EP2503277A1 - Plate-type heat exchanger and heat pump device - Google Patents

Plate-type heat exchanger and heat pump device Download PDF

Info

Publication number
EP2503277A1
EP2503277A1 EP10831513A EP10831513A EP2503277A1 EP 2503277 A1 EP2503277 A1 EP 2503277A1 EP 10831513 A EP10831513 A EP 10831513A EP 10831513 A EP10831513 A EP 10831513A EP 2503277 A1 EP2503277 A1 EP 2503277A1
Authority
EP
European Patent Office
Prior art keywords
edge lines
wave pattern
long side
bottom edge
intersection points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10831513A
Other languages
German (de)
French (fr)
Other versions
EP2503277B1 (en
EP2503277A4 (en
Inventor
Daisuke Ito
Takehiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44059597&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2503277(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of EP2503277A1 publication Critical patent/EP2503277A1/en
Publication of EP2503277A4 publication Critical patent/EP2503277A4/en
Application granted granted Critical
Publication of EP2503277B1 publication Critical patent/EP2503277B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • This invention relates to a plate heat exchanger.
  • plate heat exchangers have the following problems. Firstly, when a flow rate is increased for enhancing heat transfer of a fluid, pressure loss is increased. Secondly, the increased pressure loss causes stagnation and clogging by dirt. Patent Document 1 provides a solution for solving these problems. However, the fluid is prompted to flow into flow paths formed by the ridges in a long axial direction, thereby being prevented from spreading in a short axial direction. There is also a general problem for plate heat exchangers.
  • a plate heat exchanger is configured such that a plurality of rectangular plates having a long side, a short side, and an outer periphery are stacked such that corresponding long sides, short sides, and outer peripheries are aligned, the outer peripheries defming a space in which a fluid is sealed, each of the plates is corrugated in a wave pattern waving in a stacking direction, the plates adjacent to each other have intersection points therebetween when seen in the stacking direction, the intersection points being formed at intersections of a plurality of virtual bottom edge lines and a plurality of virtual top edge lines, the bottom edge lines representing bottoms of the wave pattern of one of the plates adjacent to each other and extending in a direction different from a direction of the long side and the top edge lines representing tops of the wave pattern of another one of the plates adjacent to each other and extending in a direction different from the direction of the long side, and each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by
  • a plate heat exchanger of this invention pressure loss of a fluid can be reduced and heat exchange efficiency can be enhanced. Due to the reduced pressure loss and the enhanced heat efficiency, the size (capacity) of the plate heat exchanger can be reduced. The enhanced heat efficiency also reduces power consumption, so that CO2 emission can be reduced.
  • Fig. 1 is a diagram showing a plate heat exchanger 100 in a first embodiment.
  • Fig. 8 shows a cross section AA' ((c) of Fig. 1 ) and cross sections BB' to DD' ( Fig. 2 ).
  • the plate heat exchanger 100 is configured with a plurality of rectangular plates having short sides (a short side 2-1 of the upper heat transfer plate 2, a short side 3-1 of the lower heat transfer plate 3), long sides (a long side 2-2 of the upper heat transfer plate 2, a long side 3-2 of the lower heat transfer plate 3), and outer peripheries (an outer periphery 2-3 of the upper heat transfer plate 2, an outer periphery 3-3 of the lower heat transfer plate 3), the outer peripheries defining a space in which a fluid is sealed.
  • the plates are stacked such that the corresponding long sides, short sides, and outer peripheries are aligned.
  • Each plate is formed in a wave pattern waving in a stacking direction (direction X).
  • Fig. 2 is a front view of the heat transfer plates.
  • Fig. 2 shows an enlarged view of the range Y in (f) of Fig. 1 .
  • a joint point 11 (contact portion) is formed between the upper and lower plates (the upper heat transfer plate 2 and the lower heat transfer plate 3) by an end portion 9 at a valley (bottom) of the wave pattern of the upper heat transfer plate 2 and by an end portion 10 at a peak of the wave pattern of the lower plate, the joint point 11 being at the shortest distance in a short axial direction (direction Z) from the outer periphery 2-3.
  • This arrangement is characterized in that a distance a in Fig.
  • the distance a is a distance in the short axial direction (direction Z) from the outer periphery 2-3.
  • the joint point at the shortest distance in the short axial direction (direction Z) means the first joint point that is encountered when proceeding in the short axial direction from the outer periphery 2-3.
  • Fig. 2 solid lines on the surface of the upper heat transfer plate 2 represent the wave pattern, and dotted lines represent the wave pattern of the lower heat transfer plate 3 positioned under the upper heat transfer plate 2.
  • a range 32 enclosed in a dashed box shows a cross-sectional shape of the wave pattern of the upper heat transfer plate 2.
  • Dotted lines x1, y1, and z1 represent a peak, a valley, and a peak respectively
  • a range 33 enclosed by a dashed box shows a cross-sectional shape of the wave pattern of the lower heat transfer plate 3.
  • Dotted lines x2, y2, and z2 represent a valley, a peak, and a valley respectively In Fig.
  • intersection points 23 are formed at intersections of a plurality of virtual bottom edge lines 21, etc. and a plurality of virtual top edge lines 22, etc., the bottom edge lines representing bottoms of the wave pattern of the upper heat transfer plate 2 and extending in a direction different from a direction of the long side 2-2, and the top edge lines representing tops of the wave pattern of the lower heat transfer plate 3 and extending in a direction different from a direction of the long side 3-2.
  • each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines connect (come into contact) with each other at each of the intersection points 23, thereby forming a joint point (contact portion).
  • the joint point 11 corresponding to the intersection point 23 at an end closest to the outer periphery 2-3 along the long side 2-2 among intersection points on a given bottom edge line, for example the bottom edge line 21, is formed at a position that substantially coincides with the outer periphery 2-3 along the long side 2-2.
  • Fig. 3 shows an arrangement in which a distance b corresponding to the distance a of Fig. 2 is longer than the distance a. That is, in Fig. 3 , the joint point 11 corresponding to the intersection point 23 at the end closest to the outer periphery 2-3 along the long side 2-2 among the intersection points on the bottom edge line 21 is formed inwardly (in direction Z) at the distance b from the outer periphery 2-3 along the long side 2-2.
  • the distance is short like the distance a of Fig. 2
  • a wider flow path can be secured, so that a flow rate is reduced at the same flow volume, thereby reducing pressure loss.
  • the plate heat exchanger 100 allows the use of a fluid with high pressure loss, such as a hydrocarbon and a low-GWP refrigerant.
  • the wave patterns are arranged such that the joint point of the upper and lower plates at the shortest distance in the short axial direction from the outer periphery along the long axial direction of the plates is positioned to substantially coincide with the outer periphery along the long axial direction.
  • the interval between the outer periphery 2-3 of the plate and the joint point 11 of the upper and lower plates at the shortest distance in the short axial direction (direction Z) is minimized by arranging the end point 9 at the valley of the wave pattern (an end of the bottom edge line) of the upper heat transfer plate 2 and the end point 10 at the peak (an end of the top edge line) of the lower heat transfer plate 3 to coincide with each other. That is, the joint point 11 is positioned to substantially coincide with the outer periphery 2-3. With this arrangement, the pressure loss is reduced.
  • a specified interval (a specified distance b to be described later) is provided between the outer periphery along the long axial direction of the plates (the outer periphery along the long side) and the joint point of the upper and lower plates at the shortest distance in the short axial direction (direction Z).
  • Fig. 3 used in the first embodiment.
