EP2503799B1 - Procédé et système de calcul de fonctions HRTF par synthèse locale virtuelle de champ sonore - Google Patents

Procédé et système de calcul de fonctions HRTF par synthèse locale virtuelle de champ sonore Download PDF

Info

Publication number
EP2503799B1
EP2503799B1 EP11159001.4A EP11159001A EP2503799B1 EP 2503799 B1 EP2503799 B1 EP 2503799B1 EP 11159001 A EP11159001 A EP 11159001A EP 2503799 B1 EP2503799 B1 EP 2503799B1
Authority
EP
European Patent Office
Prior art keywords
outer ear
source
transmission functions
virtual
ear transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11159001.4A
Other languages
German (de)
English (en)
Other versions
EP2503799A1 (fr
Inventor
Jens Ahrens
Sascha Spors
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Telekom AG
Original Assignee
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG filed Critical Deutsche Telekom AG
Priority to EP11159001.4A priority Critical patent/EP2503799B1/fr
Priority to ES11159001T priority patent/ES2812503T3/es
Publication of EP2503799A1 publication Critical patent/EP2503799A1/fr
Application granted granted Critical
Publication of EP2503799B1 publication Critical patent/EP2503799B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/11Application of ambisonics in stereophonic audio systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/13Application of wave-field synthesis in stereophonic audio systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space

