EP2538409B1 - Verfahren zur Geräuschdämpfung für Audio-Gerät mit mehreren Mikrofonen, insbesondere für eine telefonische Freisprechanlage - Google Patents

Verfahren zur Geräuschdämpfung für Audio-Gerät mit mehreren Mikrofonen, insbesondere für eine telefonische Freisprechanlage Download PDF

Info

Publication number
EP2538409B1
EP2538409B1 EP12170874.7A EP12170874A EP2538409B1 EP 2538409 B1 EP2538409 B1 EP 2538409B1 EP 12170874 A EP12170874 A EP 12170874A EP 2538409 B1 EP2538409 B1 EP 2538409B1
Authority
EP
European Patent Office
Prior art keywords
signal
sensors
estimation
operated
speech
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12170874.7A
Other languages
English (en)
French (fr)
Other versions
EP2538409A1 (de
Inventor
Charles Fox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parrot SA
Original Assignee
Parrot SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parrot SA filed Critical Parrot SA
Publication of EP2538409A1 publication Critical patent/EP2538409A1/de
Application granted granted Critical
Publication of EP2538409B1 publication Critical patent/EP2538409B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L2021/02082Noise filtering the noise being echo, reverberation of the speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/06Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being correlation coefficients
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/403Linear arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles

Definitions

  • the invention relates to the treatment of speech in a noisy environment.
  • microphones sensitive not only to the voice of the user, but also capturing the surrounding noise and the echo due to the phenomenon of reverberation by the environment, typically the passenger compartment of the vehicle .
  • the useful component (the speech signal of the near speaker) is thus embedded in a parasitic component of noise (external noises and reverberation) that can go, often, to make incomprehensible to the distant speaker (the one who is at the other end of the voice signal transmission path) the words of the nearby speaker.
  • Some of these devices provide for the use of multiple microphones and use the average of the picked-up signals, or other more complex operations, to obtain a signal with a lower level of interference.
  • so-called beamforming techniques make it possible to create, by software means, a directivity which improves the signal / noise ratio.
  • the performances of this technique are very limited when only two microphones are used (concretely, it is estimated that such a method only gives good results if condition of having a network of at least eight microphones). The performance is also very degraded when the environment is reverberant.
  • the aim of the invention is to propose a solution for denoising the audio signals picked up by such a multichannel, multi-microphone system, in a very noisy and very reverberant environment, typically the passenger compartment of a car.
  • the main difficulty related to the methods of speech processing by multichannel systems is the difficulty of estimating useful parameters for the treatments to be applied, because the estimators are strongly related to the ambient environment.
  • the EP 2 293 594 A1 (Parrot SA) describes a method for the spatial detection and filtering of nonstationary and directional noises such as horn blasts, passing a scooter, overtaking by a car, etc.
  • the proposed technique consists in associating the properties of temporal and frequency non-stationarity, on the one hand, and spatial directivity, on the other hand, to detect a type of noise that is usually difficult to discriminate from speech. , in order to ensure an efficient filtering of this noise and to deduce otherwise a probability of presence of speech which will further improve the attenuation of the noise.
  • the EP 2 309 499 A1 (Parrot SA) describes a system with two microphones operating a spatial coherence analysis of the signal picked up in order to determine a direction of incidence.
  • the system calculates two noise references according to different methods, one according to the spatial coherence of the signals picked up (which integrates non-stationary non-directional noise) and another according to the main direction of incidence of the signals (which especially integrates directive nonstationary noises).
  • This denoising technique is based on the hypothesis that speech generally has a higher spatial coherence than noise and that, moreover, the direction of speech incidence is generally well defined and can be assumed to be known: in the case of motor vehicle, it is defined by the position of the driver, to which the microphones are turned.
  • the denoised signal obtained at the output satisfactorily reproduces the amplitude of the initial speech signal, but not its phase, which can cause a distortion of the voice reproduced by the device.