  • the first embodiment it has been described that it is effective in reducing the pressure loss when the distance b is as short as the distance a.
  • the second embodiment it will be described that, even if the distance b is not as short as the distance a, the distance b is appropriately set to a predetermined range so as to secure a flow path.
  • the distance b is set to a predetermined length that will not cause the accumulation of the brazing material.
  • an area corresponding to the distance b also serves as the flow path of a fluid.
  • the distance b when the size of the plate in the short axial direction is 70 mm, the distance b should be 3 to 4.5 mm.
  • the distance b may be adjusted depending on the size of the plate in the short axial direction, a wave angle ⁇ , a wave pitch, properties of a fluid, and usage conditions.
  • the wave angle ⁇ (a wave angle ⁇ 1 of the upper heat transfer plate 2, a wave angle ⁇ 2 of the lower heat transfer plate 3) is approximately between 60 degrees and 70 degrees, more preferably between 62.5 degrees to 67.5 degrees.
  • the joint point (contact portion) corresponding to the intersection point at the end closest to the outer periphery along the long side among the intersection points on one bottom edge line is formed at a position at a predetermined distance (3 to 4.5 mm) in a direction of the short side (direction Z) from the outer periphery along the long side, depending on a direction in which the bottom edge line extends (the direction of the bottom edge line determined by the wave angle ⁇ 1) and a direction in which the top edge line extends (the direction of the top edge line determined by the wave angle ⁇ 2).
  • the joint point of the upper and lower plates at the shortest distance in the short axial direction from the outer periphery along the long axial direction of the plates is positioned at the predetermined distance b.
  • a third embodiment will next be described.
  • the distance (interval) between the joint point of the upper and lower plates and the outer periphery has been discussed.
  • the edge lines of the wave pattern are shortened in either of the upper and lower plates.
  • Fig. 4 is a front view of the plates of the third embodiment, representing the upper heat transfer plate 2 and the lower heat transfer plate 3 as in Fig. 2 .
  • the edge lines of the wave pattern of the upper heat transfer plate 2 are shortened such that the end portion 9 of the wave pattern (the end of the bottom edge line) is formed at an inner position in the plate compared to the end portion 10 (the end of the top edge line) of the lower plate.
  • a flow path is formed in an area c enclosed by dashed lines.
  • the heat exchanger may be configured by arranging the plates such that a fluid with high pressure loss flows though the plates having the wave pattern with short edge lines and a fluid with low pressure loss flows through the plates having the wave pattern with long edge lines.
  • the area c is formed at the outer peripheries on both sides in the short axial direction.
  • the area c may be provided at only one of the outer peripheries such that differential pressures are distributed evenly within each plate depending on the directions of the fluid inlets and outlets.
  • the edge lines of the wave pattern are shortened in either of the upper and lower plates.
  • a fourth embodiment will next be described.
  • the edge lines of the wave pattern are shortened in either of the upper and lower plates.
  • the edge lines of the wave pattern are shortened in both of the upper and lower plates.
  • Fig. 5 is a front view of the heat transfer plates of the fourth embodiment.
  • a flow path is formed in an area d enclosed by dashed lines.
  • the narrowing of the flow path width due to the converging of the brazing material is prevented.
  • a fluid contains scales and fibers, this is likely to cause the blocking of the flow path at the joint point of the upper and lower plates.
  • the configuration of Fig. 5 allows scales and fibers to escape from the flow path in the area d, and is thus effective.
  • the area c or the area d where no wave pattern is formed is provided only to an extent of a predetermined width W ( Fig. 4 , Fig. 5 ) from the outer periphery 2-3 along the long side in a direction to the other long side (direction Z) and only to an extent of a length L ( Fig. 4 , Fig. 5 ) in a direction from one of the short side to the other short side.
  • the flow path is formed by shortening the edge lines of the wave pattern in both of the upper and lower plates.
  • a fifth embodiment will next be described.
  • the edge lines of the wave pattern are shortened in both of the upper and lower plates.
  • the edge lines of alternate waves of the wave pattern are shortened in at least either of the plates.
  • Fig. 6 is a front view of the heat transfer plates of the fifth embodiment.
  • the edge lines of alternate waves of the wave pattern are shortened in the upper heat transfer plate 2 and the lower heat transfer plate 3. With this arrangement, there is no joint point 11 of the upper and lower plates at the shortest distance in the short axial direction (direction Z) from the outer periphery 2-3.
  • the brazing material does not accumulate between the outer periphery 2-3 and the joint point of the upper and lower plates, and heat transfer is facilitated by the agitating action of flow movement in the short axial direction due to alternately varying lengths of the edge lines of the wave pattern.
  • the plate heat exchanger with the reduced pressure loss and the enhanced heat transfer capability can be provided.
  • the lengths of the edge lines of alternate waves are shortened. The same effects can be obtained by varying the lengths of the edge lines depending on design conditions, such as heat transfer and pressure loss conditions, and flowing characteristics of a fluid.
  • a plurality of the bottom edge lines are directed to the outer periphery 2-3 along the long side. Then, end portions of the plurality of the bottom edge lines corresponding to "the outer periphery 2-3 along the long side" are formed alternately at a position T and at a position S, the position T being immediately close to "the outer periphery 2-3 along the long side” and the position S being further away from the outer periphery 2-3 than the position T immediately close.
  • the edge lines of alternate waves of the plates are shortened, the alternate waves being alternate in a direction in which the fluid flows.
  • a sixth embodiment will next be described.
  • the edge lines of alternate waves of the plates are shortened.
  • a gap of 0.2 mm or wider is provided between the valley (bottom) of the wave pattern of the upper heat transfer plate 2 and the peak (top) of the wave pattern of the lower heat transfer plate 3 at a point corresponding to the joint point of the upper and lower plates at the shortest distance in the short axial direction (direction Z) from the outer periphery of the upper and lower plates (there is a gap in place of the joint point).
  • Fig. 7 is a schematic depiction of a cross section of the heat transfer plates.
  • Fig. 7 is provided for the convenience of explaining a gap distance e to be described later.
  • the distance e is defined as a gap between the wave of the upper plate and the peak of the lower plate at a position at the distance b , that is, at a position of the joint point of the upper and lower plates at the shortest distance in the short axial direction (direction Z) from the outer periphery 2-3 of the plate (the same as Fig. 3 ) (to be precise, at a position of a point corresponding to the joint point because the gap exists as described above).
  • the distance e is 0.2 mm or longer so that there is a gap between the upper and lower plates, thereby preventing the accumulation of the brazing material originating from the outer periphery 2-3 and the joint point of the upper and lower plates.
  • the gap is formed between the bottom of the wave pattern represented by the bottom edge line and the top of the wave pattern represented by the top edge line of the lower heat transfer plate 3. Then, at the intersection points other than the intersection point at the end, the bottoms of the wave pattern represented by the bottom edge lines are in contact with the tops of the wave pattern represented by the top edge lines.
  • the gap of 0.2 mm or wider is provided between the bottom and the top of the wave patterns of the plates.
  • the heat transfer plates described in the first to sixth embodiments can be used in numerous industrial machines and home appliances, such as air conditioners, power generators, and heat sterilizers for foods.
  • the heat transfer plates can be used in either or both of the radiator and the evaporator.

