EP2507859A1 - Method for managing a fuel cell during sulfur compound pollution, and power supply device - Google Patents

Method for managing a fuel cell during sulfur compound pollution, and power supply device

Info

Publication number
EP2507859A1
EP2507859A1 EP10799069A EP10799069A EP2507859A1 EP 2507859 A1 EP2507859 A1 EP 2507859A1 EP 10799069 A EP10799069 A EP 10799069A EP 10799069 A EP10799069 A EP 10799069A EP 2507859 A1 EP2507859 A1 EP 2507859A1
Authority
EP
European Patent Office
Prior art keywords
gas
sulfur compound
sulfur
phase
pollution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10799069A
Other languages
German (de)
French (fr)
Inventor
Olivier Lemaire
Benoît BARTHE
Alejandro Franco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2507859A1 publication Critical patent/EP2507859A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for managing a fuel cell comprising a circulating active gas in contact with an electrode.
  • the invention also relates to a power supply device comprising a fuel cell.
  • Fuel cells are electrochemical systems that convert chemical energy into electricity.
  • PEMFC proton exchange membrane fuel cells
  • the chemical energy is, for example, in the form of hydrogen gas.
  • the fuel cell is broken down into two compartments separated by a proton exchange membrane.
  • One of the compartments is fed, for example, hydrogen or methanol, called fuel, and the other is supplied with oxygen or air, called oxidant.
  • oxygen or air called oxidant.
  • the oxidation reaction of hydrogen produces protons and electrons.
  • the protons cross the membrane while the electrons must pass into an external electrical circuit to reach the cathode.
  • the cathode occurs the reaction of reduction of oxygen, in the presence of protons and electrons.
  • the core of the cell also called membrane-electrode assembly (AME)
  • AME membrane-electrode assembly
  • the catalytic layers are the seat of the oxidation and reduction reactions in the cell.
  • Gaseous diffusion layers are arranged on either side of ⁇ to ensure electrical conduction, the homogeneous arrival of the gases and the evacuation of the water produced by the reaction and the non-consumed reagents.
  • Oxidant and fuel pollution is one of the main factors responsible for the performance degradation of a PEMFC cell.
  • the impurities contained in the hydrogen (combustible gas) are, for example, carbon oxides CO and C0 2 , sulfur compounds (H 2 S in particular) and ammonia NH 3 . These impurities come in particular from the process for manufacturing hydrogen.
  • the pollutants of air or oxygen (oxidizing gas) are, for example, NO x nitrogen oxides, SO x sulfur oxides and CO x carbon oxides. These pollutants generally come from motor vehicle exhausts, industrial and military sites.
  • the contaminants can access the chemical reaction zones of the cell and attach to the catalytic sites of the anode and cathode.
  • the catalytic sites are then poisoned and no longer participate in the oxidation and reduction processes.
  • the contaminants modify the structure and the properties of the core of the cell, for example by modifying its hydrophobic or hydrophilic character.
  • the degradation of the performance of the cell is mainly due to the decrease in catalytic activity, the ohmic losses following the increase of the resistance of the components of the cell and to the losses of mass transport following the variations of the structure .
  • the oxides of sulfur (SO x ), sulfur dioxide S0 2 are particularly harmful and greatly degrade the performance of the battery.
  • the invention relates to a fuel cell management method, simple and easy to implement, to find good performance after pollution sulfur compounds.
  • this objective is attained by the fact that the concentration of a sulfur compound in the active gas is compared with a single indicative of a phase of pollution with the sulfur compound and by the fact that an oxygen pollutant gas and non-sulfur is temporarily introduced into the active gas if the concentration of sulfur compound is greater than the threshold.
  • the invention also relates to a power supply device comprising means for comparing the concentration of a sulfur compound in the active gas to a threshold indicative of a pollution phase sulfur compound, a source of oxygen pollutant gas and not sulfur and means of introduction pollutant gas in the active gas if the concentration of the sulfur compound is above the threshold.
  • FIG. 2 schematically represents the variations in the performance of a battery with time, for a first embodiment of a management method according to the invention
  • FIG. 3 represents, schematically, the variations of the performances of a stack with time, for a second embodiment
  • FIG. 4 schematically represents the variations in the performance of a battery with time, for a variant embodiment of the embodiment of FIG. 3,
  • FIGS. 5 and 6 represent the variations of the voltage at the terminals of a battery with time, for a sulfur compound concentration of 1.5 ppm
  • FIG. 7 represents the variations of the voltage at the terminals of a battery with time, for a sulfur compound concentration of 4 ppm.
  • FIG. 8 shows a power supply device according to the invention. Description of particular embodiments
  • the article "The effect of ambient contamination on PEMFC performance” (Jing et al., Journal of Power Sources, 166, 172-176, 2007) describes the mechanism of pollution of the oxidizing gas by SO 2 sulfur dioxide. Air containing sulfur dioxide is injected into the cell to determine the impact of such pollution on performance. Sulfur dioxide is adsorbed on the platinum catalyst layer, thereby reducing the active surface area and hence the catalytic activity. The performance of the battery decreases by about 35% after pollution for about 100 hours and the recovery rate is of the order of 84%.
  • the experiment is repeated with another pollutant of the oxidizing gas: nitrogen dioxide NO 2 .
  • nitrogen dioxide is fixed on the catalytic sites and reduces the performance of the stack by 10% after a pollution for about 100 hours and the recovery rate is of the order of 94%.
  • a third experiment is carried out with an oxidizing gas comprising NO 2 nitrogen dioxide and SO 2 sulfur dioxide.
  • the decrease in performance is of the order of 23% and the recovery rate of 94%.
  • NO 2 adsorption and SO 2 adsorption by the catalyst appear to be two competing mechanisms.
  • Nitrogen dioxide is more easily adsorbed, which limits the adsorption of sulfur dioxide by the catalyst, thus explaining a lower performance reduction in the case of a mixture of the two pollutants than in the case of sulfur dioxide only.
  • Nitrogen dioxide thus has an adsorption affinity to the catalyst greater than the affinity of sulfur dioxide. It is proposed here to develop the teachings of this article to implement them in an advantageous manner.
  • the sulfur can be adsorbed by platinum according to the following simplified formula:
  • FIG. 1 represents the evolution in time (t) of the voltage U at the terminals of a PEMFC stack in different cases of pollution.
  • Phase P1 corresponds to a phase of operation without pollutants.
  • the voltage U is maximum in this phase.
  • Phase P2 corresponds to pollution by a sulfur compound, for example sulfur dioxide.
  • the concentration of sulfur oxide S0 2 varies between 0.75 ppm (parts per million) and 4 ppm according to the different curves shown in FIG. 1. In this phase, the voltage U drops gradually.
  • the rate of decrease of the voltage increases with the pollutant concentration.
  • the voltage decreased by about 40 mV at the end of the P2 phase, for a SO 2 concentration of 1 ppm, while for a concentration of 4 ppm, the decrease is about 150mV.
  • the active gases become pure (phase P1 b) and the U voltage rises. Nevertheless, the voltage U does not go back completely to its initial level. Indeed, some of the active sites is irreversibly poisoned by the sulfur compound. A method of regenerating stack performance should be employed.
  • oxygenated compounds in particular nitrogen dioxide NO 2 and carbon dioxide CO 2
  • nitrogen dioxide NO 2 and carbon dioxide CO 2 can replace the sulfur occupying the catalytic sites and responsible for reducing the performance of a battery, for example voltage. This phenomenon is explained in that these oxygenated compounds have a higher adsorption affinity than the sulfur compounds, as previously described.
  • the mechanism is described, in a simplified way, by the following equation, in the case of N0 2 :
  • the sulfur is replaced at the level of the contaminated catalytic site (PtS) by the radical NO coming from NO 2 .
  • Such a method comprises the detection of pollution to a sulfur compound and the introduction of a healing gas during or after this pollution phase.
  • This healing gas oxygenated and not sulfurized, will allow the evacuation of particles including sulfur which poison the catalytic sites.
  • the gas is called a healer because it allows a better regeneration of the performance of the battery during a return to pure active gases after pollution to the sulfur compound. Indeed, catalytic sites will be released in larger quantities and the performance will rise to a higher level. This is explained by the fact that oxygenated radicals desorb more easily than sulfur when returning to pure active gases.
  • the fuel cell traditionally comprises two active gases: an oxidizing gas, air for example, and a combustible gas, hydrogen, for example.
  • Each of the oxidant and fuel active gases circulates in contact with an electrode, respectively the cathode and the anode.
  • a pollution phase is identified. This detection can be performed by comparing the concentration of the sulfur compound in the active gas at a threshold indicative of a sulfur compound pollution phase.
  • the sulfur compound is, for example, sulfur dioxide S0 2 , generally present in air, or hydrogen sulphide H 2 S generally present in the fuel gas.
  • the battery management method applies to the sulfur compounds that can be adsorbed by the catalyst, both on the anode side and on the cathode side.