  • the problem of the invention is to take into account a reverberant environment that does not make it possible to satisfactorily calculate a direction of arrival of the useful signal and, alternatively, to obtain a denoising which restores both the amplitude and phase of the initial signal, thus not distorting the voice of the speaker when it is reproduced by the device.
  • the method of the invention is a denoising method for a device comprising a network formed of a plurality of microphone sensors arranged in a predetermined configuration.
  • the calculation of the optimal linear projector of the step d) is carried out by a beamforming processing of Capon with a minimum variance response without distortion MVDR.
  • step e) is effected by OM-LSA optimized modified log-spectral amplitude gain processing.
  • the estimation of the transfer function of step c) is performed by calculating an adaptive filter to cancel the difference between the signal collected by the sensor whose evaluation is to be evaluated. transfer function and the signal collected by the sensor of the useful signal reference, with modulation by the probability of presence of speech.
  • the adaptive filter can in particular be a LMS mean linear least linear prediction algorithm and the speech presence probability modulation, a variation modulation of the iteration pitch of the adaptive filter.
  • the spectrum of the signal to be denoised is advantageously divided into a plurality of distinct spectrum parts, the sensors being grouped into a plurality of subnetworks each associated with one of the parts of the spectrum.
  • the denoising process is then operated in a differentiated manner, for each part of the spectrum, on the signals collected by the sensors of the sub-network corresponding to the part of the spectrum considered.
  • the spectrum of the signal to be denoised can be divided into a low frequency portion and a high frequency portion.
  • the denoising processing steps are then performed only on the signals collected by the sensors furthest away from the network.
  • step c) it is also possible, again with a signal spectrum to be denoised divided into a plurality of distinct spectrum parts, to differentially estimate, in step c), the transfer function of the acoustic channels by applying different treatments to each of the parts of the spectrum.
  • the sensor array is a linear array of aligned sensors and the sensors are grouped into a plurality of sub-arrays each associated with one of the parts of the spectrum: for the low frequency part, the processing of denoising is performed only on the signals collected by the sensors furthest away from the network and the estimation of the transfer function is performed by calculating an adaptive filter ; and for the high frequency part, the denoising process is performed on the signals collected by all the sensors of the network, and the estimation of the transfer function is performed by a diagonalization processing.
  • each sensor can be likened to a single microphone M 1 ... M n capturing a reverberated version of a speech signal emitted by a useful signal source S (the speech of a near speaker 10), which signal is added a noise.
  • x i is the signal picked up
  • h i being the impulse response between the useful signal source S and the sensor M i
  • s being the useful signal produced by the source S (speech signal of the near speaker 10)
  • b i being the additive noise
  • the proposed technique consists, on the basis of the elements that have just been described, to search in the time domain for an optimal linear projector for each frequency.
  • projector means an operator corresponding to a transformation of a plurality of signals, collected concurrently by a multichannel device, into a single single-channel signal.
  • This projection is an "optimal" linear projection in that the residual noise component on the single-channel signal output is minimized (noise and reverberation) and that the useful speech component is the least deformed possible.
  • R n is the correlation matrix between the microphones, for each frequency, and H being the acoustic channel considered.
  • a first technique consists of using an LMS type algorithm in the frequency domain.
  • one of the channels will be taken as a useful signal reference, for example the channel of the microphone M 1 , and the transfer functions H 2 ... H n will be calculated for the others. canals.
  • the reverberation (thus parasitized) version of the speech signal S picked up by the microphone M 1 is taken as a useful signal reference, the presence of the reverberation in the signal picked up is not a problem because stage one seeks to operate a denoising and not a de-reverberation.