Definitions

  • the claimed invention relates to a method and system for calculating synthetic outer ear transmission functions by means of virtual sound field synthesis, preferably local sound field synthesis.
  • the invention relates in particular to such a method and system for use in dynamic virtual binaural auditory environments.
  • the spatial auditory perception of humans is essentially based on the evaluation of the differences between the acoustic signals of both ears.
  • the differences arise, among other things, from the acoustic properties of the outer ears in relation to a given source position.
  • the outer ears essentially include the upper body, head and the ear cups.
  • the signal from an acoustic source is modified by reflection, diffraction and refraction at the outer ear.
  • the acoustic properties of the outer ears can be well characterized by measuring the transmission path from a source to the ear canals. For this purpose, the transfer function is usually measured from a loudspeaker to microphones placed in the ear canals.
  • outer ear transfer functions are referred to as outer ear transfer functions (English “Head-Related Transfer Function (s)"). They play an important role in researching human hearing and for virtual acoustics. In general, the outer ear transfer functions differ from person to person. Furthermore, they depend on the position and characteristics of the source used for the measurement.
  • the measurement of the outer ear transmission functions is usually carried out using one or more loudspeakers. These are typically located on a circular or spherical surface with the head in the center. The measurements are then carried out sequentially for each speaker position. This procedure results in a set of outer ear transfer functions for different angles with a fixed distance of the source. The measurements are typically carried out for a fixed head. Current Available data sets usually only contain a single source distance. Often this is in the range of 1.5-3 m from the center of the head. These simple measurements for a distance alone are usually quite time-consuming and resource-intensive. Short distances to the source (near field) are of particular interest because the outer ear transfer function significantly changes its properties here. Outer ear transfer functions play an important role in virtual acoustics.
  • virtual sound sources can be generated by filtering a source signal x (t) with the left / right outer ear transmission function (H L and H R ) and presenting the filtered signals using headphones.
  • the outer ear transmission functions are selected from a database according to the desired position of the virtual source. It is important to take into account the current position of the head, for example using a head tracker, so that the virtual sources have a stable position in space even when the head rotates. Through so-called crosstalk compensation, the signals can also be reproduced using loudspeakers.
  • the positions of the virtual sources are principally limited to the positions that are available in the database of the outer ear transmission functions.
  • the loudspeaker drive signals can be calculated analytically.
  • An essential property of wave field synthesis is the possibility to generate so-called focused sources. This is the imitation of the sound field of a sound source that is located between the listener and the speakers. [5] concerns focused sound sources.
  • Ambisonics Another method of virtual acoustics is Ambisonics. [3] concerns the traditional formulation of Ambisonics, whereby this method requires circular or spherical arrangements of loudspeakers. With the help of numerical algorithms, the loudspeaker signals are generated which lead to the reproduction of the desired sound field.
  • the limitation of the spatial bandwidth of the control function necessary in the calculation path means that the reconstruction of the desired sound field is most accurate in the center of the loudspeaker arrangement ("sweet spot"). The further the location under consideration is from the center, the greater the deviations.
  • [4] concerns extensions of the traditional formulation of ambisonics. These enable the analytical calculation of the loudspeaker drive signals, which is many times more efficient than numerical methods. However, there is still a restriction that the "sweet spot" is located in the center of the loudspeaker arrangement and that only circular or spherical loudspeaker structures can be used.
  • EP 2182744 relates to a method of ambisonics, wherein sweet spots or the sweet area can be freely placed within a closed loudspeaker arrangement.
  • the loudspeaker drive signals can be calculated analytically.
  • the method is significantly more efficient than other approaches, but limited to closed (eg circular) arrangements.
  • the approach presented in [6] is based on the concept of closely spaced virtual secondary sources to improve the accuracy of the synthesis.
  • the virtual sources are realized by focused sound sources. This approach can be implemented particularly efficiently through wave field synthesis.
  • a virtual headphone which is also referred to as binaural sky.
  • One or more virtual sound sources are generated near the listener's ears to simulate headphones. These virtual sound sources are realized through acoustic focusing. These virtual sound sources are operated by means of a so-called crosstalk compensation, which compensates for the crosstalk of the signals towards the averted ears. This is a common technique when playing binaural signals over speakers.
  • the virtual sources track the head movement, so the crosstalk compensation during head movements can be kept constant.
  • the synthesis of outer ear transfer functions to realize other properties than those in the database is not considered.
  • the sound field synthesis is used in the method only to generate the sources for the virtual headphones and not for the synthesis of a sound field in a local area.
  • [11] relates to a method of virtual ambisonics, in which a binaural representation of a higher order ambisonics system is realized.
  • virtual loudspeakers are reproduced binaurally by using the corresponding outer ear transmission functions.
  • the control signals of the virtual loudspeakers are calculated by means of higher order Ambisonics.
  • the model is based on the plane wave.
  • the distance of a virtual source is realized by a simple time delay.
  • the process also includes a simple spatial model.
  • the synthesis of outer ear transfer functions is not considered here.
  • the model used for the virtual source does not allow physical consideration of the distance eg due to a curvature of the wave fronts and is therefore not well suited for the synthesis of nearby sources.
  • the known approaches for modifying the (perceived) source distance for outer ear transmission functions can be divided into three classes: (1) weighting of the amplitude, (2) modification of the frequency response and (3) extrapolation of the measured data.
  • the respective outer ear transmission function is weighted independently of frequency in order to model the increasing volume of a source with decreasing distance from the listener.
  • the spectral changes in the outer ear transmission functions, especially for close sources are ignored.
  • the second class of approaches exactly these spectral changes are modeled by suitable filters. For example, it is known that very close sources cause an increase in the frequency response at low frequencies.
  • the first and second classes are generally based on psychoacoustic considerations, in contrast to the third class, which are based on physical considerations.
  • the third class of approaches is of particular interest. It is known from the underlying physical description of the sound propagation that the sound pressure and its gradient on the edge of a contour are sufficient to uniquely determine the sound field within this contour. The method is called extrapolation of a sound field. This basic principle has been applied to the problem of generating synthetic outer ear transfer functions. Because of the underlying spherical geometry, it is advantageous to split the sound fields with respect to so-called spherical harmonics. [8,9] shows two methods that allow the extrapolation of measured outer ear transfer functions from one measured distance to another distance.
  • the methods have three major disadvantages: (i) due to the physical model, the minimum distance of the virtual sources is limited by the head and torso of the listener and (ii) the numerical complexity is relatively high and (iii) the method is inherently numerically unstable. This is especially true for nearby virtual sources.
  • the concept of the invention relates to the use of methods of sound field synthesis for the calculation or generation of synthetic outer ear transmission functions.
  • this calculation is carried out by providing a database of pairs of outer ear transmission functions for a multiplicity of first source positions, wherein at least one pair of outer transmission functions for a first source position is in each case determined by a measurement.
  • Each of these pairs of outer ear transmission functions is interpreted as a virtual loudspeaker at the corresponding first source position.
  • at least one pair of synthetic outer ear transmission functions are calculated using a method of sound field synthesis for at least one virtual sound source at a further source position.
  • the virtual loudspeakers can be used as elementary sound sources for generating any sound field by a method of wave field synthesis.
  • the control signals for the virtual loudspeakers can be calculated with respect to magnitude and phase in such a way that a weighted superposition of the elementary sound field produced by each virtual loudspeaker results in the desired sound field in its entirety.
  • the desired sound field is a sound field that results from any virtual sound source that can be placed anywhere in the room. This makes it possible to synthesize a transfer function that corresponds to the sound propagation from any virtual sound source. It is therefore a synthetic outer ear transfer function.
  • the calculation method can be used to create a database with a priori calculated synthetic outer ear transfer functions for a variety of positions of the virtual sound source. Such a database can be used to model any sound world.
  • a spatial model is provided, with propagation paths and properties being simulated.
  • At least one mirror source that belongs to a virtual sound source is preferably synthesized.
  • a method for normal sound field synthesis can be used for this.
  • the calculation can be carried out using virtual local sound field synthesis or other methods of wave field synthesis.
  • Another aspect of the invention relates to a system for performing a method for calculating the generation of synthetic outer ear transmission functions.
  • Outer ear transmission functions characterize the sound propagation from the sound source used in the measurement to the listener's ears. If an entire data set of the outer ear transmission function is now measured for a large number of possible source positions, these source positions can be interpreted as virtual loudspeakers. The weighted superposition of the loudspeaker signals can then be used to simulate the influence of the entire ensemble of these virtual loudspeakers on the listener's ear. If you now control these virtual loudspeakers using a sound field synthesis method, the ear signals can be synthesized for almost any virtual source position. Head rotations can be taken into account by dynamically exchanging the outer ear transmission functions used.
  • outer ear transmission functions can be interpolated and extrapolated, and data sets of synthetic outer ear transmission functions can be provided with distances of the source other than those present during the measurement.
  • the synthetic outer ear transfer functions for complex source models can be calculated from measurements of simple sources.
  • Figure 1 is a schematic representation for the measurement of a left or right outer ear transfer function (left half of Figure 1 ) and a block diagram for the use of these outer ear transmission functions for virtual acoustics (right half of Figure 1 ).
  • a loudspeaker which is arranged at a specific source position, is used to measure the outer ear transmission functions, this loudspeaker emitting a source signal x (t).
  • the propagating sound waves are shown schematically and reach the left or right ear of a listener who is positioned in the room in a certain relative position to the loudspeaker.
  • the relative position can be described by a certain distance between the loudspeaker and the position of the listener and a certain direction in relation to a spatial coordinate system.
  • the relative Position include information about the rotational position of the head of the listener relative to the spatial coordinate system.
  • Microphones are used for the measurement, which are arranged at the position of the left ear or right ear of the listener.
  • the signal X L (t) detected by the microphone at the position of the left ear is determined by a transfer function h L (t).
  • the signal X R (t) recorded with the right microphone at the position of the right ear of the listener is determined by the transfer function h R (t).
  • This measurement can be carried out for a large number of first source positions.
  • the loudspeaker is arranged in succession at each of the first source positions and the measurement is carried out, and the respective transfer functions are stored in a database with the information about the respective source position and the rotational position of the head.
  • a plurality of loudspeakers can be used to determine the transmission functions, which loudspeakers are arranged in a room at respectively associated first source positions.
  • the individual loudspeakers can be operated one after the other and the respective source signal x (t) can be emitted and transmitted to the listener in the room via sound propagation.
  • the measured outer ear transmission functions from first source positions used for the calculation of synthetic outer ear transmission functions are provided in a database.
  • the principle of using outer ear transmission functions in virtual acoustics is shown.
  • virtual sound sources can be filtered by filtering a source signal x (t) with the left / right outer ear transfer function (H L ( ⁇ ) and H R ( ⁇ )) and presenting the filtered.
  • Signals are generated using headphones. Specifically, an input signal x (t), which corresponds to a specific source signal, is sent to the two loudspeakers of a headphone via two filter devices.
  • the corresponding outer ear transmission functions are transmitted from an HRTF database to the filter devices for the left ear and the right ear.
  • the filter device for the left ear is set up so that it simulates the transfer functions H L ( ⁇ ) for the left ear.
  • the filter device for the right ear is corresponding to the Outer ear transfer functions set up for the right ear H R ( ⁇ ).
  • the input signal is filtered with the left / right filter device and sent to the left / right speaker of the headphones.
  • Control signals 5 for the reproduction of the virtual sound source 8 by the virtual loudspeakers 6 in the local area are calculated from the signal 1 of a virtual sound source 8 by an algorithm of the sound field synthesis 2, preferably a local sound field synthesis.
  • the virtual loudspeakers 6 are arranged on a circular contour 7, all loudspeakers being directed into the center of a circle, where a local area 14 is shown schematically in the middle. In the local area 14 there is a listener.
  • the source type 3 and the source position 4 and possibly the position of the local area 14 are used as additional information.
  • the sound propagation from a virtual loudspeaker 8 to the ears is characterized by a left / right outer ear transmission function 10, 11.
  • External ear transfer function databases are typically measured on circular / spherical contours 7.
  • the left / right ear signal for the virtual sound source 8 is obtained by the superposition of all virtual loudspeaker signals 5 that have been filtered with the respective outer ear transmission functions 12, 13. Head turns and changes in position of the listener can be taken into account by the dynamic exchange of the outer ear transmission functions 12, 13.
  • databases of synthetic outer ear transmission functions can also be calculated.
  • a pulse is taken as the source signal 1 of a virtual source and the total impulse response from the virtual sound source 8 to the ears is calculated.
  • a synthetic data set of outer ear transfer functions can be calculated on a circular or spherical contour 9.
  • suitable methods of sound field synthesis are, due to the underlying circular / spherical geometry of measured outer ear transmission functions, for example wave field synthesis and higher order ambisonics.
  • both processes assume a spatially continuous distribution of Speakers (secondary sources).
  • the outer ear transmission functions are only available at spatially discrete positions. This leads to artifacts in the synthesized ear signals or the synthesized outer ear transmission functions due to the spatial discretization. This is the case even when the outer ear transmission functions are sampled relatively finely.
  • artifacts occur in a synthetic outer ear transmission function from a frequency of approx. 10 kHz if the outer ear transmission functions used were measured in 1 degree steps at a distance of the source used in the measurement of 2-3 meters. This is explained below using Figure 5 explained in more detail.
  • the invention is based on the use of local sound field synthesis for the calculation of synthetic ear signals or outer ear transmission functions in order to avoid or reduce the artifacts of spatial discretization.
  • Local sound field synthesis allows an area of higher accuracy to be placed around the listener's head. This will reduce the artifacts and achieve better results. This is explained below using Figure 6 explained.
  • any algorithm for local sound field synthesis can be used, so in various preferred embodiments, the in EP 2182744 , [6] and [7] algorithms described application. In further preferred embodiments, the in EP 2182744 and [6] algorithms for local sound field synthesis. These are advantageous due to the underlying geometry of typical data sets of outer ear transmission functions.
  • tracking the virtual source position with the listener's head position results in dynamic binaural synthesis, head orientation and position taken into account, realized. Dynamic tracking is a decisive factor for the quality of virtual acoustic environments.
  • the advantage of this embodiment lies in the efficient consideration of the listener position in comparison to solutions, where only the orientation of the head is taken into account. To take the head position into account, a database of outer ear transmission functions would be necessary, which was measured for many source positions located close to one another.
  • the process can be supplemented by simulating a room model.
  • the mirror sources associated with the virtual source can be synthesized with high resolution using the local sound field synthesis.
  • the present invention enables the listener position to be taken into account efficiently.
  • the virtual source in addition to the typical point source model, is also modeled as a source with complex directional characteristics, preferably using the method described in [12].
  • the combination with local sound field synthesis offers a significant advantage, since the desired directional characteristic is not distorted by the artifacts of the spatial scanning.
  • a preferred embodiment inherently involves interpolation of the outer ear transfer functions with respect to the angle.
  • the position of the virtual source can be chosen arbitrarily with regard to the angular resolution. This enables an interpolation of a measured data set.
  • the data set used by outer ear transmission functions is measured not only on a circular or spherical contour, but on a contour of any shape.
  • the advantage of this embodiment is the efficient measurement of outer ear transfer functions without geometric restrictions.
  • FIG Figure 3 Another embodiment is shown in FIG Figure 3 described. It relates to the use of local wave field synthesis to calculate a database of synthetic outer ear transfer functions from a database of measured outer ear transfer functions.
  • the local wave field synthesis allows a particularly efficient implementation, since the control signals of the virtual loudspeakers can be obtained by simply weighting and delaying the signal from the virtual source.
  • Figure 3 illustrates the processing steps. From the source signal 31, which is generally a Dirac pulse for the calculation of synthetic outer ear transmission functions, signals 44 for the virtual secondary sources are generated by means of the wave field synthesis 35.
  • the source model 32, the positions 33 and emission directions 34 of the virtual secondary sources are used as additional information.
  • the virtual secondary sources are realized again by focused sources through the wave field synthesis.
  • the signals 45 for the secondary sources are calculated for each of the signals 44 by acoustic focusing 40.
  • the positions 36 and emission directions 37 of the virtual secondary sources, as well as the positions 38 and emission directions 39 of the secondary sources are used for this.
  • the signals from the secondary sources 45 are then filtered with the data set of the outer ear transmission functions 41 and then summed up. This is done separately with the left / right outer ear transfer functions and then results in the left / right synthetic outer ear transfer function 42/43.
  • a data set of outer ear transfer functions can be calculated.
  • Figure 4 a diagram is shown which corresponds to a measured data set of left outer ear transmission functions.
  • the sound source was 2.5 m apart and 288 angular steps were measured on a full circle.
  • the measured head related transfer function (HRTF) is shown.
  • the angle is plotted in degrees along the abscissa.
  • Time is plotted in seconds along the ordinate.
  • Figure 12 shows a diagram corresponding to the database of synthetic left outer ear transfer functions calculated by wave field synthesis.
  • the calculated binaural room impulse response (BRIR, binaural room impulse response).
  • the angle is in degrees on the abscissa and the time in seconds is plotted on the ordinate.
  • the calculation by means of the wave field synthesis was carried out for a distance of the virtual source of three meters from the listener.
  • the results shown using wave field synthesis to compute a data set of synthetic outer ear transfer functions are shown here.
  • the artifacts of the spatial scanning are clearly visible as additional wave fronts after the first wave front.
  • Figure 6 shows a diagram with a database of synthetic left outer ear transfer functions, which were calculated by local wave field synthesis.
  • Figure 6 thus shows the same situation as Figure 5 , however, the local wave field synthesis was used to calculate the synthetic outer ear transfer functions.
  • the zone with increased accuracy was chosen as a circle with a radius of 30 cm around the head. It can be clearly seen that the artifacts of the spatial scan compared to the Figure 5 are no longer available or are significantly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Claims (10)

  1. Procédé de calcul de fonctions synthétiques de transmission à l'oreille externe d'un auditeur comprenant les étapes suivantes :
    a) mise à disposition d'une banque de données de paires de fonctions de transmission à l'oreille externe pour une pluralité de premières positions sources, au moins une paire de fonctions de transmission à l'oreille externe pour une première position source étant déterminées à chaque fois par une mesure,
    b) saisie de chacune de ces paires de fonctions de transmission à l'oreille externe comme fonction de transmission entre un haut-parleur virtuel respectif et chaque oreille de l'auditeur, le haut-parleur virtuel étant disposé à la première position source respective,
    c) calcul d'au moins une paire de fonctions synthétiques de transmission à l'oreille externe pour au moins une source sonore virtuelle à une autre position source en utilisant les haut-parleurs virtuels au moyen d'un procédé de synthèse de champs sonores,
    caractérisé en ce que le calcul de la au moins une paire de fonctions synthétiques de transmission à l'oreille externe pour la au moins une source sonore virtuelle à l'autre position source comprend les étapes suivantes :
    calcul d'au moins une paire de fonctions synthétiques de transmission à l'oreille externe pour des signaux sonores avec des basses fréquences au moyen d'un procédé destiné à la synthèse normale de champs sonores et
    calcul d'au moins une paire de fonctions synthétiques de transmission à l'oreille externe pour des signaux sonores avec des fréquences différentes des fréquences basses au moyen de procédés destinés à la synthèse locale de champs sonores ; et
    dans lequel la au moins une paire de fonctions synthétiques de transmission à l'oreille externe est calculées par superposition pondérée de tous les signaux de haut-parleur virtuels des haut-parleurs virtuels qui ont été filtrés avec les paires mesurées respectives de fonctions de transmission à l'oreille externe.
  2. Procédé selon la revendication 1, dans lequel la au moins une paire de fonctions synthétiques de transmission à l'oreille externe est calculées pour une pluralité d'autres positions sources et, de préférence, sont enregistrées dans au moins une autre banque de données de paires de fonctions synthétiques de transmission à l'oreille externe.
  3. Procédé selon la revendication 1 ou 2, dans lequel lors du calcul par superposition pondérée, un type de source et / ou une position de source est pris(e) en compte.
  4. Procédé selon la revendication 2 ou 3, dans lequel la pluralité de premières positions sources, auxquelles la au moins une paire de fonctions de transmission à l'oreille externe est mesurées, sont disposées sur un premier profil circulaire ou un premier profil sphérique et
    dans lequel la pluralité d'autres positions sources, auxquelles les à chaque fois au moins une paire de fonctions synthétiques de transmission à l'oreille externe sont calculées, sont disposées sur un autre profil circulaire ou profil sphérique,
    dans lequel l'autre profil circulaire ou profil sphérique est, de préférence, différent du premier profil circulaire ou du premier profil sphérique, et dans lequel, de préférence encore, une première distance de la position d'un auditeur à un premier profil circulaire ou premier profil sphérique est différente d'une autre distance de la position de l'auditeur à un autre profil circulaire ou un autre profil sphérique.
  5. Procédé selon la revendication 4, dans lequel la au moins une paire de fonctions synthétiques de transmission à l'oreille externe est calculées en fonction de la position de l'auditeur et / ou en fonction d'une rotation de la tête de l'auditeur, dans lequel, de préférence, des paires mesurées de fonctions de transmission à l'oreille externe sont échangées de façon dynamique en fonction d'une modification de position de l'auditeur et / ou d'une rotation de la tête de l'auditeur.
  6. Procédé selon l'une des revendications 1 à 5, dans lequel un enchaînement entre le procédé normal de synthèse de champs sonores et le procédé de synthèse locale de champs sonores se produit au moyen d'un fenêtrage dans la gamme de fréquences.
  7. Procédé selon l'une des revendications 1 à 6, dans lequel une impulsion est utilisée comme signal source pour une source sonore virtuelle à l'autre position source et la réponse impulsionnelle globale à chaque fois de la source sonore virtuelle est calculée à une oreille gauche et droite d'un auditeur et est enregistrée comme paire de fonctions synthétiques de transmission à l'oreille externe.
  8. Procédé selon l'une des revendications 1 à 7, dans lequel une source ponctuelle est modélisée comme source sonore virtuelle ou, de préférence, une source avec un diagramme directionnel complexe est modélisée comme source sonore virtuelle.
  9. Procédé selon l'une des revendications 1 à 8 avec les étapes complémentaires de :
    mise à disposition d'un modèle spatial, dans lequel sont simulés des trajets de propagation et des propriétés de propagation des signaux sonores au sein du modèle spatial et dans lequel, de préférence, au moins une source miroir, qui appartient à une source sonore virtuelle, est synthétisée au moyen d'un procédé de synthèse normale de champs sonores ou au moyen d'un procédé de synthèse locale de champs sonores.
  10. Système comprenant des moyens d'exécution d'un procédé destiné au calcul de fonctions synthétiques de transmission à l'oreille externe selon l'une des revendications 1 à 9, qui présente :
    a) une banque de données de paires de fonctions de transmission à l'oreille externe pour une pluralité de premières positions sources, au moins une paire de fonctions de transmission à l'oreille externe pour une première position source étant déterminées à chaque fois par une mesure,
    b) des moyens de calcul, de préférence sous forme de microprocesseurs, destinés au calcul d'au moins une paire de fonctions synthétiques de transmission à l'oreille externe pour au moins une source sonore virtuelle à une autre position source.
EP11159001.4A 2011-03-21 2011-03-21 Procédé et système de calcul de fonctions HRTF par synthèse locale virtuelle de champ sonore Active EP2503799B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11159001.4A EP2503799B1 (fr) 2011-03-21 2011-03-21 Procédé et système de calcul de fonctions HRTF par synthèse locale virtuelle de champ sonore
ES11159001T ES2812503T3 (es) 2011-03-21 2011-03-21 Método y sistema para el cálculo de funciones de transmisión de oído externo sintéticas mediante síntesis de campo acústico virtual

