EP2546678B1 - Mehrkanal-, Mehrfachmodus-, Mehrfachfunktions-L-Band-Funk-Sender-Empfänger - Google Patents

Mehrkanal-, Mehrfachmodus-, Mehrfachfunktions-L-Band-Funk-Sender-Empfänger Download PDF

Info

Publication number
EP2546678B1
EP2546678B1 EP12174247.2A EP12174247A EP2546678B1 EP 2546678 B1 EP2546678 B1 EP 2546678B1 EP 12174247 A EP12174247 A EP 12174247A EP 2546678 B1 EP2546678 B1 EP 2546678B1
Authority
EP
European Patent Office
Prior art keywords
signals
signal
tcas
antenna
dme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12174247.2A
Other languages
English (en)
French (fr)
Other versions
EP2546678A1 (de
Inventor
James B. Jones
Pal Meiyappan
Paul Ferguson
Mark Virtue
Thomas W. Hastings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of EP2546678A1 publication Critical patent/EP2546678A1/de
Application granted granted Critical
Publication of EP2546678B1 publication Critical patent/EP2546678B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes

Definitions

  • TCAS traffic collision avoidance system
  • ATC air traffic control
  • DME distance-measuring equipment
  • UAT universal access transceiver
  • a DME receiver is included along with a receiver for the TCAS, transponder, and UAT.
  • This prior-art design still includes all the analog circuitry for generating three separate narrowband signals for the TCAS, transponder, and UAT intermediate frequency (IF) outputs.
  • the DME IF output is separately generated.
  • WO 2008/054507 discloses an integrated avionics system
  • EP 1826913 discloses a method and apparatus for a multifunction radio
  • US 2005/0156777 discloses an integrated traffic, surveillance apparatus
  • US 2008/0174473 discloses systems and methods for using a TCAS as directional antenna.
  • the present invention in its various aspects is as set out in the appended claims.
  • the present invention combines transmit and receive functions of all four radios (traffic collision advisory system (TCAS), air traffic control (ATC) transponder, distance-measuring equipment (DME), and universal access transceiver (UAT)) into a single radio.
  • TCAS traffic collision advisory system
  • ATC air traffic control
  • DME distance-measuring equipment
  • UAT universal access transceiver
  • the invention incorporates a wideband receiver capable of receiving multiple signals within the frequency range of 962 MHz to 1213 MHz. It simultaneously decodes four different formats -- traffic collision-avoidance system (TCAS), at 1090 MHz, air traffic control (ATC) transponder at 1030 MHz, universal access transceiver (UAT) at 978 MHz, and distance-measuring equipment (DME) in 1-MHz channels within a 962 MHz to 1213 MHz DME band.
  • TCAS traffic collision-avoidance system
  • ATC air traffic control
  • UAT universal access transceiver
  • DME distance-measuring equipment
  • This invention also incorporates a wideband transmitter capable of transmitting multiple signal formats. That is: TCAS at 1030 MHz, ATC transponder at 1090 MHz, and DME in 1-MHz channels within 1025 MHz to 1150 MHz.
  • ADC analog-to-digital conversion
  • This invention uses a subbanding technique and block-down conversion to cover the entire L-band avionics radio spectrum, thereby making wideband ADC practical.
  • Another practical limitation of wideband radio is the linearity at high input signal levels of the analog front end. This limitation is overcome by limiting the gain of the analog front end and judicious implementation of the block downconversion to place the harmonics of down converted signals outside of the sampled and digitally filtered bandwidth.
  • the transmitter covers multiple L-band functions by using either a single multimode modulator or switchable mode-specific modulators.
  • the entire L-band frequency spectrum is amplified using wideband power amplifiers. Higher power level and efficiency for the DME function are achieved by using mode-select information and adaptively changing power amplifier bias.
  • a first Nyquist sample region is used in A to D conversion.
  • F c example 320MHz
  • the analog frequency to be digitized is selected to be less than 1 ⁇ 2 the sampling clock frequency (160MHz). If this method is employed in wideband radio, harmonics of received down converted signals produce interference for other desired channels.
  • LO frequency of 1112MHz could be used.
  • This block down conversion produces signals from 12MHz to 150MHz.
  • the receiver receives a strong TCAS signal at 1090MHZ, this is down converted to 22MHz and this strong signal generates harmonics at 44MHz, 66MHz... If there is a weak DME signal is present at 1068MHz this will be down converted to 44MHz using the same LO at 1112MHz. Because of the harmonics generated by TCAS reception, the DME channel will be polluted rendering the wideband radio inoperable.
  • LO frequency is chosen such that the block down converted signal's harmonics are placed outside the A to D sampling bandwidth using second Nyquist region. For example if LO frequency is chosen to be 1265MHz, then the TCAS signal at 1090 will be down converted to 175MHz. Harmonics of this fall outside the maximum frequency for any channel used in this wideband radio implementation.
  • FIGURE 1 illustrates an aircraft 20 that includes a multichannel, multimode, multifunction L-band radio transceiver system.
  • the transceiver system includes top and bottom antennas 30, 32 that are in signal communication with respective receivers 34, 36 and transmitters (not shown).
  • the receivers 34, 36 block downconvert the radio frequency (RF) signals received by the antennas 30, 32, digitize the resulting wideband intermediate frequency (IF) spectrum with a high speed ADC, and sends the digital signals to digital down converters (DDCs) 38.
  • RF radio frequency
  • IF intermediate frequency
  • the DDCs 38 apply digital signal processing, including but not limited to filtering and decimation, to the multichannel digital signals which convert them into single function data streams that are then sent to the four radio signal processors: a TCAS 40, a transponder (XPDR) 42, a UAT 44, and a DME 46. Exemplary contents of the receivers 34, 36 are shown in FIGURE 3 .
  • FIGURE 2 illustrates an exemplary process 80 performed by the transceiver system shown in FIGURE 1 .
  • the top and bottom antennas 30, 32 receive first and second radio signals.
  • the first received signal is filtered according to a first bandwidth that is associated with the TCAS 40, the transponder 42, and the UAT 44.
  • the filtered first signal is converted to a first digital signal.
  • the second received signal is filtered and split into low and high band signals.
  • the low band signal is associated with the TCAS 40, the transponder 42, and the UAT 44 and the lower half of the DME RF band.
  • the high band signal is associated with the upper half of the DME 46 RF band.
  • the low and high band signals are converted to second and third digital signals.
  • the steps performed at blocks 88 and 90 may be performed concurrently with the steps performed at blocks 84 and 86.
  • the TCAS, transponder, and UAT decoder input signals are generated, based on the first and second digital signals.
  • a DME decoder input signal is generated, based on the second and third digital signals.
  • the generated decoder input signals are sent to the respective decoders (the TCAS 40, the transponder 42, the UAT 44, and the DME 46).
  • FIGURES 3 , 4-1 and 4-2 illustrate analog and digital components of the receiver portion of an exemplary transceiver system 130.
  • the transceiver system 130 includes top and bottom antennas 160, 162, first and second bandpass filters (BPF) 166, 168, first and second circulators 150, 152, a transmit/receive switch 154, a transmitter 140, a top antenna analog receiver component 144, a bottom antenna analog receiver component 146, and a plurality of digital down-converters (DDC) 300.
  • BPF bandpass filters
  • DDC digital down-converters
  • the first BPF 166 is in signal communication with the top antenna 160 and the first circulator 150.
  • the first circulator 150 is also in signal communication with the transmitter switch 154 and the top antenna's analog receiver component 144.
  • the second BPF 168 is in signal communication with the bottom antenna 162 and the second circulator 152.
  • the circulator 152 is in signal communication with the transmitter switch 154 and the bottom antenna's analog receiver component 146.
  • the BPFs 166, 168 filter signals in the 962 to 1213 MHz bandwidth.
  • the bandwidth that is filtered by the BPFs 166, 168 encompasses only those radio signals associated with the TCAS 40, transponder 42, the UAT 44, and the DME 46.
  • the circulators 150, 152 provide signal directionality such that signals generated by the transmitter 140 are passed to the respective antennas 160, 162 and signals received by the respective antennas 160, 162 are passed to the respective receiver components 144, 146.
  • the top receiver component 144 includes a T/R switch (limiter) 172 that receives the bandwidth-limited signal from the first circulator 150.
  • a first low-noise amplifier (LNA) 174 receives the output of the T/R switch (limiter) 172 to produce a first amplified signal.
  • the T/R switch (limiter) 172 prevents overdriving the LNA 174 when high power signals are present at the antennas, including the transmitter output.
  • An image-filtering and second LNA component 176 receives the output of the first LNA 174 to produce a radio frequency (RF) signal with a bandwidth of 962 to 1100 MHz.
  • RF radio frequency
  • a mixer 180 the output of the image-filtering and second LNA component 176 is combined with a local oscillator (LO) signal 182.
  • a BPF 186 and an amplifier 188 receive the output of the mixer 180 to produce an intermediate frequency (IF) with a bandwidth of 165 to 303 MHz.
  • the signal outputted by the amplifier 188 is then sent to an analog-to-digital converter (ADC) 190.
  • ADC analog-to-digital converter
  • the bottom antenna's analog receiver component 146 includes a T/R switch (limiter) 200 that receives the signal received by the bottom antenna 162, via the circulator 152 and BPF 168.
  • the output of the T/R switch (limiter) 200 is received by a first LNA 202, which produces an amplified signal that is sent to a demultiplexer/splitter 204.
  • Diplexer/splitter 204 splits the amplified signal received from the first LNA 202 into a low band (RF 962 to 1100 MHz) and a high band (RF 1101 to 1213 MHz).
  • the low band RF is sent to a first image-filtering and second LNA component 206, which generates a signal that is combined with an LO signal 210 at a mixer 208.
  • the output of the mixer 208 is sent to a BPF 214 and then to an amplifier 216, thus producing an IF signal with a bandwidth of 165 to 303 MHz.
  • the output of the amplifier 216 is sent to an ADC 218.
  • the high band RF outputted from the diplexer/splitter 204 is sent to an image-filtering and LNA 222, which outputs a signal to a mixer 224, which is combined with an LO signal 226.
  • the output of the mixer 224 is filtered by a BPF 230, then amplified by an amplifier 232 to produce an IF with a bandwidth of 176 to 288 MHz.
  • the output of the amplifier 232 is sent to an ADC 234.
  • the outputs of the ADCs 190, 218, and 234 are sent to the DDCs 300, as shown in FIGURES 4-1 and 4-2 .
  • the low band digital signals produced by the ADCs 190 and 218 are sent to two TCAS DDCs, two transponder (XPDR) DDCs, and two UAT DDCs.
  • FIGURE 4-1 shows only one each of the TCAS, transponder, and UAT DDCs.
  • the high and low band outputs from the ADCs 234 and 218 are sent to a DME DDC 340.
  • the TCAS DDC receives the output of one of the ADCs 190, 218 at two mixers.
  • the first mixer mixes the received digital IF signal with a zero-phase complex LO signal and the second mixer combines the received digital IF signal with a 90° phase-shifted complex LO signal.
  • the complex LO produces two outputs at the same frequency and amplitude with 90° phase difference between them (i.e., in-phase (I) and quadrature (Q) representing real and imaginary components).
  • the frequency value for the complex LO of the TCAS DDC is 175 MHz.
  • the output of the CIC-decimating LPFs are sent to respective Finite Impulse Response filter (FIR)-decimating LPFs with cutoff frequency F C input clock frequency F S2 .
  • FIR Finite Impulse Response filter
  • a component receives the outputs of the FIR-decimating LPFs to determine a magnitude and phase value.
  • the components of the transponder DDC 320 are identical to those of the TCAS DDC 310, except that the complex LO operates at a frequency of 235 MHz.
  • the data buffer, up and down samplers and interpolating FIR provide a resampler circuit for changing the output data rate to match the decoder's input data rate requirements.
  • a delay/multiplier exists after the phase output to demodulate the DPSK (Differential Phase Shift Keying) data.
  • the UAT DDC 330 includes all the components of the other DDCs 310, 320, except that it does not include the component for generating the magnitude and phase of the signals produced by the FIR-decimating LPFs. Also, the UAT DDC 330 includes a complex LO that operates at 287 MHz and a variety of other components configured to produce an in-phase signal (I) and a quadrature phase signal (Q).
  • the data buffers, up and down samplers and interpolating FIRs provide resampler circuits for changing the output data rate to match the decoder's input data rate requirements.
  • the high and low band AGC automatic gain control circuits control the gain of external variable gain amplifiers driving the ADC inputs. This ensures that the inputs to the ADC do not exceed their maximum linear range.
  • the DME DDC includes similar circuit components as that of the TCAS DDC 310, except that the frequency of the complex LO is 155 to 303 MHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (9)

  1. Verfahren, umfassend folgende Schritte:
    an einem ersten Empfänger (34), der an eine erste Antenne (30) angeschlossen ist:
    Empfangen eines Signals von der ersten Antenne;
    Filtern des empfangenen Signals basierend auf Bandbreiten, die mit einem Kollisionsvermeidungssystem, TCAS (40), einem Flugsicherungs(ATC (42))-Transponder und einem Transceiver mit universellem Zugang, UAT (44), verknüpft sind;
    Digitalisieren des gefilterten Signals unter Verwendung eines ersten Analog/Digital-Wandlers, ADC (190); und
    digitales Abwärtswandeln des digitalisierten Signals in codierte TCAS-Signale, Transponder(42)-Signale und UAT-Signale; und
    an einem zweiten Empfänger (36), der an eine zweite Antenne (32) angeschlossen ist:
    Empfangen eines Signals von der zweiten Antenne;
    Trennen des empfangenen Signals basierend auf Bandbreiten, die mit dem TCAS, dem Transponder (42), dem UAT und dem DME verknüpft sind, in ein erstes Signal, das eine Bandbreite aufweist, die mit dem TCAS, dem Transponder, dem UAT und einer unteren Hälfte eines DME-HF-Bandes verknüpft ist, und in ein zweites Signal, das eine Bandbreite aufweist, die mit einer oberen Hälfte des DME-HF-Bandes verknüpft ist;
    Digitalisieren des ersten und des zweiten Signals unter Verwendung zweiter und dritter ADC (218, 234); und
    digitales Abwärtswandeln der digitalisierten ersten und zweiten Signale in codierte TCAS-Signale, Transponder-Signale, UAT-Signale und DME-Signale.
  2. Verfahren nach Anspruch 1, wobei sich die erste Antenne oben an einem Luftfahrzeugrumpf befindet und sich die zweite Antenne unten an einem Luftfahrzeugrumpf befindet.
  3. Verfahren nach Anspruch 1, ferner umfassend folgende Schritte:
    an dem zweiten Empfänger,
    Filtern des ersten Signals basierend auf der Bandbreite, die mit dem TCAS, dem Transponder, dem UAT und der unteren Hälfte des DME-HF-Bandes verknüpft ist; und
    Filtern des zweiten Signals basierend auf der Bandbreite, die mit der oberen Hälfte des DME-HF-Bandes verknüpft ist.
  4. Verfahren nach Anspruch 3, wobei das Filtern Folgendes umfasst:
    Überlagern der Signale unter Verwendung vordefinierter lokaler Oszillatorsignale, die konfiguriert sind, Signale zu erzeugen, die Oberwellen außerhalb der Bänder der ADC aufweisen.
  5. System, umfassend:
    eine erste Antenne (30);
    eine zweite Antenne (32);
    einen ersten Empfänger (34), der an die erste Antenne angeschlossen ist, wobei der erste Empfänger konfiguriert ist zum:
    Empfangen eines Signals von der ersten Antenne;
    Filtern des empfangenen Signals basierend auf Bandbreiten, die mit einem Kollisionsvermeidungssystem, TCAS (40), einem Flugsicherungs(ATC (42))-Transponder und einem Transceiver mit universellem Zugang, UAT (44), verknüpft sind;
    Digitalisieren des gefilterten Signals; und
    digitales Abwärtswandeln des digitalisierten Signals in codierte TCAS-Signale, Transponder(42)-Signale und UAT-Signale; und
    einen zweiten Empfänger (36), der an die zweite Antenne angeschlossen ist, wobei der zweite Empfänger konfiguriert ist zum:
    Empfangen eines Signals von der zweiten Antenne;
    Filtern des von der zweiten Antenne empfangenen Signals basierend auf Bandbreiten, die mit dem TCAS, dem Transponder, dem UAT und einem Entfernungsmessgerät, DME (46), verknüpft sind;
    Trennen des gefilterten Signals basierend auf Bandbreiten, die mit dem TCAS, dem Transponder (42), dem UAT und dem DME verknüpft sind, in ein erstes Signal, das eine Bandbreite aufweist, die mit dem TCAS, dem Transponder (42), dem UAT und einer unteren Hälfte eines DME-HF-Bandes verknüpft ist, und in ein zweites Signal, das eine Bandbreite aufweist, die mit einer oberen Hälfte des DME-HF-Bandes verknüpft ist;
    Digitalisieren des ersten und des zweiten Signals; und
    digitales Abwärtswandeln der digitalisierten ersten und zweiten Signale in codierte TCAS-Signale, Transponder(42)-Signale, UAT-Signale und DME-Signale.
  6. System nach Anspruch 5, wobei sich die erste Antenne oben an einem Luftfahrzeugrumpf befindet und sich die zweite Antenne unten an einem Luftfahrzeugrumpf befindet.
  7. System nach Anspruch 5, wobei der zweite Empfänger konfiguriert ist zum:
    Filtern des ersten Signals basierend auf der Bandbreite, die mit dem TCAS, dem Transponder, dem UAT und der unteren Hälfte des DME-HF-Bandes verknüpft ist; und
    Filtern des zweiten Signals basierend auf der Bandbreite, die mit der oberen Hälfte des DME-HF-Bandes verknüpft ist.
  8. System nach Anspruch 7, wobei der erste Empfänger einen Analog/Digital-Wandler, ADC (190), umfasst, um das Digitalisieren auszuführen, wobei der erste Empfänger das empfangene Signal unter Verwendung vordefinierter lokaler Oszillatorsignale überlagert, die konfiguriert sind, ein Signal zu erzeugen, das Oberwellen außerhalb eines Bandes der ADC aufweist.
  9. System nach Anspruch 7, wobei der zweite Empfänger erste und zweite ADC (218, 234) zum Ausführen der Digitalisierung umfasst, wobei der zweite Empfänger die empfangenen ersten und zweiten Signale unter Verwendung von vordefinierten lokalen Oszillatorsignalen überlagert, die konfiguriert sind, Signale zu erzeugen, die Oberwellen außerhalb der Bänder der ersten und zweiten ADC aufweisen.
EP12174247.2A 2011-07-11 2012-06-28 Mehrkanal-, Mehrfachmodus-, Mehrfachfunktions-L-Band-Funk-Sender-Empfänger Active EP2546678B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/180,425 US8593330B2 (en) 2011-07-11 2011-07-11 Multichannel, multimode, multifunction L-band radio transceiver

Publications (2)

Publication Number Publication Date
EP2546678A1 EP2546678A1 (de) 2013-01-16
EP2546678B1 true EP2546678B1 (de) 2014-04-09

Family

ID=46758593

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12174247.2A Active EP2546678B1 (de) 2011-07-11 2012-06-28 Mehrkanal-, Mehrfachmodus-, Mehrfachfunktions-L-Band-Funk-Sender-Empfänger

Country Status (3)

Country Link
US (1) US8593330B2 (de)
EP (1) EP2546678B1 (de)
CN (1) CN102916719B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656505B1 (de) * 2010-12-21 2019-06-26 BAE Systems PLC Signalverarbeitung zum verbesserten empfang
US8593330B2 (en) * 2011-07-11 2013-11-26 Honeywell International Inc. Multichannel, multimode, multifunction L-band radio transceiver
US9116236B1 (en) * 2012-09-05 2015-08-25 Rockwell Collins, Inc. Aircraft distance measuring equipment with directional interrogation
WO2014047796A1 (en) * 2012-09-26 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Multi-band receiver and signal processing method thereof
US9857461B2 (en) * 2013-10-14 2018-01-02 Aviation Communication & Surveillance Systems Llc Systems and methods for remote L-band smart antenna distance measuring equipment diversity
US20160013923A1 (en) * 2014-07-11 2016-01-14 Honeywell International Inc. Flexible integrated communications and navigation transceiver system
US9766331B2 (en) 2014-12-16 2017-09-19 Honeywell International Inc. Sectorized antennas for improved airborne reception of surveillance signals
CN107787553B (zh) * 2015-05-20 2022-02-11 美国亚德诺半导体公司 用于同步解调的系统和方法
US20180033319A1 (en) * 2016-01-18 2018-02-01 Aviation Communication & Surveillance Systems Llc Systems and methods for providing an integrated tcas and dme system using an omnidirectional antenna
US11480667B2 (en) * 2016-01-22 2022-10-25 Aviation Communication & Surveillance Systems Llc Systems and methods for providing an integrated TCAS, transponder, and DME system using a dedicated DME antenna
WO2017161377A1 (en) * 2016-03-18 2017-09-21 Aviation Communication & Surveillance Systems, Llc Systems and methods for providing a dme l-band shared antenna
CN108462523B (zh) * 2018-02-12 2022-06-10 上海航天电子有限公司 通用型数字化usb应答机基带软件设计方法
CN112532268B (zh) * 2019-09-19 2023-10-20 中兴通讯股份有限公司 一种通信电路及通信设备
CN111683343B (zh) * 2020-06-05 2022-07-05 成都玖锦科技有限公司 一种结合atc和dme综合测试系统
CN111650861B (zh) * 2020-06-05 2023-04-21 成都玖锦科技有限公司 一种用于atc和dme测试系统的数字信号处理模块
US11258469B1 (en) 2020-10-01 2022-02-22 Honeywell International Inc. Demodulating surveillance signals
US11356309B2 (en) 2020-10-01 2022-06-07 Honeywell International Inc. Demodulating surveillance signals
US11038728B1 (en) 2020-10-01 2021-06-15 Honeywell International Inc. Demodulating surveillance signals
CN113612551A (zh) * 2021-07-06 2021-11-05 河南初恒电子科技有限公司 一种基于l波段的射频直采的信号自动监测方法
US11901922B2 (en) 2021-09-20 2024-02-13 Honeywell International Inc. Radio-frequency transmitter
CN114614839B (zh) * 2022-03-04 2023-03-24 电子科技大学 一种多通道Ka波段前端组件

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251970B1 (en) 1996-10-25 2001-06-26 Northrop Grumman Corporation Heat absorbing surface coating
US7006032B2 (en) * 2004-01-15 2006-02-28 Honeywell International, Inc. Integrated traffic surveillance apparatus
US7554482B2 (en) 2004-09-15 2009-06-30 Aviation Communication & Surveillance Systems Systems and methods for using a TCAS directional antenna for omnidirectional transmission
US7535405B2 (en) 2006-02-28 2009-05-19 Honeywell International Inc. Method and apparatus for a multifunction radio
US20070216046A1 (en) 2006-03-20 2007-09-20 Heptagon Oy Manufacturing miniature structured elements with tool incorporating spacer elements
WO2008054507A2 (en) * 2006-04-10 2008-05-08 Aviation Communication & Surveillance Systems Llc Integrated avionics system
US7439901B2 (en) * 2006-08-08 2008-10-21 Garmin International, Inc. Active phased array antenna for aircraft surveillance systems
US7583223B2 (en) * 2006-09-18 2009-09-01 Honeywell International Inc. Distributed and Cable reduced TCAS
US7876259B2 (en) * 2006-11-06 2011-01-25 Leonard Schuchman Automatic dependent surveillance system secure ADS-S
US20090027254A1 (en) * 2007-02-16 2009-01-29 James Roy Troxel Method and apparatus to improve the ability to decode ads-b squitters through multiple processing paths
US9791562B2 (en) * 2007-04-24 2017-10-17 Aviation Communication & Surveillance Systems, Llc Systems and methods for providing an ATC overlay data link
US8031105B2 (en) * 2008-06-10 2011-10-04 Aviation Communication & Surveillance Systems Llc Systems and methods for enhanced ATC overlay modulation
CN101711434B (zh) 2007-06-25 2012-03-21 新灯源科技有限公司 发光二极管照明装置
US8380367B2 (en) * 2009-03-26 2013-02-19 The University Of North Dakota Adaptive surveillance and guidance system for vehicle collision avoidance and interception
EP2267476A1 (de) * 2009-06-12 2010-12-29 Thales Deutschland Holding GmbH Sekundäres Überwachungsradarsystem zur Luftverkehrskontrolle
KR100946966B1 (ko) 2009-07-22 2010-03-15 씨에스텍 주식회사 엘이디 가로등의 잠열을 이용한 방열판
WO2012003188A1 (en) * 2010-07-02 2012-01-05 L-3 Communications Avionics Systems, Inc. Transponder decoder
US8593330B2 (en) * 2011-07-11 2013-11-26 Honeywell International Inc. Multichannel, multimode, multifunction L-band radio transceiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
U.S. DEPARTMENT OF TRANSPORTATION; FEDERAL AVIATION ADMINISTRATION: "Introduction to TCAS II, Version 7.1", 28 February 2011 (2011-02-28), pages 1 - 50 *

Also Published As

Publication number Publication date
CN102916719A (zh) 2013-02-06
EP2546678A1 (de) 2013-01-16
US8593330B2 (en) 2013-11-26
US20130015998A1 (en) 2013-01-17
CN102916719B (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
EP2546678B1 (de) Mehrkanal-, Mehrfachmodus-, Mehrfachfunktions-L-Band-Funk-Sender-Empfänger
EP2464024B1 (de) Breitband-Mehrkanalempfänger mit Festfrequenzsperrfilter zur Interferenzunterdrückung
US8467753B2 (en) Receiver and method for receiving a first usable frequency band and a second usable frequency band
US8582693B2 (en) Wireless receiver applicable to multiple coexisting positioning systems
US10101461B2 (en) Radio frequency circuit structure for implementing function of converting GNSS satellite signal into baseband signal
US7605757B1 (en) Multiple signal receiver
CN101908858B (zh) 一种宽带接收数字前端处理方法
JPH10290212A (ja) スペクトル拡散信号の受信変換方法とその装置
CN102082578B (zh) 一种通用超宽带接收方法
US9191043B1 (en) Direct digital RF conversion
US8953715B1 (en) Multi-band direct sampling receiver
US20060227898A1 (en) Radio receiver
US20110216859A1 (en) High-Frequency Signal Receiver Simultaneously Receiving Several Such Signals
CN116155661A (zh) 一种采样数字前端信号处理方法及系统
US8630357B2 (en) Ultra-wideband dual band magnitude summer apparatus and method
EP3979506B1 (de) Demodulation von überwachungssignalen
CN117890937B (zh) 卫星导航系统的射频前端、接收机及电子设备
US8032100B2 (en) System and method of communicating multiple carrier waves
WO2000069083A1 (en) Receiver circuit
RU160255U1 (ru) Многоканальное устройство предварительной обработки сигналов
AU2012214816A1 (en) Ultra-Wideband dual band magnitude summer apparatus and method
RU102445U1 (ru) Помехозащищенный радиомодем с быстрым скачкообразным изменением частоты
US20180091213A1 (en) Mobile base station receiver digitalization capacity enhancement using combined analog signals
KR20050006785A (ko) 다중 에프에이 수신기

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20130227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 1/00 20060101ALI20131031BHEP

Ipc: G01S 13/93 20060101AFI20131031BHEP

Ipc: H04B 7/185 20060101ALI20131031BHEP

INTG Intention to grant announced

Effective date: 20131127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 661629

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012001343

Country of ref document: DE

Effective date: 20140522

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 661629

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140409

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140409

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140710

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012001343

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150112

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012001343

Country of ref document: DE

Effective date: 20150112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150630

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150630

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012001343

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160628

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 12