  • the healing gas is then temporarily introduced into the polluted active gas if the concentration of sulfur compound is greater than the threshold.
  • the threshold is preferably defined in relation to the performance degradation caused by the pollution. For example, a 10% decrease in performance due to pollution may provide the value of a first threshold.
  • the healant gas may be selected from NO x nitrogen oxides and CO x carbon oxides, which are themselves common pollutants of PEMFC cells. Thus, the introduction of such a gas may, in the short term, worsen the drop in performance due to the sulfur compound, but during the return to pure active gases, the gas has helped to further regenerate the performance of the battery.
  • the duration of introduction of the healing gas is preferably between 1 minute and 10 hours and may vary depending on the desired final level of performance.
  • the duration of introduction may also be a function of the amount of healing gas. By way of example, it can vary from a few minutes, for a concentration of healing gas of the order of a few parts per million (ppm), to a few hours for a concentration of the order of a few parts per billion ( ppb).
  • the amount of heal gas is preferably from 10 parts per billion to 10 parts per million based on the total amount of the gases, i.e., the active gas, the pollutant gas and the healer gas.
  • FIG. 2 represents the evolution of the performances of a stack in time according to a first embodiment of the management method. A phase of involuntary pollution P2 succeeds a first phase without pollutants P1 a.
  • phase P1 b The performance rise slightly and reach an intermediate value P m , lower than the initial performances P
  • the healing gas is introduced voluntarily at time t 3 , corresponding to the healing phase P3. Performance drops again. Indeed, the gas introduced is also polluting. However, after stopping the introduction of the healer gas, the performance goes back, during a non-polluting phase P1 c, to a value P f greater than the value P m of the performance after the pollution phase P2.
  • the introduction of the healing gas during a phase P3 thus allowed an improvement in the performance of P f -P m , represented by the arrow in FIG. 2.
  • the healing gas is introduced. after the pollution phase with the sulfur compound (P2) and a phase of operation without pollutants (P1 b).
  • the management method includes a step of detecting the end of the pollution phase and a waiting step of a time interval corresponding to the phase P1b.
  • the healing gas is introduced immediately after detecting the end of the pollution phase P2 sulfur compound. In this case also, the final performance is improved compared to the performance without use of healing gas.
  • FIG. 3 represents a second embodiment in which the healing gas is introduced during the pollution phase with the sulfur compound.
  • the curve in solid line represents the case of a management method with introduction of a healing gas while the dashed curve represents the case of a process without introduction of the healing gas.
  • the sulfur compound pollution occurs between times t, and t 3 .
  • the healing phase P3 starts.
  • the performance then decreases further (curve in solid line).
  • the performance goes back to a level P f higher than that obtained without healing gas (dashed, level P m ).
  • FIG. 4 represents a variant of the method of FIG. 3.
  • the gas is introduced during the pollution phase P2 between the times t- and t 2 during several disjointed time intervals.
  • three healing phases P3a to P3c are used.
  • the duration of introduction of the healing gas of each phase P3 is variable, as is the duration between two successive phases P3. This division is advantageous because it allows an intermediate analysis of the performance reduction in order to adjust the amount of heal gas to be introduced to the next phase P3. This amount can be adjusted, for example, by changing the number of phases P3 and the duration of each of them.
  • FIGS. 5 to 7 illustrate examples of operation of a stack managed according to the various embodiments of the management method described.
  • the operating conditions of this battery are as follows:
  • the loading of the electrodes with a catalyst, platinum for example, is of the order of 0.5 mg / cm 2 .
  • the polymer membrane is, for example, a material marketed under the trademark Nafion by the company DuPont and a thickness of about 50 ⁇ .
  • the moisture content of the reactive gases at the anode and the cathode is approximately 60%.
  • the current density of the battery is of the order of 0.6 A / cm 2 .
  • the pollutant gas is sulfur dioxide in the air.
  • the healing gas is nitrogen dioxide.
  • FIG. 5 represents an example of operation with a healing phase P3 beginning at the end of a pollution phase P2.
  • the curve in solid line represents the case of a management method with introduction of the healing gas while the dashed curve represents the case of a process without introduction of the healing gas (no phase P3 in this case).
  • the pollution phase P2 sulfur dioxide, a concentration of 1, 5 ppm, lasts about 15 hours. It is followed by a healing phase P3 by nitrogen dioxide N0 2, at a concentration of 1, 5 ppm. Nitrogen dioxide is introduced into the air for approximately 15 hours.
  • FIG. 6 represents another example in which the introduction of the NO 2 healer gas takes place after a pollution phase P2 at SO 2 of 30 hours at 1.5 ppm and a phase of operation without pollutants P 1 b of approximately 30 hours.
  • the healing phase P3 lasts approximately 30 hours.
  • the performance improvement P f - P m corresponds to a voltage of 16 mV.
  • the management method with introduction of an oxygenated and non-sulfur healing gas applies regardless of the concentrations of pollutants.
  • concentration of the healing gas may also be adapted according to the desired performance improvement.
  • FIG. 7 represents an example of operation with an NO 2 concentration of 4 ppm during the phase P 3 and a waiting phase P 1 b between the end of the pollution phase P2 and the introduction of the healing gas.
  • the voltage P f after the healing phase P3 has increased by one value up to 22 mV with respect to the voltage P m obtained after the P2 pollution phase.
  • This management method with introduction of a healer gas will preferably apply as long as the performance is greater than 50% of the initial performance.
  • a power supply device comprises means for comparing the concentration of a sulfur compound in the active gas with a threshold indicative of a phase of pollution with the sulfur compound and means for introducing an oxygenated and unsulfurized healer gas into the active gas if the concentration of the sulfur compound is greater than the threshold.
  • the device can then automatically control the introduction of the healing gas according to a most suitable regeneration mode.
  • the feed device further comprises means for identifying the sulfur compound and means for calculating the amount of healer gas to be introduced.
  • the computing means may also determine the rate of degradation of performance, the level of performance, the duration of introduction of the gas.
  • the calculation means will thus determine the appropriate mode of introduction and control the means for introducing the healer gas, depending, for example, on the nature of the pollutant and / or the rate of degradation of performance.
  • FIG. 8 shows an example of a feeding device.
  • the device comprises a fuel cell 1 with proton exchange membrane (PEMFC).
  • the cell 1 comprising a membrane-electrode assembly (AME) 2 constituting the core of the cell and gas diffusion layers 3a and 3b on either side of the assembly 2.
  • Each gas diffusion layer (3a, 3b) includes an active gas inlet and an outlet for excess gas and the reaction products, respectively 4a and 5a for the fuel gas on the left in FIG. 8, and 4b and 5b for the oxidant gas on the right in FIG. 8.
  • the device 1 further comprises a detector 7 for sulfur compounds SX n . The detection may consist in comparing the concentration of the sulfur compound with a threshold indicative of a pollution.
  • the supply device comprises two detectors 7a and 7b, respectively for the fuel gas and the combustion gas.
  • An electronic control circuit 8 for example a microcontroller, makes it possible to determine the evolution of the performances of the cell, in particular from the measured voltage (V) and current (I) values.
  • the control circuit 8 is connected to the output of the detectors 7a and 7b for controlling an introduction valve 9 of the healing gas, CO x or NO x, for example.
  • the control circuit 8 is also connected to identification means 10a and 10b of the polluting gas.
  • the identification means 10a and 10b may be incorporated in the detectors 7a and 7b of the polluting gas.
  • the healer gas is introduced into the combustible active gas using a conduit 1 1 a and / or in the oxidizing active gas using a conduit 1 1 b.
  • the ducts 1 1 1 a and 11 b are connected to the active gas inlet of the stack, respectively 4 a and 4 b
  • the fuel cell management process also applies if the two compartments, fuel and oxidant, are polluted simultaneously, by the same gas or by different gases. A healing gas is then injected into each compartment.
  • the healing gases may be identical or different in nature from the fuel side and the combustion side. Finally, several healing gases can be used successively.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The fuel cell management method, comprising an active gas flowing in contact with an electrode, includes a step of comparing the concentration of a sulfur compound in the active gas to a threshold indicative of a sulfur compound pollution phase (P2) and moreover includes a step of temporarily adding (P3) an oxygenated non-sulfur polluting gas into the active gas if the concentration is greater than the threshold. The polluting gas can be added during or after the pollution phase (P2).