  • the LMS algorithm aims (in known manner) to estimate a filter H (block 14) by means of an adaptive algorithm, corresponding to the signal x i delivered by the microphone M i , by estimating the transfer of noise between the microphone M i and the microphone M i (taken as reference).
  • the output of the filter 14 is subtracted at 16 from the signal x 1 picked up by the microphone M 1 to give a prediction error signal allowing iterative adaptation of the filter 14. It is thus possible to predict from the signal x i the speech component (reverberated) contained in the signal x 1 .
  • the signal x 1 is slightly delayed (block 18). .
  • an element 20 for weighting the error signal of the adaptive filter 14 by the probability of presence of speech p delivered at the output of the block 22 is added: it is a matter of adapting the filter only when the probability of presence of speech is high. This weighting can be made in particular by modifying the adaptation step as a function of the probability p .
  • H i ⁇ k + 1 H i k + ⁇ ⁇ X ⁇ k 1 T ⁇ X ⁇ k 1 - H ⁇ k i ⁇ X ⁇ k i
  • Another possible technique for estimating the acoustic channel is to operate by matrix diagonalization.
  • R not ⁇ k + 1 ⁇ ⁇ R not k + 1 - ⁇ ⁇ XX T ⁇ being a forgetting factor (fixed, since we take into account the entire signal).
  • MSC f sinc 2 fd vs f being the frequency considered, d being the distance between the sensors, and where c is the speed of sound.
  • the distance of the microphones which makes it possible to decorrelate the noises, however has the disadvantage of being translated, in the spatial field, to a sampling at a lower frequency, with the consequence of a folding of the high frequencies, which will be less well restored. .
  • the invention proposes to solve this difficulty by selecting different sensor configurations according to the frequencies processed.
  • the Figure 5 is a block diagram showing the different steps of signal processing from a linear array of four microphones M 1 ... M 4 such as that illustrated Figure 4 .
  • the treatment that will be described is applied in the frequency domain, at each frequency bin , that is to say for each frequency band defined for the successive time frames of the signal collected by the microphones (the four microphones M 1 , M 2 , M 3 and M 4 for the high of the spectrum HF, and the two microphones M 1 and M 4 for the low of the spectrum BF).
  • These signals correspond, in the frequency domain, vectors X 1 ... X n ( X 1 , X 2 , X 3 and X 4 and X 1 , X 4 , respectively).
  • a block 22 produces from the signals collected by the microphones a probability p of presence of speech. As indicated above, this estimation is carried out according to a technique that is itself known, for example that described in FIG. WO 2007/099222 A1 , which can be referred to for more details.
  • Block 44 schematizes a selector of the acoustic channel estimation method, ie by diagonalization on the basis of the signals collected by the four microphones M 1 , M 2 , M 3 and M 4 (block 28 of FIG. Figure 5 , for the high frequency spectrum HF), or by adaptive filter LMS on the basis of the signals collected by the two extreme microphones M 1 and M 4 (block 38 of the Figure 5 , for the low end of the BF spectrum).
  • Block 46 corresponds to the estimate of the spectral noise matrix, designated R n , used for the calculation of the optimal linear projector, and also used for the diagonalization calculation of block 28 when the transfer function of the acoustic channel is estimated from this way.
  • Block 48 corresponds to the calculation of the optimal linear projector.
  • the projection calculated at 48 is an optimal linear projection, in that the residual noise component on the single channel signal output is minimized (noise and reverberation).
  • the optimal linear projector has the particularity of recalibrating the phases of the different input signals, which makes it possible to obtain at the output a projected signal S pr which returns to the phase of the initial speech signal of the speaker (and also the amplitude of this signal, of course).
  • the final step (block 50) consists of selectively reducing the noise by applying a variable gain specific to each frequency band and each time frame to the projected signal S pr .
  • This denoising is also modulated by the probability of speech presence p.
  • the signal S HF / BF outputted by the denoising block 50 will then undergo a fast inverse Fourier transform iFFT (blocks 30, 40 of the Figure 5 ) to obtain in the time domain the denoised speech signal S HF or S BF sought giving, after reconstruction of the complete spectrum, the final denoised speech signal s.
  • iFFT fast inverse Fourier transform
  • LSA Log-Spectral Amplitude
  • the "OM-LSA” Optimally-Modified Log-Spectral Amplitude ) algorithm improves the calculation of the LSA gain to be applied by weighting it by the conditional probability of presence of speech p .

