz to 1 MHz is sufficient.
  • no separate gradient coil is necessary for generating the gradient field.
  • the gradient field required for imaging can be adjusted by appropriate control of the coils generating the rotating magnetic field.
  • the method described here additionally has a significantly improved signal-to-noise ratio.
  • a measurement signal is generated sequentially only in the field-free point of the applied magnetic selection field.
  • the volume of this signal-generating region decreases due to the increased gradients.
  • the signal-to-noise ratio decreases proportionally to 1 / N with increasing resolution, and proportionally to 1 / N 3 in a three-dimensional representation, where N is the number of pixels in one dimension.
  • the novel method of magnetic particle imaging proposed here has the further advantage that imaging methods known from the nuclear magnetic resonance method can be adequately performed.
  • the rotating magnetizations can be brought into synchronous rotation and therefore in phase with one another by a stronger rotating magnetic field or by reducing its frequency, which in a sense corresponds to the 90 ° spin-flip of nuclear magnetic resonance, which is present in every fundamental measurement.
  • Sequence of magnetic resonance imaging is needed to generate a measurable Magnet Deutschensanteils.
  • the measure of the decrease of the superpositioned transverse magnetization is then a measure for the so-called transverse relaxation, which describes the divergence of the individual magnetizations on the basis of the already described environmental parameters, field inhomogeneities or particle variations.
  • the individual magnetizations can be brought back into phase by reversing the direction of rotation of the external magnetic field. This corresponds to a certain extent to a 180 ° spin loop, as it is introduced to generate the spin echo in the nuclear magnetic resonance.
  • the magnetic microparticles used are ferromagnetic or super-paramagnetic particles which have the largest possible magnetic moment in relation to their volume. Magnetic nanoparticles with particle diameters between 20 and 200 nm are particularly suitable for use in biology and medicine. In the case of asynchronous rotation, the larger the ratio between the magnetic moment and the volume, the higher is the rotational drift relative to the outer magnetic field.
  • the rotational diffusion and the scattering of the particle properties lead, as described above, to a dephasing of the particles, so that the magnetization is canceled out on average.
  • the present method is thus ultimately limited by the rotational diffusion, since this limits the correlation of the angular orientation of the smallest particles with each other.
  • the condition mB> V2D should preferably be satisfied.
  • D denotes a diffusion constant, which in turn is given empirically in the case of a mechanical rotation of the microparticle, in particular via the viscosity and in the case of a rotation of the magnetization in the crystal lattice.
  • the brown relaxation is almost completely suppressed so that only the neel relaxation is present.
  • the relaxation duration can change by several orders of magnitude. In the case of magnetite nanoparticles with an average diameter of about 25 nm, this results in a change in the relaxation time of about 5 microseconds to about 1 millisecond.
  • Cell vesicles also changes the rotational drift and can be detected over it.
  • a magnetic gradient field is generated for a frequency coding of the location information.
  • a frequency spectrum is detected in which each frequency is assigned a spatial coordinate along the gradient field.
  • the spatial resolution is given by the achievable local variation of the rotational drift.
  • the product of switch-on duration and gradient strength should preferably be selected such that the orientation of the magent at the smallest distance which is yet to be resolved from this distance differs by at least one full turn at the end of the measurement.
  • a magnetic gradient field is generated for a predetermined time period, in particular before the detection of the frequency components of the transverse magnetization, in order to generate a phase coding in the particle ensemble.
  • each location has undergone a phase shift corresponding to the position in the selected gradient and its magnitude.
  • N steps with respective increase of the gradient strength by 1 / N of the maximum possible gradient strength provide the information in order to be able to reckon from a location-dependent phase shift or phase position on the distribution of the transverse magnetization to N coordinates. This is preferably done by means of a fast Fourier transformation (FFT).
  • FFT fast Fourier transformation
  • the transverse magnetization can in principle also be detected during the phase encoding steps.
  • the data thus obtained can not be assigned to a Cartesian ordered Fourier space, from which the desired spatial distribution could be calculated directly by a Fourier transformation. Rather, the data provide complementary information and can only be evaluated separately and therefore costly.
  • NxNxN steps are required for 3 dimensions with N coordinates each.
  • the frequency distribution which is detected after each step in particular without a gradient field, yields completely redundant information, which primarily reflects the distribution or scattering of the rotation properties of the minute particles.
  • this distribution is obtained separately for each of the NxNxN space points. Since this distribution can be measured independently, the shift of this frequency distribution to a spatial distribution of the environmental parameters, e.g. close the temperature.
  • a magnetic gradient field can again be applied to a frequency coding in order to obtain, for example, a spatial coding in the other spatial direction. This is useful if only the density distribution of the smallest particles is required, and if, as mentioned, the variation of the particle properties is sufficiently small.
  • the coding can therefore also be done only partly by phase coding and partly by frequency coding.
  • the number of additionally required subdivision of the frequency coding in phase encoding steps results, for example, from the respective width of the particle scattering or the resulting spectral broadening.
  • the mapping of a spatial distribution of the particle ensemble compared to the mapping of a spatial distribution of the environmental parameters differs in that the frequency encoding is once used for spatial resolution, and once the existing frequency distribution is used to detect the imposed by the environment variation.
  • the frequency encoding is once used for spatial resolution, and once the existing frequency distribution is used to detect the imposed by the environment variation.
  • the signal acquisition takes place without activated gradients.
  • a second magnetic gradient field of opposite sign is generated with the same time span, wherein the spatially resolved distribution of the transverse magnetization is then determined and output in a plane perpendicular to the gradient.
  • a magnetic gradient in a predetermined spatial direction in which the flow is to be measured is initially applied for a predetermined period of time. Subsequently, the same gradient with the same gradient strength, but with the opposite sign, is applied for the same time duration.
  • the spatial image coding takes place as already described, for example by means of suitable frequency coding and / or phase coding. The frequency distribution of the transverse magnetization is detected.
  • the first two steps have the effect that non-moving microparticles do not undergo a phase change, since the second step for quiescent particles virtually completely reverses the first step. However, particles moving in the direction of the gradient experience a phase change that is proportional to the distance traveled. The phase change is thus a measure of the flow velocity.
  • a combination with a 180 ° spin-flip is advantageous.
  • the first two steps are carried out once before and once after a reversal of the direction of rotation of the magnetic rotation field, and then an echo signal is obtained, which is exactly twice the time between the refocussing pulse when the particle is at rest and direction reversal occurs.
  • Phase microspheres rotate back into phase after reversal of direction, resulting in a re-growth in the intensity echo signal of the superpositioned transverse magnetization.
  • this echo signal shifts in proportion to the velocity, with any influence due to particle scattering being neutralized.
  • a magnetic gradient field is generated by spatial variation of the field strength of the rotating magnetic field.
  • the rotating magnetic field can be generated, for example, over circumferentially distributed coil pairs, which are driven accordingly.
  • the rotating magnetic field may be generated via a pair of orthogonally oriented Helmholtz coils.
  • the Helmholtz coil pairs are driven in a sinusoidal manner.
  • an additional gradient field for spatial coding can also be generated via these coils. In the simplest case, therefore, no separate gradient coil for generating the magnetic gradient field is required.
  • the gradient field is not generated by a variation of the field strength of the rotating magnetic field, but by superposition of a homogeneous rotation field with a static, spatially varying offset field. This is generated, for example, with separate gradient coils.
  • the magnetic gradient field imposes a positional dependence on the mean asynchronous rotation of the individual magnetizations and thus in particular on the measurable superpositioned transverse magnetization. As already described, this can be used directly for a one-dimensional spatial representation of the corresponding distribution of the smallest particles.
  • the described method is repeated in a particular embodiment, wherein the frequency components of the transverse magnetization be detected several times for different gradient fields. This allows the asynchronous rotation frequencies to be located, analyzed and used for imaging.
  • a first gradient field is generated along a first direction for a period of time
  • a second gradient field is generated along a second direction in a second step
  • the frequency distribution of the transverse magnetization is detected
  • a fourth step Repeats said steps 1 to 3 with a number of modified first gradient fields and determined from the obtained set of measurement signals, a two-dimensional distribution of the transverse magnetization and output.
  • Gradient field then provides a set of measurement signals, which corresponds to a hologram.
  • the desired spatial distribution of the magnetization can then be obtained directly. This allows a direct image reconstruction with the help of a two-dimensional "Fast Fourier Transformation (FFT)" within a very short time.
  • FFT Fast Fourier Transformation
  • the second gradient field is not turned on to a frequency encoding during the measurement, but used to a previous phase encoding, as already described, a spatial distribution of the environmental parameters can be obtained.
  • Gradient field also be created at the same time, as the effect of the gradient superimposed on the phase approximately linear. If in this method the first and the second gradient field are used for the phase coding before the measurement and a third gradient field is used for a frequency coding during the measurement, the first two first gradient fields encode two spatial directions over the phase and the third gradient field encodes the third spatial direction over the frequency , This then corresponds to a three-dimensional imaging of a spatial distribution of the
  • a third gradient field is generated along a third direction, wherein steps 1 to 4 are repeated with a number of modified second gradient fields, and wherein the set of acquired measurement signals, a three-dimensional Distribution of the transverse magnetization is determined and output.
  • the respective spatial directions x, y and z are preferably perpendicular to one another.
  • the present method to scan the frequency domain for a picture reconstruction using a grid in polar coordinates.
  • a spatially resolved density distribution of the minute particles is determined and output from the determined distribution of the transverse magnetization.
  • a spatial encoding of the mean asynchronous rotation Frequencies by an imposed magnetic gradient field follows the spatially resolved density distribution of the smallest particles directly from the amplitudes of the corresponding frequency components of the transverse magnetization.
  • phase coding for multi-dimensional imaging are expediently before measurement by means of a short-term magnetic
  • Refokusstechniksfelds the magnetizations of the smallest particles in a synchronous to the rotating magnetic field rotation. Immediately after switching off this Refokusstechniksfelds all magnetizations then rotate in phase. The measurement signal of the superpositioned transverse magnetization becomes maximum. By applying a short-term gradient field, it is then possible, based on this situation, to make the phase coding. Also, based on this situation, in an external magnetic field applied for asynchronous rotation, the divergence of the individual magnetizations due to the different chemical embedding or environment can be observed. As time passes, the individual asynchronously rotating magnetizations dephase the minute particles.
  • the refocusing field can be generated either by a brief increase in the magnetic field strength and / or by a brief reduction in the rotational frequency of the rotating magnetic field. Alternatively, a short-circuited magnetic offset field can be generated.
  • the refocusing field is generated in such a way that only the magnetizations of minute particles of the same rotational properties are selectively set into a synchronous rotation.
  • Q c which describes the transition between synchronous and asynchronous rotation
  • the refocusing pulse is generated in such a way that only Small particles of the same rotational properties are placed in a synchronous rotation, so contribute only to the superpositioned transverse magnetization.
  • the magnetizations of the other microparticles are stochastically distributed. Overall, an improvement of the detected measurement signal is obtained in this way, without the bandwidth of the sizes used
  • a rotating magnetic gradient field with its gradient gradient is spatially displaced over the measuring volume for a phase coding, wherein the field strength in the gradient over a value that leads to the excitation of an asynchronous rotation of the micro particles to at least to a value for excitation a synchronous rotation of the micro particles leads, increases. It is considered that the field dependence of the asynchronous rotation drift is not linear, and that magnetic micro particles typically scatter in their particle properties.
  • phase coding is performed by applying a magnetic gradient field for a certain period of time, then the non-linear dependence of the asynchronous rotational drift on the field strength as well as the scattering of the particle properties lead to an undesirable deterioration of the image resolution.
  • the impressed local phase position is smeared. Micro particles differing in their particle properties experience a different phase impact at the same location. In particular, the phase characteristic also differs over the measurement volume.
  • phase difference does not affect the linearity of the image. Instead, the phase difference contains additional information about the particle distribution or other local differences, which can be evaluated separately.
  • two particle types (or two identical particles in different surroundings) are considered by way of example, which have a different critical field strength given the rotation rate of the gradient field.
  • the critical field strength breaks off the synchronous rotation.
  • both particle types rotate synchronously to the rotation of the external field. If the gradient curve is now pushed spatially over the measuring volume, then the particle type with a higher critical field strength is at first fallen below it, and only laterally offset that of the particle type with a lower critical field strength.
  • both types of particles experience a staggered shutdown of the rotation field.
  • the time offset depends on the shape of the gradient curve and on the shift rate.
  • Both particle types experience the imprinting of the same phase course via the measuring volume or in the coding direction.
  • the phases of both particles differ globally in a fixed phase difference.
  • the displacement of the gradient curve of a rotating magnetic field described thus makes it possible, regardless of particle properties and the chemical environment, to perform a spatial coding by impressing a phase curve.
  • the imprint of a so-called spatial harmonic with a spatial wavelength, along which the phase angle changes by 180 °, leads to the determination of the corresponding Fourier coefficient when measuring the macroscopic transverse magnetization.
  • the Fourier coefficients of the other harmonics can be determined, so that the complete Fourier coding is obtained.
  • the direction of the magnetization vector in the measurement volume rotates ⁇ / 2 times around its own axis.
  • NxNxN steps For three-dimensional imaging, NxNxN steps must be performed.
  • the described method combines the refocusing with the imprinting of a phase.
  • the gradient of the rotating magnetic gradient field field strengths corresponding to a refocusing are effective, which stimulate the micro particles to a synchronous rotation.
  • the field strength falls below the critical value, so that thereafter the regime of asynchronous rotation is reached.
  • the field strength increases in the gradient of substantially zero. In practice, however, there is a lower limit of the field strength, from which only minimal coding errors result.
  • the displacement of the gradient course is expediently carried out by individual control of individual coils in a coil array.
  • a time-delayed switching on and off of the individual coils is carried out along the coding direction for this purpose.
  • the decisive factor is generally the ratio of the magnetic moment of the particle and its friction term.
  • the friction term is independent of the size, but depends only on the form factor. Accordingly, by suitably selecting the field strength and / or the rotational frequency of the refocussing field, particles of the same rotational properties, i. Particle with the same rotational drift at the same field strength and the same rotational frequency, selected.
  • Such a selective refocusing can be achieved, for example, by a rotating magnetic field, the axis of rotation of which rotates on a trajectory.
  • a rotating magnetic field the axis of rotation of which rotates on a trajectory.
  • Divisor ratio of their rotational frequency refocusing For only such particles return to their original position after completion of the application of the 3D rotation field, which have a 1 / n-fold rotational frequency with respect to the rotation of the refocussing field (n: integer). In this way se highly selective refocusing pulses can be achieved.
  • the signal selection is done by a suitable low pass or band pass filter.
  • the bandwidth of the detected transverse magnetization can preferably be reduced by a corresponding adjustment of the field strength and / or the rotational frequency of the rotating magnetic field and / or an adjustment of the gradient field (slope, field strength).
  • the signal acquisition is thereby improved.
  • the or each magnetic gradient field is generated in such a way that results in a linear location dependence of the mean rotational frequency of the magnetizations.
  • the magnetic gradient field is adjusted to a certain extent inversely to the given dependence of the average rotational frequency on the field strength, so that, in reverse, a linear dependence of the average rotational frequency on the location results. This allows a faster image reconstruction.
  • the superpositioned transverse magnetization can basically be tapped using suitable physical measurement methods.
  • an inductive tap is suitable via a suitably designed and aligned measuring coil.
  • the field strengths required for the new method of magnetic particle imaging are in the milli-Tesla range (mT)
  • mT milli-Tesla range
  • the gradient field used for image coding which can be generated with air coils, can be turned off arbitrarily.
  • the method used for the previous method of imaging by means of magnetic microparticles requires an enormously strong magnetic gradient field, which can not be switched off due to the neodymium permanent magnets required. A combination with a nuclear magnetic resonance method is therefore eliminated.
  • the object is achieved according to the invention by a device for imaging by means of magnetic microparticles, the magnetic field generator for generating a rotating about a longitudinal axis magnetic field, a measuring device for detecting the frequency components of the superpositioned transverse magnetization, a control device which is arranged, the magnetic field generator to drive the method described above and to convert the detected frequency components into a spatially resolved distribution of the transverse magnetization of the smallest particles, and an output device for outputting the obtained distribution comprises.
  • the output device can make available the measured data obtained or the spatially resolved distribution obtained, for example in the form of digital data, as storage information on data carriers, via networks or the like, or directly as an information carrier onto which the acquired spatially resolved distribution is displayed.
  • the measuring device comprises an induction coil oriented parallel to the longitudinal axis.
  • This may in particular be designed as a solenoid coil with several parallel turns.
  • the measuring device is formed by an array of detector coils, each coil segment of the array having its own receiving channel. Since each coil segment is located at a different spatial position, a coarse spatial coding already results due to the spatially limited reception profile of a single coil segment. This allows the image encoding with correspondingly less
  • phase encoding steps which can accelerate the image acquisition. For each coil segment results in a sense an incomplete data set (because of the missing phase encoding), from which in principle can now be reconstructed using the additional information of the array, a single, complete record. For image generation, the data must be Fourier transformed. The reconstruction can be done prior to the transformation with the aid of the additional information of the array or be made after the transformation by a corresponding unfolding.
  • the input signal of the magnetic field generator is preferably coupled in antiphase with the coil output signal.
  • This coupling can for example be done inductively by means of a transformer or the like.
  • an active negative feedback is used to improve the measurement method.
  • the interference components in the receiving chain are recorded in a calibration measurement. These noise components are then in the actual measurement with opposite sign directly into the receiving chain
  • the launch signal is generated in particular by means of a digital-to-analog converter.
  • a low-pass filter reduces frequencies. half the rotational frequency of the outer rotating magnetic field selected.
  • a bandpass filter also makes it possible to hide low-frequency interference components. Such low-frequency interference components can occur, for example, by periodic refocusing before each measurement sequence.
  • the magnetic field generator comprises normally conducting coil pairs which are designed to generate a rotating magnetic field with a field strength between 0.1 mT and 100 mT and a rotation frequency between 1 kHz and 1 MHz.
  • Such coils are relatively cheap to obtain.
  • the desired magnetic fields can be generated with air coils or with water-cooled coils.
  • the coil pairs are designed as mutually orthogonal Helmholtz coil pairs. As a result, a rotating external magnetic field with high homogeneity can be generated in a simple manner.
  • At least one gradient coil is provided for generating a magnetic gradient field in the transverse direction to the rotating magnetic field with a field strength between 10 mT and 100 mT.
  • a Golay biplanar coil is preferred for generating a linear gradient.
  • the biplanar design is the most advantageous embodiment of a Golay coil.
  • the device for imaging by means of magnetic microparticles combined with a relatively positioned for this device for performing a low-field nuclear magnetic resonance method. In this way, a physiological image assignment can be made.
  • Fig. 2 shows the course of the superpositioned transverse magnetization after a
  • Fig. 3 shows schematically a suitable device for imaging by means
  • Fig. 1 the course of the average rotational frequency of the magnetization of a magnetic microparticle with respect to the rotational frequency of an external magnetic field is shown.
  • the course of the curve a with respect to the course of the curve b corresponds to a lower field strength.
  • the average rotation frequency of the magnetization of a small magnetic particle rotates up to a critical frequency ü c in synchronism with the external rotation frequency. Above the critical frequency Q c , the average rotational frequency decreases with respect to the external rotational frequency. The magnetization or the minute particle itself then rotates asynchronously with respect to the external field at a medium rotational frequency.
  • the fact that the critical frequency Q c and thus also the average rotational drift relative to the external magnetic field show a field dependence, can be used for imaging.
  • the curves a and b in FIG. 1 can also be used to illustrate the dependence of the mean rotational drift on a changed chemical embedding or environment.
  • the curve would a in a mechanical rotation of the microparticle in a Medium higher viscosity compared to the curve b result.
  • the smallest particle in the more viscous medium can not follow the field even at a lower external rotation frequency.
  • FIG. 2 shows the time profile of the measured superposed transverse magnetization MQ after a refocusing pulse by means of a short-time applied external magnetic field.
  • the superpositioned signal of the transverse magnetization MQ has a maximum value.
  • the sum signal shown results. Due to variations in particle size and / or particle shape, due to field inhomogeneities and due to different chemical environments, the individual magnetizations are rapidly dephasing.
  • the amplitude of the measurement signal drops with a relaxation time ⁇ .
  • FIG. 3 schematically shows a device 1 for imaging by means of magnetic microparticles.
  • the device 1 comprises a magnetic field generator 3 which is formed from two Helmholtz coil pairs 4 and 5 positioned orthogonally to one another.
  • the Helmholtz coil pair 4 generates a homogeneous magnetic field in the x-direction.
  • the Helmholtz coil pair 5 generates a orthogonal homogeneous magnetic field in the y-direction.
  • a measuring volume 6 is formed in which, for example, a spatial distribution of a magnetic microparticle-containing contrast agent is to be detected.
  • the generated external magnetic field rotates with a correspondingly predetermined frequency and a correspondingly selected field strength such that the individual magnetizations of the minute particles rotate asynchronously to the external field.
  • the perpendicular to the z Axis-oriented superpositioned transverse magnetization of the particle ensemble located in the measuring volume 6 is detected inductively by means of a measuring device 7.
  • the measuring device 7 is a parallel to the z-axis aligned Solinoid- coil.
  • a control device 10 For controlling the Helmholtz coils 4, 5 and for detecting the measurement signal received by the measuring device 7, a control device 10 is provided.
  • a magnetic gradient field is generated via a corresponding activation of the Helmholtz coils 4, 5, which serves for the spatial coding of the frequency components of the superpositioned transverse magnetization.
  • gradient coils for generating, in particular, linear gradients can be provided for all three spatial directions.
  • Golay Biplanar coils are particularly suitable.
  • an image of the spatial distribution of the magnetic microparticles or an image of properties of their chemical environment can be generated by appropriate control of the magnetic coils.
  • a refocusing magnetic field can be generated for the phase alignment of the individual magnetizations and then scanned for a two-dimensional imaging of the frequency space by a Cartesian grid, for which purpose a phase coding is performed by varying the gradient fields.
  • a negative feedback receptacle 14 is arranged between the coils of the coil pair 5. Their output signal is fed back via a coupling unit 15 (for example inductively) to the output signal of the measuring device 7. Furthermore, a low-pass filter 17 is provided for selecting the average asynchronous rotational frequencies which are reduced in relation to the rotational frequency of the external magnetic field.
  • the control device 10 is connected to an imaging device 12, which is embodied, for example, as an information carrier, which displays the determined image indicates.
  • an imaging device 12 which is embodied, for example, as an information carrier, which displays the determined image indicates.
  • a device 18 for imaging by means of the low-field nuclear magnetic resonance method is combined.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)