Description

PROCEDE DE GESTION D'UNE PILE A COMBUSTIBLE PENDANT UNE POLLUTION AUX COMPOSES SOUFRES ET DISPOSITIF D'ALIMENTATION EN ENERGIE Domaine technique de l'invention  METHOD FOR MANAGING A FUEL CELL DURING SULFUR COMPOUND POLLUTION AND POWER SUPPLY DEVICE Technical Field of the Invention
L'invention concerne un procédé de gestion d'une pile à combustible comportant un gaz actif circulant en contact avec une électrode. L'invention concerne également un dispositif d'alimentation en énergie comprenant une pile à combustible. The invention relates to a method for managing a fuel cell comprising a circulating active gas in contact with an electrode. The invention also relates to a power supply device comprising a fuel cell.
État de la technique State of the art
Les piles à combustible sont des systèmes électrochimiques qui permettent de convertir une énergie chimique en électricité. Pour les piles à combustible à membrane échangeuse de protons (« Proton Exchange Membrane Fuel Cell », PEMFC), l'énergie chimique se présente, par exemple, sous la forme d'hydrogène gazeux. La pile à combustible se décompose en deux compartiments séparés par une membrane échangeuse de protons. L'un des compartiments est alimenté, par exemple, en hydrogène ou en méthanol, appelé combustible, et l'autre est alimenté en oxygène ou en air, appelé comburant. A l'anode, la réaction d'oxydation de l'hydrogène produit des protons et des électrons. Les protons traversent la membrane tandis que les électrons doivent passer dans un circuit électrique externe pour atteindre la cathode. A la cathode se produit la réaction de réduction de l'oxygène, en présence des protons et des électrons. Le cœur de la pile, appelé également assemblage membrane-électrodes (AME), est constitué de couches catalytiques et de la membrane séparatrice. Les couches catalytiques sont le siège des réactions d'oxydation et de réduction dans la pile. Des couches de diffusion gazeuse sont disposées de part et d'autre de ΑΜΕ pour assurer la conduction électrique, l'arrivée homogène des gaz et l'évacuation de l'eau produite par la réaction et des réactifs non consommés. Fuel cells are electrochemical systems that convert chemical energy into electricity. For proton exchange membrane fuel cells (PEMFC), the chemical energy is, for example, in the form of hydrogen gas. The fuel cell is broken down into two compartments separated by a proton exchange membrane. One of the compartments is fed, for example, hydrogen or methanol, called fuel, and the other is supplied with oxygen or air, called oxidant. At the anode, the oxidation reaction of hydrogen produces protons and electrons. The protons cross the membrane while the electrons must pass into an external electrical circuit to reach the cathode. At the cathode occurs the reaction of reduction of oxygen, in the presence of protons and electrons. The core of the cell, also called membrane-electrode assembly (AME), consists of catalytic layers and the separating membrane. The catalytic layers are the seat of the oxidation and reduction reactions in the cell. Gaseous diffusion layers are arranged on either side of ΑΜΕ to ensure electrical conduction, the homogeneous arrival of the gases and the evacuation of the water produced by the reaction and the non-consumed reagents.
La pollution des comburant et combustible est l'un des principaux facteurs responsables de la dégradation des performances d'une pile PEMFC. Les impuretés contenues dans l'hydrogène (gaz combustible) sont, par exemple, les oxydes de carbone CO et C02, les composés soufrés (H2S en particulier) et l'ammoniac NH3. Ces impuretés proviennent notamment du procédé de fabrication de l'hydrogène. Les polluants de l'air ou de l'oxygène (gaz comburant) sont, par exemple, les oxydes d'azote NOx, les oxydes de soufre SOx et les oxydes de carbone COx. Ces polluants proviennent généralement des échappements des véhicules automobiles, des sites industriels et militaires. Oxidant and fuel pollution is one of the main factors responsible for the performance degradation of a PEMFC cell. The impurities contained in the hydrogen (combustible gas) are, for example, carbon oxides CO and C0 2 , sulfur compounds (H 2 S in particular) and ammonia NH 3 . These impurities come in particular from the process for manufacturing hydrogen. The pollutants of air or oxygen (oxidizing gas) are, for example, NO x nitrogen oxides, SO x sulfur oxides and CO x carbon oxides. These pollutants generally come from motor vehicle exhausts, industrial and military sites.
Ces contaminants peuvent accéder aux zones de réaction chimique de la pile et se fixer sur les sites catalytiques de l'anode et de la cathode. Les sites catalytiques sont alors empoisonnés et ne participent plus aux processus d'oxydation et de réduction. Par ailleurs, les contaminants modifient la structure et les propriétés du cœur de la pile, par exemple en modifiant son caractère hydrophobe ou hydrophile. Ainsi, la dégradation des performances de la pile est principalement due à la diminution de l'activité catalytique, aux pertes ohmiques suite à l'augmentation de la résistance des composants de la pile et aux pertes de transport de masse suite aux variations de la structure. Parmi les polluants du gaz comburant énoncés ci-dessus, les oxydes de soufre (SOx), le dioxyde de soufre S02 notamment, sont particulièrement nocifs et dégradent fortement les performances de la pile. Différentes méthodes électrochimiques sont employées pour régénérer les performances d'une pile à combustible après un épisode de pollution aux composés soufrés. Ces méthodes consistent à appliquer un courant électrique ou une impulsion électrique à chacune des électrodes contaminées, afin d'enlever les impuretés à leur surface. Une autre méthode consiste à imposer une tension qui varie de manière cyclique entre -1 ,5 V et 1 ,5 V. Ces techniques de régénération permettent de retrouver un niveau de performances satisfaisant. Cependant, de telles techniques nécessitent une mise hors service de la pile. Bien qu'il puisse être bref, l'arrêt de la pile est néfaste pour le dispositif qu'elle alimente. De plus, l'application d'un courant électrique sous la forme d'une impulsion ou d'un cycle peut dégrader les composants du cœur de la pile, le catalyseur notamment. Ces techniques ne sont donc pas appropriées. These contaminants can access the chemical reaction zones of the cell and attach to the catalytic sites of the anode and cathode. The catalytic sites are then poisoned and no longer participate in the oxidation and reduction processes. In addition, the contaminants modify the structure and the properties of the core of the cell, for example by modifying its hydrophobic or hydrophilic character. Thus, the degradation of the performance of the cell is mainly due to the decrease in catalytic activity, the ohmic losses following the increase of the resistance of the components of the cell and to the losses of mass transport following the variations of the structure . Among the pollutants of the oxidizing gas stated above, the oxides of sulfur (SO x ), sulfur dioxide S0 2 in particular, are particularly harmful and greatly degrade the performance of the battery. Various electrochemical methods are used to regenerate the performance of a fuel cell after an episode of pollution with sulfur compounds. These methods involve applying an electric current or an electrical pulse to each of the contaminated electrodes to remove impurities on their surface. Another method is to impose a voltage that varies cyclically between -1.5 V and 1.5 V. These regeneration techniques can find a satisfactory level of performance. However, such techniques require a disabling of the battery. Although it may be brief, stopping the battery is detrimental to the device it feeds. In addition, the application of an electric current in the form of a pulse or a cycle can degrade the core components of the battery, including the catalyst. These techniques are therefore not appropriate.
Objet de l'invention Object of the invention
L'invention vise un procédé de gestion d'une pile à combustible, simple et facile à mettre en oeuvre, permettant de retrouver de bonnes performances après une pollution aux composés soufrés. The invention relates to a fuel cell management method, simple and easy to implement, to find good performance after pollution sulfur compounds.
Selon l'invention, on tend vers cet objectif par le fait que la concentration d'un composé soufré dans le gaz actif est comparée à un seul indicatif d'une phase de pollution au composé soufré et par le fait qu'un gaz polluant oxygéné et non soufré est temporairement introduit dans le gaz actif si la concentration en composé soufré est supérieure au seuil. According to the invention, this objective is attained by the fact that the concentration of a sulfur compound in the active gas is compared with a single indicative of a phase of pollution with the sulfur compound and by the fact that an oxygen pollutant gas and non-sulfur is temporarily introduced into the active gas if the concentration of sulfur compound is greater than the threshold.