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11159001.4A EP2503799B1 (fr) 2011-03-21 2011-03-21 Procédé et système de calcul de fonctions HRTF par synthèse locale virtuelle de champ sonore

Publications (2)

Publication Number Publication Date
EP2503799A1 EP2503799A1 (fr) 2012-09-26
EP2503799B1 true EP2503799B1 (fr) 2020-07-01

Family

ID=44477864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11159001.4A Active EP2503799B1 (fr) 2011-03-21 2011-03-21 Procédé et système de calcul de fonctions HRTF par synthèse locale virtuelle de champ sonore

Country Status (2)

Country Link
EP (1) EP2503799B1 (fr)
ES (1) ES2812503T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103024A1 (fr) 2014-01-03 2015-07-09 Dolby Laboratories Licensing Corporation Procédés et systèmes pour concevoir et appliquer des réponses impulsionnelles binaurales de salle numériquement optimisées

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003431B4 (de) 2005-01-25 2009-01-15 Institut für Rundfunktechnik GmbH Anordnung zum Wiedergeben von binauralen Signalen (Kunstkopfsignalen) durch mehrere Lautsprecher
DE102007032272B8 (de) 2007-07-11 2014-12-18 Institut für Rundfunktechnik GmbH Verfahren zur Simulation einer Kopfhörerwiedergabe von Audiosignalen durch mehrere fokussierte Schallquellen
EP2182744B1 (fr) 2008-10-30 2011-09-07 Deutsche Telekom AG Retransmission d'un champ sonore dans une zone de sonorisation ciblée