Claims (11)

  1. Verfahren zum Entrauschen eines verrauschten akustischen Signals für eine in einer verrauschten Umgebung arbeitende Multimikrofon-Audiovorrichtung, insbesondere eine "Freisprech"-Telefonvorrichtung,
    wobei das verrauschte akustische Signal eine von einer Sprachquelle (S) stammende Nutzkomponente und eine Rausch-Störkomponente enthält,
    wobei die Vorrichtung ein Sensorennetzwerk enthält, das von einer Vielzahl von gemäß einer vorbestimmten Konfiguration angeordneten Mikrofonsensoren (M1 ... Mn) geformt wird, die das verrauschte Signal auffangen können,
    dadurch gekennzeichnet, dass es die folgenden Verarbeitungsschritte im Frequenzbereich für eine Vielzahl von definierten Frequenzbändern für aufeinanderfolgende Signalzeitrahmen aufweist:
    a) Schätzung (22) einer Sprachpräsenzwahrscheinlichkeit (p) im aufgefangenen verrauschten Signal;
    b) Schätzung (46) einer spektralen Kovarianzmatrix (Rn) des von den Sensoren aufgefangenen Rauschens, wobei diese Schätzung durch die Sprachpräsenzwahrscheinlichkeit (p) moduliert wird;
    c) Schätzung der Übertragungsfunktion (H1 ... Hn) der Akustikkanäle zwischen der Sprachquelle (S) und mindestens bestimmten der Sensoren (M1 ... Mn), wobei diese Schätzung bezüglich eines aus dem von einem der Sensoren (M1) aufgefangenen Signal bestehenden Nutzsignalbezugswerts durchgeführt und außerdem durch die Sprachpräsenzwahrscheinlichkeit (p) moduliert wird;
    d) Berechnung (48) eines optimalen linearen Projektors, der ein einziges entrauschtes kombiniertes Signal ausgehend von den von mindestens bestimmten der Sensoren aufgefangenen Signalen (X1 ... Xn), von der im Schritt b) geschätzten spektralen Kovarianzmatrix (Rn) und von den im Schritt c) geschätzten Übertragungsfunktionen (H1 ... Hn) liefert; und
    e) ausgehend von der Sprachpräsenzwahrscheinlichkeit (p) und von dem vom im Schritt d) berechneten Projektor gelieferten kombinierten Signal, selektive Reduzierung des Rauschens (50) durch Anwendung einer jedem Frequenzband und jedem Zeitrahmen eigenen variablen Verstärkung.
  2. Verfahren nach Anspruch 1, wobei die Berechnung (48) des optimalen linearen Projektors des Schritts d) durch eine Verarbeitung von der Art Capon-Beamforming mit verzerrungsfreier Reaktion mit minimaler Varianz MVDR durchgeführt wird.
  3. Verfahren nach Anspruch 1, wobei die selektive Rauschreduzierung (50) des Schritts e) durch eine Verarbeitung der Art Verstärkung mit optimierter modifizierter log-spektraler Amplitude OM-LSA durchgeführt wird.
  4. Verfahren nach Anspruch 1, wobei die Schätzung der Übertragungsfunktion des Schritts c) durch Berechnung (38) eines adaptiven Filters (14), das darauf abzielt, die Differenz zwischen dem vom Sensor aufgefangenen Signal (Xi), dessen Übertragungsfunktion ermittelt werden soll, und dem vom Sensor aufgefangenen Signal (X1) des Nutzsignalbezugswerts zu unterdrücken, mit Modulation durch die Sprachpräsenzwahrscheinlichkeit (p) durchgeführt wird.
  5. Verfahren nach Anspruch 4, wobei das adaptive Filter (14) ein Filter mit linearem Vorhersagealgorithmus der Art kleinster mittlerer Quadrate LMS ist.
  6. Verfahren nach Anspruch 4, wobei die Modulation durch die Sprachpräsenzwahrscheinlichkeit (p) eine Modulation durch Variation des Iterationsschritts des adaptiven Filters (14) ist.
