JP3682343B2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP3682343B2
JP3682343B2 JP25946496A JP25946496A JP3682343B2 JP 3682343 B2 JP3682343 B2 JP 3682343B2 JP 25946496 A JP25946496 A JP 25946496A JP 25946496 A JP25946496 A JP 25946496A JP 3682343 B2 JP3682343 B2 JP 3682343B2
Authority
JP
Japan
Prior art keywords
heat transfer
plates
plate
heat exchanger
vertical direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25946496A
Other languages
Japanese (ja)
Other versions
JPH10103888A (en
Inventor
一志 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP25946496A priority Critical patent/JP3682343B2/en
Publication of JPH10103888A publication Critical patent/JPH10103888A/en
Application granted granted Critical
Publication of JP3682343B2 publication Critical patent/JP3682343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば液体食品の加熱殺菌処理等に用いるのに適したプレート式熱交換器に関するものであり、詳しくは、プレート伝熱面の形状に関するものである。
【0002】
【従来の技術】
一般に、プレート式熱交換器は、伝熱プレートを多数積層してプレート相互間に複数の媒体流路を形成し、これらの媒体流路に異種の媒体を交互に流通して媒体間で伝熱プレートを介して熱交換する構成となっている。
【0003】
この種のプレート式熱交換器における伝熱プレートとしては、図6および図7に示すものが一般的である。
【0004】
図6の伝熱プレート1Aは、伝熱面2Aの四隅に媒体の出入口となる通路孔3Aを形成し、その中間にヘリンボン波形状の畝4Aを形成したものであり、図7の伝熱プレート1Bは、伝熱面2Bの四隅に媒体の出入口となる通路孔3Bを形成し、その中間にコルゲート波形状の畝4Bを形成したものである。
【0005】
これらの伝熱プレート1A,1Bは、上下反転して積層した場合、プレート相互間に支持点(隣接するプレートの畝同士が当接する点)S1 ,S2 が生じる構造にしてあり、この支持点S1 ,S2 は伝熱面2A,2Bの全面に分布している。
【0006】
【発明が解決しようとする課題】
ところで、上記伝熱プレート1A,1Bを用いたプレート式熱交換器において、伝熱プレート1A,1Bの伝熱面2A,2Bにスケールを含む媒体が流れれば、支持点S1 ,S2 の下流側に生じる流速の低い死流域にスケールが付着・堆積・成長するため、媒体流路が閉塞することになる。また、媒体中に繊維状のものが含まれる場合、支持点S1 ,S2 に繊維質が引っかかり、これが成長すると、やはり媒体流路の閉塞に発展する。
【0007】
このように媒体流路が閉塞すれば、性能回復のための洗浄等のメンテナンス作業が必要となる。また、食品加熱用途のプレート式熱交換器にこのような現象が発生すれば、付着物の焦げ付きが生じ、この焦げ付きの除去には熱交換器の分解による物理的な除去作業が必要となり、メンテナンスに多大な労力と時間が必要になっている。
【0008】
本発明は、斯かる事情に鑑みて提案されたもので、スケールの付着や繊維質の引っかかりをなくして媒体流路の閉塞を防止することを目的とする。
【0009】
【課題を解決するための手段】
前述した目的を達成するために、本発明は、伝熱プレートの伝熱面に縦方向の連続した畝を形成し、この連続畝でプレート間を支持したものである。
【0010】
本発明によれば、縦方向の連続した畝でプレート間を支持するので、プレート間の支持点は縦方向の連続した支持線となり、媒体流路内に繊維質が引っかかったり、スケールが付着したりする起点をなくすことができる。その結果、媒体流路の詰まりやスケール付着による閉塞を防止できる。また、畝間が蛇行するように又は畝間の幅が交互に減少・拡大するように形成したので媒体に乱流を発生させ伝熱性能を向上させることができる。
【0011】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。
【0012】
図1は、本発明のプレート式熱交換器における伝熱プレート10Aを示す。この伝熱プレート10Aは、伝熱面11Aの四隅に媒体の出入口となる通路孔12Aを形成し、その中間に縦方向の連続した畝13Aを形成したものである。
【0013】