Abstract

A plate heat exchanger with reduced pressure loss of a fluid and enhanced heat transfer efficiency is provided by a simple configuration. An upper heat transfer plate 2 and a lower heat transfer plate 3 adjacent to each other are corrugated in a wave pattern waving in a stacking direction. Between these plates, when seen in the stacking direction, intersection points are formed at intersections of a plurality of virtual bottom edge lines 21 and a plurality of virtual top edge lines 22, the bottom edge lines representing bottoms of the wave pattern of the upper heat transfer plate 2 and extending in a direction different from a direction of a long side, and the top edge lines representing tops of the wave pattern of the lower heat transfer plate 3 and extending in a direction different from the direction of the long side. Each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines come into contact with each other at each of the intersection points, thereby forming a contact portion. Between the upper heat transfer plate 2 and the lower heat transfer plate 3, a joint point 11 corresponding to an intersection point 23 at an end closest to an outer periphery 2-3 along the long side among the intersection points existing on one of the bottom edge lines 21 is formed at a position that substantially coincides with the outer periphery along the long side.

Description

    Technical Field
  • This invention relates to a plate heat exchanger.
  • Background Art
  • Conventionally, there is a plate heat exchanger in which upper and lower plates are supported by providing a plurality of ridges on the plates in a longitudinal direction (for example, see Patent Document 1). There is also a plate heat exchanger in which upper and lower plates are joined at peaks of V-shaped wave portions of the respective plates (for example, see Patent Document 2).
  • Citation list Patent Literature
    • Patent Document 1: JP 10-103888 A (page 4, Fig. 1)
    • Patent Document 2: JP 2002-107074 A (pages 6 to 8, Fig. 1)
    Disclosure of Invention Technical Problem
  • Conventionally, plate heat exchangers have the following problems. Firstly, when a flow rate is increased for enhancing heat transfer of a fluid, pressure loss is increased. Secondly, the increased pressure loss causes stagnation and clogging by dirt. Patent Document 1 provides a solution for solving these problems. However, the fluid is prompted to flow into flow paths formed by the ridges in a long axial direction, thereby being prevented from spreading in a short axial direction. There is also a general problem for plate heat exchangers. The problem is that when the peaks of V-shaped wave portions are joined between the upper and lower plates as discussed in Patent Document 2, ends of the wave portions are not aligned at an outer periphery, so that a brazing area at a joint portion between the upper and lower plates is enlarged, resulting in a narrower flow path and increased pressure loss.
  • It is an object of this invention to provide a plate heat exchanger that reduces pressure loss of a fluid and enhances heat exchange efficiency by a simple configuration.
  • Solution to Problem
  • A plate heat exchanger according to this invention is configured such that
    a plurality of rectangular plates having a long side, a short side, and an outer periphery are stacked such that corresponding long sides, short sides, and outer peripheries are aligned, the outer peripheries defming a space in which a fluid is sealed,
    each of the plates is corrugated in a wave pattern waving in a stacking direction,
    the plates adjacent to each other have intersection points therebetween when seen in the stacking direction, the intersection points being formed at intersections of a plurality of virtual bottom edge lines and a plurality of virtual top edge lines, the bottom edge lines representing bottoms of the wave pattern of one of the plates adjacent to each other and extending in a direction different from a direction of the long side and the top edge lines representing tops of the wave pattern of another one of the plates adjacent to each other and extending in a direction different from the direction of the long side, and
    each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines come into contact with each other at each of the intersection points, thereby forming a contact portion, and
    the plate heat exchanger is characterized in that
    the plates adjacent to each other are arranged such that the contact portion corresponding to one of the intersection points at an end closest to the outer periphery along the long side among the intersection points existing on one of the bottom edge lines is formed at a position that substantially coincides with the outer periphery along the long side.
  • Advantageous Effects of Invention
  • According to a plate heat exchanger of this invention, pressure loss of a fluid can be reduced and heat exchange efficiency can be enhanced. Due to the reduced pressure loss and the enhanced heat efficiency, the size (capacity) of the plate heat exchanger can be reduced. The enhanced heat efficiency also reduces power consumption, so that CO2 emission can be reduced.
  • Brief Description of Drawings
    • Fig. 1 is a diagram showing a plate heat exchanger 100 in a first embodiment;
    • Fig. 2 is a diagram showing adjacent plates in the first embodiment;
    • Fig. 3 is a diagram showing a distance b in a second embodiment;
    • Fig. 4 is a diagram illustrating an area c in a third embodiment;
    • Fig. 5 is a diagram illustrating an area d in a fourth embodiment;
    • Fig. 6 is a diagram illustrating that edge lines of alternate waves are shortened in a fifth embodiment;
    • Fig. 7 is a diagram illustrating a gap distance e in a sixth embodiment; and
    • Fig. 8 is a diagram showing cross sections of plates in the plate heat exchanger 100.
    Description of Preferred Embodiments First Embodiment
  • Fig. 1 is a diagram showing a plate heat exchanger 100 in a first embodiment.
    1. (1) In Fig. 1, (a) is a side view of the plate heat exchanger 100.
    2. (2) In Fig. 1, (b) is a front view (as seen along arrow X). A direction indicated by arrow X in (a) of Fig. 1 is a direction in which plates are stacked. A reinforcement side plate 1 in (b) of Fig. 1 is positioned at an outermost side, and is provided with fluid inlet and outlet pipes. The reinforcement side plate 1 is provided with a first fluid inlet pipe 5, a second fluid inlet pipe 6, a first fluid outlet pipe 7, and a second fluid outlet pipe 8.
    3. (3) In Fig. 1, (c) shows an upper heat transfer plate 2 that defmes flow paths for a first fluid and a second fluid.
    4. (4) In Fig. 1, (d) shows a lower heat transfer plate 3 that is placed such that a wave pattern thereof is face to face with a wave pattern of the upper heat transfer plate 2, thereby defining the flow paths for the first fluid and the second fluid. By placing the upper heat transfer plate 2 and the lower heat transfer plate 3 alternately, the flow paths for the first fluid and the second fluid are formed alternately and repeatedly.
    5. (5) In Fig. 1, (e) shows a reinforcement side plate 4 that is positioned at an outermost side.
    6. (6) In Fig. 1, (f) is a view showing the upper heat transfer plate 2 and the lower heat transfer plate 3 stacked on top of each other. In (f) of Fig. 1, when the stacked plates are seen in the direction of arrow X in (a) of Fig. 1, the pattern of the upper heat transfer plate 2 that is actually visible is indicated by solid lines while the wave pattern of the lower heat transfer plate 3 that is not actually visible is indicated by dashed lines. Fig. 2 is an enlarged view of a range Y indicated by a dashed circle.
  • Fig. 8 shows a cross section AA' ((c) of Fig. 1) and cross sections BB' to DD' (Fig. 2).
  • (Description of Configuration)