  7. Verfahren nach Anspruch 1, wobei die Schätzung der Übertragungsfunktion des Schritts c) durch eine Diagonalisierungsverarbeitung (28) durchgeführt wird, die enthält:
    c1)die Bestimmung einer spektralen Korrelationsmatrix (Rx) der von den Sensoren des Netzwerks aufgefangenen Signale bezüglich des Sensors des Nutzsignalbezugswerts,
    c2)die Berechnung der Differenz zwischen einerseits der im Schritt c1) bestimmten Matrix (Rx) und andererseits der im Schritt b) berechneten, durch die Sprachpräsenzwahrscheinlichkeit (p) modulierten spektralen Kovarianzmatrix (Rn) des Rauschens, und
    c3)die Diagonalisierung der im Schritt c2) berechneten Differenzmatrix.
  8. Verfahren nach Anspruch 1, wobei:
    - das Spektrum des zu entrauschenden Signals in eine Vielzahl von unterschiedlichen Spektrumsbereichen (BF, HF) aufgeteilt ist,
    - die Sensoren in einer Vielzahl von Teilnetzwerken (M1 ... M4; M1, M4) zusammengefasst sind, die je einem der Bereiche des Spektrums zugeordnet sind, und
    - die Entrauschungsverarbeitung differenziert für jeden der Bereiche des Spektrums an den von den Sensoren des dem betroffenen Bereich des Spektrums entsprechenden Teilnetzwerks aufgefangenen Signalen durchgeführt wird.
  9. Verfahren nach Anspruch 8, wobei:
    - das Sensorennetzwerk ein lineares Netzwerk von fluchtend ausgerichteten Sensoren (M1 ... M4) ist,
    - das Spektrum des zu entrauschenden Signals in einen Niederfrequenzbereich (BF) und einen Hochfrequenzbereich (HF) aufgeteilt ist, und
    - für den Niederfrequenzbereich die Schritte der Entrauschungsverarbeitung nur an den von den am weitesten entfernten Sensoren des Netzwerks (M1, M4) aufgefangenen Signalen durchgeführt wird.
  10. Verfahren nach Anspruch 1, wobei:
    - das Spektrum des zu entrauschenden Signals in eine Vielzahl von unterschiedlichen Spektrumsbereichen (BF, HF) aufgeteilt ist, und
    - der Schritt c) der Schätzung der Übertragungsfunktion der Akustikkanäle differenziert durch Anwendung unterschiedlicher Verarbeitungen (28, 38) für jeden der Bereiche des Spektrums durchgeführt wird.
  11. Verfahren nach Anspruch 10, wobei:
    - das Sensorennetzwerk ein lineares Netzwerk von fluchtend ausgerichteten Sensoren (M1 ... M4) ist,
    - die Sensoren in einer Vielzahl von Teilnetzwerken (M1 ... M4; M1, M4) zusammengefasst sind, die je einem der Bereiche des Spektrums zugeordnet sind,
    - für den Niederfrequenzbereich (BF) die Entrauschungsverarbeitung nur an den von den am weitesten entfernten Sensoren (M1, M4) des Netzwerks aufgefangenen Signalen durchgeführt wird, und die Schätzung der Übertragungsfunktion durch Berechnung eines adaptiven Filters (38) durchgeführt wird, und
    - für den Hochfrequenzbereich die Entrauschungsverarbeitung an den von allen Sensoren des Netzwerks (M1 ... M4) aufgefangenen Signalen durchgeführt wird, und die Schätzung der Übertragungsfunktion durch eine Diagonalisierungsverarbeitung (28) durchgeführt wird.
EP12170874.7A 2011-06-20 2012-06-05 Verfahren zur Geräuschdämpfung für Audio-Gerät mit mehreren Mikrofonen, insbesondere für eine telefonische Freisprechanlage Active EP2538409B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1155377A FR2976710B1 (fr) 2011-06-20 2011-06-20 Procede de debruitage pour equipement audio multi-microphones, notamment pour un systeme de telephonie "mains libres"