L'invention vise également un dispositif d'alimentation en énergie comportant des moyens pour comparer la concentration d'un composé soufré dans le gaz actif à un seuil indicatif d'une phase de pollution au composé soufré, une source de gaz polluant oxygéné et non soufré et des moyens d'introduction du gaz polluant dans le gaz actif si la concentration du composé soufré est supérieure au seuil. The invention also relates to a power supply device comprising means for comparing the concentration of a sulfur compound in the active gas to a threshold indicative of a pollution phase sulfur compound, a source of oxygen pollutant gas and not sulfur and means of introduction pollutant gas in the active gas if the concentration of the sulfur compound is above the threshold.
Description sommaire des dessins Brief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting example and represented in the accompanying drawings, in which:
- la figure 1 représente des variations de la tension aux bornes d'une pile dans le temps, en fonction de la concentration en composé soufré. - Figure 1 shows changes in the voltage across a battery in time, depending on the concentration of sulfur compound.
- la figure 2 représente, de manière schématique, les variations des performances d'une pile dans le temps, pour un premier mode de réalisation de procédé de gestion selon l'invention,  FIG. 2 schematically represents the variations in the performance of a battery with time, for a first embodiment of a management method according to the invention,
- la figure 3 représente, de manière schématique, les variations des performances d'une pile dans le temps, pour un second mode de réalisation,  FIG. 3 represents, schematically, the variations of the performances of a stack with time, for a second embodiment,
- la figure 4 représente, de manière schématique, les variations des performances d'une pile dans le temps, pour une variante de réalisation du mode de réalisation de la figure 3, FIG. 4 schematically represents the variations in the performance of a battery with time, for a variant embodiment of the embodiment of FIG. 3,
- les figures 5 et 6 représentent les variations de la tension aux bornes d'une pile dans le temps, pour une concentration en composé soufré de 1 ,5 ppm,  FIGS. 5 and 6 represent the variations of the voltage at the terminals of a battery with time, for a sulfur compound concentration of 1.5 ppm,
- la figure 7 représente les variations de la tension aux bornes d'une pile dans le temps, pour une concentration en composé soufré de 4 ppm, et FIG. 7 represents the variations of the voltage at the terminals of a battery with time, for a sulfur compound concentration of 4 ppm, and
- la figure 8 représente un dispositif d'alimentation en énergie selon l'invention. Description de modes particuliers de réalisation - Figure 8 shows a power supply device according to the invention. Description of particular embodiments
L'article « The effect of ambient contamination on PEMFC performance » (Jing et al., Journal of Power Sources, 166, 172-176, 2007) décrit le mécanisme de pollution du gaz comburant par le dioxyde de soufre SO2. De l'air contenant du dioxyde de soufre est injecté dans la pile afin de déterminer l'impact d'une telle pollution sur les performances. Le dioxyde de soufre est adsorbé sur la couche de catalyseur en platine, réduisant ainsi la surface active et donc l'activité catalytique. Les performances de la pile diminuent de l'ordre de 35 % après une pollution pendant 100 heures environ et le taux de rétablissement est de l'ordre de 84 %. The article "The effect of ambient contamination on PEMFC performance" (Jing et al., Journal of Power Sources, 166, 172-176, 2007) describes the mechanism of pollution of the oxidizing gas by SO 2 sulfur dioxide. Air containing sulfur dioxide is injected into the cell to determine the impact of such pollution on performance. Sulfur dioxide is adsorbed on the platinum catalyst layer, thereby reducing the active surface area and hence the catalytic activity. The performance of the battery decreases by about 35% after pollution for about 100 hours and the recovery rate is of the order of 84%.
L'expérience est répétée avec un autre polluant du gaz comburant : le dioxyde d'azote NO2. De la même manière, le dioxyde d'azote se fixe sur les sites catalytiques et réduit les performances de la pile de 10 % après une pollution pendant 100 heures environ et le taux de rétablissement est de l'ordre de 94 %. The experiment is repeated with another pollutant of the oxidizing gas: nitrogen dioxide NO 2 . In the same way, the nitrogen dioxide is fixed on the catalytic sites and reduces the performance of the stack by 10% after a pollution for about 100 hours and the recovery rate is of the order of 94%.
Une troisième expérience est réalisée avec un gaz comburant comprenant du dioxyde d'azote NO2 et du dioxyde de soufre SO2. La diminution des performances est de l'ordre de 23 % et le taux de rétablissement de 94%. L'adsorption du NO2 et l'adsorption du SO2 par le catalyseur sembleraient être deux mécanismes concurrents. Le dioxyde d'azote est plus facilement adsorbé, ce qui limite l'adsorption du dioxyde de soufre par le catalyseur, expliquant ainsi une diminution des performances plus faible dans le cas d'un mélange des deux polluants que dans le cas du dioxyde de soufre seulement. Le dioxyde d'azote a donc une affinité d'adsorption sur le catalyseur supérieure à l'affinité du dioxyde de soufre. On propose ici de développer les enseignements de cet article pour les mettre en application de manière avantageuse. Dans le cas d'une pollution par un composé soufré, de formule chimique SXn, le soufre peut être adsorbé par le platine selon la formule simplifiée suivante : A third experiment is carried out with an oxidizing gas comprising NO 2 nitrogen dioxide and SO 2 sulfur dioxide. The decrease in performance is of the order of 23% and the recovery rate of 94%. NO 2 adsorption and SO 2 adsorption by the catalyst appear to be two competing mechanisms. Nitrogen dioxide is more easily adsorbed, which limits the adsorption of sulfur dioxide by the catalyst, thus explaining a lower performance reduction in the case of a mixture of the two pollutants than in the case of sulfur dioxide only. Nitrogen dioxide thus has an adsorption affinity to the catalyst greater than the affinity of sulfur dioxide. It is proposed here to develop the teachings of this article to implement them in an advantageous manner. In the case of pollution with a sulfur compound, of chemical formula SX n , the sulfur can be adsorbed by platinum according to the following simplified formula:
SXn+ Pt = Xn + PtS SX n + Pt = X n + PtS
Le soufre se fixe sur le platine et forme un composé de formule PtS.  Sulfur binds to platinum and forms a compound of formula PtS.
La figure 1 représente l'évolution dans le temps (t) de la tension U aux bornes d'une pile PEMFC dans différents cas de pollution. La phase P1 a correspond à une phase de fonctionnement sans polluants. La tension U est maximale dans cette phase. La phase P2 correspond à une pollution par un composé soufré, par exemple le dioxyde de soufre. La concentration en oxyde de soufre S02 varie entre 0,75 ppm (parties par million) et 4 ppm suivant les différentes courbes représentées sur la figure 1. Dans cette phase, la tension U chute progressivement. FIG. 1 represents the evolution in time (t) of the voltage U at the terminals of a PEMFC stack in different cases of pollution. Phase P1 corresponds to a phase of operation without pollutants. The voltage U is maximum in this phase. Phase P2 corresponds to pollution by a sulfur compound, for example sulfur dioxide. The concentration of sulfur oxide S0 2 varies between 0.75 ppm (parts per million) and 4 ppm according to the different curves shown in FIG. 1. In this phase, the voltage U drops gradually.