本発明のプレート式熱交換器においては、伝熱プレート10Aの伝熱面11Aに縦方向の連続した畝13Aを形成したので、伝熱プレート10Aを上下反転して積層すると、図2に示すように、プレート間の支持点S3 は縦方向の連続した支持線となるため、媒体流路内に繊維質が引っかかったり、スケールが付着したりする起点がなくなり、詰まりやスケール付着が生じなくなった。プレート間に形成される媒体流路の高さは、畝13Aの成形深さの2倍を確保でき、しかも、従来のものに比べ媒体流路の断面積が極端に減少・拡大することがないため、固形スケールも通過し易くなり、媒体流路の閉塞を防止できる。
【0014】
このように詰まりやスケール付着が少ないので、繊維質やスケール付着し易い海水や河川水のような媒体を用いる熱交換器や、スケール付着により焦げ付きが発生する食品媒体の加熱殺菌機として使用すると、媒体流路の詰まりやスケール付着による閉塞を防止できる。従って、定期点検以外の性能回復のための洗浄等のメンテナンス作業や熱交換器の分解による物理的な焦げ付き除去作業が不要となり、メンテナンスにかかる労力と時間を軽減できる。
【0015】
図3〜図5は本発明の他の実施例に係わる伝熱プレート10B,10C,10Dを示しており、いずれも上下反転して積層すると、プレート間の支持点S3 は縦方向の連続した支持線となる。
【0016】
即ち、図3に示す伝熱プレート10Bは、伝熱面11Bの四隅に媒体の出入口となる通路孔12Bを形成し、その中間に縦方向の連続した畝13Bを蛇行状に形成したものである。
【0017】
図4に示す伝熱プレート10Cは、伝熱面11Cの四隅に媒体の出入口となる通路孔12Cを形成し、その中間に縦方向の連続した畝13Cを形成し、かつ、この畝13Cに平面上で凹凸を畝間の幅が交互に減少・拡大するように形成したものである。
【0018】
図5に示す伝熱プレート10Dは、伝熱面11Dの四隅に媒体の出入口となる通路孔12Dを形成し、その中間に縦方向の連続した畝13Dを形成し、かつ、この畝13Dに平面上で凹凸を畝間が蛇行するように形成したものである。
【0019】
図3〜図5に示す伝熱プレート10B,10C,10Dでは、図1の伝熱プレート10Aと同様の効果が得られるのに加えて、媒体に乱流を発生させ、伝熱性能を向上させることができる。
【0020】
【発明の効果】
以上説明したように、本発明によれば、プレート間の支持点を縦方向に連続した支持線として、媒体流路内に繊維質が引っかかったり、スケールが付着したりする起点をなくすようにしたので、媒体流路の詰まりやスケール付着による閉塞を防止でき、定期点検以外の性能回復のための洗浄等のメンテナンス作業が不要となり、メンテナンスにかかる労力と時間を軽減できる。
【0021】
また、スケール付着により焦げ付きが発生する媒体の加熱殺菌機として使用すれば、スケール付着により焦げ付くのを防止でき、熱交換器の分解による物理的な焦げ付き除去作業が不要となる。
【図面の簡単な説明】
【図1】本発明のプレート式熱交換器における伝熱プレートの平面図である。
【図2】図1の伝熱プレートを積層した状態の概略断面図である。
【図3】本発明の他の実施例のプレート式熱交換器における伝熱プレートの平面図である。
【図4】本発明の他の実施例のプレート式熱交換器における伝熱プレートの平面図である。
【図5】本発明の他の実施例のプレート式熱交換器における伝熱プレートの平面図である。
【図6】従来のプレート式熱交換器におけるヘリンボンタイプの伝熱プレートの平面図である。
【図7】従来のプレート式熱交換器におけるコルゲートタイプの伝熱プレートの平面図である。
【符号の説明】
10A,10B,10C,10D 伝熱プレート
11A,11B,11C,11D 伝熱面
12A,12B,12C,12D 通路孔
13A,13B,13C,13D 畝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plate heat exchanger suitable for use in, for example, heat sterilization treatment of liquid food, and more particularly to the shape of a plate heat transfer surface.
[0002]
[Prior art]
In general, a plate-type heat exchanger has a plurality of heat transfer plates stacked to form a plurality of medium flow paths between the plates, and different types of media are alternately circulated through these medium flow paths to transfer heat between the media. Heat exchange is performed via a plate.
[0003]
As a heat transfer plate in this type of plate heat exchanger, those shown in FIGS. 6 and 7 are common.