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2503799A1 (fr) 2012-09-26
ES2812503T3 (es) 2021-03-17

Similar Documents

Publication Publication Date Title
EP3149969B1 (fr) Détermination et utilisation de fonctions de transfert acoustiquement optimisées
DE60304358T2 (de) Verfahren zur verarbeitung von audiodateien und erfassungsvorrichtung zur anwendung davon
EP1878308B1 (fr) Dispositif et procede de production et de traitement d'effets sonores dans des systemes de reproduction sonore spatiale a l'aide d'une interface graphique d'utilisateur
DE69734934T2 (de) Verfahren und vorrichtung zur projektion von schallquellen auf lautsprechern
EP3044972B1 (fr) Dispositif et procédé de décorrélation de signaux de haut-parleurs
EP3069530B1 (fr) Procédé et dispositif pour compresser et décompresser des données de champ sonore d'un domaine
EP1972181B1 (fr) Dispositif et procédé de simulation de systèmes wfs et de compensation de propriétés wfs influençant le son
DE102006053919A1 (de) Vorrichtung und Verfahren zum Erzeugen einer Anzahl von Lautsprechersignalen für ein Lautsprecher-Array, das einen Wiedergaberaum definiert
WO2005060307A1 (fr) Procede et dispositif de production d'un canal a frequences basses
AT394650B (de) Elektroakustische anordnung zur wiedergabe stereophoner binauraler audiosignale ueber kopfhoerer
DE102005003431B4 (de) Anordnung zum Wiedergeben von binauralen Signalen (Kunstkopfsignalen) durch mehrere Lautsprecher
DE10254470A1 (de) Vorrichtung und Verfahren zum Bestimmen einer Impulsantwort und Vorrichtung und Verfahren zum Vorführen eines Audiostücks
DE19911507A1 (de) Verfahren zur Verbesserung dreidimensionaler Klangwiedergabe
EP2373054B1 (fr) Reproduction dans une zone de sonorisation ciblée mobile à l'aide de haut-parleurs virtuels
EP2357854B1 (fr) Procédé et dispositif de production de signaux audio binauraux individuellement adaptables
DE10318191A1 (de) Verfahren zur Erzeugung und Verwendung einer Übertragungsfunktion
DE112006002548T5 (de) Vorrichtung und Verfahren zur Wiedergabe von virtuellem Zweikanal-Ton
EP2503799B1 (fr) Procédé et système de calcul de fonctions HRTF par synthèse locale virtuelle de champ sonore
DE102011108788B4 (de) Verfahren zur Verarbeitung eines Audiosignals, Audiowiedergabesystem und Verarbeitungseinheit zur Bearbeitung von Audiosignalen
WO2007110087A1 (fr) Dispositif pour la reproduction de signaux binauraux (signaux de casque d'ecouteur) par plusieurs haut-parleurs
EP2571290B1 (fr) Synthèse de champ sonore locale par l'intermédiaire d'un corps diffusant virtuel
DE102018216604A1 (de) System zur Übertragung von Schall in den und aus dem Kopf eines Hörers unter Verwendung eines virtuellen akustischen Systems
DE102007026219A1 (de) Audiologische Messvorrichtung zur Erzeugung von akustischen Testsignalen für audiologische Messungen
DE1927401B2 (de) Verfahren zur hoerrichtigen aufnahme und wiedergabe von schallereignissen und vorrichtung zu seiner durchfuehrung
DE102014204368A1 (de) Vorrichtung und Verfahren zur Bestimmung von kopfbezogenen Übertragungsfunktionen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130322

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180530

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191119

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE TELEKOM AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20200525

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1287303

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016773

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201002

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2812503

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016773

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

26N No opposition filed

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1287303

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110321

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231213

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231212

Year of fee payment: 14

Ref country code: GB

Payment date: 20240322

Year of fee payment: 14