On peut remarquer sur la figure 1 que le taux de diminution de la tension augmente avec la concentration en polluant. Par exemple, la tension a diminué d'environ 40 mV à la fin de la phase P2, pour une concentration en SO2 de 1 ppm alors que pour une concentration de 4 ppm, la diminution est de 150mV environ. A l'issue de la phase de pollution P2, les gaz actifs redeviennent purs (phase P1 b) et la tension U remonte. Néanmoins, la tension U ne remonte pas complètement à son niveau initial. En effet, une partie des sites actifs est irréversiblement empoisonnée par le composé soufré. Une méthode de régénération des performances de la pile doit être employée. It can be seen in FIG. 1 that the rate of decrease of the voltage increases with the pollutant concentration. For example, the voltage decreased by about 40 mV at the end of the P2 phase, for a SO 2 concentration of 1 ppm, while for a concentration of 4 ppm, the decrease is about 150mV. At the end of the P2 pollution phase, the active gases become pure (phase P1 b) and the U voltage rises. Nevertheless, the voltage U does not go back completely to its initial level. Indeed, some of the active sites is irreversibly poisoned by the sulfur compound. A method of regenerating stack performance should be employed.
Les inventeurs ont découvert que certains composés oxygénés, le dioxyde d'azote NO2 et le dioxyde de carbone CO2 notamment, peuvent remplacer le soufre occupant les sites catalytiques et responsables de la diminution des performances d'une pile, la tension par exemple. Ce phénomène s'explique par le fait que ces composés oxygénés ont une affinité d'adsorption plus élevée que les composés soufrés, comme décrit précédemment. Le mécanisme est décrit, de manière simplifiée, par l'équation suivante, dans le cas du N02 : The inventors have discovered that certain oxygenated compounds, in particular nitrogen dioxide NO 2 and carbon dioxide CO 2 , can replace the sulfur occupying the catalytic sites and responsible for reducing the performance of a battery, for example voltage. This phenomenon is explained in that these oxygenated compounds have a higher adsorption affinity than the sulfur compounds, as previously described. The mechanism is described, in a simplified way, by the following equation, in the case of N0 2 :
PtS + N02 + Pt =» NOPt + PtO + S PtS + N0 2 + Pt = "NOPt + PtO + S
Le soufre est remplacé au niveau du site catalytique contaminé (PtS) par le radical NO provenant du NO2. The sulfur is replaced at the level of the contaminated catalytic site (PtS) by the radical NO coming from NO 2 .
Dans le cas du CO2) il s'agit du radical CO qui déplace le soufre selon la réaction : In the case of CO 2) it is the radical CO which displaces the sulfur according to the reaction:
PtS + CO => COPt + S  PtS + CO => COPt + S
Il est proposé un procédé de gestion d'une pile à combustible mettant en pratique ce phénomène. Un tel procédé comporte la détection d'une pollution à un composé soufré et l'introduction d'un gaz guérisseur pendant ou après cette phase de pollution. Ce gaz guérisseur, oxygéné et non soufré, va permettre l'évacuation des particules comprenant du soufre qui empoisonnent les sites catalytiques. Le gaz est appelé guérisseur car il permet une meilleure régénération des performances de la pile lors d'un retour sous gaz actifs purs après la pollution au composé soufré. En effet, les sites catalytiques seront libérés en plus grande quantité et les performances remonteront à un niveau plus élevé. Cela s'explique par le fait que les radicaux oxygénés se désorbent plus facilement que le soufre lors du retour aux gaz actifs purs. There is provided a method of managing a fuel cell practicing this phenomenon. Such a method comprises the detection of pollution to a sulfur compound and the introduction of a healing gas during or after this pollution phase. This healing gas, oxygenated and not sulfurized, will allow the evacuation of particles including sulfur which poison the catalytic sites. The gas is called a healer because it allows a better regeneration of the performance of the battery during a return to pure active gases after pollution to the sulfur compound. Indeed, catalytic sites will be released in larger quantities and the performance will rise to a higher level. This is explained by the fact that oxygenated radicals desorb more easily than sulfur when returning to pure active gases.
La pile à combustible comporte traditionnellement deux gaz actifs : un gaz comburant, l'air par exemple, et un gaz combustible, l'hydrogène par exemple. Chacun des gaz actifs comburant et combustible circule en contact avec une électrode, respectivement la cathode et l'anode. Dès lors qu'un composé soufré est détecté dans l'un des gaz actifs, une phase de pollution est identifiée. Cette détection peut être réalisée en comparant la concentration du composé soufré dans le gaz actif à un seuil indicatif d'une phase de pollution au composé soufré. Le composé soufré est, par exemple, le dioxyde de soufre S02, généralement présent dans l'air, ou le sulfure d'hydrogène H2S généralement présent dans le gaz combustible. Le procédé de gestion de la pile s'applique pour les composés soufrés susceptibles d'être adsorbés par le catalyseur, aussi bien du côté de l'anode que du côté de la cathode. The fuel cell traditionally comprises two active gases: an oxidizing gas, air for example, and a combustible gas, hydrogen, for example. Each of the oxidant and fuel active gases circulates in contact with an electrode, respectively the cathode and the anode. As soon as a sulfur compound is detected in one of the active gases, a pollution phase is identified. This detection can be performed by comparing the concentration of the sulfur compound in the active gas at a threshold indicative of a sulfur compound pollution phase. The sulfur compound is, for example, sulfur dioxide S0 2 , generally present in air, or hydrogen sulphide H 2 S generally present in the fuel gas. The battery management method applies to the sulfur compounds that can be adsorbed by the catalyst, both on the anode side and on the cathode side.
Le gaz guérisseur est ensuite introduit temporairement dans le gaz actif pollué si la concentration en composé soufré est supérieure au seuil. Le seuil est défini, de préférence, par rapport à la dégradation des performances engendrée par la pollution. Par exemple, une diminution de 10 % des performances due à la pollution peut fournir la valeur d'un premier seuil. Le gaz guérisseur peut être choisi parmi les oxydes d'azote NOx et les oxydes de carbone COx, qui sont eux-mêmes des polluants courants des piles PEMFC. Ainsi, l'introduction d'un tel gaz pourra, à court terme, aggraver la chute des performances due au composé soufré, mais lors du retour aux gaz actifs purs, le gaz aura contribué à régénérer davantage les performances de la pile. La durée d'introduction du gaz guérisseur est, de préférence, comprise entre 1 minute et 10 heures et peut varier en fonction du niveau de performances finales souhaité. La durée d'introduction peut également être fonction de la quantité de gaz guérisseur. A titre d'exemple, elle peut varier de quelques minutes, pour une concentration en gaz guérisseur de l'ordre de quelques parties par millions (ppm), jusqu'à quelques heures pour une concentration de l'ordre de quelques parties par milliards (ppb). La quantité en gaz guérisseur est comprise, de préférence, entre 10 parties par milliard et 10 parties par million par rapport à la quantité totale des gaz, c'est-à-dire le gaz actif, le gaz polluant et le gaz guérisseur. La figure 2 représente l'évolution des performances d'une pile dans le temps selon un premier mode de réalisation du procédé de gestion. Une phase de pollution involontaire P2 succède à une première phase sans polluants P1 a. La présence d'un composé soufré est détectée entre des instants t, et t2. Entre l'instant t2 et un instant t3, la pile fonctionne de nouveau avec des gaz actifs purs (phase P1 b). Les performances remontent légèrement et atteignent une valeur Pm intermédiaire, inférieure aux performances initiales P|. Le gaz guérisseur est introduit volontairement à l'instant t3, correspondant à la phase de guérison P3. Les performances diminuent de nouveau. En effet, le gaz introduit est également polluant. Cependant, après arrêt de l'introduction du gaz guérisseur, les performances remontent, pendant une phase non polluante P1 c, à une valeur Pf supérieure à la valeur Pm des performances après la phase de pollution P2. L'introduction du gaz guérisseur lors d'une phase P3 a donc permis une amélioration des performances de Pf - Pm, représentée par la flèche sur la figure 2. Dans le mode de réalisation de la figure 2, le gaz guérisseur est introduit après la phase de pollution au composé soufré (P2) et une phase de fonctionnement sans polluants (P1 b). Dans ce cas, le procédé de gestion comporte une étape de détection de la fin de la phase de pollution et une étape d'attente d'un intervalle de temps correspondant à la phase P1 b. The healing gas is then temporarily introduced into the polluted active gas if the concentration of sulfur compound is greater than the threshold. The threshold is preferably defined in relation to the performance degradation caused by the pollution. For example, a 10% decrease in performance due to pollution may provide the value of a first threshold. The healant