Publications (2)

Publication Number Publication Date
EP2538409A1 EP2538409A1 (de) 2012-12-26
EP2538409B1 true EP2538409B1 (de) 2013-08-28

Family

ID=46168348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12170874.7A Active EP2538409B1 (de) 2011-06-20 2012-06-05 Verfahren zur Geräuschdämpfung für Audio-Gerät mit mehreren Mikrofonen, insbesondere für eine telefonische Freisprechanlage

Country Status (4)

Country Link
US (1) US8504117B2 (de)
EP (1) EP2538409B1 (de)
CN (1) CN102855880B (de)
FR (1) FR2976710B1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9626982B2 (en) * 2011-02-15 2017-04-18 Voiceage Corporation Device and method for quantizing the gains of the adaptive and fixed contributions of the excitation in a CELP codec
FR2992459B1 (fr) * 2012-06-26 2014-08-15 Parrot Procede de debruitage d'un signal acoustique pour un dispositif audio multi-microphone operant dans un milieu bruite.
US10540992B2 (en) * 2012-06-29 2020-01-21 Richard S. Goldhor Deflation and decomposition of data signals using reference signals
US10473628B2 (en) * 2012-06-29 2019-11-12 Speech Technology & Applied Research Corporation Signal source separation partially based on non-sensor information
US10872619B2 (en) * 2012-06-29 2020-12-22 Speech Technology & Applied Research Corporation Using images and residues of reference signals to deflate data signals
EP2893532B1 (de) * 2012-09-03 2021-03-24 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Vorrichtung und verfahren für informierte mehrkanalige sprachpräsenzwahrscheinlichkeitsschätzung
US9257132B2 (en) * 2013-07-16 2016-02-09 Texas Instruments Incorporated Dominant speech extraction in the presence of diffused and directional noise sources
CN105594131B (zh) * 2013-11-29 2018-02-06 华为技术有限公司 减少通信系统自干扰信号的方法和装置
US9544687B2 (en) * 2014-01-09 2017-01-10 Qualcomm Technologies International, Ltd. Audio distortion compensation method and acoustic channel estimation method for use with same
DE112014006281T5 (de) * 2014-01-28 2016-10-20 Mitsubishi Electric Corporation Tonsammelvorrichtung, Korrekturverfahren für Eingangssignal von Tonsammelvorrichtung und Mobilgeräte-Informationssystem
TR201815883T4 (tr) * 2014-03-17 2018-11-21 Anheuser Busch Inbev Sa Gürültü bastırılması.
CN105681972B (zh) * 2016-01-14 2018-05-01 南京信息工程大学 线性约束最小方差对角加载的稳健频率不变波束形成方法
US10657983B2 (en) 2016-06-15 2020-05-19 Intel Corporation Automatic gain control for speech recognition
GB2556058A (en) * 2016-11-16 2018-05-23 Nokia Technologies Oy Distributed audio capture and mixing controlling
US10930298B2 (en) * 2016-12-23 2021-02-23 Synaptics Incorporated Multiple input multiple output (MIMO) audio signal processing for speech de-reverberation
CN110731088B (zh) * 2017-06-12 2022-04-19 雅马哈株式会社 信号处理装置、远程会议装置以及信号处理方法
US11270720B2 (en) * 2019-12-30 2022-03-08 Texas Instruments Incorporated Background noise estimation and voice activity detection system
CN114813129B (zh) * 2022-04-30 2024-03-26 北京化工大学 基于wpe与emd的滚动轴承声信号故障诊断方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103541B2 (en) * 2002-06-27 2006-09-05 Microsoft Corporation Microphone array signal enhancement using mixture models
US6798380B2 (en) * 2003-02-05 2004-09-28 University Of Florida Research Foundation, Inc. Robust capon beamforming
WO2004084187A1 (ja) * 2003-03-17 2004-09-30 Nagoya Industrial Science Research Institute 対象音検出方法、信号入力遅延時間検出方法及び音信号処理装置
CN101189656A (zh) * 2003-11-24 2008-05-28 皇家飞利浦电子股份有限公司 具有相对于不相关噪声的稳健性的自适应波束生成器
FR2898209B1 (fr) * 2006-03-01 2008-12-12 Parrot Sa Procede de debruitage d'un signal audio
GB2437559B (en) * 2006-04-26 2010-12-22 Zarlink Semiconductor Inc Low complexity noise reduction method
US7945442B2 (en) * 2006-12-15 2011-05-17 Fortemedia, Inc. Internet communication device and method for controlling noise thereof
US9142221B2 (en) * 2008-04-07 2015-09-22 Cambridge Silicon Radio Limited Noise reduction
US9224395B2 (en) * 2008-07-02 2015-12-29 Franklin S. Felber Voice detection for automatic volume controls and voice sensors
US8380497B2 (en) * 2008-10-15 2013-02-19 Qualcomm Incorporated Methods and apparatus for noise estimation
FR2948484B1 (fr) * 2009-07-23 2011-07-29 Parrot Procede de filtrage des bruits lateraux non-stationnaires pour un dispositif audio multi-microphone, notamment un dispositif telephonique "mains libres" pour vehicule automobile
FR2950461B1 (fr) * 2009-09-22 2011-10-21 Parrot Procede de filtrage optimise des bruits non stationnaires captes par un dispositif audio multi-microphone, notamment un dispositif telephonique "mains libres" pour vehicule automobile
CN101916567B (zh) * 2009-11-23 2012-02-01 瑞声声学科技(深圳)有限公司 应用于双麦克风系统的语音增强方法
CN101894563B (zh) * 2010-07-15 2013-03-20 瑞声声学科技(深圳)有限公司 语音增强的方法