  • As shown in Fig. 1, the plate heat exchanger 100 is configured with a plurality of rectangular plates having short sides (a short side 2-1 of the upper heat transfer plate 2, a short side 3-1 of the lower heat transfer plate 3), long sides (a long side 2-2 of the upper heat transfer plate 2, a long side 3-2 of the lower heat transfer plate 3), and outer peripheries (an outer periphery 2-3 of the upper heat transfer plate 2, an outer periphery 3-3 of the lower heat transfer plate 3), the outer peripheries defining a space in which a fluid is sealed. The plates are stacked such that the corresponding long sides, short sides, and outer peripheries are aligned. Each plate is formed in a wave pattern waving in a stacking direction (direction X).
  • Fig. 2 is a front view of the heat transfer plates. Fig. 2 shows an enlarged view of the range Y in (f) of Fig. 1. In Fig. 2, a joint point 11 (contact portion) is formed between the upper and lower plates (the upper heat transfer plate 2 and the lower heat transfer plate 3) by an end portion 9 at a valley (bottom) of the wave pattern of the upper heat transfer plate 2 and by an end portion 10 at a peak of the wave pattern of the lower plate, the joint point 11 being at the shortest distance in a short axial direction (direction Z) from the outer periphery 2-3. This arrangement is characterized in that a distance a in Fig. 2 (a distance in the short axial direction (direction Z) from an outer periphery 12) can be shortened. The distance a is a distance in the short axial direction (direction Z) from the outer periphery 2-3.
    The joint point at the shortest distance in the short axial direction (direction Z) means the first joint point that is encountered when proceeding in the short axial direction from the outer periphery 2-3.
  • A more specific explanation will be provided. In Fig. 2, solid lines on the surface of the upper heat transfer plate 2 represent the wave pattern, and dotted lines represent the wave pattern of the lower heat transfer plate 3 positioned under the upper heat transfer plate 2. A range 32 enclosed in a dashed box shows a cross-sectional shape of the wave pattern of the upper heat transfer plate 2. Dotted lines x1, y1, and z1 represent a peak, a valley, and a peak respectively A range 33 enclosed by a dashed box shows a cross-sectional shape of the wave pattern of the lower heat transfer plate 3. Dotted lines x2, y2, and z2 represent a valley, a peak, and a valley respectively In Fig. 2 (a view as seen in the stacking direction), between the upper heat transfer plate 2 and the lower heat transfer plate 3 adjacent to each other, intersection points 23 are formed at intersections of a plurality of virtual bottom edge lines 21, etc. and a plurality of virtual top edge lines 22, etc., the bottom edge lines representing bottoms of the wave pattern of the upper heat transfer plate 2 and extending in a direction different from a direction of the long side 2-2, and the top edge lines representing tops of the wave pattern of the lower heat transfer plate 3 and extending in a direction different from a direction of the long side 3-2. Then, each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines connect (come into contact) with each other at each of the intersection points 23, thereby forming a joint point (contact portion). In this configuration, between the upper heat transfer plate 2 and the lower heat transfer plate 3, the joint point 11 corresponding to the intersection point 23 at an end closest to the outer periphery 2-3 along the long side 2-2 among intersection points on a given bottom edge line, for example the bottom edge line 21, is formed at a position that substantially coincides with the outer periphery 2-3 along the long side 2-2.
  • Fig. 3 shows an arrangement in which a distance b corresponding to the distance a of Fig. 2 is longer than the distance a. That is, in Fig. 3, the joint point 11 corresponding to the intersection point 23 at the end closest to the outer periphery 2-3 along the long side 2-2 among the intersection points on the bottom edge line 21 is formed inwardly (in direction Z) at the distance b from the outer periphery 2-3 along the long side 2-2. When the distance is short like the distance a of Fig. 2, in contrast to the distance b, a wider flow path can be secured, so that a flow rate is reduced at the same flow volume, thereby reducing pressure loss. Further, when the distance a is short, the accumulation of a brazing material can be reduced, so that an effective heat transfer area is increased, thereby enhancing heat exchange capability In this way, by shortening the distance a, the pressure loss can be prevented from increasing while the heat exchange capability can be enhanced. Thus, the plate heat exchanger can be configured with the minimum number of plates needed to meet the required performance of an air conditioner. Moreover, the accumulation of foreign substances, such as refrigeration oil and dirt, can be prevented in the plate heat exchanger. As a result, the plate heat exchanger can be provided at lower costs and with enhanced reliability The plate heat exchanger 100 allows the use of a fluid with high pressure loss, such as a hydrocarbon and a low-GWP refrigerant.
  • With the plate heat exchanger 100 of the first embodiment, the following effects can be obtained.
    1. (1) Pressure loss: The plate heat exchanger 100 is effective in reducing the pressure loss of a fluid. The wave patterns are arranged such that the joint point of the upper and lower plates at the shortest distance in the short axial direction from the outer periphery along a long axial direction of the plates is positioned to substantially coincide with the outer periphery along the long axial direction. With this arrangement, the joint point of the upper and lower plates at the shortest distance in the short axial direction from the outer periphery is positioned closer to the outer periphery (the distance a is shortened). Thus, the accumulation of the brazing material at the outer periphery can be reduced and the flow path can be widened, thereby reducing the pressure loss.
    2. (2) Efficiency: The effective heat transfer area is increased due to the enlarged flow path. As a result, the plate heat exchanger with enhanced heat exchange efficiency can be provided.
    3. (3) Size reduction: When the heat transfer between the plates is enhanced and the pressure loss is reduced as described above, the plate heat exchanger can be configured with a reduced number of stacked plates. As a result, manufacturing costs such as material costs and processing costs can be substantially reduced.
    4. (4) Reduction of CO2 emission: With an air conditioner incorporating this plate heat exchanger, not only costs but also power consumption and CO2 emission can be reduced. In addition, due to the reduced pressure loss, the accumulation of refrigeration oil, sludge, dirt, and so on can be prevented in the heat exchanger, thereby enhancing the reliability of the heat exchanger.
  • In the first embodiment, it has been described that in the plate heat exchanger configured by stacking a plurality of plates in which passage holes serving as fluid inlets and outlets are formed at four corners, the wave patterns are arranged such that the joint point of the upper and lower plates at the shortest distance in the short axial direction from the outer periphery along the long axial direction of the plates is positioned to substantially coincide with the outer periphery along the long axial direction.
  • Second Embodiment
  • In the first embodiment, the interval between the outer periphery 2-3 of the plate and the joint point 11 of the upper and lower plates at the shortest distance in the short axial direction (direction Z) is minimized by arranging the end point 9 at the valley of the wave pattern (an end of the bottom edge line) of the upper heat transfer plate 2 and the end point 10 at the peak (an end of the top edge line) of the lower heat transfer plate 3 to coincide with each other. That is, the joint point 11 is positioned to substantially coincide with the outer periphery 2-3. With this arrangement, the pressure loss is reduced. In a second embodiment, it will be described that a specified interval (a specified distance b to be described later) is provided between the outer periphery along the long axial direction of the plates (the outer periphery along the long side) and the joint point of the upper and lower plates at the shortest distance in the short axial direction (direction Z).
  • In the following explanation, reference will again be made to Fig. 3 used in the first embodiment. In the first embodiment, it has been described that it is effective in reducing the pressure loss when the distance b is as short as the distance a. In the second embodiment, it will be described that, even if the distance b is not as short as the distance a, the distance b is appropriately set to a predetermined range so as to secure a flow path.
  • When the distance b between the outer periphery of the plates and the joint point 11 of the upper and lower plates at the shortest distance in the short axial direction (direction Z) is too short, that is, when the distance b is not as short as the distance a but is insufficiently short so that the effect of the distance a cannot be obtained, the following disadvantage is encountered. At the time of brazing, the brazing material at the outer periphery and the brazing material at the joint point converge and accumulate in the distance b, thereby narrowing the flow path. On the other hand, when the distance b is too long, the interval between the joint point 11 of the upper and lower plates and a joint point 13 next to the joint point 11 is shortened (the joint point 13 being the second closest to the outer periphery after the joint point 11 on the top edge line 22). As a result, the brazing material of the joint point 11 and the brazing material of the joint point 13 converge and accumulate between these points, thereby narrowing the flow path. In the plates of the second embodiment, the distance b is set to a predetermined length that will not cause the accumulation of the brazing material. With this arrangement, an area corresponding to the distance b also serves as the flow path of a fluid. With the plate heat exchanger thus configured, the pressure loss can be reduced while the heat transfer area can be enlarged.
  • For example, when the size of the plate in the short axial direction is 70 mm, the distance b should be 3 to 4.5 mm. The distance b may be adjusted depending on the size of the plate in the short axial direction, a wave angle θ, a wave pitch, properties of a fluid, and usage conditions. In Fig. 3, for example, when the distance b is 3 to 4.5 mm, the wave angle θ (a wave angle θ1 of the upper heat transfer plate 2, a wave angle θ2 of the lower heat transfer plate 3) is approximately between 60 degrees and 70 degrees, more preferably between 62.5 degrees to 67.5 degrees.
  • As described above, between the upper heat transfer plate 2 and the lower heat transfer plate 3, the joint point (contact portion) corresponding to the intersection point at the end closest to the outer periphery along the long side among the intersection points on one bottom edge line is formed at a position at a predetermined distance (3 to 4.5 mm) in a direction of the short side (direction Z) from the outer periphery along the long side, depending on a direction in which the bottom edge line extends (the direction of the bottom edge line determined by the wave angle θ1) and a direction in which the top edge line extends (the direction of the top edge line determined by the wave angle θ2).
  • Between the upper heat transfer plate 2 and the lower heat transfer plate 3, the closer the direction of the bottom edge line and the direction of the top edge line are to a direction perpendicular to the direction of the long side, the further away from the outer periphery along the long side the joint portion is formed. That is, the closer the wave angle θ1 and the wave angle θ2 are to 90 degrees, the wider than approximately "3 to 4.5 mm" the distance b should be.
  • In the second embodiment, it has been described that in the plate heat exchanger configured by stacking a plurality of plates in which passage holes serving as fluid inlets and outlets are formed at four corners, the joint point of the upper and lower plates at the shortest distance in the short axial direction from the outer periphery along the long axial direction of the plates is positioned at the predetermined distance b.
  • Third Embodiment
  • Referring to Fig. 4, a third embodiment will next be described. In the first and second embodiments, the distance (interval) between the joint point of the upper and lower plates and the outer periphery has been discussed. In the third embodiment, it will be described that the edge lines of the wave pattern are shortened in either of the upper and lower plates.
  • Fig. 4 is a front view of the plates of the third embodiment, representing the upper heat transfer plate 2 and the lower heat transfer plate 3 as in Fig. 2. As shown in Fig. 4, for example, the edge lines of the wave pattern of the upper heat transfer plate 2 are shortened such that the end portion 9 of the wave pattern (the end of the bottom edge line) is formed at an inner position in the plate compared to the end portion 10 (the end of the top edge line) of the lower plate. With this arrangement, a flow path is formed in an area c enclosed by dashed lines.
  • By forming such a flow path c at the outer periphery, it is possible to avoid the narrowing of the flow path width due to the accumulation of the brazing material between the outer periphery and "the joint point of the upper and lower plates at the shortest distance in the short axial direction". Further, the wave pattern is not shortened in one of the plates, so that the pressure loss can be reduced while the effect of facilitating heat transfer is maintained by agitating action caused by flow movement. Furthermore, when two or more types of fluid flow through the plates, the heat exchanger may be configured by arranging the plates such that a fluid with high pressure loss flows though the plates having the wave pattern with short edge lines and a fluid with low pressure loss flows through the plates having the wave pattern with long edge lines. In Fig. 4, the area c is formed at the outer peripheries on both sides in the short axial direction. However, the area c may be provided at only one of the outer peripheries such that differential pressures are distributed evenly within each plate depending on the directions of the fluid inlets and outlets.
  • In the third embodiment, it has been described that in the plate heat exchanger configured by stacking a plurality of plates in which passage holes serving as fluid inlets and outlets are formed at four corners, the edge lines of the wave pattern are shortened in either of the upper and lower plates.
  • Fourth Embodiment
  • Referring to Fig. 5, a fourth embodiment will next be described. In the third embodiment, it has been described that the edge lines of the wave pattern are shortened in either of the upper and lower plates. In the fourth embodiment, it will be described that the edge lines of the wave pattern are shortened in both of the upper and lower plates.
  • Fig. 5 is a front view of the heat transfer plates of the fourth embodiment. When the edge lines of the wave pattern are shortened in both of the upper and lower plates, a flow path is formed in an area d enclosed by dashed lines. By forming such a flow path at the outer periphery, the narrowing of the flow path width due to the converging of the brazing material is prevented. When a fluid contains scales and fibers, this is likely to cause the blocking of the flow path at the joint point of the upper and lower plates. The configuration of Fig. 5 allows scales and fibers to escape from the flow path in the area d, and is thus effective. When the pressure of a high-pressure fluid such as a refrigerant is raised by the blocking of the flow path, there is conventionally a risk of breakage of pipes. When the refrigerant oil accumulates in the heat exchanger and is thus prevented from returning to a compressor, there is conventionally a risk of breakage of the compressor. In such cases, the flow path in the area d of Fig. 5 serves as a bypass and these risks can be avoided.