[0004]
The heat transfer plate 1A shown in FIG. 6 is formed by forming passage holes 3A serving as medium entrances and exits at the four corners of the heat transfer surface 2A, and forming a herringbone corrugation 4A in the middle thereof. 1B is formed by forming passage holes 3B serving as the entrances and exits of the medium at the four corners of the heat transfer surface 2B, and forming corrugated corrugated ribs 4B in the middle thereof.
[0005]
When these heat transfer plates 1A and 1B are turned upside down and stacked, support points (points at which the flanges of adjacent plates abut) S 1 and S 2 are generated between the plates. The points S 1 and S 2 are distributed over the entire heat transfer surfaces 2A and 2B.
[0006]
[Problems to be solved by the invention]
By the way, in the plate type heat exchanger using the heat transfer plates 1A and 1B, if a medium containing scale flows on the heat transfer surfaces 2A and 2B of the heat transfer plates 1A and 1B, the support points S 1 and S 2 Since the scale adheres, accumulates, and grows in the dead flow region that has a low flow velocity generated on the downstream side, the medium flow path is blocked. Further, when the medium includes a fibrous material, the fiber is caught at the support points S 1 and S 2, and when this grows, the medium flow path is also blocked.
[0007]
If the medium flow path is blocked in this way, maintenance work such as cleaning for performance recovery is required. In addition, if such a phenomenon occurs in a plate heat exchanger for food heating applications, the deposits will be burnt, and the removal of this burn will require physical removal work by disassembling the heat exchanger. It takes a lot of labor and time.
[0008]
The present invention has been proposed in view of such circumstances, and it is an object of the present invention to prevent clogging of a medium flow path by eliminating scale adhesion and fibrous catching.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention forms continuous vertical ridges on the heat transfer surface of the heat transfer plate and supports the plates with this continuous ridge.
[0010]
According to the present invention, since the plates are supported by the continuous vertical struts, the support points between the plates become the continuous support lines in the vertical direction, and the fiber is caught in the medium flow path or the scale is attached. Can be eliminated. As a result, clogging of the medium flow path and blockage due to scale adhesion can be prevented. Further, since the gaps between the ribs meander or the widths of the gaps are alternately reduced / expanded, turbulent flow can be generated in the medium to improve the heat transfer performance.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
FIG. 1 shows a heat transfer plate 10A in the plate heat exchanger of the present invention. This heat transfer plate 10A is formed with passage holes 12A serving as medium entrances and exits at four corners of the heat transfer surface 11A, and continuous vertical flanges 13A formed therebetween.
[0013]
In the plate heat exchanger of the present invention, the vertical continuous flange 13A is formed on the heat transfer surface 11A of the heat transfer plate 10A. Therefore, when the heat transfer plate 10A is turned upside down and stacked, as shown in FIG. Further, since the support point S3 between the plates becomes a continuous support line in the vertical direction, there is no starting point where the fiber is caught in the medium flow path or the scale adheres, and clogging or scale adhesion does not occur. The height of the medium flow path formed between the plates can ensure twice the molding depth of the flange 13A, and the cross-sectional area of the medium flow path does not extremely decrease or expand compared to the conventional one. Therefore, it becomes easy for the solid scale to pass through and the blockage of the medium flow path can be prevented.
[0014]
Since there is little clogging and scale adhesion in this way, when used as a heat exchanger using a medium such as seawater or river water that easily adheres to fibers and scales, or as a heat sterilizer for food media that burns due to scale adhesion, It is possible to prevent clogging of the medium flow path and clogging due to scale adhesion. Therefore, maintenance work such as cleaning for performance recovery other than periodic inspection and physical burn-out removal work by disassembling the heat exchanger are unnecessary, and labor and time required for maintenance can be reduced.
[0015]
3 to 5 show heat transfer plates 10B, 10C, and 10D according to other embodiments of the present invention. When all of them are turned upside down, the support point S3 between the plates is a continuous support in the vertical direction. Become a line.
[0016]
That is, the heat transfer plate 10B shown in FIG. 3 is formed by forming passage holes 12B serving as medium entrances and exits at four corners of the heat transfer surface 11B, and forming a vertical continuous ridge 13B in a meandering manner. .
[0017]
A heat transfer plate 10C shown in FIG. 4 has passage holes 12C serving as medium entrances and exits at the four corners of the heat transfer surface 11C, and a continuous vertical flange 13C is formed in the middle, and a plane is formed on the flange 13C. The unevenness is formed so that the width of the ribs decreases and expands alternately.