Also Published As

Publication number Publication date
FR2976710B1 (fr) 2013-07-05
EP2538409A1 (de) 2012-12-26
CN102855880B (zh) 2016-09-28
US20120322511A1 (en) 2012-12-20
FR2976710A1 (fr) 2012-12-21
US8504117B2 (en) 2013-08-06
CN102855880A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
EP2538409B1 (de) Verfahren zur Geräuschdämpfung für Audio-Gerät mit mehreren Mikrofonen, insbesondere für eine telefonische Freisprechanlage
EP2680262B1 (de) Verfahren zur Geräuschdämpfung eines Audiosignals für eine Multimikrofon-Audiovorrichtung, die in lauten Umgebungen eingesetzt wird
EP2309499B1 (de) Verfahren zur optimierten Filterung nicht stationärer Geräusche, die von einem Audiogerät mit mehreren Mikrophonen eingefangen werden, insbesondere eine Freisprechtelefonanlage für Kraftfahrzeuge
EP2293594B1 (de) Verfahren zur Filterung von seitlichem nichtstationärem Rauschen für ein Multimikrofon-Audiogerät
EP1830349B1 (de) Verfahren zur Geräuschdämpfung eines Audiosignals
EP2430825B1 (de) Verfahren zum auswählen eines von zwei oder mehr mikrofonen für ein sprachverarbeitungssystem, wie etwa eine freihand-telefoneinrichtung, die in einer geräuschbehafteten umgebung operiert
EP2772916B1 (de) Verfahren zur Geräuschdämpfung eines Audiosignals mit Hilfe eines Algorithmus mit variabler Spektralverstärkung mit dynamisch modulierbarer Härte
FR2909773A1 (fr) Procede de traitement radar passif multivoies d'un signal d'opportunite en fm.
FR2831717A1 (fr) Methode et systeme d'elimination d'interference pour antenne multicapteur
WO2008125774A2 (fr) Procede de reduction active d'une nuisance sonore
FR2975193A1 (fr) Procede et systeme de localisation d'interferences affectant un signal de radionavigation par satellite
EP0998166A1 (de) Anordnung zur Verarbeitung von Audiosignalen, Empfänger und Verfahren zum Filtern und Wiedergabe eines Nutzsignals in Gegenwart von Umgebungsgeräusche
EP0692883B1 (de) Verfahren zur blinden Entzerrung, und dessen Anwendung zur Spracherkennung
EP0884926B1 (de) Verfahren und Vorrichtung zur optimierten Verarbeitung eines Störsignals während einer Tonaufnahme
FR2906070A1 (fr) Reduction de bruit multi-reference pour des applications vocales en environnement automobile
FR2808391A1 (fr) Systeme de reception pour antenne multicapteur
EP3025342A1 (de) Verfahren zur unterdrückung des späten nachhalls eines akustischen signals
FR2906071A1 (fr) Reduction de bruit multibande avec une reference de bruit non acoustique
FR3116348A1 (fr) Localisation perfectionnée d’une source acoustique
EP1155497B1 (de) System und verfahren zum verarbeiten von antennensignalen
FR3113537A1 (fr) Procédé et dispositif électronique de réduction du bruit multicanale dans un signal audio comprenant une partie vocale, produit programme d’ordinateur associé
FR3121542A1 (fr) Estimation d’un masque optimisé pour le traitement de données sonores acquises
WO2018220327A1 (fr) Procédé de suppression spatiale et temporelle d'interférences multi-trajets pour récepteur de signaux radio modulés en fréquence
FR2878399A1 (fr) Dispositif et procede de debruitage a deux voies mettant en oeuvre une fonction de coherence associee a une utilisation de proprietes psychoacoustiques, et programme d'ordinateur correspondant
FR2724028A1 (fr) Procede d'estimation aveugle de retards differentiels entre deux signaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012000246

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G10L0021020000

Ipc: G10L0021020800

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 21/0208 20130101AFI20130327BHEP

Ipc: H04R 3/00 20060101ALI20130327BHEP

INTG Intention to grant announced

Effective date: 20130423

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 629726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012000246

Country of ref document: DE

Effective date: 20131024

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 629726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131230

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012000246

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012000246

Country of ref document: DE

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140605

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140605

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012000246

Country of ref document: DE

Owner name: PARROT AUTOMOTIVE, FR

Free format text: FORMER OWNER: PARROT, PARIS, FR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20151029 AND 20151104

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PARROT AUTOMOTIVE, FR

Effective date: 20151201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: PARROT AUTOMOTIVE; FR

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: PARROT

Effective date: 20151102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120605

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20190611

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230523

Year of fee payment: 12

Ref country code: FR

Payment date: 20230523

Year of fee payment: 12

Ref country code: DE

Payment date: 20230523

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 12