gas may be selected from NO x nitrogen oxides and CO x carbon oxides, which are themselves common pollutants of PEMFC cells. Thus, the introduction of such a gas may, in the short term, worsen the drop in performance due to the sulfur compound, but during the return to pure active gases, the gas has helped to further regenerate the performance of the battery. The duration of introduction of the healing gas is preferably between 1 minute and 10 hours and may vary depending on the desired final level of performance. The duration of introduction may also be a function of the amount of healing gas. By way of example, it can vary from a few minutes, for a concentration of healing gas of the order of a few parts per million (ppm), to a few hours for a concentration of the order of a few parts per billion ( ppb). The amount of heal gas is preferably from 10 parts per billion to 10 parts per million based on the total amount of the gases, i.e., the active gas, the pollutant gas and the healer gas. FIG. 2 represents the evolution of the performances of a stack in time according to a first embodiment of the management method. A phase of involuntary pollution P2 succeeds a first phase without pollutants P1 a. The presence of a sulfur compound is detected between times t, and t 2 . Between the instant t 2 and a time t 3 , the cell operates again with pure active gases (phase P1 b). The performances rise slightly and reach an intermediate value P m , lower than the initial performances P |. The healing gas is introduced voluntarily at time t 3 , corresponding to the healing phase P3. Performance drops again. Indeed, the gas introduced is also polluting. However, after stopping the introduction of the healer gas, the performance goes back, during a non-polluting phase P1 c, to a value P f greater than the value P m of the performance after the pollution phase P2. The introduction of the healing gas during a phase P3 thus allowed an improvement in the performance of P f -P m , represented by the arrow in FIG. 2. In the embodiment of FIG. 2, the healing gas is introduced. after the pollution phase with the sulfur compound (P2) and a phase of operation without pollutants (P1 b). In this case, the management method includes a step of detecting the end of the pollution phase and a waiting step of a time interval corresponding to the phase P1b.
Dans une variante de réalisation, le gaz guérisseur est introduit immédiatement après avoir détecté la fin de la phase P2 de pollution au composé soufré. Dans ce cas également, les performances finales sont améliorées par rapport aux performances sans utilisation de gaz guérisseur. In an alternative embodiment, the healing gas is introduced immediately after detecting the end of the pollution phase P2 sulfur compound. In this case also, the final performance is improved compared to the performance without use of healing gas.
La figure 3 représente un second mode de réalisation dans lequel le gaz guérisseur est introduit pendant la phase de pollution au composé soufré. La courbe en trait plein représente le cas d'un procédé de gestion avec introduction d'un gaz guérisseur tandis que la courbe en pointillés représente le cas d'un procédé sans introduction du gaz guérisseur. La pollution au composé soufré a lieu entre les instants t, et t3. A l'instant t2 compris entre ^ et t3, la phase de guérison P3 démarre. Les performances diminuent alors davantage (courbe en trait plein). Toutefois, lors du retour sous gaz actif pur, c'est-à-dire en phase P1 b, les performances remontent à un niveau Pf supérieur à celui obtenu sans gaz guérisseur (en pointillés, niveau Pm). FIG. 3 represents a second embodiment in which the healing gas is introduced during the pollution phase with the sulfur compound. The curve in solid line represents the case of a management method with introduction of a healing gas while the dashed curve represents the case of a process without introduction of the healing gas. The sulfur compound pollution occurs between times t, and t 3 . At the instant t 2 between ^ and t 3 , the healing phase P3 starts. The performance then decreases further (curve in solid line). However, during the return under pure active gas, that is to say in phase P1 b, the performance goes back to a level P f higher than that obtained without healing gas (dashed, level P m ).
La figure 4 représente une variante du procédé de la figure 3. Le gaz est introduit pendant la phase de pollution P2, entre les instants t-, et t2, lors de plusieurs intervalles de temps disjoints. Sur l'exemple de la figure 4, on utilise trois phases de guérison P3a à P3c. La durée d'introduction du gaz guérisseur de chaque phase P3 est variable, de même que la durée entre deux phases P3 successives. Ce découpage est avantageux car il permet une analyse intermédiaire de la diminution des performances afin d'ajuster la quantité de gaz guérisseur à introduire à la phase P3 suivante. Cette quantité peut être ajustée, par exemple, en modifiant le nombre de phases P3 et la durée de chacune d'entre elles. FIG. 4 represents a variant of the method of FIG. 3. The gas is introduced during the pollution phase P2 between the times t- and t 2 during several disjointed time intervals. In the example of FIG. 4, three healing phases P3a to P3c are used. The duration of introduction of the healing gas of each phase P3 is variable, as is the duration between two successive phases P3. This division is advantageous because it allows an intermediate analysis of the performance reduction in order to adjust the amount of heal gas to be introduced to the next phase P3. This amount can be adjusted, for example, by changing the number of phases P3 and the duration of each of them.
Les figures 5 à 7 illustrent des exemples de fonctionnement d'une pile gérée selon les différentes modes de réalisation du procédé de gestion décrits. Les conditions de fonctionnement de cette pile sont les suivantes : FIGS. 5 to 7 illustrate examples of operation of a stack managed according to the various embodiments of the management method described. The operating conditions of this battery are as follows:
- Le chargement des électrodes en catalyseur, le platine par exemple, est de l'ordre de 0,5 mg/cm2. The loading of the electrodes with a catalyst, platinum for example, is of the order of 0.5 mg / cm 2 .
La membrane polymère est, par exemple, en une matière commercialisée sous la marque Nafion par la société DuPont et d'une épaisseur de l'ordre de 50 μτη.  The polymer membrane is, for example, a material marketed under the trademark Nafion by the company DuPont and a thickness of about 50 μτη.
- Le taux d'humidité des gaz réactifs à l'anode et à la cathode est de 60% environ. The moisture content of the reactive gases at the anode and the cathode is approximately 60%.
La densité de courant de la pile est de l'ordre de 0,6 A/cm2. The current density of the battery is of the order of 0.6 A / cm 2 .
Le gaz polluant est le dioxyde de soufre dans l'air.  The pollutant gas is sulfur dioxide in the air.
Le gaz guérisseur est le dioxyde d'azote. La figure 5 représente un exemple de fonctionnement avec une phase de guérison P3 commençant dès la fin d'une phase de pollution P2. La courbe en trait plein représente le cas d'un procédé de gestion avec introduction du gaz guérisseur tandis que la courbe en pointillés représente le cas d'un procédé sans introduction du gaz guérisseur (pas de phase P3 dans ce cas). La phase de pollution P2 au dioxyde de soufre, d'une concentration de 1 ,5 ppm, dure environ 15 heures. Elle est suivie directement par une phase de guérison P3 par le dioxyde d'azote N02, à une concentration de 1 ,5 ppm. Le dioxyde d'azote est introduit dans l'air pendant une durée approximative de 15 heures. The healing gas is nitrogen dioxide. FIG. 5 represents an example of operation with a healing phase P3 beginning at the end of a pollution phase P2. The curve in solid line represents the case of a management method with introduction of the healing gas while the dashed curve represents the case of a process without introduction of the healing gas (no phase P3 in this case). The pollution phase P2 sulfur dioxide, a concentration of 1, 5 ppm, lasts about 15 hours. It is followed by a healing phase P3 by nitrogen dioxide N0 2, at a concentration of 1, 5 ppm. Nitrogen dioxide is introduced into the air for approximately 15 hours.
On prend la tension comme paramètre représentatif des performances de la pile. La tension finale sera alors notée Pt. De même, la tension obtenue sans avoir introduit de gaz guérisseur est notée Pm. L'amélioration Pf - Pm obtenue en terme de tension par le procédé de gestion est de l'ordre 17 mV. We take the voltage as a parameter representative of the performance of the battery. The final tension will be noted P t . Similarly, the voltage obtained without having introduced a healing gas is noted P m . The improvement P f - P m obtained in terms of voltage by the management method is of the order 17 mV.