[0018]
A heat transfer plate 10D shown in FIG. 5 has passage holes 12D serving as medium entrances and exits at the four corners of the heat transfer surface 11D, and a vertical flange 13D is formed in the middle of the passage hole 12D. On the top, the unevenness is formed so that the gaps meander.
[0019]
The heat transfer plates 10B, 10C, and 10D shown in FIGS. 3 to 5 can obtain the same effect as the heat transfer plate 10A of FIG. 1 and also generate turbulent flow in the medium to improve the heat transfer performance. be able to.
[0020]
【The invention's effect】
As described above, according to the present invention, the support point between the plates is used as a support line that is continuous in the vertical direction, and the starting point where the fiber is caught in the medium flow path or the scale adheres is eliminated. Therefore, clogging of the medium flow path and clogging due to scale adhesion can be prevented, and maintenance work such as cleaning for performance recovery other than periodic inspection becomes unnecessary, and labor and time required for maintenance can be reduced.
[0021]
Moreover, if it is used as a heat sterilizer for a medium in which scorching occurs due to scale adhesion, scorching due to scale adhesion can be prevented, and physical scoring removal work by disassembling the heat exchanger becomes unnecessary.
[Brief description of the drawings]
FIG. 1 is a plan view of a heat transfer plate in a plate heat exchanger of the present invention.
FIG. 2 is a schematic cross-sectional view of a state in which the heat transfer plates of FIG. 1 are stacked.
FIG. 3 is a plan view of a heat transfer plate in a plate heat exchanger according to another embodiment of the present invention.
FIG. 4 is a plan view of a heat transfer plate in a plate heat exchanger according to another embodiment of the present invention.
FIG. 5 is a plan view of a heat transfer plate in a plate heat exchanger according to another embodiment of the present invention.
FIG. 6 is a plan view of a herringbone type heat transfer plate in a conventional plate heat exchanger.
FIG. 7 is a plan view of a corrugated heat transfer plate in a conventional plate heat exchanger.
[Explanation of symbols]
10A, 10B, 10C, 10D Heat transfer plates 11A, 11B, 11C, 11D Heat transfer surfaces 12A, 12B, 12C, 12D Passage holes 13A, 13B, 13C, 13D

Claims (3)

伝熱面の四隅に媒体の出入口となる通路孔を形成し、伝熱プレートを交互に上下反転させて積層してなるプレート式熱交換器において、
伝熱プレートを交互に上下反転させて積層したときに、隣接するプレートの畝同士がプレート間を支持する縦方向に連続して当接した支持線を構成するように、伝熱面に縦方向の連続した畝を複数形成するとともに、
隣り合う畝間の幅が縦方向に蛇行するように、畝を蛇行させて形成したことを特徴とするプレート式熱交換器。
In the plate type heat exchanger formed by laminating by alternately turning the heat transfer plate upside down by forming passage holes to be the entrance and exit of the medium at the four corners of the heat transfer surface ,
When the heat transfer plates are alternately turned upside down and stacked, the vertical direction of the heat transfer surface forms a support line in which the flanges of adjacent plates continuously contact each other in the vertical direction to support the plates. And forming multiple continuous folds of
A plate heat exchanger, characterized in that it is formed by meandering so that the width between adjacent scissors is meandering in the vertical direction .
伝熱面の四隅に媒体の出入口となる通路孔を形成し、伝熱プレートを交互に上下反転させて積層してなるプレート式熱交換器において、In the plate type heat exchanger formed by laminating by alternately turning the heat transfer plate upside down by forming passage holes serving as the entrance and exit of the medium at the four corners of the heat transfer surface,
伝熱プレートを交互に上下反転させて積層したときに、隣接するプレートの畝同士がプレート間を支持する縦方向に連続して当接した支持線を構成するように、伝熱面に縦方向の連続した畝を複数形成するとともに、When the heat transfer plates are alternately turned upside down and laminated, the vertical direction on the heat transfer surface forms a support line in which the flanges of adjacent plates continuously contact each other in the vertical direction to support between the plates. And forming multiple continuous folds of
隣り合う畝間の幅が交互に減少・拡大するように、畝に平面上で凹凸を設けたことを特徴とするプレート式熱交換器。A plate-type heat exchanger characterized in that the ridges are provided with irregularities on a plane so that the width between adjacent ridges is alternately reduced and enlarged.