Abstract

Es wird ein Verfahren zur Bildgebung aus einer Verteilung magnetischer Kleinstpartikel angegeben, wobei mittels eines um eine Längsachse (z) rotierenden äußeren Magnetfelds geeigneter Feldstärke und Rotationsfrequenz die Magnetisierung der Kleinstpartikel in eine zum Magnetfeld asynchrone Rotation versetzt werden, wodurch sich für ein Partikelensemble eine von der Feldstärke abhängige asynchrone mittlere Rotationsfrequenz ergibt, mittels eines magnetischen Gradientenfelds der asynchronen mittleren Rotationsfrequenz jeweiliger Partikelensemble eine Ortsabhängigkeit aufgeprägt wird, die Frequenzanteile der superpositionierten Quermagnetisierung (MQ) des Partikelensembles erfasst werden und mittels der Frequenzanteile eine ortsaufgelöste Verteilung der Quermagnetisierung (MQ) der Kleinstpartikel ermittelt und ausgegeben wird. Weiter wird eine hierfür geeignete Vorrichtung (1) angegeben. Gegenüber dem bisherigen Verfahren eines Magnetic-Particle-Imaging kann mit wesentlich niedrigeren Feldstärken eine verbesserte Ortsauflösung erzielt werden.

Description

Beschreibung
Verfahren zur Bildgebung mittels magnetischer Kleinstpartikel
sowie Vorrichtung hierfür
Die Erfindung betrifft ein neuartiges Verfahren zur Bildgebung mittels magnetischer Kleinstpartikel. Weiterhin betrifft die Erfindung eine zur Durchführung dieses Verfahrens geeignete Vorrichtung.
Ein Verfahren der eingangs genannten Art, auch„Magnetic-Particle-Imaging" genannt, sowie eine zur Durchführung geeignete Vorrichtung sind aus dem Artikel „Tomographie Imaging Using the Non-Linear Response of Magnetic Particles", Bernhard Gleich, Jürgen Weizenecker, Nature, Vol. 435, 30. Juni 2005 bekannt. Dort wird der nicht-lineare Zusammenhang zwischen der Magnetisierung eines ferromagnetischen Kleinstpartikels bezüglich eines äußeren magnetischen Feldes zu einer räumlichen Bildgebung der gegebenen Verteilung der Kleinstpartikel verwendet. Dazu wird insbesondere ausgenutzt, dass die Magnetisierung bei starken Magnetfeldern einen Sättigungswert erreicht, während in einem Bereich um den Nullpunkt der Feldstärke eine in etwa lineare Abhängigkeit von der Feldstärke gegeben ist. Wird das äußere Magnetfeld um den Nullpunkt sinusförmig variiert, so ergibt sich aufgrund der Sättigungseffekte als Antwortfunktion der Magnetisierung eine Rechteckfunktion. In den Frequenzraum transformiert setzt sich das Magnetisierungssignal damit aus einer Summe der Harmonischen der Grundfrequenz des eingestrahlten Magnetfeldes zusammen. Das beispielsweise induktiv abgegriffene Signal der Magnetisierung kann infolge dessen leicht von dem eingestrahlten Erregersignal getrennt werden, indem der Grundfrequenzanteil absepariert wird.
Zur Ortskodierung wird im Untersuchungsbereich ein starkes magnetisches Gradientenfeld mit einem feldfreien Punkt am Messvolumen erzeugt. Da die Magnetisierung der Kleinstpartikel außerhalb des feldfreien Punktes ihren Sättigungswert erreicht, tragen effektiv nur diejenigen Kleinstpartikel zur Bildgebung bei, die sich
BESTÄTIGUNGSKOPIE am feldfreien Punkt befinden. Durch eine Verschiebung des feldfreien Punktes über den Untersuchungsbereich kann die Anzahl der dort jeweils befindlichen . magnetischen Kleinstpartikel über die Amplitude des empfangenen Magnetisierungssignals ermittelt werden. Der feldfreie Punkt kann hierbei entweder durch eine tatsächliche Bewegung der Messapparatur oder durch eine entsprechende Ansteuerung des Gradientenfeldes, auch Selektionsfeld genannt, bewegt werden.
Durch das bekannte Verfahren zur Bildgebung mittels magnetischer Kleinstpartikel kann sowohl in vitro als auch in vivo eine Verteilung der magnetischen Kleinstpartikel ortsaufgelöst beobachtet werden. Durch die Verwendung eines magnetischen Kleinstpartikel enthaltenden Kontrastmittels können insofern räumliche Aufnahmen von Geweben, Organen oder eines Gefäßsystems erhalten werden. Auch können Stoffwechselprozesse beobachtet werden, indem die magnetischen Kleinstpartikel beispielsweise spezifischen an Stoffwechselprozessen teilnehmenden organischen Makromolekülen angeheftet werden. Ebenso ist es möglich, die magnetischen Kleinstpartikel mit funktionalen Gruppen zu versehen, die an spezifische Körperzellen ankoppeln, so dass aus deren Verteilung Rückschlüsse geschlossen werden können. Über die zeitliche Auflösung der Verteilung des Kontrastmittels können auch dynamische Prozesse wie z.B. der Blutfluss durch ein Organ etc. abgebildet bzw. dargestellt werden.
Der mit dem bekannten Verfahren erzielbaren räumlichen Auflösung sind durch den notwendigen Gradienten des Selektionsfeldes Grenzen gesetzt. Die räumliche Auflösung wird umso besser, je größer der Gradient des Selektionsfeldes gewählt wird. Für magnetische Kleinstpartikel von einigen 10 nm Durchmesser werden typischerweise Gradienten um 5 T/m (Tesla pro Meter) und darüber benötigt, um eine räumliche Auflösung im Submillimeter-Bereich zu erzielen. Solche hohen Gradientenfelder lassen sich praktisch jedoch nur mit supraleitenden Spulen oder mittels Neodym-Magneten erzielen, was nachteiligerweise die Kosten für eine derartige Bildgebung deutlich erhöht. Typische aus dem Kernspinresonanz- Verfahren bekannte Gradientenfelder bewegen sich zum Vergleich bei etwa 100 mT/m. Weiter ist eine höhere räumliche Auflösung des bekannten Verfahrens mit einer Verschlechterung des Signal-zu-Rausch-Verhältnisses verbunden. Je steiler nämlich der Gradient des Selektionsfeldes gewählt ist, desto kleiner ist der Bereich einer linearen Antwort der Magnetisierung der Kleinstpartikel und desto weniger Kleinstpartikel tragen zum Messsignal insgesamt bei.
Die Erfindung hat sich die Aufgabe gestellt, ein Verfahren zur Bildgebung mittels magnetischer Kleinstpartikel und eine hierfür geeignete Vorrichtung bereitzustellen, womit sich gegenüber dem Stand der Technik eine verbesserte räumliche Auflösung erzielen lässt und deren Realisierung mit geringeren Kosten verbunden ist.
Diese Aufgabe wird bezüglich des Verfahrens erfindungsgemäß dadurch gelöst, dass mittels eines um eine Längsachse rotierenden äußeren Magnetfelds geeigneter Feldstärke und geeigneter Rotationsfrequenz die Magnetisierungen der Kleinstpartikel in eine zum Magnetfeld asynchrone Rotation versetzt werden, wodurch sich für ein Partikelensemble eine von der Feldstärke asynchrone mittlere Rotationsfrequenz ergibt, dass mittels eines magnetischen Gradientenfeldes der asynchronen mittleren Rotationsfrequenz jeweiliger Partikelensembles eine Ortsabhängigkeit aufgeprägt wird, dass die Frequenzanteile der superpositionierten Quermagnetisierung des Partikelensembles erfasst werden, und dass mittels der Frequenzanteile eine ortsaufgelöste Verteilung der Quermagnetisierung der Kleinstpartikel ermittelt und ausgegeben wird.
Die Erfindung löst sich dabei überraschend von dem bislang von der Fachwelt eingeschlagenen Weg, zur Bildgebung mittels magnetischer Kleinstpartikel den nicht-linearen Zusammenhang der Magnetisierung von einem äußeren magnetischen Feld zu nutzen. Vielmehr verwendet die Erfindung zur Bildgebung die Tatsache, dass die Rotation der magnetischen Kleinstpartikel oder deren Magnetisierung in einem äußeren rotierenden magnetischen Feld abhängig von Feldstärke und Rotationsfrequenz in einen Bereich synchroner und in einen Bereich asynchroner Drehung zerfällt. Dies liegt im Falle eines mechanisch rotierenden Kleinst- Partikels an Reibungstermen gegenüber der Umgebung. Rotiert die Magnetisierung im Kristallgitter des Kleinstpartikels, so sind andere Reibungsterme verantwortlich. Ist das vom äußeren Magnetfeld übertragene Drehmoment gegenüber den Reibungstermen zu gering, so bleibt die Magnetisierung bzw. der
Kleinstpartikel gegenüber der Rotation des Magnetfeldes zurück, da es gegenüber der Umgebung verharren möchte. Es entsteht eine nicht-lineare Fluktuation der Drehung der Magnetisierung gegenüber der Rotation des Magnetfeldes. Im Mittel ergibt sich dabei ein messbarer Rotationsdrift.
Entsprechend der US 2008/022041 1 A1 rotiert die Magnetisierung des Kleinstpartikels abhängig von der Feldstärke des äußeren Magnetfeldes im Mittel bis zu einer kritischen Frequenz üc synchron zur Rotation des Magnetfeldes. Überschreitet die Rotationsfrequenz des Magnetfeldes die kritische Rotationsfrequenz QC ) so dreht die Magnetisierung des Kleinstpartikels mit einer verringerten mittleren Rotationsfrequenz asynchron. Diese mittlere, asynchrone Drehung der Magnetisierung kann als ein Frequenzterm der Magnetisierung beobachtet werden. Dieser Verlauf der mittleren Rotationsfrequenz der Magnetisierung des Kleinstpartikels wird aus Fig. 1 ersichtlich. Bei kleinerer Feldstärke ergibt sich eine niedrigere kritische mittlere Rotationsfrequenz Qc als bei größerer Feldstärke. Dies lässt sich an den eingezeichneten Kurvenverläufen a und b in Fig. 1 entnehmen. Der Zusammenhang zwischen kritischer mittlerer Rotationsfrequenz Qc und der Feldstärke B des äußeren Magnetfeldes ist dazu gegeben durch:
Dabei bezeichnet m das magnetische Moment des Kleinstpartikels. Der Term γ beschreibt einen Reibungsterm, der im Falle einer mechanischen Rotation des Kleinstpartikels die Viskosität der Umgebung und einen Formfaktor des Kleinstpartikels beinhaltet. Im Falle einer Rotation der Magnetisierung im Kristallgitter des Kleinstpartikels ist der Reibungsterm γ empirisch zu ermitteln.
Die Erfindung erkennt nun erstmalig, dass sich die asynchrone Rotation der Magnetisierung der Kleinstpartikel zur Bildgebung nutzen lässt, da in diesem Fall die erfassbare Frequenz der gegenüber dem äußeren Magnetfeld drehenden Magnetisierung von der Frequenz des Erregerfeldes verschieden ist. Insofern kann die mittlere Rotationsfrequenz der Magnetisierung messtechnisch leicht von der Frequenz des Erregerfeldes getrennt werden. In einem Partikelensemble lässt sich der entsprechende Frequenzterm durch Erfassung der superpositionierten Quermagnetisierung (bezüglich der Längsachse, um die das äußere Magnetfeld rotiert) ermitteln. Dies kann beispielsweise induktiv mit einer geeigneten Messspule erfolgen.
Zur Bildgebung und damit zu einer räumlichen Auflösung wird weiter die oben beschriebene Tatsache ausgenutzt, dass die kritische Rotationsfrequenz Qc abhängig von der Feldstärke des äußeren Magnetfeldes ist. Dies ergibt die Möglichkeit, ähnlich dem Kernspinresonanz-Verfahren durch Anlegen eines magnetischen Gradientenfeldes eine Ortskodierung vorzunehmen. Entsprechend Fig. 1 wird sich bei gleicher Rotationsfrequenz des magnetischen Feldes abhängig von der äußeren Feldstärke eine jeweils verschiedene mittlere asynchrone Rotationsfrequenz der Magnetisierung der Kleinstpartikel einstellen. Somit ist der mittleren, asynchronen Rotationsfrequenz der Magnetisierung der Kleinstpartikel eine Ortsinformation aufgeprägt, die zur Bildgebung genutzt wird.
Wird entlang einer vorgegebenen Achse bzw. Raumrichtung ein magnetisches Gradientenfeld erzeugt, so zerfällt die beobachtbare asynchrone Rotation der superpositionierten Quermagnetisierung in Streifen gleicher Frequenzen senkrecht zu dieser Achse. Durch Erfassung der Signalintensitäten, jeweils zugeordnet zu den Frequenzen, wird eine Projektion der Verteilung der superpositionierten Quermagnetisierung auf die Achse des Gradientenfeldes erzeugt. Dies entspricht einer in einer Dimension ortsaufgelösten Bildgebung über die Verteilung der magnetischen Kleinstpartikel bzw. über die Verteilung deren Quermagnetisierung. Das magnetische Gradientenfeld wird somit zu einer Ortskodierung über die sich einstellende Frequenzverteilung genutzt. Diese Möglichkeit wird daher im Folgenden auch als Verfahren der Frequenzkodierung bezeichnet. Andererseits wird die mittlere, asynchrone Rotationsfrequenz der Magnetisierung der Kleinstpartikel durch die chemische Umgebung beeinflusst. Es entsteht ähnlich dem Kernspinresonanz-Verfahren in den beobachtbaren Rotationsfrequenzen eine sogenannte chemische Verschiebung („chemical-Shift"). Diese lässt sich durch das angegebene Verfahren ebenfalls sichtbar machen. Hierzu wird das Verfahren mit verschiedenen magnetischen Gradientenfeldern wiederholt, über die die Bereiche unterschiedlicher chemischer Umgebung abgetastet werden. Über die erhaltenen Messinformationen lässt sich ein Bild über die räumliche Verteilung der Umgebungsparameter der Kleinstpartikel erzeugen. Da insbesondere die in den Reibungsterm eingehende Viskosität temperaturempfindlich ist, kann diese Methode beispielsweise zur Sichtbarmachung von Temperaturgradienten, insbesondere bei Stoffwechselvorgängen, etc., verwendet werden.