La figure 6 représente un autre exemple dans lequel l'introduction du gaz guérisseur NO2 a lieu après une phase de pollution P2 au SO2 de 30 heures à 1 ,5 ppm et une phase de fonctionnement sans polluants P1 b de 30 heures environ. La phase de guérison P3 dure approximativement 30 heures. L'amélioration des performances Pf - Pm correspond à une tension de 16 mV. FIG. 6 represents another example in which the introduction of the NO 2 healer gas takes place after a pollution phase P2 at SO 2 of 30 hours at 1.5 ppm and a phase of operation without pollutants P 1 b of approximately 30 hours. The healing phase P3 lasts approximately 30 hours. The performance improvement P f - P m corresponds to a voltage of 16 mV.
Le procédé de gestion avec introduction d'un gaz guérisseur oxygéné et non soufré s'applique quelles que soient les concentrations en polluants. La concentration du gaz guérisseur peut également être adaptée en fonction de l'amélioration des performances souhaitée. The management method with introduction of an oxygenated and non-sulfur healing gas applies regardless of the concentrations of pollutants. The concentration of the healing gas may also be adapted according to the desired performance improvement.
La figure 7 représente un exemple de fonctionnement avec une concentration en NO2 de 4 ppm pendant la phase P3 et une phase d'attente P1 b entre la fin de la phase de pollution P2 et l'introduction du gaz guérisseur. La tension Pf après la phase de guérison P3 a augmenté d'une valeur pouvant atteindre 22 mV par rapport à la tension Pm obtenue après la phase de pollution P2. FIG. 7 represents an example of operation with an NO 2 concentration of 4 ppm during the phase P 3 and a waiting phase P 1 b between the end of the pollution phase P2 and the introduction of the healing gas. The voltage P f after the healing phase P3 has increased by one value up to 22 mV with respect to the voltage P m obtained after the P2 pollution phase.
Ce procédé de gestion avec introduction d'un gaz guérisseur s'appliquera, de préférence, tant que les performances seront supérieures à 50 % des performances initiales. This management method with introduction of a healer gas will preferably apply as long as the performance is greater than 50% of the initial performance.
Afin de mettre en oeuvre ce procédé de gestion, un dispositif d'alimentation en énergie comporte des moyens de comparaison de la concentration d'un composé soufré dans le gaz actif à un seuil indicatif d'une phase de pollution au composé soufré et des moyens d'introduction d'un gaz guérisseur oxygéné et non soufré dans le gaz actif si la concentration du composé soufré est supérieure au seuil. Le dispositif pourra alors commander automatiquement l'introduction du gaz guérisseur selon un mode de régénération le plus adapté. In order to implement this management method, a power supply device comprises means for comparing the concentration of a sulfur compound in the active gas with a threshold indicative of a phase of pollution with the sulfur compound and means for introducing an oxygenated and unsulfurized healer gas into the active gas if the concentration of the sulfur compound is greater than the threshold. The device can then automatically control the introduction of the healing gas according to a most suitable regeneration mode.
Le dispositif d'alimentation comporte, de plus, des moyens d'identification du composé soufré et des moyens de calcul de la quantité de gaz guérisseur à introduire. Les moyens de calcul pourront également déterminer la vitesse de dégradation des performances, le niveau des performances, la durée d'introduction du gaz. Les moyens de calcul détermineront ainsi le mode d'introduction adéquat et commanderont les moyens d'introduction du gaz guérisseur, en fonction, par exemple, de la nature du polluant et/ou de la vitesse de dégradation des performances. The feed device further comprises means for identifying the sulfur compound and means for calculating the amount of healer gas to be introduced. The computing means may also determine the rate of degradation of performance, the level of performance, the duration of introduction of the gas. The calculation means will thus determine the appropriate mode of introduction and control the means for introducing the healer gas, depending, for example, on the nature of the pollutant and / or the rate of degradation of performance.
La figure 8 représente un exemple de dispositif d'alimentation. Le dispositif comporte une pile à combustible 1 à membrane échangeuse de protons (PEMFC). La pile 1 comprenant un assemblage membrane-électrodes (AME) 2 constituant le cœur de la pile et des couches de diffusion gazeuse 3a et 3b de part et d'autre de l'assemblage 2. Chaque couche de diffusion gazeuse (3a, 3b) comprend une entrée de gaz actif et une sortie pour le gaz en excès et les produits de réaction, respectivement 4a et 5a pour le gaz combustible à gauche sur la figure 8, et 4b et 5b pour le gaz comburant à droite sur la figure 8. Le dispositif 1 comporte, de plus, un détecteur 7 de composés soufrés SXn. La détection peut consister à comparer la concentration du composé soufré à un seuil indicatif d'une pollution. Sur la figure 8, le dispositif d'alimentation comporte deux détecteurs 7a et 7b, respectivement pour le gaz combustible et le gaz comburant. Un circuit électronique de commande 8, par exemple un microcontrôleur, permet de déterminer l'évolution des performances de la pile, notamment à partir des valeurs de tension (V) et courant (I) mesurées. Le circuit de commande 8 est connecté à la sortie des détecteurs 7a et 7b pour commander une vanne d'introduction 9 du gaz guérisseur, COx ou NOx par exemple. Le circuit de commande 8 est également connecté à des moyens d'identification 10a et 10b du gaz polluant. Les moyens d'identification 10a et 10b peuvent être incorporés aux détecteurs 7a et 7b du gaz polluant. Le gaz guérisseur est introduit dans le gaz actif combustible à l'aide d'un conduit 1 1 a et/ou dans le gaz actif comburant à l'aide d'un conduit 1 1 b. Les conduits 1 1 a et 11 b sont reliés aux entrées des gaz actifs de la pile, respectivement 4a et 4b Figure 8 shows an example of a feeding device. The device comprises a fuel cell 1 with proton exchange membrane (PEMFC). The cell 1 comprising a membrane-electrode assembly (AME) 2 constituting the core of the cell and gas diffusion layers 3a and 3b on either side of the assembly 2. Each gas diffusion layer (3a, 3b) includes an active gas inlet and an outlet for excess gas and the reaction products, respectively 4a and 5a for the fuel gas on the left in FIG. 8, and 4b and 5b for the oxidant gas on the right in FIG. 8. The device 1 further comprises a detector 7 for sulfur compounds SX n . The detection may consist in comparing the concentration of the sulfur compound with a threshold indicative of a pollution. In FIG. 8, the supply device comprises two detectors 7a and 7b, respectively for the fuel gas and the combustion gas. An electronic control circuit 8, for example a microcontroller, makes it possible to determine the evolution of the performances of the cell, in particular from the measured voltage (V) and current (I) values. The control circuit 8 is connected to the output of the detectors 7a and 7b for controlling an introduction valve 9 of the healing gas, CO x or NO x, for example. The control circuit 8 is also connected to identification means 10a and 10b of the polluting gas. The identification means 10a and 10b may be incorporated in the detectors 7a and 7b of the polluting gas. The healer gas is introduced into the combustible active gas using a conduit 1 1 a and / or in the oxidizing active gas using a conduit 1 1 b. The ducts 1 1 a and 11 b are connected to the active gas inlet of the stack, respectively 4 a and 4 b
Le procédé de gestion d'une pile à combustible s'applique également si les deux compartiments, combustible et comburant, sont pollués simultanément, par un même gaz ou par des gaz différents. Un gaz guérisseur est alors injecté dans chaque compartiment. Les gaz guérisseurs peuvent être identiques ou de nature différente du côté combustible et du côté comburant. Enfin, plusieurs gaz guérisseurs peuvent être employés successivement. The fuel cell management process also applies if the two compartments, fuel and oxidant, are polluted simultaneously, by the same gas or by different gases. A healing gas is then injected into each compartment. The healing gases may be identical or different in nature from the fuel side and the combustion side. Finally, several healing gases can be used successively.