  • As discussed in the third and fourth embodiments, in at least either of the upper heat transfer plate 2 and the lower heat transfer plate 3 adjacent to each other, the area c or the area d where no wave pattern is formed is provided only to an extent of a predetermined width W (Fig. 4, Fig. 5) from the outer periphery 2-3 along the long side in a direction to the other long side (direction Z) and only to an extent of a length L (Fig. 4, Fig. 5) in a direction from one of the short side to the other short side.
  • In the fourth embodiment, it has been described that in the plate heat exchanger configured by stacking a plurality of plates in which passage holes serving as fluid inlets and outlets are formed at four corners, the flow path is formed by shortening the edge lines of the wave pattern in both of the upper and lower plates.
  • Fifth Embodiment
  • Referring to Fig. 6, a fifth embodiment will next be described. In the fourth embodiment, it has been described that the edge lines of the wave pattern are shortened in both of the upper and lower plates. In the fifth embodiment, it will be described that the edge lines of alternate waves of the wave pattern are shortened in at least either of the plates. Fig. 6 is a front view of the heat transfer plates of the fifth embodiment. In Fig. 6, the edge lines of alternate waves of the wave pattern are shortened in the upper heat transfer plate 2 and the lower heat transfer plate 3. With this arrangement, there is no joint point 11 of the upper and lower plates at the shortest distance in the short axial direction (direction Z) from the outer periphery 2-3. That is, no joint point is formed at an inconvenient position approximately at the distance b (the distance b of the first embodiment) that will cause the accumulation of the brazing material. Thus, the brazing material does not accumulate between the outer periphery 2-3 and the joint point of the upper and lower plates, and heat transfer is facilitated by the agitating action of flow movement in the short axial direction due to alternately varying lengths of the edge lines of the wave pattern. With the configuration of Fig. 6, the plate heat exchanger with the reduced pressure loss and the enhanced heat transfer capability can be provided. In Fig. 6, the lengths of the edge lines of alternate waves are shortened. The same effects can be obtained by varying the lengths of the edge lines depending on design conditions, such as heat transfer and pressure loss conditions, and flowing characteristics of a fluid.
  • Thus, in the fifth embodiment, in the upper heat transfer plate 2, for example, a plurality of the bottom edge lines are directed to the outer periphery 2-3 along the long side. Then, end portions of the plurality of the bottom edge lines corresponding to "the outer periphery 2-3 along the long side" are formed alternately at a position T and at a position S, the position T being immediately close to "the outer periphery 2-3 along the long side" and the position S being further away from the outer periphery 2-3 than the position T immediately close.
  • In the fifth embodiment, it has been described that in the plate heat exchanger configured by stacking a plurality of plates in which passage holes serving as fluid inlets and outlets are formed at four corners, the edge lines of alternate waves of the plates are shortened, the alternate waves being alternate in a direction in which the fluid flows.
  • Sixth Embodiment
  • Referring to Fig. 7, a sixth embodiment will next be described. In the fifth embodiment, it has been described that the edge lines of alternate waves of the plates are shortened. In the sixth embodiment, it will be described that a gap of 0.2 mm or wider is provided between the valley (bottom) of the wave pattern of the upper heat transfer plate 2 and the peak (top) of the wave pattern of the lower heat transfer plate 3 at a point corresponding to the joint point of the upper and lower plates at the shortest distance in the short axial direction (direction Z) from the outer periphery of the upper and lower plates (there is a gap in place of the joint point).
  • Fig. 7 is a schematic depiction of a cross section of the heat transfer plates. Fig. 7 is provided for the convenience of explaining a gap distance e to be described later. The distance e is defined as a gap between the wave of the upper plate and the peak of the lower plate at a position at the distance b, that is, at a position of the joint point of the upper and lower plates at the shortest distance in the short axial direction (direction Z) from the outer periphery 2-3 of the plate (the same as Fig. 3) (to be precise, at a position of a point corresponding to the joint point because the gap exists as described above). The distance e is 0.2 mm or longer so that there is a gap between the upper and lower plates, thereby preventing the accumulation of the brazing material originating from the outer periphery 2-3 and the joint point of the upper and lower plates. As a result, as with the first to fifth embodiments, the plate heat exchanger with the reduced pressure loss and the enhanced heat transfer capability can be provided.
  • As described above, in the sixth embodiment, between the upper heat transfer plate 2 and the lower heat transfer plate 3 adjacent to each other, at the intersection point at the end closest to "the outer periphery along the long side" among the intersection points on one bottom edge line of the upper heat transfer plate 2, the gap is formed between the bottom of the wave pattern represented by the bottom edge line and the top of the wave pattern represented by the top edge line of the lower heat transfer plate 3. Then, at the intersection points other than the intersection point at the end, the bottoms of the wave pattern represented by the bottom edge lines are in contact with the tops of the wave pattern represented by the top edge lines.
  • In the sixth embodiment, it has been described that in the plate heat exchanger configured by stacking a plurality of plates in which passage holes serving as fluid inlets and outlets are formed at four corners, at the position corresponding to the joint point of the upper and lower plates at the shortest distance in the short axial direction from the outer periphery of the upper and lower plates, the gap of 0.2 mm or wider is provided between the bottom and the top of the wave patterns of the plates.
  • The heat transfer plates described in the first to sixth embodiments can be used in numerous industrial machines and home appliances, such as air conditioners, power generators, and heat sterilizers for foods. For example, in a heat pump apparatus in which a compressor, a radiator, an expansion mechanism, and an evaporator are connected by pipes, the heat transfer plates can be used in either or both of the radiator and the evaporator.
  • List of Reference Signs
    • 1: reinforcement side plate
    • 2: upper heat transfer plate
    • 2-1, 3-1: short sides
    • 2-2, 3-2: long sides
    • 2-3, 3-3: outer peripheries
    • 3: lower heat transfer plate
    • 4: reinforcement side plate
    • 5: first fluid inlet pipe
    • 6: second fluid inlet pipe
    • 7: first fluid outlet pipe
    • 8: second fluid outlet pipe
    • 9: end point at the valley of the wave pattern of the upper heat transfer plate
    • 10: end point at the peak of the wave pattern of the lower heat transfer plate
    • 11: joint point of the upper and lower plates at the shortest distance in the short axial direction from the outer periphery
    • 12: outer periphery of the plate
    • 13: second joint point of the upper and lower plates in the short axial direction from the outer periphery
    • 100: plate heat exchanger

Claims (9)

  1. A plate heat exchanger configured such that
    a plurality of rectangular plates having a long side, a short side, and an outer periphery are stacked such that corresponding long sides, short sides, and outer peripheries are aligned, the outer peripheries defining a space in which a fluid is sealed;
    each of the plates is corrugated in a wave pattern waving in a stacking direction;
    the plates adjacent to each other have intersection points therebetween when seen in the stacking direction, the intersection points being formed at intersections of a plurality of virtual bottom edge lines and a plurality of virtual top edge lines, the bottom edge lines representing bottoms of the wave pattern of one of the plates adjacent to each other and extending in a direction different from a direction of the long side and the top edge lines representing tops of the wave pattern of another one of the plates adjacent to each other and extending in a direction different from the direction of the long side; and
    each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines come into contact with each other at each of the intersection points, thereby forming a contact portion,
    the plate heat exchanger, characterized in that
    the plates adjacent to each other are arranged such that the contact portion corresponding to one of the intersection points at an end closest to the outer periphery along the long side among the intersection points existing on one of the bottom edge lines is formed at a position that substantially coincides with the outer periphery along the long side.
  2. A plate heat exchanger configured such that
    a plurality of rectangular plates having a long side, a short side, and an outer periphery are stacked such that corresponding long sides, short sides, and outer peripheries are aligned, the outer peripheries defining a space in which a fluid is sealed;
    each of the plates is corrugated in a wave pattern waving in a stacking direction;
    the plates adjacent to each other have intersection points therebetween when seen in the stacking direction, the intersection points being formed at intersections of a plurality of virtual bottom edge lines and a plurality of virtual top edge lines, the bottom edge lines representing bottoms of the wave pattern of one of the plates adjacent to each other and extending in a direction different from a direction of the long side and the top edge lines representing tops of the wave pattern of another one of the plates adjacent to each other and extending in a direction different from the direction of the long side; and
    each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines come into contact with each other at each of the intersection points, thereby forming a contact portion,
    the plate heat exchanger, characterized in that
    the plates adjacent to each other are arranged such that the contact portion corresponding to one of the intersection points at an end closest to the outer periphery along the long side among the intersection points existing on one of the bottom edge lines is formed at a position at a predetermined distance in a direction of the short side from the outer periphery along the long side, depending on the direction in which the bottom edge lines extend and the direction in which the top edge lines extend.
  3. The plate heat exchanger of claim 2, wherein
    the plates adjacent to each other are arranged such that the closer the direction of the bottom edge lines and the direction of the top edge lines are to a direction perpendicular to the direction of the long side, the further away from the outer periphery along the long side the contact portion is formed.
  4. The plate heat exchanger of claim 3, wherein
    the contact portion corresponding to the one of the intersection points at the end closest to the outer periphery along the long side among the intersection points existing on the one of the bottom edge lines is formed at a distance of between 3mm and 4.5 mm in a direction of the short side from the outer periphery along the long side when the direction of the bottom edge lines relative to the direction of the long side is between 62.5 degrees and 67.5 degrees.
  5. A plate heat exchanger configured such that
    a plurality of rectangular plates having a long side, a short side, and an outer periphery are stacked such that corresponding long sides, short sides, and outer peripheries are aligned, the outer peripheries defining a space in which a fluid is sealed;
    each of the plates is corrugated in a wave pattern waving in a stacking direction;
    the plates adjacent to each other have intersection points therebetween when seen in the stacking direction, the intersection points being formed at intersections of a plurality of virtual bottom edge lines and a plurality of virtual top edge lines, the bottom edge lines representing bottoms of the wave pattern of one of the plates adjacent to each other and extending in a direction different from a direction of the long side and the top edge lines representing tops of the wave pattern of another one of the plates adjacent to each other and extending in a direction different from the direction of the long side; and
    each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines come into contact with each other at each of the intersection points, thereby forming a contact portion,
    the plate heat exchanger, characterized in that
    at least either of the plates adjacent to each other is configured such that the wave pattern is not formed in an area of a predetermined width from the outer periphery along the long side toward the long side at another end, the area extending in a direction from the short side at one end toward the short side at another end.
  6. A plate heat exchanger configured such that
    a plurality of rectangular plates having a long side, a short side, and an outer periphery are stacked such that corresponding long sides, short sides, and outer peripheries are aligned, the outer peripheries defining a space in which a fluid is sealed;
    each of the plates is corrugated in a wave pattern waving in a stacking direction;
    the plates adjacent to each other have intersection points therebetween when seen in the stacking direction, the intersection points being formed at intersections of a plurality of virtual bottom edge lines and a plurality of virtual top edge lines, the bottom edge lines representing bottoms of the wave pattern of one of the plates adjacent to each other and extending in a direction different from a direction of the long side and the top edge lines representing tops of the wave pattern of another one of the plates adjacent to each other and extending in a direction different from the direction of the long side; and
    each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines come into contact with each other at each of the intersection points, thereby forming a contact portion,
    the plate heat exchanger, characterized in that
    the one of the plates adjacent to each other is configured such that the plurality of the bottom edge lines are directed to the outer periphery along the long side; and
    end portions of the plurality of the bottom edge lines corresponding to the outer periphery along the long side are formed alternately at a position immediately close to the outer periphery along the long side and at an inner position further away from the outer periphery along the long side than the position immediately close.
  7. A plate heat exchanger configured such that
    a plurality of rectangular plates having a long side, a short side, and an outer periphery are stacked such that corresponding long sides, short sides, and outer peripheries are aligned, the outer peripheries defining a space in which a fluid is sealed;
    each of the plates is corrugated in a wave pattern waving in a stacking direction;
    the plates adjacent to each other have intersection points therebetween when seen in the stacking direction, the intersection points being formed at intersections of a plurality of virtual bottom edge lines and a plurality of virtual top edge lines, the bottom edge lines representing bottoms of the wave pattern of one of the plates adjacent to each other and extending in a direction different from a direction of the long side and the top edge lines representing tops of the wave pattern of another one of the plates adjacent to each other and extending in a direction different from the direction of the long side; and
    each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines come into contact with each other at each of the intersection points, thereby forming a contact portion,
    the plate heat exchanger, characterized in that
    the plates adjacent to each other are arranged such that at the intersection point at the end closest to the outer periphery along the long side among the intersection points on the one of the bottom edge lines, a gap is formed between the bottom of the wave pattern represented by the bottom edge line and the top of the wave pattern represented by the top edge line, and at the intersection points other than the intersection point at the end, the bottoms of the wave pattern represented by the bottom edge lines are in contact with the tops of the wave pattern represented by the top edge lines.
  8. The plate heat exchanger of claim 7, wherein
    the gap is 0.2 mm or wider in the stacking direction.
  9. A heat pump apparatus wherein a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger are connected by pipes, the heat pump apparatus, comprising:
    a plate heat exchanger as at least either of the first heat exchanger and the second heat exchanger,
    the plate heat exchanger being configured such that
    a plurality of rectangular plates having a long side, a short side, and an outer periphery are stacked such that corresponding long sides, short sides, and outer peripheries are aligned, the outer peripheries defming a space in which a fluid is sealed;
    each of the plates is corrugated in a wave pattern waving in a stacking direction;
    the plates adjacent to each other have intersection points therebetween when seen in the stacking direction, the intersection points being formed at intersections of a plurality of virtual bottom edge lines and a plurality of virtual top edge lines, the bottom edge lines representing bottoms of the wave pattern of one of the plates adjacent to each other and extending in a direction different from a direction of the long side and the top edge lines representing tops of the wave pattern of another one of the plates adjacent to each other and extending in a direction different from the direction of the long side; and
    each of the bottoms of the wave pattern represented by the bottom edge lines and each of the tops of the wave pattern represented by the top edge lines come into contact with each other at each of the intersection points, thereby forming a contact portion, and
    the plate heat exchanger being characterized in that the plates adjacent to each other are arranged such that the contact portion corresponding to one of the intersection points at an end closest to the outer periphery along the long side among the intersection points existing on one of the bottom edge lines is formed at a position that substantially coincides with the outer periphery along the long side.
EP10831513.6A 2009-11-19 2010-11-12 Plate-type heat exchanger and heat pump device Active EP2503277B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009263598A JP2011106764A (en) 2009-11-19 2009-11-19 Plate type heat exchanger and heat pump device
PCT/JP2010/070192 WO2011062118A1 (en) 2009-11-19 2010-11-12 Plate-type heat exchanger and heat pump device

Publications (3)

Publication Number Publication Date
EP2503277A1 true EP2503277A1 (en) 2012-09-26
EP2503277A4 EP2503277A4 (en) 2014-08-13
EP2503277B1 EP2503277B1 (en) 2019-09-04

Family

ID=44059597

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10831513.6A Active EP2503277B1 (en) 2009-11-19 2010-11-12 Plate-type heat exchanger and heat pump device

Country Status (6)

Country Link
US (1) US20120227438A1 (en)
EP (1) EP2503277B1 (en)
JP (1) JP2011106764A (en)
CN (1) CN102667391B (en)
HK (1) HK1172080A1 (en)
WO (1) WO2011062118A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8544294B2 (en) * 2011-07-11 2013-10-01 Palo Alto Research Center Incorporated Plate-based adsorption chiller subassembly
US10690421B2 (en) 2012-03-28 2020-06-23 Modine Manufacturing Company Heat exchanger and method of cooling a flow of heated air
EP2657636B1 (en) 2012-04-23 2015-09-09 GEA Ecoflex GmbH Plate heat exchanger
JP6562918B2 (en) * 2013-12-05 2019-08-21 スウェップ インターナショナル アクティエボラーグ Heat exchange plate with various pitches
JP6947314B2 (en) * 2018-12-28 2021-10-13 三菱電機株式会社 Plate heat exchanger and heat pump device
EP4166880A1 (en) * 2021-10-12 2023-04-19 Valeo Autosystemy SP. Z.O.O. A plate for a heat exachanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4431413A1 (en) * 1994-08-24 1996-02-29 Rehberg Michael Plate heat exchangers for liquid and gaseous media
JPH11173770A (en) * 1997-12-10 1999-07-02 Daikin Ind Ltd Plate type heat exchanger
JP2002107074A (en) * 2000-09-29 2002-04-10 Sanyo Electric Co Ltd Plate type heat exchanger and heat pump hot water supply apparatus using the same
WO2007004939A1 (en) * 2005-07-04 2007-01-11 Alfa Laval Corporate Ab A heat exchanger plate, a pair of two heat exchanger plates, and plate package for a plate heat exchanger
WO2009123516A1 (en) * 2008-04-04 2009-10-08 Alfa Laval Corporate Ab A plate heat exchanger

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE356123B (en) 1971-10-08 1973-05-14 Alfa Laval Ab
JPS6218867Y2 (en) * 1981-03-20 1987-05-14
JPS6060592U (en) * 1983-09-27 1985-04-26 株式会社日阪製作所 Plate heat exchanger
JPS6183882A (en) * 1984-09-29 1986-04-28 Hisaka Works Ltd Plate type heat exchanger
SE458884B (en) * 1987-05-29 1989-05-16 Alfa Laval Thermal Ab PERMANENT COMBINED PLATE HEAT EXCHANGE WITH CONTAINING BODY AT THE PORTS
FR2705445B1 (en) * 1993-05-18 1995-07-07 Vicarb Sa Plate heat exchanger.
SE504868C2 (en) * 1995-10-23 1997-05-20 Swep International Ab Plate heat exchanger with end plate with pressed pattern
JP3682343B2 (en) 1996-09-30 2005-08-10 株式会社日阪製作所 Plate heat exchanger
WO2005012820A1 (en) * 2003-08-01 2005-02-10 Behr Gmbh & Co. Kg Heat exchanger and method for the production thereof
DE10348803B4 (en) * 2003-10-21 2024-03-14 Modine Manufacturing Co. Housing-less plate heat exchanger
JP2008039255A (en) * 2006-08-03 2008-02-21 Toshiba Corp Heat exchanger and its manufacturing method
JP2009036468A (en) * 2007-08-02 2009-02-19 Denso Corp Housingless heat exchanger
BRPI0822498B8 (en) * 2008-04-04 2020-06-02 Alfa Laval Corp Ab plate heat exchanger
PT2267391T (en) * 2009-06-26 2018-06-20 Swep Int Ab Asymmetric heat exchanger
EP2741041B1 (en) * 2011-07-13 2019-09-11 Mitsubishi Electric Corporation Plate-type heat exchanger and heat pump device
DE102014226479A1 (en) * 2014-12-18 2016-06-23 Mahle International Gmbh Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4431413A1 (en) * 1994-08-24 1996-02-29 Rehberg Michael Plate heat exchangers for liquid and gaseous media
JPH11173770A (en) * 1997-12-10 1999-07-02 Daikin Ind Ltd Plate type heat exchanger
JP2002107074A (en) * 2000-09-29 2002-04-10 Sanyo Electric Co Ltd Plate type heat exchanger and heat pump hot water supply apparatus using the same
WO2007004939A1 (en) * 2005-07-04 2007-01-11 Alfa Laval Corporate Ab A heat exchanger plate, a pair of two heat exchanger plates, and plate package for a plate heat exchanger
WO2009123516A1 (en) * 2008-04-04 2009-10-08 Alfa Laval Corporate Ab A plate heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011062118A1 *

Also Published As

Publication number Publication date
JP2011106764A (en) 2011-06-02
HK1172080A1 (en) 2013-04-12
CN102667391A (en) 2012-09-12
EP2503277B1 (en) 2019-09-04
CN102667391B (en) 2016-03-02
US20120227438A1 (en) 2012-09-13
EP2503277A4 (en) 2014-08-13
WO2011062118A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
EP2410278B1 (en) Plate-type heat exchanger and refrigerating air-conditioning device
KR101445474B1 (en) A heat exchanger plate and a plate heat exchanger
EP2503277A1 (en) Plate-type heat exchanger and heat pump device
KR102036397B1 (en) Heat exchanger
JP5872859B2 (en) Heat exchanger
JP6163190B2 (en) Heat exchanger
KR102291431B1 (en) Heat exchanging board and board-type heat exchanger provided with heat exchanging board
EP2241851A2 (en) Fin, heat exchanger and heat exchanger assembly
EP2394129B1 (en) A plate heat exchanger
EP2878909A1 (en) Plate-type heat exchanger and refrigeration cycle device comprising same
JP2015536437A (en) Heat transfer plate and flat plate heat exchanger comprising such a heat transfer plate
JP4827905B2 (en) Plate type heat exchanger and air conditioner equipped with the same
US20180149434A1 (en) Plate heat exchanger
JP5819592B2 (en) Plate heat exchanger and heat pump device
WO2013076751A1 (en) Plate-type heat exchanger and refrigeration cycle device using same
JP6177459B1 (en) Plate heat exchanger and refrigeration cycle equipment
JP5419719B2 (en) Plate heat exchanger and heat pump device
JP5538344B2 (en) Plate heat exchanger and heat pump device
JP2010145005A (en) Plate type heat exchanger and air conditioner comprising the same
US20190162478A1 (en) Plate heat exchanger with dual flow path
JP5595064B2 (en) Plate heat exchanger and heat pump device
EP4295097A1 (en) A brazed plate heat exchanger
CN113167549A (en) Corrugated fin type heat exchanger
JPWO2013076751A1 (en) Plate heat exchanger and refrigeration cycle apparatus using the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20140714

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 3/04 20060101AFI20140708BHEP

Ipc: F28D 9/00 20060101ALI20140708BHEP

Ipc: F28D 9/02 20060101ALI20140708BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190313

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1175967

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010060933

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1175967

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602010060933

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: MAHLE INTERNATIONAL GMBH

Effective date: 20200604

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191112

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101112

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230928

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230929

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231002

Year of fee payment: 14

Ref country code: DE

Payment date: 20230929

Year of fee payment: 14