Es ist auch möglich, über ein für eine vorgegebene Zeitspanne eingeschaltetes Gradientenfeld dem Partikelensemble eine ortsabhängige Phasenlage einzuprägen, und diese Phasenlage zur Bildgebung auszunutzen. Solange das magnetische Gradientenfeld eingeschaltet ist, rotieren nämlich die einzelnen magnetischen Kleinstpartikel ortsabhängig mit jeweils unterschiedlichen asynchronen Drehfrequenzen, woraus sich nach dem Abschalten eine ortsabhängige Phasenlage ergibt, die ebenfalls zur Messung einer ortsaufgelösten Verteilung herangezogen werden kann. Das Gradientenfeld wird vor der eigentlichen Messung zu einer Ortskodierung über die sich einstellende Phasenlage genutzt. Diese Möglichkeit wird im Folgenden als Verfahren der Phasenkodierung bezeichnet.
Gegenüber dem bekannten Kernspinresonanz-Verfahren bietet die vorliegende Erfindung den enormen Vorteil, dass kein statisches Polarisationsfeld zur Ausrichtung erforderlich ist. Vielmehr werden die magnetischen Kleinstpartikel durch das magnetische Rotationsfeld direkt manipuliert. Während zur Ausrichtung der Kernspins Feldstärken von etwa 1 ,5 T notwendig sind, um ca. 3 ppm der vorhandenen Protonenspins für die Signalerzeugung nutzen zu können, genügen zur Erzeugung einer asynchronen Rotation mit ca. 0.1 % bis nahe 100 % der vorhandenen Magnetisierung der Kleinstpartikel Feldstärken zwischen 0,1 und 100 mT. Während sich das Polarisationsfeld bei der Kernspinresonanz nur mit teuren, supralei- tenden Spulen erzeugen lässt, um eine für den klinischen Routineeinsatz taugliche Bildqualität erzielen zu können, kann das magnetische Rotationsfeld zur Sichtbarmachung der rotierenden Magnetisierung der Kleinstpartikel mit günstigen Luftspulen oder wassergekühlten Spulen erzeugt werden.
Beim Verfahren der Kernspinresonanz kann weiter das Messsignal nur durch Ein- strahlen eines hochfrequenten Magnetfeldes mit der Larmor-Frequenz von etwa 60 MHz erzeugt werden. Im Gegensatz hierzu genügt bei dem hier beschriebenen Verfahren zur Erzeugung des Messsignals ein rotierendes Magnetfeld mit einer Frequenz zwischen etwa 1 kHz bis 1 MHz. Im einfachsten Fall ist auch keine separate Gradientenspule zum Erzeugen des Gradientenfeldes notwendig. Vorteilhafterweise kann nämlich das zur Bildgebung erforderliche Gradientenfeld durch entsprechende Ansteuerung der das rotierende Magnetfeld erzeugenden Spulen eingestellt werden.
Zur Erzeugung der hier notwendigen Feldstärken genügen insofern in der Tat simple Luftspulen, die bei Stromstärken von 1 bis 100 A betrieben werden. Derartige Ströme und auch die hier vorliegenden Frequenzen bis etwa 1 MHz lassen sich mit einer üblichen und bekannten Leistungselektronik handhaben. Gegenüber dem Kernspinresonanz-Verfahren ist insofern das hier beschriebene Verfahren eines Magnetic-Particle-Imaging mit enormen Kostenvorteilen verbunden. Diese enormen, auf den großen Unterschieden der notwendigen Feldstärken beruhenden Vorteile sind darin begründet, dass nicht der Kernspin eines Wasserstoffatoms beobachtet, sondern der aus Kopplung der Elektronenspins der Atome im magnetischen Nanopartikel resultierende einzige große Gesamtspin gemessen wird. Das resultierende magnetische Moment in einem etwa 25 nm großen Magnetit-Partikel ist beispielsweise 10-millionenfach höher als das des Wasserstoffprotons. Zwar ist das vorliegende Verfahren gegenüber dem Verfahren der Kernspinresonanz breitbandig. Dieser Nachteil wird jedoch durch die enorm höhere Magnetisierung mehr als ausgeglichen.
Gegenüber dem bislang eingeschlagenen Weg eines Magnetic-Particle-Imaging unter Beobachtung des nicht-linearen Zusammenhangs der Magnetisierung ge- genüber einem äußeren, starken Magnetfeld weist das hier beschriebene Verfahren zusätzlich ein wesentlich verbessertes Signal-zu-Rausch-Verhältnis auf. Bei dem vorbekannten Verfahren gemäß dem Artikel von Gleich und Weizenecker wird ein Messsignal sequentiell nur im feldfreien Punkt des angelegten magnetischen Selektionsfeldes erzeugt. Für eine höhere räumliche Auflösung nimmt aufgrund der verstärkten Gradienten das Volumen dieser signalgenerierenden Region ab. Bei einer zweidimensionalen Darstellung nimmt das Signal-zu-Rausch- Verhältnis mit zunehmender Auflösung proportional zu 1/N, bei einer dreidimensionalen Darstellung proportional zu 1/N3 ab, wobei N die Anzahl der Bildpunkte in einer Dimension ist.
Während das herkömmliche Magnetic-Particle-Imaging in jedem einzelnen Messschritt eine Einzelvoxelanregung (Volumen im feldfreien Punkt) untersucht, wird mit dem hier beschriebenen neuen Verfahren mit jeder einzelnen Messung ein Signal aus dem gesamten Probenvolumen aufgenommen. Damit nimmt aber das Signal-zu-Rausch-Verhältnis mit der Anzahl der Messschritte zu. Der damit gegenüber dem bekannten Magnetic-Particle-Imaging erzielte Vorteil ist besonders dramatisch bei einer dreidimensionalen Bildgebung. Wird z.B. eine dreidimensionale Bildmatrix mit 64x64x64 Bildpunkten untersucht, so ergibt sich hieraus ein 512-fach vergrößertes Signal-zu-Rausch-Verhältnis des neuen Verfahrens gegenüber der bislang bekannten Technologie. Wollte man ein 512-fach höheres Signal-zu-Rausch-Verhältnis durch Mittelung erzielen, müsste man mehr als 260.000- fach mittein. Die wiederum gegenüber dem herkömmlichen Magnetic-Particle- Imaging niedrigere Signalbandbreite erlaubt zudem die Konzeption entsprechend angepasster Empfängerschwingkreise.
Das hier vorgeschlagene neuartige Verfahren eines Magnetic-Particle-Imaging bietet den weiteren Vorteil, dass aus dem Kernspinresonanz-Verfahren bekannte Bildgebungsmethoden adäquat durchgeführt werden können. So können beispielsweise die rotierenden Magnetisierungen durch ein stärkeres rotierendes Magnetfeld oder durch Herabsetzung dessen Frequenz zu einer synchronen Drehung und damit in Phase zueinander gebracht werden, was gewissermaßen dem 90° - Spinflip der Kernspinresonanz entspricht, der in jeder grundlegenden Mess- sequenz der Kernspintomographie zur Erzeugung eines messbaren Magnetisierungsanteils benötigt wird. Das Maß der Abnahme der superpositionierten Quermagnetisierung ist dann ein Maß für die so genannte Querrelaxation, die das Auseinanderlaufen der einzelnen Magnetisierungen aufgrund der bereits beschriebenen Umgebungsparameter, Feldinhomogenitäten oder Partikelvariationen beschreibt. Ähnlich dem aus dem Kernspinresonanz-Verfahren bekannten Spin- Echo können die einzelnen Magnetisierungen wieder in Phase gebracht werden, indem die Drehrichtung des äußeren magnetischen Feldes umgekehrt wird. Dies entspricht gewissermaßen einem 180°-Spinflip, wie er zürn Erzeugen des Spin- Echos in der Kernspinresonanz eingebracht wird.
Als magnetische Kleinstpartikel werden ferromagnetische oder super-paramagne- tische Partikel eingesetzt, die im Verhältnis zu ihrem Volumen ein möglichst großes magnetisches Moment aufweisen. Für einen Einsatz in der Biologie und der Medizin kommen insbesondere magnetische Nanopartikel mit Teilchendurchmessern zwischen 20 und 200 nm in Frage. Je größer das Verhältnis zwischen magnetischem Moment und Volumen ist, desto höher ist im Falle der asynchronen Rotation die Rotationsdrift gegenüber dem äußeren magnetischen Feld.
Die Rotationsdiffusion und die Streuung der Partikeleigenschaften führen wie vorbeschrieben zu einer Dephasierung der Partikel, so dass sich die Magnetisierung im Mittel aufhebt. Das vorliegende Verfahren ist damit letztlich durch die Rotationsdiffusion limitiert, da diese die Korrelation der Winkelorientierung der Kleinstpartikel untereinander begrenzt. Um die aus der Kernspintomographie bekannten Konzepte der Frequenz- und Phasenkodierung sinnvoll umsetzen zu können, sollte bevorzugt die Bedingung mB>V2D erfüllt sein. Dabei bezeichnet D eine Diffusionskonstante, die bei einer mechanischen Drehung des Kleinstpartikels insbesondere über die Viskositität und im Falle einer Drehung der Magnetisierung im Kristallgitter wiederum empirisch gegeben ist. Im ersten Fall spricht man von der so genannten Brown-Relaxation. Im letzteren Fall von der Neel-Relaxation. Die gegebene Ungleichung ist ein Maß für die erreichbare Trennschärfe der Frequenz- oder Phasenkodierung. Je größer mB ist, desto kleiner wir die resultierende Linienverbreiterung im Signalspektrum. Bei einer mechanischen Drehung des Kleinstpartikels kann über den Rotationsdrift die Viskosität der umgebenden Flüssigkeit oder im Falle eines medizinischen Einsatzes eine erhöhte Reibung mit Gefäß- oder Zellwänden beobachtet werden. Da Temperaturunterschiede sich in unterschiedlicher Viskosität bemerkbar machen, kann innerhalb eines Mediums über die Viskosität auch die Temperatur gemessen werden. Wenn die Kleinstpartikel als Sonden eingesetzt sind, an deren Oberfläche Moleküle angelagert sind, vergrößert sich der hydrodynamische Teilchendurchmesser des Kleinstpartikels und dementsprechend verringert sich die Rotationsdrift. Aus diesem Grund lassen sich über die Rotationsdriftverschiebung Molekülkonzentrationen lokalisieren und quantifizieren.
Wenn sich hingegen das Kleinstpartikel an Zelloberflächen anlagert, wird die Brown-Relaxation praktisch vollständig unterdrückt, so dass nur noch die Neel- Relaxation vorliegt. Dadurch kann sich je nach Partikelsorte die Relaxationsdauer um mehrere Größenordnungen ändern. Im Falle von Magnetit-Nanopartikeln mit einem mittleren Durchmesser von etwa 25 nm ergibt sich damit eine Änderung der Relaxationsdauer von ca. 5 Mikrosekunden zu ca. 1 Millisekunde.
Die magnetische Kopplung von verdüsterten Kleinstpartikeln, beispielsweise durch ein Cross-Linking über funktionale Gruppen oder Agglomeration in
Zellvesikeln, verändert ebenfalls den Rotationsdrift und kann darüber detektiert werden.
Vorteilhafterweise wird während der Erfassung der Frequenzanteile der Quermagnetisierung ein magnetisches Gradientenfeld zu einer Frequenzkodierung der Ortsinformation erzeugt. Bei der Messung der Quermagnetisierung wird ein Frequenzspektrum erfasst, in dem jeder Frequenz eine räumliche Koordinate entlang des Gradientenfeldes zugeordnet ist. Die räumliche Auflösung ist dabei durch die erzielbare örtliche Variation des Rotationsdrifts gegeben. Das Produkt aus Einschaltdauer und Gradientenstärke sollte bevorzugt so gewählt sein, dass auf der kleinsten Distanz, die noch aufgelöst werden soll, sich die Orientierung der Mag- netisierung ab dieser Distanz um mindestens eine volle Umdrehung am Ende der Messung unterscheidet.
Feldinhomogenitäten, die Streuung der Partikeleigenschaften und örtliche Variationen in Bezug auf die chemische Umgebung, die Viskosität oder ähnliches verursachen eine spektrale Verbreiterung, die die Ortskodierung mittels Frequenzzuordnung limitiert. Wenn die Streuung der Partikeleigenschaften zu hoch ist oder wenn zusätzlich einer oder mehrere der weiteren angesprochenen Parameter wie die Viskosität oder die Temperatur oder Molekülkonzentrationen über die Frequenzen der asynchronen Rotation abgefragt werden sollen, kann die Frequenzkodierung nicht uneingeschränkt zur Ortskodierung herangezogen werden.
Diese Limitierung kann umgangen werden, indem die Frequenzkodierung um Phasenkodierschritte ergänzt oder vollständig durch eine Phasenkodierung ersetzt wird. Vorteilhafterweise wird daher insbesondere vor der Erfassung der Frequenzanteile der Quermagnetisierung ein magnetisches Gradientenfeld für eine vorgegebene Zeitspanne erzeugt, um eine Phasenkodierung im Partikelensemble zu erzeugen.
Wenn das Messsignal nach der Phasenkodierung erfasst wird, hat jeder Ort eine der Position im gewählten Gradienten und dessen Stärke entsprechende Phasenverschiebung erfahren. Insbesondere liefern beispielsweise N Schritte mit jeweiliger Erhöhung der Gradientenstärke um 1/N der maximal möglichen Gradientenstärke die Information, um aus einer ortsabhängigen Phasenverschiebung oder Phasenlage auf die Verteilung der Quermagnetisierung zu N Koordinaten rück- rechnen zu können. Dies wird bevorzugt mittels einer schnellen Fouriertransformation (FFT) vorgenommen.
Die Quermagnetisierung kann grundsätzlich auch während der Phasenkodierschritte erfasst werden. Die so gewonnenen Daten lassen sich jedoch nicht einem kartesisch geordneten Fourierraum zuordnen, aus dem sich die gewünschte räumliche Verteilung direkt durch eine Fouriertransformation berechnen ließe. Vielmehr liefern die Daten komplementäre Informationen und lassen sich nur gesondert und somit aufwändig auswerten.
Wird die Bildkodierung vollständig durch Phasenkodierung vorgenommen, so werden für 3 Dimensionen mit jeweils N Koordinaten NxNxN Messschritte benötigt. In diesem Fall liefert die Frequenzverteilung, die insbesondere im Anschluss nach jedem Schritt ohne Gradientenfeld erfasst wird, vollkommen redundante Information, die in erster Linie die Verteilung oder Streuung der Rotationseigenschaften der Kleinstpartikel wiederspiegelt. Diese Verteilung erhält man in diesem Fall für jeden der NxNxN Raumpunkte separat. Da diese Verteilung unabhängig vermessen werden kann, lässt sich aus der Verschiebung dieser Frequenzverteilung auf eine Ortsverteilung der Umgebungsparameter wie z.B. der Temperatur schließen.
Nach der Phasenkodierung kann selbstverständlich wieder ein magnetisches Gradientenfeld zu einer Frequenzkodierung angelegt werden, um beispielsweise hierdurch eine Ortskodierung in der anderen Raumrichtung zu erhalten. Dies bietet sich an, wenn nur die Dichteverteilung der Kleinstpartikel gefragt ist, und wenn wie erwähnt, die Variation der Partikeleigenschaften hinreichend klein ist.
Statt die Frequenzkodierung vollständig durch Phasenkodierung zu ersetzen, kann die Kodierung demnach auch nur zum Teil durch Phasenkodierung und zum Teil durch Frequenzkodierung erfolgen. Die Anzahl der zusätzlich benötigten Unterteilung der Frequenzkodierung in Phasenkodierschritte ergibt sich beispielsweise aus der jeweiligen Breite der Partikelstreuung bzw. der daraus resultierenden Spektralverbreiterung.
Die Abbildung einer räumlichen Verteilung des Partikelensembles gegenüber der Abbildung einer räumlichen Verteilung der Umgebungsparameter unterscheidet sich darin, dass die Frequenzkodierung einmal zur Ortsauflösung herangezogen wird, und einmal die vorhandene Frequenzverteilung zur Erfassung der durch die Umgebung aufgeprägte Variation genutzt wird. Im ersten Fall wird während der Messung der Gradient zur Ortskodierung der Frequenzen eingeschaltet. Im zweiten Fall findet die Signalerfassung ohne eingeschalteten Gradienten statt.
In einer zweckmäßigen Ausgestaltung wird nach Abschalten des magnetischen Gradientenfeldes ein zweites gleiches magnetisches Gradientenfeld umgekehrten Vorzeichens mit derselben Zeitspanne erzeugt, wobei danach in einer Ebene senkrecht zum Verlauf des Gradienten die ortsaufgelöste Verteilung der Quermagnetisierung ermittelt und ausgegeben wird. Dieses Verfahren ermöglicht die Durchführung einer räumlichen Vermessung von Flussprofilen oder Gefäßstrukturen.
Dabei wird für eine vorbestimmte Zeitdauer zunächst ein magnetischer Gradient in einer vorgegebenen Raumrichtung, in der der Fluss gemessen werden soll, angelegt. Anschließend wird für die gleiche Zeitdauer derselbe Gradient mit derselben Gradientenstärke, jedoch mit umgekehrtem Vorzeichen angelegt. In einer Ebene senkrecht zum Gradienten erfolgt die räumliche Bildkodierung wie bereits beschrieben, beispielsweise mittels geeigneter Frequenzkodierung und/oder Phasenkodierung. Die Frequenzverteilung der Quermagnetisierung wird erfasst. Die ersten beiden Schritte haben den Effekt, dass unbewegte Kleinstpartikel keine Phasenänderung erfahren, da der zweite Schritt für ruhende Partikel den ersten Schritt quasi vollständig rückgängig macht. Sich in Richtung des Gradienten bewegende Partikel erfahren jedoch eine Phasenänderung, die proportional zur zurückgelegten Wegstrecke ist. Die Phasenänderung ist damit ein Maß für die Flussgeschwindigkeit.
Um eine Flussmessung auch mit Partikeln mit großer Streuung der Rotationseigenschaften durchführen zu können, ist eine Kombination mit einem 180°-Spinflip vorteilhaft. Nach einem noch zu erläuterndem Refokusierungspuls zur„Gleich- phasierung" des Partikelensembles werden die ersten beiden Schritte einmal vor und einmal nach einer Umkehr der Rotationsrichtung des magnetischen Rotationsfeldes durchgeführt. Danach ergibt sich ein Echosignal, dass bei ruhendem Partikel bei genau der doppelten Zeit zwischen Refokusierungspuls und Drehrichtungsumkehr auftritt. Die inzwischen aufgrund der Partikeleigenschaften außer Phase geratenen Kleinstpartikel rotieren nach Drehrichtungsumkehr wieder in Phase, woraus ein in der Intensität wieder angewachsenes Echosignal der superpositionierten Quermagnetisierung resultiert. Wenn sich die Kleinstpartikel oder das Partikelensemble in Richtung des Gradienten bewegt, dann verschiebt sich dieses Echosignal proportional zur Geschwindigkeit, wobei jeglicher Einfluss aufgrund von Partikelstreuung neutralisiert ist.
In einer bevorzugten Weiterbildung des angegebenen Verfahrens wird ein magnetisches Gradientenfeld durch räumliche Variation der Feldstärke des rotierenden Magnetfeldes erzeugt. Das rotierende Magnetfeld kann beispielsweise über in Umfangsrichtung verteilte Spulenpaare erzeugt werden, die entsprechend angesteuert werden. In der einfachsten Ausführung kann das rotierende Magnetfeld über ein Paar von orthogonal zueinander ausgerichteten Helmholtzspulen erzeugt werden. Dazu werden die Helmholtzspulenpaare entsprechend sinusförmig angesteuert. Über eine veränderte Ansteuerung kann über diese Spulen auch ein zusätzliches Gradientenfeld zur Ortskodierung erzeugt werden. Im einfachsten Falle ist demnach keine separate Gradientenspule zur Erzeugung des magnetischen Gradientenfeldes erforderlich.
In einer zusätzlichen oder alternativen Ausgestaltung wird das Gradientenfeld nicht durch eine Variation der Feldstärke des rotierenden magnetischen Feldes, sondern durch Überlagerung eines homogenen Rotationsfeldes mit einem statischen, räumlich variierenden Offsetfeld erzeugt. Dieses wird beispielsweise mit separaten Gradientenspulen generiert.
Über das magnetische Gradientenfeld wird der mittleren asynchronen Rotation der einzelnen Magnetisierungen und damit insbesondere der messbaren superpositionierten Quermagnetisierung eine Ortsabhängigkeit aufgeprägt. Diese lässt sich - wie bereits beschrieben - unmittelbar zu einer eindimensionalen räumlichen Abbildung der entsprechenden Verteilung der Kleinstpartikel nutzen. Um Umgebungsparameter, chemische Veränderungen, etc. lokalisieren und entsprechend abbilden zu können, wird in einer besonderen Ausführungsform das beschriebene Verfahren wiederholt, wobei die Frequenzanteile der Quermagnetisie- rung mehrmals für verschiedene Gradientenfelder erfasst werden. Hierdurch können die asynchronen Rotationsfrequenzen lokalisiert, entsprechend analysiert und zur Bildgebung verwendet werden.
In einer weiter bevorzugten Ausgestaltung wird in einem ersten Schritt für eine Zeitspanne ein erstes Gradientenfeld entlang einer ersten Richtung erzeugt, in einem zweiten Schritt ein zweites Gradientenfeld entlang einer zweiten Richtung erzeugt, in einem dritten Schritt die Frequenzverteilung der Quermagnetisierung erfasst, in einem vierten Schritt die vorgenannten Schritte 1 bis 3 mit einer Anzahl abgeänderter erster Gradientenfelder wiederholt und aus dem gewonnenen Satz an Messsignalen eine zweidimensionale Verteilung der Quermagnetisierung ermittelt und ausgegeben.
Bei dieser Methode zur zweidimensionalen Darstellung wird der Frequenzraum mit einem Raster kartesischer Koordinaten abgetastet. Dabei wird zu Beginn der Messung über das erste Gradientenfeld entlang der ersten Richtung der Magnetisierung der Kleinstpartikel ein Phasengang aufgeprägt, indem das erste
Gradientenfeld für eine vorgegebene Zeit über das Messvolumen gelegt wird. Die solcherart vorgeprägte Quermagnetisierung wird dann über ein zweites
Gradientenfeld auf die zweite Richtung projiziert. Die Wiederholung dieser Messsequenz mit unterschiedlicher Vorphasierung durch Variation des ersten
Gradientenfelds liefert dann einen Satz von Messsignalen, der einem Hologramm entspricht. Durch eine zweidimensionale Fourier-Transformation kann dann unmittelbar die gewünschte räumliche Verteilung der Magnetisierung erhalten werden. Dies ermöglicht eine direkte Bildrekonstruktion mit Hilfe einer zweidimensionalen „Fast-Fourier-Transformation (FFT)" innerhalb kürzester Zeit.
Wird das zweite Gradientenfeld nicht zu einer Frequenzkodierung während der Messung eingeschaltet, sondern zu einer vorhergehenden Phasenkodierung verwendet, so kann wie bereits beschrieben, eine räumliche Verteilung der Umgebungsparameter erhalten werden. Dabei können das erste und das zweite
Gradientenfeld auch zeitgleich angelegt werden, da sich der Effekt der Gradienten auf die Phase annähernd linear superpositioniert. Wird in diesem Verfahren das erste und das zweite Gradientenfeld zur Phasenkodierung vor der Messung verwendet und ein drittes Gradientenfeld zu einer Frequenzkodierung während der Messung eingesetzt, so kodieren die ersten beiden ersten Gradientenfelder zwei Raumrichtungen über die Phase und das dritte Gradientenfeld die dritte Raumrichtung über die Frequenz. Dies entspricht dann einer dreidimensionalen Bildgebung einer räumlichen Verteilung des
Partikelensembles.
Für eine dreidimensionale Darstellung wird dieses Verfahren insofern weitergebildet, wobei nach dem zweiten Schritt ein drittes Gradientenfeld entlang einer dritten Richtung erzeugt wird, wobei die Schritte 1 bis 4 mit einer Anzahl abgeänderter zweiter Gradientenfelder wiederholt werden, und wobei aus dem Satz an gewonnenen Messsignalen eine dreidimensionale Verteilung der Quermagnetisierung ermittelt und ausgegeben wird. Bevorzugt stehen in beiden Verfahren die jeweiligen Raumrichtungen x, y und z senkrecht aufeinander.
Werden im letztgenannten Verfahren alle drei Gradientenfelder vor der Datenerfassung zur Phasenkodierung eingesetzt, so werden alle drei Raumrichtungen über die Phase erfasst. Insgesamt sind somit für eine 3D-Bildmatrix aus NxNxN Bildpunkten genauso viele Messschritte notwendig. Dafür enthält aber die Frequenzverteilung nun die Information über die Variation der Rotationseigenschaften für jeden Voxel separat, so dass erstens die erzielbare Auflösung nicht mehr durch die Partikeldispersion limitiert ist, und zweitens die Umgebungsparameter wie Temperatur, Molekülkonzentrationen usw. räumlich aufgelöst werden können.
Davon unbenommen verbleibt für das vorliegende Verfahren auch die Möglichkeit, zur Bildrekonstruktion den Frequenzraum mit einem Raster in Polarkoordinaten abzutasten.
In einer bevorzugten Ausgestaltung wird aus der ermittelten Verteilung der Quermagnetisierung eine ortsaufgelöste Dichteverteilung der Kleinstpartikel ermittelt und ausgegeben. Bei einer Ortskodierung der mittleren asynchronen Rotations- frequenzen durch ein auferlegtes magnetisches Gradientenfeld folgt die ortsaufgelöste Dichteverteilung der Kleinstpartikel unmittelbar aus den Amplituden der entsprechenden Frequenzanteile der Quermagnetisierung.
Um eine hohe Signalausbeute zu erhalten, und um insbesondere die vorbeschriebene Phasenkodierung zur mehrdimensionalen Bildgebung zu erzielen, werden zweckmäßigerweise vor Messung mittels eines kurzzeitigen magnetischen
Refokussierungsfelds die Magnetisierungen der Kleinstpartikel in eine zum rotierenden Magnetfeld synchrone Rotation versetzt. Unmittelbar nach Abschalten dieses Refokussierungsfelds rotieren alle Magnetisierungen dann in Phase. Das Messsignal der superpositionierten Quermagnetisierung wird maximal. Durch Anlegen eines kurzzeitigen Gradientenfeldes kann dann, ausgehend von dieser Situation, die Phasenkodierung vorgenommen werden. Ebenso kann ausgehend von dieser Situation in einem zur asynchronen Drehung angelegten äußeren Magnetfeld das Auseinanderlaufen der einzelnen Magnetisierungen aufgrund der unterschiedlichen chemischen Einbettung oder Umgebung beobachtet werden. Mit zunehmender Zeitspanne dephasieren die einzelnen asynchron rotierenden Magnetisierungen der Kleinstpartikel.
Das Refokussierungsfeld kann entweder durch eine kurzzeitige Erhöhung der magnetischen Feldstärke und/oder durch eine kurzzeitige Erniedrigung der Rotationsfrequenz des rotierenden Magnetfelds erzeugt werden. Alternativ kann ein kurzzeitig hinzugeschaltetes magnetisches Offsetfeld erzeugt werden.
In einer weiter vorteilhaften Ausgestaltung wird das Refokussierungsfeld derart erzeugt, dass selektiv nur die Magnetisierungen von Kleinstpartikeln gleicher Rotationseigenschaften in eine synchrone Rotation versetzt werden. Dabei wird die Tatsache ausgenutzt, dass die beschriebene kritische Frequenz Qc, die den Übergang zwischen synchroner und asynchroner Rotation beschreibt, auch vom Volumen bzw. der Form der Kleinstpartikel abhängig ist. Diese Abhängigkeit führt zum einen dazu, dass das Messsignal der erfassten superpositionierten Quermagnetisierung sich bei zunehmender Bandbreite der Kleinstpartikelvariation verschlechtert. Wird auf der anderen Seite der Refokussierungspuls so erzeugt, dass nur Kleinstpartikel gleicher Rotationseigenschaften in eine synchrone Rotation versetzt werden, so tragen nur diese zur superpositionierten Quermagnetisierung bei. Die Magnetisierungen der anderen Kleinstpartikel sind hingegen stochastisch verteilt. Insgesamt wird auf diese Weise eine Verbesserung des erfassten Messsignals erhalten, ohne dass die Bandbreite der Größen der eingesetzten
Kleinstpartikel verringert werden muss, was gegebenenfalls mit hohen Kosten verbunden ist.
In einer besonderes vorteilhaften Ausgestaltungsvariante wird zu einer Phasenkodierung ein rotierendes magnetisches Gradientenfeld mit seinem Gradientenverlauf räumlich über das Meßvolumen geschoben, wobei die Feldstärke im Gradientenverlauf über einen Wert, der zur Anregung einer asynchronen Rotation der Kleinstpartikel führt, bis wenigstens zu einem Wert, der zur Anregung einer synchronen Rotation der Kleinstpartikel führt, ansteigt. Dabei wird berücksichtigt, dass die Feldabhängigkeit der asynchronen Rotationsdrift nicht linear verläuft, und dass magnetische Kleinstpartikel typischerweise in ihren Partikeleigenschaften streuen.
Wird, wie vorstehend bereits beschrieben, eine Phasenkodierung durch Anlegen eines magnetischen Gradientenfelds für eine bestimmte Zeitdauer vorgenommen, so führen die nicht lineare Abhängigkeit der asynchronen Rotationsdrift von der Feldstärke sowie die Streuung der Partikeleigenschaften zu einer unerwünschten Verschlechterung der Bildauflösung. Die eingeprägte örtliche Phasenlage ist verschmiert. Sich in ihren Partikeleigenschaften unterscheidende Kleinstpartikel erfahren am selben Ort eine unterschiedliche Phaseneinprägung. Insbesondere unterscheidet sich auch der Phasenverlauf über das Messvolumen.
Wird stattdessen zur Phasenkodierung der Gradientenverlauf eines rotierenden magnetischen Gradientenfelds über das Messvolumen geschoben, und steigt die Feldstärke im Gradientenverlauf bis wenigstens zu einem Wert an, bei oder ab dem die Kleinstpartikel zu einer synchronen Rotation angeregt werden, so wird allen Kleinstpartikeln über das Messvolumen derselbe Phasenverlauf eingeprägt. Unterschiedliche Partikelsorten weisen zueinander lediglich einen global gleich- bleibenden Phasenversatz auf. Diese Phasendifferenz beeinträchtigt jedoch die Linearität der Abbildung nicht. Stattdessen enthält die Phasendifferenz zusätzliche Information über die Partikelverteilung oder andere lokale Unterschiede, was separat ausgewertet werden kann.
Dazu werden beispielhaft zwei Partikelsorten (oder zwei identische Partikel in unterschiedlicher Umgebung) betrachtet, die bei gegebener Rotationsrate des Gradientenfeldes eine unterschiedliche kritische Feldstärke aufweisen. Bei Unterschreiten der kritischen Feldstärke reißt die synchrone Rotation ab. Im Bereich des Gradientenfeldes mit hoher Feldstärke rotieren beide Partikelsorten synchron zur Rotation des äußeren Feldes. Wird der Gradientenverlauf nun räumlich über das Messvolumen geschoben, so wird zunächst für die Partikelsorte mit höherer kritischer Feldstärke diese unterschritten, und erst zeitlich versetzt dazu die der Partikelsorte mit geringerer kritischer Feldstärke. Mit anderen Worten erfahren beide Partikelsorten eine zeitlich versetzte Abschaltung des Rotationsfeldes. Der Zeitversatz ist dabei von der Form des Gradientenverlaufs und von der Verschiebungsrate abhängig. Über das Messvolumen bzw. in Kodierrichtung erfahren beide Partikelsorten die Aufprägung desselben Phasenverlaufs. Die Phasen beider Partikel unterscheiden sich global in einer festen Phasendifferenz.
Die Verschiebung des beschriebenen Gradientenverlaufs eines rotierenden Magnetfeldes ermöglicht es somit, unabhängig von Partikeleigenschaften und der chemischen Umgebung, eine Ortskodierung durch Einprägung eines Phasenverlaufs vorzunehmen. Die Einprägung einer sogenannten räumlichen Harmonischen mit einer räumlichen Wellenlänge, entlang derer die Phasenlage sich um 180° verändert, führt bei Messung der makroskopischen Quermagnetisierung zur Bestimmung des entsprechenden Fourierkoeffizienten. Durch entsprechende Wiederholung der Phasenkodierung mit verschiedener Verschiebungsrate können die Fourierkoeffizienten der anderen Harmonischen ermittelt werden, so dass die vollständige Fourierkodierung erhalten wird. Beim N-ten Phasenkodierschritt entsprechend N Bildpunkten in Kodierrichtung dreht sich die Richtung des Magnetisierungsvektors im Messvolumen Ν/2-mal um die eigene Achse. Zu einer dreidimensionalen Bildgebung müssen entsprechend NxNxN Schritte durchgeführt werden. Das beschriebene Verfahren verknüpft die Refokussierung mit der Aufprägung einer Phase. Beim Überfahren des Messvolumens mit dem Gradientenverlauf des rotierenden magnetischen Gradientenfeldes werden Feldstärken entsprechend einer Refokussierung wirksam, die die Kleinstpartikel zu einer synchronen Rotation anregen. Beim weiteren Verschieben unterschreitet die Feldstärke den kritischen Wert, so dass danach das Regime der asynchronen Rotation erreicht wird.
Bevorzugt steigt die Feldstärke im Gradientenverlauf von im Wesentlichen Null an. Praktisch gibt es aber eine untere Grenze der Feldstärke, ab der sich nur noch minimale Kodierfehler ergeben.
Die Verschiebung des Gradientenverlaufs erfolgt zweckmäßigerweise durch eine individuelle Ansteuerung einzelner Spulen in einem Spulenarray. Insbesondere wird hierzu entlang der Kodierrichtung ein zeitlich versetztes Ein- und Abschalten der individuellen Spulen vorgenommen.
Bei Partikeln mit Neelrelaxation ist effektiv die Größe das entscheidende Selektionskriterium. Entscheidend ist generell das Verhältnis aus magnetischem Moment des Partikels und seinem Reibungsterm. Bei massiven Partikeln mit im Gitter fixierter Magnetisierung ist der Reibungsterm unabhängig von der Größe, sondern hängt nur vom Formfaktor ab. Durch die geeignete Wahl der Feldstärke und/oder der Rotationsfrequenz des Refokusierungsfeldes werden demnach Partikel gleicher Rotationseigenschaften, d.h. Partikel mit gleicher Rotationsdrift bei gleicher Feldstärke und gleicher Rotationsfrequenz, selektiert.
Eine solche selektive Refokusierung kann beispielsweise durch ein rotierendes Magnetfeld erzielt werden, dessen Drehachse auf einer Trajektorie umläuft. In diesem Fall gibt es nur für ganz bestimmte Partikel mit einem ganzzahligen
Teilerverhältnis ihrer Rotationsfrequenz eine Refokusierung. Denn nur solche Partikel gelangen nach Abschluss der Anwendung des 3D-Rotationsfeldes wieder in ihre Ausgangsposition zurück, die eine 1/n-fache Rotationsfrequenz gegenüber der Rotation des Refokusierungsfeldes aufweisen (n: ganzzahlig). Auf diese Wei- se können hochselektive Refokusierungspulse erreicht werden. Die Signalselektion erfolgt durch einen geeigneten Tief- oder Bandpaßfilter.
Die Bandbreite der erfassten Quermagnetisierung kann bevorzugt durch eine entsprechende Einstellung der Feldstärke und/oder der Rotationsfrequenz des rotierenden Magnetfelds und/oder einer Einstellung des Gradientenfelds (Steigung, Feldstärke) verringert werden. Die Signalerfassung wird hierdurch verbessert.
In einer zweckmäßigen Ausgestaltung wird das oder jedes magnetische Gradientenfeld derart erzeugt, dass sich eine lineare Ortsabhängigkeit der mittleren Rotationsfrequenz der Magnetisierungen ergibt. Mit anderen Worten wird das magnetische Gradientenfeld gewissermaßen invers zur gegebenen Abhängigkeit der mittleren Rotationsfrequenz von der Feldstärke eingestellt, so dass sich im Umkehr- schluss eine lineare Abhängigkeit der mittleren Rotationsfrequenz vom Ort ergibt. Dies erlaubt eine raschere Bildrekonstruktion.
Die superpositionierte Quermagnetisierung kann grundsätzlich über geeignete physikalische Messmethoden abgegriffen werden. Insbesondere eignet sich ein induktiver Abgriff über eine geeignet ausgebildete und ausgerichtete Messspule.
Da die zu dem neuen Verfahren des Magnetic-Particle-Imaging benötigten Feldstärken im Milli-Tesla-Bereich (mT) liegen, eröffnet sich eine zur physiologischen Bildzuordnung einzigartige Möglichkeit, nämlich das hier angegebene Verfahren mit einem Low-Field-Kernspinresonanz-Verfahren zu kombinieren. Das zur Bildkodierung verwendete Gradientenfeld, welches mit Luftspulen erzeugt werden kann, lässt sich nämlich beliebig ausschalten. Das für die bisherige Methode der Bildgebung mittels magnetischer Kleinstpartikel verwendete Verfahren benötigt hingegen ein enorm starkes magnetisches Gradientenfeld, welches sich aufgrund der notwendigen Neodym-Dauermagnete nicht ausschalten lässt. Eine Kombination mit einem Kernspinresonanz-Verfahren scheidet daher aus.
Da ein Verfahren zur Bildgebung mittels magnetischer Kleinstpartikel ausnahmslos Kontrastmittel abbildet, wird aber insbesondere im medizinischen Bereich eine physiologische Bildzuordnung unerlässlich. Vorliegend kann diese physiologische Bildzuordnung nun insbesondere durch die parallele Bereitstellung eines Low- Field-Kernspinresonanz-Verfahrens erzielt werden. Das hier angegebene Verfahren zur Bildgebung aus der asynchronen Drehung von magnetischen Kleinstpartikeln und das Low-Field-Kernspinresonanz-Verfahren können dazu problemlos in einem einzigen Gerät verwirklicht werden. Denn auch das Low-Field-Kern- spinresonanz-Verfahren arbeitet bei Feldstärken, die sich mit üblichen Elektromagneten, insbesondere mit Luftspulen, erzeugen lassen. Zu einer medizinischen Untersuchung kann dann die Bildgebung des Low-Field-Kernspinresonanz- Verfahrens über die Abbildung von Organen, Geweben, etc. zur physiologischen Zuordnung der aufgenommenen Verteilung des Kontrastmittels mit magnetischen Kleinstpartikeln verwendet werden.
Hinsichtlich der Vorrichtung wird die gestellte Aufgabe erfindungsgemäß durch eine Vorrichtung zur Bildgebung mittels magnetischer Kleinstpartikel gelöst, die einen Magnetfeldgenerator zur Erzeugung eines um eine Längsachse rotierenden Magnetfeldes, eine Messeinrichtung zur Erfassung der Frequenzanteile der superpositionierten Quermagnetisierung, eine Steuervorrichtung, die eingerichtet ist, den Magnetfeldgenerator entsprechend dem vorbeschriebenen Verfahren anzusteuern und die erfassten Frequenzanteile in eine ortsaufgelöste Verteilung der Quermagnetisierung der Kleinstpartikel umzurechnen, und eine Ausgabevorrichtung zur Ausgabe der gewonnenen Verteilung umfasst.
Die Ausgabevorrichtung kann dabei die gewonnenen Messdaten bzw. die gewonnene ortsaufgelöste Verteilung beispielsweise in Form von digitalen Daten, als Speicherinformation auf Datenträgern, über Netzwerke oder dergleichen zur Verfügung stellen, oder unmittelbar ein Informationsträger sein, auf den die gewonnene ortsaufgelöste Verteilung dargestellt wird.
In einer zweckmäßigen Ausgestaltung umfasst die Messeinrichtung eine parallel zur Längsachse ausgerichtete Induktionsspule. Diese kann insbesondere als eine Solenoid-Spule mit mehreren parallelen Windungen ausgestaltet sein. Über eine solche Induktionsspule wird dann unmittelbar die superpositionierte Quermagneti- sierung als Messsignal erfasst. Bevorzugt ist die Messeinrichtung durch ein Array von Detektorspulen gebildet, wobei jedes Spulensegment des Arrays seinen eigenen Empfangskanal besitzt. Da sich jedes Spulensegment an einer anderen räumlichen Position befindet, ergibt sich aufgrund des räumlich begrenzten Empfangsprofils eines einzelnen Spulensegments bereits eine grobe räumliche Kodierung. Dadurch lässt sich die Bildkodierung mit entsprechend weniger
Phasenkodierschritten durchführen, wodurch sich die Bildakquisition beschleunigen lässt. Für jedes Spulensegment ergibt sich gewissermaßen ein unvollständiger Datensatz (wegen der fehlenden Phasenkodierung), aus dem sich grundsätzlich nun unter Verwendung der Zusatzinformation des Array ein einziger, vollständiger Datensatz rekonstruieren lässt. Zur Bilderzeugung müssen die Daten fouriertransformiert werden. Die Rekonstruktion kann insofern vor der Transformation unter Zuhilfenahme der Zusatzinformation des Array erfolgen oder nach der Transformation durch eine entsprechende Entfaltung vorgenommen werden.
Zur Unterdrückung von durch das äußere Magnetfeld erzeugten Induktionsspannungen oder -strömen im Messsignal ist das Eingangssignal des Magnetfeldgenerators bevorzugt mit dem Spulenausgangssignal gegenphasig gekoppelt. Diese Kopplung kann beispielsweise induktiv mittels eines Transformators oder dergleichen erfolgen.
Bevorzugt wird auch eine aktive Gegenkopplung zur Verbesserung des Messverfahrens eingesetzt. Dabei werden die Störanteile in der Empfangskette in einer Kalibriermessung erfasst. Diese Störanteile werden dann in der eigentlichen Messung mit entgegengesetztem Vorzeichen direkt in die Empfangskette
eingekoppelt. Dazu ist vorteilhafterweise ein Transformator oder allgemein ein HF- Übertrager vorgesehen. Das Einkopplungssignal wird insbesondere mittels eine Digital-Analog-Konverter generiert.
Zur Entfernung der nicht zum Messsignal beitragenden höheren Frequenzen der superpositionierten Quermagnetisierung, die aus Rotationsflips gegenüber dem äußeren rotierenden Magnetfeld herrühren, ist zweckmäßigerweise ein Tief- oder Bandpassfilter vorgesehen. Durch einen Tiefpassfilter werden Frequenzen unter- halb der Rotationsfrequenz des äußeren rotierenden Magnetfelds selektiert. Ein Bandpassfilter ermöglicht es auch, niederfrequente Störanteile auszublenden. Solche niederfrequente Störanteile können beispielsweise durch periodische vorgenommene Refokusierungen vor jeder Messsequenz auftreten.
In einer vorteilhaften Ausgestaltung umfasst der Magnetfeldgenerator normal leitende Spulenpaare, die zur Erzeugung eines rotierenden Magnetfeldes mit einer Feldstärke zwischen 0,1 mT und 100 mT und einer Rotationsfrequenz zwischen 1 kHz und 1 MHz ausgelegt sind. Derartige Spulen sind relativ günstig zu beziehen. Die gewünschten Magnetfelder lassen sich mit Luftspulen oder mit wassergekühlten Spulen erzeugen.
In einfacher Ausführung sind die Spulenpaare als orthogonal zueinander ausgerichtete Helmholtzspulenpaare ausgebildet. Dadurch lässt sich in einfacher Art und Weise ein rotierendes äußeres Magnetfeld mit hoher Homogenität erzeugen.
Zur Erzeugung des Gradientenfeldes kann der Magnetfeldgenerator entsprechend angesteuert werden. In einer vorteilhaften Weiterbildung ist wenigstens eine Gradientenspule zur Erzeugung eines magnetischen Gradientenfeldes in Querrichtung zum rotierenden Magnetfeld mit einer Feldstärke zwischen 10 mT und 100 mT vorgesehen. Zur Erzeugung eines linearen Gradienten ist insbesondere eine Golay-Biplanarspule bevorzugt. Im Gegensatz zur Kernspinresonanz entfällt der Hauptmagnet, der dort eine Zylindergeometrie erzwingt. Für die hier beschriebene Messvorrichtung ist daher die biplanare Ausführung die vorteilhafteste Ausführung einer Golay-Spule.
In einer besonders vorteilhaften Ausgestaltung ist die Vorrichtung zur Bildgebung mittels magnetischer Kleinstpartikel kombiniert mit einer hierzu relativ positionierten Vorrichtung zur Durchführung eines Low-Field-Kernspinresonanz-Verfahrens. Auf diese Weise kann eine physiologische Bildzuordnung vorgenommen werden.
Weitere Vorteile lassen sich sinngemäß aus dem beschriebenen Verfahren auf die hier angegebene Vorrichtung übertragen. Ausführungsbeispiele der Erfindung sind anhand einer Zeichnung näher erläutert. Dabei zeigen:
Fig. 1 den Frequenzgang der mittleren Rotationsfrequenz der Magnetisierung eines Kleinstpartikels gegenüber der Rotationsfrequenz eines äußeren Magnetfeldes,
Fig. 2 den Verlauf der superpositionierten Quermagnetisierung nach einem
Refokusierungspuls und
Fig. 3 schematisch eine geeignete Vorrichtung zur Bildgebung mittels
magnetischer Kleinstpartikel.
In Fig. 1 ist der Verlauf der mittleren Rotationsfrequenz der Magnetisierung eines magnetischen Kleinstpartikels gegenüber der Rotationsfrequenz eines äußeren magnetischen Feldes dargestellt. Dabei entspricht der Verlauf der Kurve a gegenüber dem Verlauf der Kurve b einer niedrigeren Feldstärke.
Man erkennt, dass die mittlere Rotationsfrequenz der Magnetisierung eines magnetischen Kleinstpartikels bis zu einer kritischen Frequenz üc synchron mit der äußeren Rotationsfrequenz dreht. Oberhalb der kritischen Frequenz Qc verringert sich die mittlere Rotationsfrequenz gegenüber der äußeren Rotationsfrequenz. Die Magnetisierung oder der Kleinstpartikel selbst rotiert dann mit einer mittleren Rotationsfrequenz asynchron gegenüber dem äußeren Feld. Die Tatsache, dass die kritische Frequenz Qc und damit auch die mittlere Rotationsdrift gegenüber dem äußeren magnetischen Feld eine Feldabhängigkeit zeigen, lässt sich zur Bildgebung verwenden.
Die Kurven a und b in Fig. 1 können ebenso gut zur Veranschaulichung der Abhängigkeit der mittleren Rotationsdrift gegenüber einer veränderten chemischen Einbettung oder Umgebung herangezogen werden. Beispielsweise würde sich der Kurvenverlauf a bei einer mechanischen Drehung des Kleinstpartikels in einem Medium höherer Viskosität gegenüber dem Kurvenverlauf b ergeben. Bei gleicher Feldstärke kann der Kleinstpartikel im höher viskosen Medium bereits bei einer niedrigeren äußeren Rotationsfrequenz dem Feld nicht mehr folgen.
In Fig. 2 ist der zeitliche Verlauf der gemessenen superpositionierten Quermagnetisierung MQ nach einem Refokussierungspuls mittels eines kurzzeitig angelegten äußeren Magnetfeldes gezeigt. Nach Abschalten des Refokussierungsfeldes rotieren die Einzelmagnetisierungen der Kleinstpartikel in einem entsprechen angelegten rotierenden, äußeren Magnetfeld in Phase. Das superpositionierte Signal der Quermagnetisierung MQ weist einen maximalen Wert auf. Entsprechend der Rotationsfrequenz des äußeren Magnetfeldes ergibt sich das dargestellte Summensignal. Infolge von Variationen der Partikelgröße und/oder Partikelform, infolge von Feldinhomogenitäten und infolge von unterschiedlichen chemischen Umgebungen dephasieren die Einzelmagnetisierungen zusehends. Die Amplitude des Messsignals fällt mit einer Relaxationszeit τ ab. Durch Drehrichtungsumkehr des äußeren Magnetfeldes könnte ein Echo im Messsignal ähnlich dem aus dem Kernspinresonanz-Verfahren bekannten Spin-Echo erzeugt werden.
In Fig. 3 ist schematisch eine Vorrichtung 1 zur Bildgebung mittels magnetischer Kleinstpartikel dargestellt. Die Vorrichtung 1 umfasst hierzu einen Magnetfeldgenerator 3, der aus zwei orthogonal zueinander positionierten Helmholtzspulen- paaren 4 und 5 gebildet ist. Das Helmholtzspulenpaar 4 erzeugt hierbei ein homogenes Magnetfeld in x-Richtung. Das Helmholtzspulenpaar 5 erzeugt ein hierzu orthogonales homogenes Magnetfeld in y-Richtung. Über eine sinusförmige An- steuerung der entsprechenden Spulen lässt sich ein um die z-Achse rotierendes äußeres Magnetfeld erzeugen.
Im Innenraum zwischen den Helmholtzspulenpaaren 4,5 ist ein Messvolumen 6 gebildet, in dem beispielsweise eine räumliche Verteilung eines magnetischen Kleinstpartikel enthaltenden Kontrastmittels erfasst werden soll. Dazu rotiert das erzeugte äußere Magnetfeld mit einer entsprechend vorgegebenen Frequenz und einer entsprechend gewählten Feldstärke derart, dass die Einzelmagnetisierungen der Kleinstpartikel asynchron zum äußeren Feld rotieren. Die senkrecht zur z- Achse ausgerichtete superpositionierte Quermagnetisierung des im Messvolu- men 6 befindlichen Partikelensembles wird über eine Messeinrichtung 7 induktiv erfasst. Die Messeinrichtung 7 ist eine parallel zur z-Achse ausgerichtete Solinoid- Spule.
Zur Ansteuerung der Helmholtzspulen 4,5 sowie zur Erfassung des von der Messeinrichtung 7 empfangenen Messsignals ist eine Steuervorrichtung 10 vorgesehen. Zusätzlich zu dem rotierenden Magnetfeld wird über eine entsprechende Ansteuerung der Helmholtzspulen 4,5 ein magnetisches Gradientenfeld erzeugt, welches zur Ortskodierung der Frequenzanteile der superpositionierten Quermagnetisierung dient. Alternativ können für alle drei Raumrichtungen Gradientenspulen zur Erzeugung insbesondere linearer Gradienten vorgesehen sein. Hierfür eignen sich in besonderem Maße so genannte Golay-Biplanarspulen.
Über die Steuervorrichtung 10 kann eine Abbildung der räumlichen Verteilung der magnetischen Kleinstpartikel oder eine Abbildung von Eigenschaften deren chemischer Umgebung durch entsprechende Ansteuerung der Magnetspulen erzeugt werden. Beispielsweise kann ein Refokussierungsmagnetfeld zur Phasenausrichtung der Einzelmagnetisierungen erzeugt und anschließend zu einer zweidimensionalen Bildgebung der Frequenzraum durch ein kartesisches Raster abgetastet werden, wozu durch Variation der Gradientenfelder jeweils eine Phasenkodierung vorgenommen wird.
Zu einer Unterdrückung von induktiven Spannungen oder Strömen, die von den äußeren Magnetfeldern herrühren, ist zwischen den Spulen des Spulenpaars 5 eine Gegenkopplungsaufnahme 14 angeordnet. Deren Ausgangssignal wird über eine Kopplungseinheit 15 (beispielsweise induktiv) dem Ausgangssignal der Messeinrichtung 7 gegengekoppelt. Weiter ist ein Tiefpassfilter 17 zur Selektion der gegenüber der Rotationsfrequenz des äußeren Magnetfeldes verringerten mittleren asynchronen Rotationsfrequenzen vorgesehen.
Die Steuervorrichtung 10 ist mit einer Abbildungsvorrichtung 12 verbunden, die beispielsweise als ein Informationsträger ausgebildet ist, der die ermittelte Abbil- dung anzeigt. Zur physiologischen Bildzuordnung ist eine Vorrichtung 18 zur Bildgebung mittels des Low-Field-Kernspinresonanzverfahrens kombiniert.
Bezugszeichenliste mittlere Rotationsrate (kleines Feld) mittlere Rotationsrate (großes Feld) Querrelaxation
Quermagnetisierung
1 Vorrichtung
3 Magnetfeldgenerator
4 Helmholtzspulenpaar, x-Richtung
5 Helmholtzspulenpaar, y-Richtung
6 Messvolumen
7 Messeinrichtung
10 Steuervorrichtung
12 Abbild ungsvorrichtung
14 Gegenkopplungsaufnahme
15 Kopplungseinheit
7 Tiefpassfilter
18 Low-Field-Kernspinresonanz- Vorrichtung

Claims

Ansprüche
Verfahren zur Bildgebung aus einer Verteilung magnetischer Kleinstpartikel, wobei
mittels eines um eine Längsachse (z) rotierenden äußeren Magnetfelds geeigneter Feldstärke und Rotationsfrequenz die Magnetisierungen der Kleinstpartikel in eine zum Magnetfeld asynchrone Rotation versetzt werden, wodurch sich für ein Partikelensemble eine von der Feldstärke abhängige asynchrone mittlere Rotationsfrequenz ergibt,
mittels eines magnetischen Gradientenfelds der asynchronen mittleren Rotationsfrequenz jeweiliger Partikelensemble eine Ortsabhängigkeit aufgeprägt wird,
die Frequenzanteile der superpositionierten Quermagnetisierung (MQ) des Partikelensembles erfasst werden und
mittels der Frequenzanteile eine ortsaufgelöste Verteilung der Quermagnetisierung (MQ) der Kleinstpartikel ermittelt und ausgegeben wird.
Verfahren nach Anspruch 1 ,
wobei zu einer Frequenzkodierung ein magnetisches Gradientenfeld während der Erfassung der Frequenzanteile der Quermagnetisierung (MQ) erzeugt wird.
Verfahren nach Anspruch 1 oder 2,
wobei zu einer Phasenkodierung, insbesondere vor der Erfassung der Frequenzanteile der Quermagnetisierung (MQ), ein magnetisches
Gradientenfeld für eine vorgegebene Zeitspanne erzeugt wird.
4. Verfahren nach Anspruch 3,
wobei nach Abschalten des magnetischen Gradientenfeldes ein zweites gleiches magnetisches Gradientenfeld umgekehrten Vorzeichens mit derselben Zeitspanne erzeugt wird, und wobei danach in einer Ebene senkrecht zum Verlauf des Gradienten die ortsaufgelöste Verteilung der Quermagnetisierung (MQ) ermittelt und ausgegeben wird.
5. Verfahren nach einem der vorhergehenden Ansprüche,
wobei ein magnetisches Gradientenfeld durch räumliche Variation der Feldstärke des rotierenden Magnetfeldes erzeugt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche,
wobei die Frequenzanteile der Quermagnetisierung (MQ) mehrmals für verschiedene Gradientenfelder erfasst werden.
7. Verfahren nach einem der vorhergehenden Ansprüche,
wobei in einem ersten Schritt für eine Zeitspanne ein erstes
Gradientenfeld entlang einer ersten Richtung erzeugt wird, wobei in einem zweiten Schritt ein zweites Gradientenfeld entlang einer zweiten Richtung erzeugt wird,
wobei in einem dritten Schritt die Frequenzverteilung der Quermagnetisierung (MQ) erfasst wird,
wobei in einem vierten Schritt die Schritte eins bis drei mit einer Anzahl abgeänderter erster Gradientenfelder wiederholt werden, und wobei aus dem gewonnenen Satz an Messsignalen eine zweidimensionale Verteilung der Quermagnetisierung (MQ) ermittelt und ausgegeben wird.
8. Verfahren nach Anspruch 7,
wobei nach dem zweiten Schritt ein drittes Gradientenfeld entlang einer dritten Richtung erzeugt wird, wobei die Schritte eins bis vier mit einer Anzahl abgeänderter zweiter Gradientenfelder wiederholt werden und
wobei aus dem Satz an gewonnenen Messsignalen eine dreidimensionale Verteilung der Quermagnetisierung (MQ) ermittelt und ausgegeben wird.
9. Verfahren nach einem der vorhergehenden Ansprüche,
wobei aus der Verteilung der Quermagnetisierung (MQ) eine ortsaufgelöste Dichteverteilung der Kleinstpartikel ermittelt und ausgegeben wird.
10. Verfahren nach einem der vorhergehenden Ansprüche,
wobei vor Messung mittels eines kurzzeitigen magnetischen
Refokusierungsfelds die Magnetisierungen der Kleinstpartikel in eine zum rotierenden Magnetfeld synchrone Rotation versetzt werden.
1 1. Verfahren nach Anspruch 10,
wobei das Refokusierungsfeld durch eine kurzzeitige Erhöhung der Feldstärke und/oder Erniedrigung der Rotationsfrequenz des rotierenden Magnetfelds, und/oder durch ein kurzzeitig hinzu geschaltetes magnetisches Offsetfeld erzeugt wird.
12. Verfahren nach Anspruch 10 oder 1 1 ,
wobei das Refokusierungsfeld derart erzeugt wird, dass selektiv nur die Magnetisierungen von Kleinstpartikeln gleicher Rotationseigenschaften in eine synchrone Rotation versetzt werden.
13. Verfahren nach einem der vorhergehenden Ansprüche,
wobei zu einer Phasenkodierung ein rotierendes magnetisches
Gradientenfeld mit seinem Gradientenverlauf räumlich über das Meßvolumen geschoben wird, wobei die Feldstärke im Gradientenverlauf über einen Wert, der zur Anregung einer asynchronen Rotation der Kleinstpartikel führt, bis wenigstens zu einem Wert, der zur Anregung einer synchronen Rotation der Kleinstpartikel führt, ansteigt.
14. Verfahren nach Anspruch 13,
wobei die Feldstärke im Gradientenverlauf von im Wesentlichen Null an ansteigt.
15. Verfahren nach Anspruch 13 oder 14,
wobei der Gradientenverlauf des rotierenden Gradientenfelds durch eine individuelle Ansteuerung einzelner Spulen in einem Spulenarray räumlich verschoben wird.
16. Verfahren nach einem der Ansprüche 13 bis 15,
wobei zur Bildgebung die Phasenkodierung mehrfach mit veränderter Verschiebungsrate wiederholt wird.
17. Verfahren nach einem der vorhergehenden Ansprüche,
wobei die rotierenden Magnetisierungen der Kleinstpartikel durch eine Drehrichtungsumkehr des rotierenden Magnetfelds in Phase gebracht werden.
18. Verfahren nach einem der vorhergehenden Ansprüche,
wobei die Feldstärke und/oder die Rotationsfrequenz des rotierenden Magnetfelds und/oder das Gradientenfeld zu einer Minimierung der Bandbreite der erfassten Quermagnetisierung eingestellt werden.
19. Verfahren nach einem der vorhergehenden Ansprüche,
wobei mittels des oder jedes Gradientenfeldes eine lineare Ortsabhängigkeit der mittleren Rotationsfrequenz erzeugt wird.
20. Verfahren nach einem der vorhergehenden Ansprüche,
wobei die Frequenzanteile der Quermagnetisierung induktiv gemessen werden.
21. Verfahren nach einem der vorhergehenden Ansprüche,
wobei zugleich eine Bildgebung mittels eines Low-Field-Kernspinresonanz- Verfahren zu einer Bildzuordnung durchgeführt wird.
22. Vorrichtung (1 ) zur Bildgebung mittels magnetischer Kleinstpartikel, mit einem Magnetfeldgenerator (3) zur Erzeugung eines um eine Längsachse (z) rotierenden Magnetfeldes, mit einer Messeinrichtung (7) zur Erfassung der Frequenzanteile der superpositionierten Quermagnetisierung (MQ), mit einer Steuervorrichtung (10), die eingerichtet ist, den Magnetfeldgenerator (3) entsprechend einem Verfahren nach einem der vorhergehenden Ansprüche anzusteuern und die erfassten Frequenzanteile in eine ortsaufgelöste Verteilung der Quermagnetisierung (MQ) der Kleinstpartikel umzurechnen, und mit einer Ausgabevorrichtung (12) zur Ausgabe der gewonnenen Verteilung.
23. Vorrichtung (1 ) nach Anspruch 22,
wobei die Messeinrichtung (7) eine Anzahl von parallel zur Längsachse (z) ausgerichteter Induktionsspulen umfasst.
24. Vorrichtung (1 ) nach Anspruch 23,
wobei das Eingangssignal des Magnetfeldgenerators (3) mit dem Spulenausgangssignal gegenphasig gekoppelt ist.
25. Vorrichtung (1 ) nach einem vorhergehenden Ansprüche 22 bis 24,
wobei ein Tief- oder Bandpassfilter (17) zur Filterung des Spulenausgangssignals vorgesehen ist.
26. Vorrichtung (1 ) nach einem der vorhergehenden Ansprüche 22 bis 25,
wobei der Magnetfeldgenerator (3) normalleitende Spulenpaare umfasst, die zur Erzeugung eines rotierenden Magnetfeldes mit einer Feldstärke zwischen 0,1 mT und 100 mT und einer Rotationsfrequenz zwischen 1 kHz und 1 MHz ausgelegt sind.
27. Vorrichtung (1 ) nach einem der vorhergehenden Ansprüche 22 bis 26, wobei die Spulenpaare als Helmholtzspulenpaare (4,5) ausgebildet sind.
28. Vorrichtung (1 ) nach einem der Ansprüche 22 bis 25,
wobei wenigstens eine Gradientenspule zur Erzeugung eines magnetischen Gradientenfeldes in Querrichtung mit einer Feldstärke zwischen 0,1 mT und 100 mT vorgesehen ist.
29. Vorrichtung (1 ) nach Anspruch 28,
wobei die Gradientenspule als eine Golay-Biplanarspule ausgebildet ist.
30. Vorrichtung (1 ) nach einem der Ansprüche 22 bis 29,
kombiniert mit einer hierzu relativ positionierten Vorrichtung (14) zur Durchführung eines Low-Field-Kernspinresonanzverfahren.
EP11716372.5A 2010-04-01 2011-04-01 Verfahren zur bildgebung mittels magnetischer kleinstpartikel sowie vorrichtung hierfür Not-in-force EP2552310B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010013900A DE102010013900B4 (de) 2010-04-01 2010-04-01 Verfahren zur Bildgebung mittels magnetischer Kleinstpartikel sowie Vorrichtung hierfür
PCT/EP2011/001651 WO2011120713A1 (de) 2010-04-01 2011-04-01 Verfahren zur bildgebung mittels magnetischer kleinstpartikel sowie vorrichtung hierfür

Publications (2)

Publication Number Publication Date
EP2552310A1 true EP2552310A1 (de) 2013-02-06
EP2552310B1 EP2552310B1 (de) 2018-05-23

Family

ID=44315108

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11716372.5A Not-in-force EP2552310B1 (de) 2010-04-01 2011-04-01 Verfahren zur bildgebung mittels magnetischer kleinstpartikel sowie vorrichtung hierfür
EP11715169.6A Not-in-force EP2553455B1 (de) 2010-04-01 2011-04-01 Verfahren zur bestimmung der anwesenheit eines analyten mittels magnetischer kleinstpartikel sowie vorrichtung hierfür

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11715169.6A Not-in-force EP2553455B1 (de) 2010-04-01 2011-04-01 Verfahren zur bestimmung der anwesenheit eines analyten mittels magnetischer kleinstpartikel sowie vorrichtung hierfür

Country Status (4)

Country Link
US (2) US9869674B2 (de)
EP (2) EP2552310B1 (de)
DE (1) DE102010013900B4 (de)
WO (2) WO2011120713A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047270A1 (de) 2010-10-01 2012-04-05 Hochschule Für Angewandte Wissenschaften Fachhochschule Würzburg-Schweinfurt Fluxgatesensor
DE102011089798B4 (de) * 2011-12-23 2021-06-10 Biophysical Tools GmbH Massiv paralleler Test molekularer Wechselwirkungen basierend auf magnetischen Nano- und Mikropartikeln
US10156567B2 (en) 2012-12-17 2018-12-18 General Electric Company In-vitro magnetic resonance detection of a target substance without separating bound magnetic nanoparticles from unbound magnetic nanoparticles
WO2016070180A1 (en) * 2014-10-31 2016-05-06 Weinberg Medical Physics Llc Method and apparatus for non-contact axial particle rotation and decoupled particle propulsion
DE102015101834A1 (de) * 2015-02-09 2016-08-11 Technische Universität Ilmenau Verfahren und Vorrichtung zur Detektion und Lokalisierung von mikrostimulierten Partikeln
DE202016006620U1 (de) 2015-10-28 2017-04-12 Qass Gmbh Vorrichtungen zum Beobachten eines Magnetfelds eines Materialvolumens
EP3370612B1 (de) * 2015-11-03 2019-05-22 Koninklijke Philips N.V. Untersuchungsvorrichtung zur verfolgung von permanent magnetischen kügelchen
US11679254B2 (en) * 2016-11-11 2023-06-20 The General Hospital Corporation System and method for using concomitant fields to control peripheral nerve stimulation (PNS) in MRI image encoding
US11585882B2 (en) * 2018-04-11 2023-02-21 Mars Sciences Limited Superparamagnetic particle imaging and its applications in quantitative multiplex stationary phase diagnostic assays
EP3702796A1 (de) * 2019-02-28 2020-09-02 Julius-Maximilians-Universität Würzburg System zur einseitigen erzeugung von magnetfeldern für die mehrdimensionale codierung von magnetpartikeln und verfahren zum betreiben derselben
FR3100616B1 (fr) * 2019-09-06 2021-09-17 Magnisense Se Dispositif de mesure comportant un générateur de champ magnétique et procédé de mesure associé
CN113129403B (zh) * 2021-04-19 2022-06-10 中国科学院自动化研究所 基于前向模型的磁粒子成像系统矩阵图像重建方法及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486457A (en) * 1993-08-25 1996-01-23 Children's Medical Center Corporation Method and system for measurement of mechanical properties of molecules and cells
EP1525447A4 (de) 2002-05-31 2006-12-06 Univ California Verfahren und vorrichtung zum erkennen von interessierenden substanzen
WO2004091395A2 (en) * 2003-04-15 2004-10-28 Philips Intellectual Property & Standards Gmbh Method for spatially resolved determination of magnetic particle distribution in an area of examination
US20060248944A1 (en) * 2003-04-15 2006-11-09 Koninklijke Philips Electronics N.V. Method to determine the spatial distribution of magnetic particles and magnetic particle administering compositions
WO2004091408A2 (en) * 2003-04-15 2004-10-28 Philips Intellectual Property & Standards Gmbh Elastography device and method for determining and imaging of mechanical and elastic parameters of an examination object
EP1615544B1 (de) 2003-04-15 2012-02-01 Philips Intellectual Property & Standards GmbH Anordnung sowie verfahren zur räumlich aufgelösten bestimmung von zustandsgrössen in einem untersuchungsbereich
WO2004091390A2 (en) 2003-04-15 2004-10-28 Philips Intellectual Property & Standards Gmbh Device and method for examination and use of an electrical field in an object under examination containing magnetic particles
CN1829916B (zh) * 2003-07-30 2010-09-29 皇家飞利浦电子股份有限公司 用于确定生物活性分子之间结合的磁性粒子的使用
US20090227044A1 (en) * 2006-01-26 2009-09-10 Dosi Dosev Microchannel Magneto-Immunoassay
DE102006037160B4 (de) 2006-04-13 2009-10-08 Charité - Universitätsmedizin Berlin Vorrichtung für die Magnetresonanzelastographie (MRE)
CN101626725B (zh) 2007-02-15 2011-08-10 皇家飞利浦电子股份有限公司 用于磁性粒子成像的设备、用于影响和/或检测多个和单个磁性粒子的方法
US9068977B2 (en) 2007-03-09 2015-06-30 The Regents Of The University Of Michigan Non-linear rotation rates of remotely driven particles and uses thereof
JP5100212B2 (ja) * 2007-06-15 2012-12-19 株式会社東芝 磁性微粒子イメージング装置、検出コイル配設方法および磁束検出装置
US7994786B2 (en) 2007-06-19 2011-08-09 Mary Hitchcock Memorial Hospital System and method for use of nanoparticles in imaging and temperature measurement
CN101802614B (zh) * 2007-09-21 2013-08-07 皇家飞利浦电子股份有限公司 具有高频交流磁场的传感器及描述流体样本特征的方法
US9167983B2 (en) 2008-08-15 2015-10-27 The University Of Houston System Imaging method for obtaining spatial distribution of nanoparticles in the body
WO2010041178A1 (en) 2008-10-06 2010-04-15 Koninklijke Philips Electronics N.V. Biosensor system and method for determining the properties of a magnetic particle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011120713A1 *

Also Published As

Publication number Publication date
EP2553455B1 (de) 2018-01-24
EP2552310B1 (de) 2018-05-23
US20130157256A1 (en) 2013-06-20
DE102010013900B4 (de) 2013-01-03
WO2011120712A1 (de) 2011-10-06
US9488649B2 (en) 2016-11-08
DE102010013900A1 (de) 2011-10-06
US20130079623A1 (en) 2013-03-28
WO2011120713A1 (de) 2011-10-06
EP2553455A1 (de) 2013-02-06
US9869674B2 (en) 2018-01-16

Similar Documents

Publication Publication Date Title
EP2552310B1 (de) Verfahren zur bildgebung mittels magnetischer kleinstpartikel sowie vorrichtung hierfür
EP1304542B1 (de) Verfahren zur Ermittlung der räumlichen Verteilung magnetischer Partikel
EP1780556B1 (de) Kernspintomographie mit lokalen Magnetfeldgradienten in Verbindung mit lokalen Empfangsspulen
DE102005018937B4 (de) Verfahren und Gerät zur verbesserten sendeseitig beschleunigten PPA-basierten Volumen-selektiven Magnet-Resonanz-Bildgebung sowie Computersoftwareprodukt zur Implementierung des Verfahrens
EP2100158B1 (de) Verfahren zur gewinnung von amplituden- und phasenverläufen von hf-pulsen für die räumlich-selektive anregung
DE102014202358B4 (de) Optimierung von Rephasierungs-Gradientenpulsen bei einer simultanen MR-Anregung mehrerer Schichten
DE102008021736B3 (de) Verfahren zur Bestimmung der räumlichen Verteilung von Magnetresonanzsignalen beim Einsatz von lokalen ortskodierenden Magnetfeldern
DE102011078680B3 (de) Magnetfeldunempfindliche CEST-Bildgebung
DE102013214867B4 (de) Ermittlung einer Magnetresonanz-Ansteuersequenz mit konzentrischen, kreisförmigen Sendetrajektorien
EP2511725A1 (de) Verfahren der bildgebenden Magnetresonanz zur Selektion und Aufnahme von gekrümmten Schichten
DE2928551A1 (de) Verfahren und vorrichtung zum aufzeichnen von linien der atomkerndichte innerhalb eines objekts unter anwendung der magnetischen kernresonanz
DE112015001951T5 (de) System und Verfahren zur Magnetresonanz-Bildgebung mit reduziertem Sichtfeld
DE102008014060A1 (de) Verfahren zur Bestimmung einer Phasenlage einer Magnetisierung und Magnetresonanzanlage
DE102017200446A1 (de) Korrektur eines MR-Sendesignals
DE102005040540B4 (de) Verfahren und Gerät zur Nachweisverbesserung einer schwachsensitiven Atomkernart in der NMR-Spektroskopie
DE102011007825B4 (de) Verfahren zur Bestimmung der räumlichen Verteilung von Magnetresonanzsignalen in Subvolumen eines Untersuchungsobjektes
DE102012206493B3 (de) Magnetresonanz-Bildgebungsverfahren mit optimierter Hintergrundphasenverteilung
DE4224237A1 (de) Verfahren und vorrichtung zur selektiven anregung der kernspins bei abbildungen mittels magnetischer kernresonanz
DE102005015069B4 (de) Verfahren zur Vermeidung linearer Phasenfehler in der Magnetresonanz-Spektroskopie
DE102013226246B4 (de) Verfahren zur schichtselektiven Magnetresonanz-Bildgebung und Magnetresonanz-Anlage
EP0242911A1 (de) Verfahren und Anordnung zur Bestimmung einer Kernmagnetisierungsverteilung in einem Teil eines Körpers
DE4480415B4 (de) Verfahren zum gleichzeitigen Erfassen von zahlreichen Bewegungskomponenten von einem Material in einem Subjekt
EP1107015B1 (de) MR-Verfahren zur Erzeugung von Navigatorimpulsen
DE19750214C2 (de) Verfahren zur Erzeugung kernspinspektroskopischer Signale durch räumliche Modulation von z-Magnetisierung
DE10054454B4 (de) System zur Erzeugung einer Abbildung mittels paramagnetischer Elektronenresonanz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR, VOLKER C.

Owner name: RUECKERT, MARTIN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUECKERT, MARTIN

Inventor name: BEHR, VOLKER C.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170428

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171024

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014213

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1000842

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180523

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180823

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180823

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180824

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014213

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190423

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190424

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190401

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180924

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1000842

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110401

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210301

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011014213

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103