Claims

Revendications claims
1. Procédé de gestion d'une pile à combustible (1) comportant un gaz actif circulant en contact avec une électrode, caractérisé en ce qu'il comporte les étapes suivantes : A method for managing a fuel cell (1) comprising a circulating active gas in contact with an electrode, characterized in that it comprises the following steps:
- comparer la concentration d'un composé soufré dans le gaz actif à un seuil indicatif d'une phase de pollution (P2) audit composé soufré, et comparing the concentration of a sulfur compound in the active gas with a threshold indicative of a pollution phase (P2) to said sulfur compound, and
- introduire temporairement dans le gaz actif un gaz polluant oxygéné et non soufré si la concentration du composé soufré est supérieure au seuil. - Temporarily introduce into the active gas an oxygen pollutant gas and not sulfur if the concentration of the sulfur compound is greater than the threshold.
2. Procédé selon la revendication 1 , caractérisé en ce que le gaz polluant est choisi parmi les oxydes d'azote et les oxydes de carbone. 2. Method according to claim 1, characterized in that the polluting gas is selected from nitrogen oxides and carbon oxides.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que le gaz polluant est introduit pendant la phase de pollution (P2) au composé soufré. 3. Method according to one of claims 1 and 2, characterized in that the polluting gas is introduced during the pollution phase (P2) to the sulfur compound.
4. Procédé selon la revendication 3, caractérisé en ce que le gaz polluant est introduit lors de plusieurs intervalles de temps disjoints. 4. Method according to claim 3, characterized in that the pollutant gas is introduced during several disjoint time intervals.
5. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que le gaz polluant est introduit après la phase de pollution (P2) au composé soufré. 5. Method according to one of claims 1 and 2, characterized in that the polluting gas is introduced after the pollution phase (P2) to the sulfur compound.
6. Procédé selon la revendication 5, caractérisé en ce qu'il comporte les étapes suivantes avant l'étape d'introduction du gaz polluant (P3) : 6. Method according to claim 5, characterized in that it comprises the following steps before the step of introducing the polluting gas (P3):
- détecter la fin de la phase de pollution (P2) au composé soufré, et  detecting the end of the pollution phase (P2) with the sulfur compound, and
- attendre un intervalle de temps (P1 b). - wait for a time interval (P1 b).
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la durée d'introduction du gaz polluant est comprise entre 1 minute et 10 heures. 7. Method according to any one of claims 1 to 6, characterized in that the duration of introduction of the pollutant gas is between 1 minute and 10 hours.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la quantité en gaz polluant est comprise entre 10 parties par milliard et 10 parties par million par rapport à la quantité totale des gaz. 8. Process according to any one of claims 1 to 7, characterized in that the amount of pollutant gas is between 10 parts per billion and 10 parts per million relative to the total amount of gas.
9. Dispositif d'alimentation en énergie comprenant une pile à combustible (1 ), la pile comportant un gaz actif circulant en contact avec une électrode, caractérisé en ce qu'il comporte : 9. Power supply device comprising a fuel cell (1), the cell comprising an active gas flowing in contact with an electrode, characterized in that it comprises:
- des moyens pour comparer (7, 7a, 7b) la concentration d'un composé soufré dans le gaz actif à un seuil indicatif d'une phase de pollution (P2) audit composé soufré,  means for comparing (7, 7a, 7b) the concentration of a sulfur compound in the active gas with a threshold indicative of a pollution phase (P2) to said sulfur compound,
- une source de gaz polluant oxygéné et non soufré, et - a source of pollutant gas oxygenated and not sulfur, and
- des moyens d'introduction (9) du gaz polluant dans le gaz actif si la concentration du composé soufré est supérieure au seuil.  means for introducing (9) the pollutant gas into the active gas if the concentration of the sulfur compound is greater than the threshold.
10. Dispositif selon la revendication 9, caractérisé en ce qu'il comporte : 10. Device according to claim 9, characterized in that it comprises:
- des moyens d'identification (10a, 10b) du composé soufré, et means for identifying (10a, 10b) the sulfur compound, and
- des moyens de calcul (8) de la quantité de gaz polluant à introduire.  - Calculation means (8) of the amount of pollutant gas to be introduced.
EP10799069A 2009-12-03 2010-12-03 Method for managing a fuel cell during sulfur compound pollution, and power supply device Withdrawn EP2507859A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0905845A FR2953649A1 (en) 2009-12-03 2009-12-03 METHOD FOR MANAGING A CELL DURING SULFUR COMPOUND POLLUTION AND POWER SUPPLY DEVICE
PCT/FR2010/000806 WO2011070242A1 (en) 2009-12-03 2010-12-03 Method for managing a fuel cell during sulfur compound pollution, and power supply device

Publications (1)

Publication Number Publication Date
EP2507859A1 true EP2507859A1 (en) 2012-10-10

Family

ID=42299225

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10799069A Withdrawn EP2507859A1 (en) 2009-12-03 2010-12-03 Method for managing a fuel cell during sulfur compound pollution, and power supply device

Country Status (8)

Country Link
US (1) US20120251907A1 (en)
EP (1) EP2507859A1 (en)
JP (1) JP2013513201A (en)
CN (1) CN102725899A (en)
BR (1) BR112012013115A2 (en)
CA (1) CA2782160A1 (en)
FR (1) FR2953649A1 (en)
WO (1) WO2011070242A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086251A (en) * 2012-10-23 2014-05-12 Tokyo Gas Co Ltd Method for operating fuel cell and fuel cell power generation system
JP7357568B2 (en) 2019-03-14 2023-10-06 大阪瓦斯株式会社 Fuel cell system inspection method and installation target determination method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042849A (en) * 2000-07-26 2002-02-08 Matsushita Electric Ind Co Ltd Characteristic recovery method for polymer electrolyte type fuel cell
WO2003000585A1 (en) * 2001-06-12 2003-01-03 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus, fuel cell system and method for controlling hydrogen formation apparatus
US7267899B2 (en) * 2002-03-08 2007-09-11 Van Zee John W Method and system for improving the performance of a fuel cell
US7396605B2 (en) * 2002-03-08 2008-07-08 Van Zee John W Method and system for improving the performance of a fuel cell
JP4329327B2 (en) * 2002-10-31 2009-09-09 トヨタ自動車株式会社 Power output device
JP2008077911A (en) * 2006-09-20 2008-04-03 Nissan Motor Co Ltd Fuel cell system

Also Published As

Publication number Publication date
CA2782160A1 (en) 2011-06-16
WO2011070242A1 (en) 2011-06-16
JP2013513201A (en) 2013-04-18
CN102725899A (en) 2012-10-10
FR2953649A1 (en) 2011-06-10
BR112012013115A2 (en) 2017-04-04
US20120251907A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
EP1776730B1 (en) Control of the polymer humidifying membrane of a fuel cell
JP4466488B2 (en) Fuel cell system and method for removing impurities from fuel cell electrodes
KR101417290B1 (en) Fuel cell system operating method
EP2438642A1 (en) Methods of operating fuel cell stacks and systems
EP2732497B1 (en) Method of depollution and of regeneration of a fuel cell electrode poisoned by sulphur compounds
EP2507859A1 (en) Method for managing a fuel cell during sulfur compound pollution, and power supply device
FR2973581A1 (en) COMBUSTIBLE CELL WITH PROTON EXCHANGE MEMBRANE HAVING INCREASED LIFETIME
EP2481118B1 (en) Method for supplying power from a fuel cell taking sulfur oxide pollution into account, and power supply device
KR101734624B1 (en) Process of conditioning fuel cell for improving initial durability
EP2702190B1 (en) Process of growth of metallic particles by electrodeposition with in situ inhibition
WO2006077348A1 (en) Method and device for operational control of fuel cell modules
FR3045214A1 (en) PROCESS FOR REGENERATING A FUEL CELL.
EP2805371A1 (en) Method for increasing the lifespan of a fuel cell with a proton exchange membrane
KR101822235B1 (en) Manufacturing method of fuel cell
EP2452388B1 (en) Method and device for increasing the lifespan of a proton exchange membrane fuel cell
EP4113676A1 (en) Activation method for a fuel cell
FR3142045A1 (en) Process for activating a fuel cell by electrolysis
EP2250694B1 (en) Method and device for limiting the ageing of fuel cells with proton exchange membrane
FR2914504A1 (en) Electrochemical generator for generating electrical energy, has control unit including unit for increasing air flow admitted in fuel and temperature of generator, where control unit reduces air flow of cooling circuit in fuel cell
FR2973580A1 (en) Proton exchange membrane fuel cell for motor vehicle, has anode and cathode fixed on two sides of membrane, where thickness of membrane at level of dioxygen inlet area is larger than thickness at level of water outlet area
Krewer et al. Storage of DMFC MEA at Extreme Temperatures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150701