伝熱面の四隅に媒体の出入口となる通路孔を形成し、伝熱プレートを交互に上下反転させて積層してなるプレート式熱交換器において、
伝熱プレートを交互に上下反転させて積層したときに、隣接するプレートの畝同士がプレート間を支持する縦方向に連続して当接した支持線を構成するように、伝熱面に縦方向の連続した畝を複数形成するとともに、
隣り合う畝間が縦方向に蛇行するように、畝の幅が交互に減少・拡大するように畝に平面上で凹凸を設けたことを特徴とするプレート式熱交換器。
In the plate type heat exchanger formed by laminating by alternately turning the heat transfer plate upside down by forming passage holes to be the entrance and exit of the medium at the four corners of the heat transfer surface,
When the heat transfer plates are alternately turned upside down and stacked, the vertical direction of the heat transfer surface forms a support line in which the flanges of adjacent plates continuously contact each other in the vertical direction to support the plates. And forming multiple continuous folds of
A plate-type heat exchanger characterized in that the ridges are provided with irregularities on a plane so that the width of the ridges alternately decreases and expands so that the spaces between adjacent ridges meander in the vertical direction .
JP25946496A 1996-09-30 1996-09-30 Plate heat exchanger Expired - Fee Related JP3682343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25946496A JP3682343B2 (en) 1996-09-30 1996-09-30 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25946496A JP3682343B2 (en) 1996-09-30 1996-09-30 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JPH10103888A JPH10103888A (en) 1998-04-24
JP3682343B2 true JP3682343B2 (en) 2005-08-10

Family

ID=17334443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25946496A Expired - Fee Related JP3682343B2 (en) 1996-09-30 1996-09-30 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP3682343B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2255680A1 (en) * 2009-05-28 2010-12-01 SPX APV Danmark A/S Food product heat treatment apparatus and method for heat treating food products
DE102009032370A1 (en) * 2009-07-08 2011-01-13 Sartorius Stedim Biotech Gmbh Plate heat exchanger
JP5487423B2 (en) 2009-07-14 2014-05-07 株式会社神戸製鋼所 Heat exchanger
JP2011106764A (en) 2009-11-19 2011-06-02 Mitsubishi Electric Corp Plate type heat exchanger and heat pump device
EP2657636B1 (en) * 2012-04-23 2015-09-09 GEA Ecoflex GmbH Plate heat exchanger
JP6791704B2 (en) * 2016-09-30 2020-11-25 株式会社マーレ フィルターシステムズ Heat exchanger

Also Published As

Publication number Publication date
JPH10103888A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
JP3675475B2 (en) Plate heat exchanger
JPH01503557A (en) heat transfer element assembly
JP5656999B2 (en) Heat transfer element and basket for rotary regenerative heat exchanger
KR100477175B1 (en) Heat transfer element assembly for a heat exchanger
EP0094954A1 (en) Heat exchanger plate.
NL8200707A (en) HEAT EXCHANGER WITH PERFORATED PLATES.
JP3682343B2 (en) Plate heat exchanger
US20140158328A1 (en) Plate for heat exchanger, heat exchanger and air cooler comprising a heat exchanger
JPH04506996A (en) Plate heat exchanger
JP2013502557A5 (en)
FI873085A0 (en) FOERFARANDE FOER KONSTRUERING AV EN VAERMEVAEXLARE RETAIL ENLIGT FOERFARANDET KONSTRUERAD VAERMEVAEXLARE.
JP2000505187A (en) Heat transfer surface of air preheater
JP2010085094A (en) Plate type heat exchanger
JPH11270985A (en) Plate-type heat exchanger
JP2002537540A (en) Heat transfer element assembly
US5899261A (en) Air preheater heat transfer surface
SE2050094A1 (en) A brazed plate heat exchanger and use thereof
US3249155A (en) Plate-type heat exchanger
JPH06201292A (en) Permeable structure and its preparation
JPS61502141A (en) Falling film heat exchanger
JP4633709B2 (en) Plate heat exchanger
JP4633708B2 (en) Plate heat exchanger and method of manufacturing plate heat exchanger
JP2952261B2 (en) Plate heat exchanger
JPH03168595A (en) Heat-transmitting element assembly
JP2005195190A (en) Multiplate heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees