EP2502296B1 - Assembly for a fuel cell and method for producing same - Google Patents

Assembly for a fuel cell and method for producing same Download PDF

Info

Publication number
EP2502296B1
EP2502296B1 EP10784263.5A EP10784263A EP2502296B1 EP 2502296 B1 EP2502296 B1 EP 2502296B1 EP 10784263 A EP10784263 A EP 10784263A EP 2502296 B1 EP2502296 B1 EP 2502296B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
electrode
layer
adaptation layer
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10784263.5A
Other languages
German (de)
French (fr)
Other versions
EP2502296A1 (en
Inventor
Matthias Rüttinger
Marco Brandner
Thomas Franco
Andreas Venskutonis
Robert Mücke
Hans Peter Buchkremer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to EP10784263.5A priority Critical patent/EP2502296B1/en
Publication of EP2502296A1 publication Critical patent/EP2502296A1/en
Application granted granted Critical
Publication of EP2502296B1 publication Critical patent/EP2502296B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to an arrangement for a fuel cell, with an electrode and an electrolyte, and to a method for producing the arrangement.
  • a substrate is usually used, on which an electrolyte and the two electrodes (cathode and anode) are applied. For example, first the anode, then the electrolyte and finally the cathode are applied to the substrate.
  • These components of the fuel cell, which are applied in layers, are electrochemically active cell layers and are also referred to as cathode-electrolyte-anode units (KEA units), as described, for example, in DE 103 43 652 A1 is known.
  • the substrate acts as a mechanical support for the KEA unit and is, for example, ceramic or metallic.
  • a metallic substrate for example a porous body consisting of sintered or pressed metal particles.
  • Metallic substrates have the advantage that they enable a good thermal adaptation to a so-called interconnector and a technically simple electrical contact with this interconnector.
  • the interconnector - also known as a bipolar plate or current collector - is arranged between two fuel cells and connects the individual fuel cells electrically in series.
  • the interconnectors also mechanically support the fuel cells and separate and guide the reaction gases on the anode and cathode sides.
  • the electrolyte is arranged between the anode and the cathode.
  • the electrolyte has to meet several requirements. It must conduct oxygen ions and at the same time be insulating for electrons. In addition, the electrolyte must be gas-tight. In addition, an undesirable chemical reaction between the electrolyte and an adjacent electrode must be avoided.
  • DE 10 2007 015 358 A1 a multilayer structure of an electrolyte from at least three layers is provided.
  • a method for producing a thin electrolyte layer on a porous electrode in which a suspension comprising electrode material is first poured onto an electrode and dried (intermediate electrode layer), the size of the solids content of this suspension being selected such that after drying, the intermediate electrode layer is one has an average pore size that is smaller than the average pore size of the electrode layer. A further suspension comprising electrolyte material is then poured onto this intermediate electrode layer and dried.
  • the invention has for its object to provide an arrangement that simplifies the construction of a fuel cell.
  • the invention is also based on the object of providing a method for producing such an arrangement.
  • an adaptation layer is provided in the arrangement between an electrode and the electrolyte.
  • This adaptation layer brings about a good connection or adaptation of the electrolyte to the electrode. Furthermore, it supports a flat structure of the arrangement or the fuel cell if a metallic porous carrier substrate is provided for the electrodes and the electrolyte.
  • metallic porous carrier substrates are mechanically more stable in comparison to ceramic carrier substrates and can be provided with a particularly small substrate thickness.
  • the gas-tight electrolyte should be made as thin as possible. This requires the smallest possible roughness on the electrode surface associated with the electrolyte (eg anode surface). Accordingly, the electrode material must be applied to the carrier substrate in such a way that this desired low surface roughness is achieved on the electrode. This is opposed by the relatively large surface roughness of the metallic porous carrier substrate.
  • the average pore size of the adaptation layer is smaller than the average pore size of the electrode. This ratio of the average pore sizes applies at least to the near-surface layer regions of the surfaces of the electrolyte facing Electrode layer and adaptation layer. This ratio preferably applies to the entire layer thickness of the electrode and the adaptation layer.
  • a surface structure is made available in the arrangement which technically simplifies the application of a gas-tight thin-layer electrolyte.
  • PVD physical vapor deposition
  • a single thin electrolyte layer is therefore sufficient for the proper functioning of the fuel cell, which simplifies the manufacture of the fuel cell.
  • the internal cell resistance of the fuel cell is significantly reduced compared to fuel cells with plasma-sprayed electrolytes, which require a layer thickness of approx. 40 ⁇ m for sufficient gas tightness, which means that higher power yields can be achieved.
  • the adaptation layer can be selected in terms of material and structure, in particular pore structure, such that an electrolyte can always be applied to an electrode (anode or cathode) with the adaptation layer interposed.
  • the adaptation layer is used in the case of reduced anode layer structures on which a gas-tight electrolyte layer cannot be applied directly.
  • reduced anode layer structures arise, for example, in connection with metallic substrates.
  • These substrates are preferably produced by powder metallurgy and in particular are provided in the form of plates.
  • a central area of this substrate is porous and serves as a mechanical support for the electrochemically active cell layers.
  • These cell layers can be, for example, by wet chemical coating (such as screen printing or wet powder spraying) with subsequent sintering or by thermal spraying processes (such as plasma spraying or high-speed flame spraying) getting produced.
  • Metallic carrier substrates have the advantage over ceramic carrier substrates that they are thermally more resilient and more redox-stable during operation.
  • the anode structure applied to the carrier substrate is sintered in a reduced atmosphere, so that the anode structure is in a reduced, porous form.
  • the nickel oxide contained in the anode structure before sintering is reduced during the sintering, which leads to a coarsening of its grain size due to the high sintering activity, and pores with relatively large diameters (for example 2 ⁇ m) are formed.
  • Such a surface structure of the anode is often not suitable for applying a gas-tight thin-film electrolyte directly to the anode structure.
  • the desired gas tightness of the electrolyte is not guaranteed if it is to be applied to the anode structure by means of gas phase deposition (eg PVD process). This problem is solved by means of the adaptation layer described above.
  • the roughness can be used to physically characterize a surface.
  • the primary profile was measured optically (confocal laser topograph) and the filtered roughness profile and the roughness values were calculated in accordance with DIN EN ISO 11562 and 4287.
  • the lengths of the sensing distance ( I t ), measuring distances ( I n ) and individual measuring distances ( I r ) were selected in accordance with DIN EN ISO 4288.
  • the arithmetic mean roughness value R a indicates the arithmetic mean of the amounts of all profile values of a roughness profile.
  • the quadratic mean roughness value R q (also referred to as mean surface roughness R q ) is the quadratic mean value of all profile values and weights outliers more than the arithmetic mean roughness value R a .
  • the average roughness depth R z is defined according to DIN EN ISO 4287 as the arithmetic mean of the individual roughness depths of all individual measuring sections.
  • a Single roughness means the distance between the highest peak and the deepest groove in a single measurement section. The entire measuring section is divided into 5 consecutive segments of the same size (individual measuring sections). Since the R z value is determined by the deepest valleys and highest peaks, this is particularly dependent on the measurement method used. In contrast to the optical method used here, it must be taken into account, for example, with mechanical stylus methods that depending on the tip geometry used, not all of the pointed valleys can be captured.
  • bumps of this wavelength do not yet play a decisive role in the quality and tightness of the layer, but bumps with a significantly smaller wavelength.
  • micro-roughness is used in this invention, which is based on a limit wavelength of 0.15 mm for otherwise identical total measuring sections.
  • These micro roughnesses were measured accordingly R a ⁇ .
  • the average pore size and the sintered grain size can be used as further characteristic parameters for describing the properties of a sintered layer. Both dimensions can be determined for any structure, including open pores, using the line-cutting method on scanning electron microscope images of cross sections.
  • the individual phases are first of all shown in the images via contrast differences, grain shape or element analysis (e.g. energy dispersive X-ray spectroscopy, EDX) marked accordingly, then statistically drawn straight lines and the intersections at the transitions between the different phases marked.
  • the average value of all lengths of the route sections thus created, which lie in one phase reflects the average cutting line length for this phase (e.g. pores).
  • This average cutting line length is converted into the actual grain size or pore size by multiplication with a corresponding geometry factor.
  • the value 1.68 and the value 1.56 [2] were used as the geometry factor, assuming the commonly used model of pores around tetrakaidecahedral grains according to reference [1]. If sintered grain sizes are also spoken of in this invention, this means the morphologically readable grain size from the structure. The samples were not etched before analysis.
  • the maximum pore size was determined from a series of scanning electron micrographs from the largest inner diameters of all pores.
  • the inner diameter of a pore denotes the length of the largest straight section that runs inside the pore.
  • a suitable magnification must be observed in the microscopic images.
  • the pore or grain size to be determined still has to be resolved and at the same time completely captured by the image section.
  • the adaptation layer allows the electrolyte to be applied directly, so that in the sense of a simplified, space-saving construction of the fuel cell, additional intermediate layers between the electrolyte and the adaptation layer can be dispensed with.
  • the average pore size of the adaptation layer is preferably at most half the size of the average pore size of the electrode. It is also possible to use a gas-tight thin-layer electrolyte ( ⁇ 10 ⁇ m) via PVD, here to be applied in particular by means of electron beam evaporation or sputter processes, or sol-gel technologies.
  • the average pore size of the pores (at least in the layer region close to the layer surface facing the electrolyte) of the adaptation layer is preferably at most 500 nm. This supports a homogeneous growth of the electrolyte material (e.g. as a PVD layer) on the adaptation layer. With medium pore sizes above 500 nm there is a risk that the pores can no longer be sealed gas-tight with a thin electrolyte layer.
  • the average pore size of the adaptation layer (at least in its near-surface layer area of the layer surface facing the electrolyte) is at most 350 nm, more preferably at most 250 nm.
  • the adaptation layer preferably has, as the average surface roughness, a square mean roughness value R q of less than 2.5 ⁇ m, preferably at most 1.5 ⁇ m, more preferably at most 1.0 ⁇ m.
  • a quadratic mean roughness value R q above 2.5 ⁇ m leads to potential leaks in the subsequent thin-film electrolyte. For example, intercolumnar gaps can arise when a subsequent PVD layer grows.
  • higher roughness values mean that the wetting of the profile tips can no longer be guaranteed or the critical layer thickness in the profile valleys is exceeded, which leads to cracks in the thin-film electrolyte.
  • a diffusion barrier is preferably arranged between the carrier substrate and an electrode, in particular the anode. It can prevent metallic interdiffusion and other reactions between the substrate and the electrode and thus contributes to long-term stability and a longer service life of the arrangement.
  • SOFCs Solid Oxide Fuel Cell
  • the electrolyte applied to the adaptation layer preferably has a layer thickness of 0.2 to 10 ⁇ m.
  • the required gas tightness of the electrolyte layer is not guaranteed below a layer thickness of 0.2 ⁇ m.
  • the increase in the layer thickness of the electrolyte is accompanied by a significant increase in the ohmic resistance and consequently by a reduced output of the fuel cell, so that a maximum layer thickness of 10 ⁇ m is preferred.
  • the arrangement with the electrolyte and the adaptation layer is preferably used in a fuel cell, in particular in a high-temperature fuel cell.
  • High-temperature fuel cells include oxide-ceramic fuel cells - also called SOFC. Due to its high electrical efficiency and the possible use of the waste heat generated at high operating temperatures, the SOFC is particularly suitable as a fuel cell.
  • a suitable material for the metallic substrate is, for example, a ferritic FeCrMx alloy and a chromium-based alloy.
  • the FeCrMx alloy regularly has chromium contents between 16 and 30% by weight and additionally at least one alloying element in a proportion of 0.01 to 2% by weight, which is selected from the group of rare earth metals or their oxides, e.g. B. Y, Y 2 O 3 , Sc, Sc 2 O 3 , or from the group Ti, Al, Mn, Mo or Co.
  • ferritic steels examples include Ferrochrom (1.4742), CrAl20 5 (1.4767) and CroFer 22 APU from Thyssen Krupp, FeCrAlY from Technetics, ZMG 232 from Hitachi Metals, SUS 430 HA and SUS 430 Na from Nippon Steel and all ODS iron-based alloys of the ITM class from Plansee, such as ITM Fe-26Cr- (Mo, Ti, Y 2 O 3 )
  • a chromium-based alloy that is to say with a chromium content of more than 65% by weight, for example Cr5FeIY or Cr5FeIY 2 O 3 , can also be used as the porous metallic substrate.
  • the diffusion barrier layer consists, for example, of lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCR) or gadolinium oxide-doped cerium oxide (CGO).
  • LSM lanthanum strontium manganite
  • LSCR lanthanum strontium chromite
  • CGO gadolinium oxide-doped cerium oxide
  • the anode can be constructed as a multilayer composite or as a single layer. The same applies in principle to the cathode.
  • First a first electrode is applied to the substrate, e.g. by means of a wet chemical process.
  • a porous adaptation layer is applied to the electrode.
  • the electrolyte can be applied to the adaptation layer in a gas-tight manner with little outlay on the process, since the average pore size of the adaptation layer is smaller than the average pore size of the electrode.
  • a suitable layer thickness of the adaptation layer is advantageously achieved by applying it to the electrode by wet chemistry. This can for example by means of screen printing, dip coating or slip casting.
  • the adaptation layer can also be applied in multiple layers.
  • the material of the adaptation layer is repeatedly applied in several process steps.
  • the electrode is repeatedly dip-coated and dried between individual coating processes.
  • the multi-layer application supports a homogeneous adaptation layer. Irregular surface courses of the adaptation layer are avoided. This in turn creates advantageous physical conditions for the application of the electrolyte material to the adaptation layer.
  • the adaptation layer consists of a pure ion-conducting material, that is, an electron-non-conducting material.
  • the required electrical insulation between the two electrodes (anode and cathode) is thus already ensured by the adaptation layer. Additional electronic insulation layers can be omitted, so that the structure of the fuel cell is simplified.
  • the gas-tight electrolyte can therefore also consist of a layer that - e.g. under operating conditions of the fuel cell - has a significant electronic conductivity. This is e.g. for an electrolyte made of gadolinium oxide-doped cerium oxide (CGO) at higher temperatures (> 650 ° C).
  • CGO gadolinium oxide-doped cerium oxide
  • Doped zirconium oxide is used as the material for the electronically non-conductive adaptation layer. At least one oxide of the doping elements from the group Y, Sc, Al, Sr, Ca is suitable as the doping.
  • the adaptation layer can be designed as a YSZ layer (yttrium oxide-stabilized zirconium dioxide).
  • an ion and electron conducting material is used for the adaptation layer.
  • Doped cerium oxide is particularly suitable for this.
  • the adaptation layer can be designed as a CGO layer. In this case, the electrical insulation between the two electrodes should be taken over by the gas-tight electrolyte layer.
  • An oxide ceramic for example doped zirconium oxide, is preferably used as the material for the electronically non-conductive thin-film electrolyte. At least one oxide of the doping elements from the group Y, Sc, Al, Sr, Ca is suitable as doping.
  • the thin-layer electrolyte can be designed as a YSZ layer (yttrium oxide-stabilized zirconium dioxide).
  • YSZ layer yttrium oxide-stabilized zirconium dioxide
  • the aforementioned materials for the adaptation layer can also be used for the electrolyte.
  • cathodes can also be applied directly to this electrolyte, which are designed as a Sr component reacting with ZrO 2 , for example lanthanum strontium cobalt ferrite (LSCF) or lanthanum strontium cobaltite ( LSC).
  • LSCF lanthanum strontium cobalt ferrite
  • LSC lanthanum strontium cobaltite
  • the adaptation layer applied to the electrode is preferably sintered.
  • the sintering temperature is in particular 950 ° C to 1300 ° C, so that no undesired structural changes in the adaptation layer can be expected during operation of the fuel cell (e.g. SOFC, up to 850 ° C).
  • a powder with an average grain size of 30 to 500 nm, in particular 150 nm is preferably used for the adaptation layer. This also prevents excessive infiltration into a porous electrode layer (e.g. anode layer).
  • the adaptation layer offers the possibility of producing a stable and gas-tight electrolyte layer structure by means of gas phase deposition.
  • This process also allows particularly thin electrolyte layers.
  • an electrolyte with a layer thickness of 0.2 to 10 ⁇ m, preferably 1 to 3 ⁇ m, more preferably 1 to 2 ⁇ m, can be deposited on the adaptation layer.
  • the PVD process physical vapor deposition
  • the electrolyte can be applied using sol-gel technology.
  • the Figure 1 shows the surface of a reduced anode structure (Ni / 8YSZ), which is applied to a porous metallic substrate (ITM), not shown here.
  • ITM porous metallic substrate
  • FIG 2 shows a cross section of the anode structure coated with an electrolyte Figure 1 ,
  • the multilayer electrolyte was applied to the anode structure by means of a PVD coating and consists of a CGO layer (E1), an 8YSZ layer (E2) and a further CGO layer (E3).
  • E1 CGO layer
  • E2 8YSZ layer
  • E3 CGO layer
  • the Figure 3 shows the surface structure of the adaptation layer applied to an anode structure. This is clearly recognizable in comparison with the anode structure Figure 1 significantly reduced pore size of the pores of the adaptation layer.
  • the Figure 4 shows a cross section of the adaptation layer according to Figure 3 and an electrolyte applied thereon.
  • the electrolyte is formed as a single layer of CGO and was applied using a PVD process. The growth of the electrolyte layer is undisturbed and homogeneous, so that the required gas tightness of the electrolyte is achieved.
  • the roughness of the surface of this anode structure should be less than 3 ⁇ m, preferably less than 2 ⁇ m, for the square micro-center roughness value for the square mean roughness value R q R q ⁇ less than 1 ⁇ m, preferably less than 0.6 ⁇ m, and for the mean roughness depth R z less than 10 ⁇ m, preferably less than 6 ⁇ m, and for the mean microroughness depth R z ⁇ less than 4 microns, preferably less than 2 microns.
  • the laser topograph CT200 (Cybertechnolgies GmbH, Ingolstadt) with a confocal laser sensor LT9010 was used to determine the roughness (measuring spot size approx. 2 ⁇ m, vertical resolution 10nm).
  • At least three scanning electron micrographs of cross sections of the layers were evaluated for each parameter for the grain and pore sizes of the sintered structure determined using the line cutting method. 500-1,000 lines were drawn per image. With a number of pixels of the raster electronic recordings of 1024x768 pixels, a total section of the width of 5 to 15 ⁇ m was chosen for the adaptation layer.
  • An 8YSZ powder with an average dispersible primary particle size of 150 nm and a specific surface area of 13 m 2 / g was used for the adaptation layer (TZ-8Y, Tosoh Corp., Japan).
  • An immersion suspension was mixed with grinding balls with a diameter of 5 and 10 mm and homogenized on a roller bench for 48 hours, consisting of 67.2% by weight of solvent DBE (Dibasic ester, Lemro Chemical Products Michael Mrozyk KG, Grevenbroich), 30.5% by weight.
  • % 8YSZ powder (TZ-8Y) and 2.3% by weight of ethyl cellulose as a binder (Fluka, 3-5.5 mPa s, Sigma-Aldrich Chemie GmbH, Kunststoff).
  • the carrier substrates with the anode structure applied to them were immersed vertically in the suspension and, after a drying step in an H 2 atmosphere, sintered at 1200 ° C. for 3 hours.
  • an adaptation layer thickness of 10 to 20 ⁇ m was obtained.
  • the adaptation layer applied in this way had a square mean roughness value R q of 1.2 ⁇ m and an average roughness depth R z of 5.8 ⁇ m.
  • the square micro-center roughness R q ⁇ showed a value of 0.21 ⁇ m and the average microroughness R z ⁇ showed a value of 0.67 ⁇ m.
  • the gas tightness of this electrolyte was determined by means of a He leak test to be 3.4 ⁇ 10 -3 (hPa dm 3 ) / (s cm 2 ) for a pressure difference of 1000 hPa. This value corresponds to common anode-supported fuel cells in the reduced state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

Die Erfindung betrifft eine Anordnung für eine Brennstoffzelle, mit einer Elektrode und einem Elektrolyt sowie ein Verfahren zur Herstellung der Anordnung.The invention relates to an arrangement for a fuel cell, with an electrode and an electrolyte, and to a method for producing the arrangement.

Bei der Herstellung von Hochtemperatur-Brennstoffzellen wird üblicherweise ein Substrat verwendet, auf dem ein Elektrolyt und die beiden Elektroden (Kathode und Anode) aufgebracht sind. Beispielsweise werden auf das Substrat zunächst die Anode, danach der Elektrolyt und schließlich die Kathode aufgebracht. Diese schichtartig aufgebrachten Bestandteile der Brennstoffzelle sind elektrochemisch aktive Zellschichten und werden auch als Kathoden-Elektrolyt-Anoden-Einheit (KEA-Einheit) bezeichnet, wie dies z.B. aus DE 103 43 652 A1 bekannt ist. Das Substrat wirkt als mechanischer Träger für die KEA-Einheit und ist z.B. keramisch oder metallisch ausgebildet.
In DE 103 43 652 A1 ist ein metallisches Substrat vorgesehen, z.B. ein aus gesinterten oder gepressten Metallpartikeln bestehender poröser Körper. Metallische Substrate haben den Vorteil, dass sie eine gute thermische Anpassung an einen sogenannten Interkonnektor und eine technisch einfache elektrische Kontaktierung mit diesem Interkonnektor ermöglichen. Der Interkonnektor - auch als bipolare Platte oder Stromsammler bezeichnet - ist zwischen zwei Brennstoffzellen angeordnet und verbindet die einzelnen Brennstoffzellen elektrisch in Serie. Außerdem stützen die Interkonnektoren die Brennstoffzellen mechanisch und sorgen für eine Trennung und Führung der Reaktionsgase auf der Anoden- und Kathodenseite.
In the production of high-temperature fuel cells, a substrate is usually used, on which an electrolyte and the two electrodes (cathode and anode) are applied. For example, first the anode, then the electrolyte and finally the cathode are applied to the substrate. These components of the fuel cell, which are applied in layers, are electrochemically active cell layers and are also referred to as cathode-electrolyte-anode units (KEA units), as described, for example, in DE 103 43 652 A1 is known. The substrate acts as a mechanical support for the KEA unit and is, for example, ceramic or metallic.
In DE 103 43 652 A1 a metallic substrate is provided, for example a porous body consisting of sintered or pressed metal particles. Metallic substrates have the advantage that they enable a good thermal adaptation to a so-called interconnector and a technically simple electrical contact with this interconnector. The interconnector - also known as a bipolar plate or current collector - is arranged between two fuel cells and connects the individual fuel cells electrically in series. The interconnectors also mechanically support the fuel cells and separate and guide the reaction gases on the anode and cathode sides.

Zwischen der Anode und der Kathode ist der Elektrolyt angeordnet. Der Elektrolyt muss mehrere Anforderungen erfüllen. Er muss Sauerstoffionen leiten und gleichzeitig für Elektronen isolierend sein. Außerdem muss der Elektrolyt gasdicht sein. Darüber hinaus muss eine unerwünschte chemische Reaktion zwischen dem Elektrolyt und einer angrenzenden Elektrode vermieden werden. Um diesen Anforderungen gerecht zu werden, ist in DE 10 2007 015 358 A1 ein mehrschichtiger Aufbau eines Elektrolyts aus mindestens drei Schichten vorgesehen.The electrolyte is arranged between the anode and the cathode. The electrolyte has to meet several requirements. It must conduct oxygen ions and at the same time be insulating for electrons. In addition, the electrolyte must be gas-tight. In addition, an undesirable chemical reaction between the electrolyte and an adjacent electrode must be avoided. In order to meet these requirements, in DE 10 2007 015 358 A1 a multilayer structure of an electrolyte from at least three layers is provided.

Aus DE 196 26 342 A1 ist ein Verfahren zur Herstellung einer dünnen Elektrolytschicht auf einer porösen Elektrode bekannt, bei dem zunächst eine Suspension umfassend Elektrodenmaterial auf eine Elektrode gegossen und getrocknet wird (Elektrodenzwischenschicht), wobei die Größe der Feststoffanteile dieser Suspension derart gewählt wird, dass nach dem Trocknen die Elektrodenzwischenschicht eine mittlere Porengröße aufweist, die kleiner ist, als die mittlere Porengröße der Elektrodenschicht. Anschließend wird eine weitere Suspension umfassend Elektrolytmaterial auf diese Elektrodenzwischenschicht gegossen und getrocknet.Out DE 196 26 342 A1 A method for producing a thin electrolyte layer on a porous electrode is known, in which a suspension comprising electrode material is first poured onto an electrode and dried (intermediate electrode layer), the size of the solids content of this suspension being selected such that after drying, the intermediate electrode layer is one has an average pore size that is smaller than the average pore size of the electrode layer. A further suspension comprising electrolyte material is then poured onto this intermediate electrode layer and dried.

Der Erfindung liegt die Aufgabe zugrunde, eine Anordnung bereitzustellen, die den Aufbau einer Brennstoffzelle vereinfacht. Weiterhin liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung einer solchen Anordnung bereitzustellen.The invention has for its object to provide an arrangement that simplifies the construction of a fuel cell. The invention is also based on the object of providing a method for producing such an arrangement.

Diese Aufgabe wird durch eine Anordnung mit der Merkmalskombination des Anspruches 1 sowie durch ein Verfahren zur Herstellung der Anordnung mit der Merkmalskombination des Anspruches 13 gelöst. Erfindungsgemäß ist in der Anordnung zwischen einer Elektrode und dem Elektrolyt eine Adaptionsschicht vorgesehen. Diese Adaptionsschicht bewirkt eine gute Anbindung bzw. Adaption des Elektrolyts an die Elektrode. Weiterhin unterstützt sie einen flachen Aufbau der Anordnung bzw. der Brennstoffzelle, wenn ein metallisches poröses Trägersubstrat für die Elektroden und den Elektrolyt bereitgestellt wird.This object is achieved by an arrangement with the combination of features of claim 1 and by a method for producing the arrangement with the combination of features of claim 13. According to the invention, an adaptation layer is provided in the arrangement between an electrode and the electrolyte. This adaptation layer brings about a good connection or adaptation of the electrolyte to the electrode. Furthermore, it supports a flat structure of the arrangement or the fuel cell if a metallic porous carrier substrate is provided for the electrodes and the electrolyte.

Einerseits sind metallische poröse Trägersubstrate im Vergleich zu keramischen Trägersubstraten mechanisch stabiler und können mit einer besonders geringen Substratdicke bereitgestellt werden. Andererseits soll der gasdichte Elektrolyt möglichst dünn ausgebildet sein. Dies setzt eine möglichst kleine Rauhigkeit an der dem Elektrolyt zugeordneten Elektroden-Oberfläche (z.B. Anoden-Oberfläche) voraus. Entsprechend muss das Elektroden-Material derart auf das Trägersubstrat aufgebracht werden, dass diese gewünschte geringe Oberflächen-Rauhigkeit an der Elektrode erzielt wird. Dem steht die verhältnismäßig große Oberflächen-Rauhigkeit des metallischen porösen Trägersubstrates entgegen. Das Erzielen der gewünschten geringen Oberflächen-Rauhigkeit an der Elektrode wird noch zusätzlich erschwert, wenn die Elektrode (insbesondere als Anode) bei reduzierten Prozessbedingungen mittels Sintern auf dem Trägersubstrat hergestellt wird, weil hierdurch eine vergröberte Rauhigkeit an der Elektroden-Oberfläche entsteht. Diese Probleme werden erfindungsgemäß gelöst, indem die mittlere Porengröße der Adaptionsschicht kleiner ist als die mittlere Porengröße der Elektrode. Dieses Verhältnis der mittleren Porengrößen gilt zumindest für die oberflächennahen Schichtbereiche der dem Elektrolyt zugewandten Oberflächen von Elektrodenschicht und Adaptionsschicht. Vorzugsweise gilt dieses Verhältnis für die gesamte Schichtdicke von Elektrode und Adaptionsschicht. Mit Hilfe des vorgenannten Verhältnisses der mittleren Porengröße wird in der Anordnung eine Oberflächenstruktur zur Verfügung gestellt, die das Aufbringen eines gasdichten Dünnschichtelektrolyten technisch vereinfacht. Insbesondere ist es mittels der Adaptionsschicht möglich, besonders dünne Elektrolyt-Schichten (< 10 µm) - beispielsweise mittels physikalischer Gasphasenabscheidung (PVD = physical vapour deposition), hierbei insbesondere über Elektronenstrahlverdampfen bzw. Sputter-Prozesse, oder Sol-Gel-Verfahren - gasdicht aufzubringen. Abhängig vom Material der Adaptionsschicht ist deshalb eine einzige dünne Elektrolytschicht für die ordnungsgemäße Funktionsweise der Brennstoffzelle ausreichend, was die Herstellung der Brennstoffzelle vereinfacht. Zudem wird der innere Zellwiderstand der Brennstoffzelle im Vergleich zu Brennstoffzellen mit plasmagespritzten Elektrolyten, die für eine ausreichende Gasdichtheit eine Schichtdicke von ca. 40 µm benötigen, signifikant reduziert, wodurch höhere Leistungsausbeuten erzielt werden können.On the one hand, metallic porous carrier substrates are mechanically more stable in comparison to ceramic carrier substrates and can be provided with a particularly small substrate thickness. On the other hand, the gas-tight electrolyte should be made as thin as possible. This requires the smallest possible roughness on the electrode surface associated with the electrolyte (eg anode surface). Accordingly, the electrode material must be applied to the carrier substrate in such a way that this desired low surface roughness is achieved on the electrode. This is opposed by the relatively large surface roughness of the metallic porous carrier substrate. Achieving the desired low surface roughness on the electrode is made even more difficult if the electrode (in particular as an anode) is produced on the carrier substrate by means of sintering under reduced process conditions, because this results in a coarser roughness on the electrode surface. According to the invention, these problems are solved in that the average pore size of the adaptation layer is smaller than the average pore size of the electrode. This ratio of the average pore sizes applies at least to the near-surface layer regions of the surfaces of the electrolyte facing Electrode layer and adaptation layer. This ratio preferably applies to the entire layer thickness of the electrode and the adaptation layer. With the help of the aforementioned ratio of the average pore size, a surface structure is made available in the arrangement which technically simplifies the application of a gas-tight thin-layer electrolyte. In particular, it is possible by means of the adaptation layer to apply particularly thin electrolyte layers (<10 μm) in a gas-tight manner, for example by means of physical vapor deposition (PVD = physical vapor deposition), in particular by means of electron beam evaporation or sputtering processes or sol-gel processes , Depending on the material of the adaptation layer, a single thin electrolyte layer is therefore sufficient for the proper functioning of the fuel cell, which simplifies the manufacture of the fuel cell. In addition, the internal cell resistance of the fuel cell is significantly reduced compared to fuel cells with plasma-sprayed electrolytes, which require a layer thickness of approx. 40 µm for sufficient gas tightness, which means that higher power yields can be achieved.

Die Adaptionsschicht kann hinsichtlich Material und Struktur, insbesondere Porenstruktur, derart ausgewählt werden, dass ein Elektrolyt unter Zwischenlage der Adaptionsschicht immer auf eine Elektrode (Anode oder Kathode) aufgebracht werden kann.The adaptation layer can be selected in terms of material and structure, in particular pore structure, such that an electrolyte can always be applied to an electrode (anode or cathode) with the adaptation layer interposed.

Die Adaptionsschicht wird erfindungsgemäß bei reduzierten Anodenschichtstrukturen eingesetzt, auf denen ein direktes Aufbringen einer gasdichten Elektrolyt-Schicht nicht möglich ist. Derartige reduzierte Anodenschichtstrukturen ergeben sich z.B. im Zusammenhang mit metallischen Substraten. Diese Substrate werden vorzugsweise pulvermetallurgisch hergestellt und dabei insbesondere plattenartig bereitgestellt. Ein zentraler Bereich dieses Substrates ist porös und dient als mechanischer Träger für die elektrochemisch aktiven Zellschichten. Diese Zellschichten können z.B. durch nasschemische Beschichtung (wie Siebdruck oder Nasspulverspritzen) mit anschließender Sinterung oder durch thermische Spritzverfahren (wie Plasmaspritzen oder Hochgeschwindigkeitsflammspritzen) hergestellt werden. Metallische Trägersubstrate haben gegenüber keramischen Trägersubstraten den Vorteil, dass sie thermisch belastbarer und während des Betriebes redox-stabiler sind. Allerdings muss eine Oxidation des Trägersubstrates während der Herstellung verhindert werden, da eine Bildung von Metalloxid Volumenänderungen im Trägersubstrat bewirken würde, die ein defektfreies Aufbringen der Elektroden und des Elektrolyt auf das Trägersubstrat gefährden würde. Außerdem erhöht sich bei dem oxidierenden Trägersubstrat dessen elektrischer Widerstand, was sich nachteilig auf die spätere Zellleistung auswirken würde. Deshalb wird eine Sinterung der auf das Trägersubstrat aufgebrachten Anodenstruktur in reduzierter Atmosphäre durchgeführt, so dass die Anodenstruktur in reduzierter, poröser Form vorliegt. Das vor der Sinterung in der Anodenstruktur enthaltene Nickeloxid wird während der Sinterung reduziert, was aufgrund der hohen Sinteraktivität zu einer Vergröberung ihrer Korngröße führt, und es entstehen Poren mit verhältnismäßig großen Durchmessern (z.B. 2 µm). Eine derartige Oberflächenstruktur der Anode ist oftmals nicht dazu geeignet, einen gasdichten Dünnschichtelektrolyten direkt auf die Anodenstruktur aufzubringen. Insbesondere ist die gewünschte Gasdichtheit des Elektrolyt nicht gewährleistet, wenn er mittels Gasphasenabscheidung (z.B. PVD-Verfahren) auf die Anodenstruktur aufgebracht werden soll. Dieses Problem wird mittels der oben beschriebenen Adaptionsschicht gelöst.According to the invention, the adaptation layer is used in the case of reduced anode layer structures on which a gas-tight electrolyte layer cannot be applied directly. Such reduced anode layer structures arise, for example, in connection with metallic substrates. These substrates are preferably produced by powder metallurgy and in particular are provided in the form of plates. A central area of this substrate is porous and serves as a mechanical support for the electrochemically active cell layers. These cell layers can be, for example, by wet chemical coating (such as screen printing or wet powder spraying) with subsequent sintering or by thermal spraying processes (such as plasma spraying or high-speed flame spraying) getting produced. Metallic carrier substrates have the advantage over ceramic carrier substrates that they are thermally more resilient and more redox-stable during operation. However, oxidation of the carrier substrate during production must be prevented since the formation of metal oxide would cause volume changes in the carrier substrate, which would endanger the defect-free application of the electrodes and the electrolyte to the carrier substrate. In addition, the electrical resistance of the oxidizing carrier substrate increases, which would have an adverse effect on the later cell performance. For this reason, the anode structure applied to the carrier substrate is sintered in a reduced atmosphere, so that the anode structure is in a reduced, porous form. The nickel oxide contained in the anode structure before sintering is reduced during the sintering, which leads to a coarsening of its grain size due to the high sintering activity, and pores with relatively large diameters (for example 2 μm) are formed. Such a surface structure of the anode is often not suitable for applying a gas-tight thin-film electrolyte directly to the anode structure. In particular, the desired gas tightness of the electrolyte is not guaranteed if it is to be applied to the anode structure by means of gas phase deposition (eg PVD process). This problem is solved by means of the adaptation layer described above.

Zur physikalischen Charakterisierung einer Oberfläche kann die Rauhigkeit herangezogen werden. Das Primärprofil wurde optisch vermessen (konfokaler Lasertopograph) und das gefilterte Rauheitsprofil und die Rauwerte gemäß DIN EN ISO 11562 und 4287 berechnet. Die Längen der Taststrecke (It ), Messstrecken (In ) und- Einzelmessstrecken (Ir ) wurden gemäß DIN EN ISO 4288 gewählt. Nach DIN EN ISO 4287 gibt der arithmetische Mittenrauwert Ra den arithmetischen Mittelwert der Beträge aller Profilwerte eines Rauheitsprofils an. Der quadratische Mittenrauwert Rq (auch als mittlere Oberflächenrauhigkeit Rq bezeichnet) ist der quadratische Mittelwert aller Profilwerte und wichtet Ausreißer stärker als der arithmetische Mittenrauwert Ra . Die gemittelte Rautiefe Rz ist gemäß DIN EN ISO 4287 als das arithmetische Mittel der Einzelrautiefen aller Einzelmessstrecken definiert. Eine Einzelrautiefe bedeutet dabei den Abstand zwischen der höchsten Spitze und der tiefsten Riefe in einer Einzelmessstrecke. Die gesamte Messtrecke wird dabei in 5 gleichgroße, aufeinanderfolgende Segmente (Einzelmessstrecken) unterteilt. Da der Rz -Wert von den tiefsten Tälern und höchsten Spitzen bestimmt wird, ist dieser besonders von dem verwendeten Messverfahren abhängig. Im Gegensatz zu dem hier verwendeten optischen Verfahren muss beispielsweise bei mechanischen Tastschnittverfahren in Betracht gezogen werden, dass in Abhängigkeit von der verwendeten Spitzengeometrie nicht alle spitzen Täler erfasst werden können.The roughness can be used to physically characterize a surface. The primary profile was measured optically (confocal laser topograph) and the filtered roughness profile and the roughness values were calculated in accordance with DIN EN ISO 11562 and 4287. The lengths of the sensing distance ( I t ), measuring distances ( I n ) and individual measuring distances ( I r ) were selected in accordance with DIN EN ISO 4288. According to DIN EN ISO 4287 , the arithmetic mean roughness value R a indicates the arithmetic mean of the amounts of all profile values of a roughness profile. The quadratic mean roughness value R q (also referred to as mean surface roughness R q ) is the quadratic mean value of all profile values and weights outliers more than the arithmetic mean roughness value R a . The average roughness depth R z is defined according to DIN EN ISO 4287 as the arithmetic mean of the individual roughness depths of all individual measuring sections. A Single roughness means the distance between the highest peak and the deepest groove in a single measurement section. The entire measuring section is divided into 5 consecutive segments of the same size (individual measuring sections). Since the R z value is determined by the deepest valleys and highest peaks, this is particularly dependent on the measurement method used. In contrast to the optical method used here, it must be taken into account, for example, with mechanical stylus methods that depending on the tip geometry used, not all of the pointed valleys can be captured.

In DIN EN ISO 4288 ist die Aufteilung des Primärprofils in einen für die Rauwertsberechnung vernachlässigten Welligkeitsanteil (große Wellenlängen) und in den eigentlichen Rauhigkeitsanteil (kleine Wellenlängen) mittels einer in Abhängigkeit von den erzielten Rauwerten Filtergrenzwellenlänge festgelegt. So ist beispielsweise für einen arithmetischen Mittenrauwert Ra größer 0,02 µm und kleiner oder gleich 2,00 µm eine Grenzwellenlänge λc von 0,8 mm vorgesehen (mit Ir = λ c ). Insbesondere für aus der Gasphase abgeschiedene Schichten (PVD) spielen allerdings Unebenheiten dieser Wellenlänge noch keine entscheidende Rolle für die Qualität und Dichtigkeit der Schicht, sondern Unebenheiten mit einer deutlich kleineren Wellenlänge. Deshalb wird in dieser Erfindung neben der Rauhigkeit nach DIN eine sogenannte Mikrorauhigkeit verwendet, der bei sonst gleichen Gesamtmessstrecken eine Grenzwellenlänge von 0,15 mm zugrunde liegt. Dabei erhöht sich die Zahl der Einzelmessstrecken (normalerweise 5) entsprechend, da stets Ir = λc zu gelten hat. Diese Mikrorauhigkeiten wurden entsprechend mit R a μ ,

Figure imgb0001
R q μ
Figure imgb0002
und R z μ
Figure imgb0003
gekennzeichnet.In DIN EN ISO 4288 the division of the primary profile into a ripple component (long wavelengths) neglected for the roughness value calculation and into the actual roughness component (small wavelengths) is determined by means of a filter limit wavelength depending on the roughness values achieved. For example, a limit wavelength λ c of 0.8 mm is provided for an arithmetic mean roughness R a greater than 0.02 µm and less than or equal to 2.00 µm (with I r = λ c ). In particular for layers deposited from the gas phase (PVD), however, bumps of this wavelength do not yet play a decisive role in the quality and tightness of the layer, but bumps with a significantly smaller wavelength. For this reason, in addition to the roughness according to DIN, a so-called micro-roughness is used in this invention, which is based on a limit wavelength of 0.15 mm for otherwise identical total measuring sections. The number of individual measuring sections (normally 5) increases accordingly, since I r = λ c must always apply. These micro roughnesses were measured accordingly R a μ .
Figure imgb0001
R q μ
Figure imgb0002
and R z μ
Figure imgb0003
characterized.

Als weitere charakteristische Parameter zur Beschreibung der Eigenschaften einer gesinterten Schicht kann die mittlere Porengröße und die Sinterkorngröße herangezogen werden. Beide Maßzahlen lassen sich für beliebige, auch offenporöse, Gefüge über das Linienschnittverfahren an rasterelektronenmikroskopischen Aufnahmen von Querschliffen bestimmen. Dazu werden zunächst in den Aufnahmen die einzelnen Phasen (Partikel, Poren) über Kontrastunterschiede, Kornform oder Elementanalyse (z. B. energiedispersive Röntgenspektroskopie, EDX) entsprechend markiert, dann statistisch Geraden eingezeichnet und die Schnittpunkte an den Übergängen zwischen den verschiedenen Phasen markiert. Der Durchschnittswert aller Längen der so entstandenen Streckenabschnitte, welche in einer Phase liegen, gibt die mittlere Schnittlinienlänge für diese Phase wieder (z. B. Poren). Diese mittlere Schnittlinienlänge wird durch Multiplikation mit einem entsprechenden Geometriefaktor in die tatsächliche Korngröße oder Porengröße umgerechnet. Als Geometriefaktor wurde unter Annahme der üblicherweise genutzten Modellvorstellung von Poren um tetrakaidekaedrische Körner nach Referenz [1] der Wert 1,68 benutzt und für die Korngröße der Wert 1,56 [2].
Wird weiterhin in dieser Erfindung von Sinterkorngrößen gesprochen, ist dabei die morphologisch ablesbare Korngröße aus dem Gefüge gemeint. Die Proben wurden vor der Analyse nicht geätzt.
The average pore size and the sintered grain size can be used as further characteristic parameters for describing the properties of a sintered layer. Both dimensions can be determined for any structure, including open pores, using the line-cutting method on scanning electron microscope images of cross sections. For this purpose, the individual phases (particles, pores) are first of all shown in the images via contrast differences, grain shape or element analysis (e.g. energy dispersive X-ray spectroscopy, EDX) marked accordingly, then statistically drawn straight lines and the intersections at the transitions between the different phases marked. The average value of all lengths of the route sections thus created, which lie in one phase, reflects the average cutting line length for this phase (e.g. pores). This average cutting line length is converted into the actual grain size or pore size by multiplication with a corresponding geometry factor. The value 1.68 and the value 1.56 [2] were used as the geometry factor, assuming the commonly used model of pores around tetrakaidecahedral grains according to reference [1].
If sintered grain sizes are also spoken of in this invention, this means the morphologically readable grain size from the structure. The samples were not etched before analysis.

Die maximale Porengröße wurde aus einer Reihe von rasterelektronenmikroskopischen Aufnahmen aus den größten Innendurchmessern aller Poren bestimmt. Der Innendurchmesser einer Pore bezeichnet dabei die Länge der größten geraden Strecke, die innerhalb der Pore verläuft.
Für die zu ermittelnde Poren- und Korngröße ist bei den mikroskopischen Aufnahmen auf eine geeignete Vergrößerung zu achten. Insbesondere muss die zu ermittelnde Poren- oder Korngröße noch aufgelöst werden und gleichzeitig noch vom Bildausschnitt vollständig erfasst werden.
The maximum pore size was determined from a series of scanning electron micrographs from the largest inner diameters of all pores. The inner diameter of a pore denotes the length of the largest straight section that runs inside the pore.
For the pore and grain size to be determined, a suitable magnification must be observed in the microscopic images. In particular, the pore or grain size to be determined still has to be resolved and at the same time completely captured by the image section.

Wie bereits gesagt, erlaubt die Adaptionsschicht ein unmittelbares Aufbringen des Elektrolyts, so dass im Sinne eines vereinfachten, raumsparenden Aufbaus der Brennstoffzelle auf zusätzliche Zwischenschichten zwischen dem Elektrolyt und der Adaptionsschicht verzichtet werden kann.As already mentioned, the adaptation layer allows the electrolyte to be applied directly, so that in the sense of a simplified, space-saving construction of the fuel cell, additional intermediate layers between the electrolyte and the adaptation layer can be dispensed with.

Vorzugsweise ist die mittlere Porengröße der Adaptionsschicht höchstens halb so groß wie die mittlere Porengröße der Elektrode. Damit ist es auch möglich, einen gasdichten Dünnschichtelektrolyten (< 10 µm) über PVD-, hierbei insbesondere über Elektronenstrahlverdampfen bzw. Sputter-Prozesse, oder Sol-Gel-Technologien aufzubringen.The average pore size of the adaptation layer is preferably at most half the size of the average pore size of the electrode. It is also possible to use a gas-tight thin-layer electrolyte (<10 µm) via PVD, here to be applied in particular by means of electron beam evaporation or sputter processes, or sol-gel technologies.

Vorzugsweise beträgt die mittlere Porengröße der Poren (zumindest im oberflächennahen Schichtbereich der dem Elektrolyt zugewandten Schichtoberfläche) der Adaptionsschicht höchstens 500 nm. Hierdurch wird ein homogenes Wachstum des Elektrolyt-Materials (z.B. als PVD-Schicht) auf der Adaptionsschicht unterstützt. Bei mittleren Porengrößen oberhalb 500 nm besteht die Gefahr, dass die Poren nicht mehr gasdicht mit einer dünnen Elektrolytschicht verschlossen werden können. Insbesondere beträgt die mittlere Porengröße der Adaptionsschicht (zumindest in ihrem oberflächennahen Schichtbereich der dem Elektrolyt zugewandten Schichtoberfläche) höchstens 350 nm, weiter bevorzugt höchstens 250 nm.The average pore size of the pores (at least in the layer region close to the layer surface facing the electrolyte) of the adaptation layer is preferably at most 500 nm. This supports a homogeneous growth of the electrolyte material (e.g. as a PVD layer) on the adaptation layer. With medium pore sizes above 500 nm there is a risk that the pores can no longer be sealed gas-tight with a thin electrolyte layer. In particular, the average pore size of the adaptation layer (at least in its near-surface layer area of the layer surface facing the electrolyte) is at most 350 nm, more preferably at most 250 nm.

Vorzugsweise weist die Adaptionsschicht als mittlere Oberflächenrauhigkeit einen quadratischen Mittenrauwert Rq kleiner 2,5 µm, vorzugsweise höchstens 1,5 µm, weiter bevorzugt höchstens 1,0 µm auf. Ein quadratischer Mittenrauwert Rq oberhalb 2,5 µm führt zu potentiellen Leckagen in dem nachfolgenden Dünnschichtelektrolyt. So können beispielsweise beim Wachstum einer folgenden PVD-Schicht interkolumnare Zwischenräume entstehen. Bei Sol-Gel-Dünnschichtelektrolyten führen höhere Rauwerte dazu, dass die Benetzung der Profilspitzen nicht mehr gewährleistet werden kann oder die kritische Schichtdicke in den Profiltälern überschritten wird, was zu Rissen im Dünnschichtelektrolyten führt.The adaptation layer preferably has, as the average surface roughness, a square mean roughness value R q of less than 2.5 μm, preferably at most 1.5 μm, more preferably at most 1.0 μm. A quadratic mean roughness value R q above 2.5 µm leads to potential leaks in the subsequent thin-film electrolyte. For example, intercolumnar gaps can arise when a subsequent PVD layer grows. In the case of sol-gel thin-film electrolytes, higher roughness values mean that the wetting of the profile tips can no longer be guaranteed or the critical layer thickness in the profile valleys is exceeded, which leads to cracks in the thin-film electrolyte.

Vorzugsweise ist zwischen dem Trägersubstrat und einer Elektrode, insbesondere der Anode, eine Diffusionsbarriere angeordnet. Sie kann metallische Interdiffusionen und andere Reaktionen zwischen Substrat und Elektrode verhindern und trägt somit zur Langzeitstabilität und zu einer höheren Lebensdauer der Anordnung bei.A diffusion barrier is preferably arranged between the carrier substrate and an electrode, in particular the anode. It can prevent metallic interdiffusion and other reactions between the substrate and the electrode and thus contributes to long-term stability and a longer service life of the arrangement.

Vorzugsweise weist die Adaptionsschicht eine Dicke von 3 bis 20 µm auf. Unterhalb von 3 µm Schichtdicke kann die Adaptionsschicht die Rauhigkeit der darunterliegenden Elektrodenschicht nicht vollständig ausgleichen, was eine gasdichte Aufbringung eines Dünnschichtelektrolyten mit homogenem Schichtwachstum nicht möglich macht. Oberhalb einer Schichtdicke von 20 µm würde der ohmsche Widerstand dieses Schichtsystems (Adaptionsschicht und Elektrolyt) in einem Bereich liegen, der keinen signifikanten Leistungsvorteil gegenüber herkömmlichen metallgestützten SOFCs (=Solid Oxid Fuel Cell) mit plasmagespritzten Elektrolyten bieten würde.The adaptation layer preferably has a thickness of 3 to 20 μm. Below a layer thickness of 3 µm, the adaptation layer cannot fully compensate for the roughness of the underlying electrode layer, which is a gas-tight application of a thin-film electrolyte with homogeneous layer growth is not possible. Above a layer thickness of 20 µm, the ohmic resistance of this layer system (adaptation layer and electrolyte) would be in a range that would not offer any significant performance advantage over conventional metal-based SOFCs (= Solid Oxide Fuel Cell) with plasma-sprayed electrolytes.

Der auf die Adaptionsschicht aufgebrachte Elektrolyt weist vorzugsweise eine Schichtdicke von 0,2 bis 10 µm auf. Unterhalb einer Schichtdicke von 0,2 µm ist die erforderliche Gasdichtheit der Elektrolytschicht nicht gewährleistet. Der Anstieg der Schichtdicke des Elektrolyten geht mit einer signifikanten Erhöhung des ohmschen Widerstandes und folglich mit einer verminderten Leistung der Brennstoffzelle einher, so dass eine maximale Schichtdicke von 10 µm bevorzugt ist.The electrolyte applied to the adaptation layer preferably has a layer thickness of 0.2 to 10 μm. The required gas tightness of the electrolyte layer is not guaranteed below a layer thickness of 0.2 µm. The increase in the layer thickness of the electrolyte is accompanied by a significant increase in the ohmic resistance and consequently by a reduced output of the fuel cell, so that a maximum layer thickness of 10 μm is preferred.

Die Anordnung mit dem Elektrolyt und der Adaptionsschicht wird vorzugsweise in einer Brennstoffzelle, insbesondere in einer Hochtemperatur-Brennstoffzelle eingesetzt. Zu den Hochtemperatur-Brennstoffzellen zählen oxidkeramische Brennstoffzellen - auch SOFC genannt. Die SOFC ist aufgrund ihres hohen elektrischen Wirkungsgrades und der möglichen Nutzung der bei hohen Betriebstemperaturen anfallenden Abwärme als Brennstoffzelle besonders geeignet.The arrangement with the electrolyte and the adaptation layer is preferably used in a fuel cell, in particular in a high-temperature fuel cell. High-temperature fuel cells include oxide-ceramic fuel cells - also called SOFC. Due to its high electrical efficiency and the possible use of the waste heat generated at high operating temperatures, the SOFC is particularly suitable as a fuel cell.

Als Material für das metallische Substrat ist beispielsweise eine ferritische FeCrMx Legierung als auch eine Legierung auf Chrombasis geeignet. Die FeCrMx Legierung weist neben Eisen regelmäßig Chromgehalte zwischen 16 und 30 Gew.-% und zusätzlich noch wenigstens ein Legierungselement in einem Anteil von 0,01 bis 2 Gew.-% auf, welches aus der Gruppe der Seltenerdenmetalle bzw. deren Oxide, z. B. Y, Y2O3, Sc, Sc2O3, oder aus der Gruppe Ti, Al, Mn, Mo oder Co stammt.A suitable material for the metallic substrate is, for example, a ferritic FeCrMx alloy and a chromium-based alloy. In addition to iron, the FeCrMx alloy regularly has chromium contents between 16 and 30% by weight and additionally at least one alloying element in a proportion of 0.01 to 2% by weight, which is selected from the group of rare earth metals or their oxides, e.g. B. Y, Y 2 O 3 , Sc, Sc 2 O 3 , or from the group Ti, Al, Mn, Mo or Co.

Als Beispiele für geeignete ferritische Stähle seien hier genannt Ferrochrom (1.4742), CrAl20 5(1.4767) und CroFer 22 APU von Thyssen Krupp, FeCrAlY von Technetics, ZMG 232 von Hitachi Metals, SUS 430 HA und SUS 430 Na von Nippon Steel sowie sämtliche ODS-Eisenbasislegierungen der ITM-Klasse von Plansee, wie z.B. ITM Fe-26Cr-(Mo, Ti, Y2O3)Examples of suitable ferritic steels are Ferrochrom (1.4742), CrAl20 5 (1.4767) and CroFer 22 APU from Thyssen Krupp, FeCrAlY from Technetics, ZMG 232 from Hitachi Metals, SUS 430 HA and SUS 430 Na from Nippon Steel and all ODS iron-based alloys of the ITM class from Plansee, such as ITM Fe-26Cr- (Mo, Ti, Y 2 O 3 )

Alternativ kann als poröses metallisches Substrat auch eine Legierung auf Chrombasis, das bedeutet mit einem Chromgehalt von mehr als 65 Gew.-%, beispielsweise Cr5FeIY bzw. Cr5FeIY2O3, eingesetzt werden.Alternatively, a chromium-based alloy, that is to say with a chromium content of more than 65% by weight, for example Cr5FeIY or Cr5FeIY 2 O 3 , can also be used as the porous metallic substrate.

Auf das bereitgestellte metallische poröse Substrat werden einzelne Schichten der Brennstoffzelle aufgebracht. Vorzugsweise werden nacheinander folgende Funktionen bzw. Schichten aufgebracht:

  1. 1) optional eine Diffusionsbarriereschicht (zum Verhindern von metallischer Interdiffusion zwischen Substrat und Elektrode, insbesondere bei Anoden),
  2. 2) eine erste Elektrode (Anode oder Kathode),
  3. 3) ein Elektrolyt,
  4. 4) optional eine Diffusionsbarriereschicht zur Verhinderung von Reaktionen zwischen Elektrolyt und Elektrode, insbesondere bei Hochleistungskathoden aus LSCF (Lanthan-Strontium-Cobalt-Ferrit),
  5. 5) eine zweite Elektrode (Kathode oder Anode).
Individual layers of the fuel cell are applied to the provided metallic porous substrate. The following functions or layers are preferably applied in succession:
  1. 1) optionally a diffusion barrier layer (to prevent metallic interdiffusion between substrate and electrode, especially in the case of anodes),
  2. 2) a first electrode (anode or cathode),
  3. 3) an electrolyte,
  4. 4) optionally a diffusion barrier layer to prevent reactions between the electrolyte and the electrode, particularly in the case of high-performance cathodes made of LSCF (lanthanum strontium cobalt ferrite),
  5. 5) a second electrode (cathode or anode).

Die Diffusionsbarriereschicht besteht beispielsweise aus Lanthan-Strontium-Manganit (LSM), Lanthan-Strontium-Chromit (LSCR) oder Gadoliniumoxid-dotiertem Ceroxid (CGO). Die Anode kann als mehrschichtiger Schichtverbund oder als einzelne Schicht aufgebaut sein. Gleiches gilt prinzipiell für die Kathode. Zunächst ist eine erste Elektrode auf das Substrat aufgebracht, z.B. mittels eines nasschemischen Verfahrens.The diffusion barrier layer consists, for example, of lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCR) or gadolinium oxide-doped cerium oxide (CGO). The anode can be constructed as a multilayer composite or as a single layer. The same applies in principle to the cathode. First a first electrode is applied to the substrate, e.g. by means of a wet chemical process.

Auf die Elektrode wird, wie bereits erläutert, eine poröse Adaptionsschicht aufgebracht. Auf die Adaptionsschicht kann der Elektrolyt mit geringem Verfahrensaufwand gasdicht aufgebracht werden, da die mittlere Porengröße der Adaptionsschicht kleiner ist als die mittlere Porengröße der Elektrode.As already explained, a porous adaptation layer is applied to the electrode. The electrolyte can be applied to the adaptation layer in a gas-tight manner with little outlay on the process, since the average pore size of the adaptation layer is smaller than the average pore size of the electrode.

Vorteilhaft wird eine geeignete Schichtdicke der Adaptionsschicht erreicht, indem sie nasschemisch auf die Elektrode aufgebracht wird. Dies kann beispielsweise mittels Siebdruck, Tauchbeschichtung oder Schlickerguss erfolgen.A suitable layer thickness of the adaptation layer is advantageously achieved by applying it to the electrode by wet chemistry. This can for example by means of screen printing, dip coating or slip casting.

Optional kann die Adaptionsschicht auch mehrlagig aufgebracht werden. In diesem Fall wird das Material der Adaptionsschicht in mehreren Verfahrensschritten wiederholt aufgebracht. Beispielsweise wird die Elektrode wiederholt tauchbeschichtet und zwischen einzelnen Beschichtungsvorgängen getrocknet. Das mehrlagige Aufbringen unterstützt eine homogen aufgebaute Adaptionsschicht. Unregelmäßige Oberflächenverläufe der Adaptionsschicht werden vermieden. Dies wiederum schafft vorteilhafte physikalische Bedingungen für das Aufbringen des Elektrolyt-Materials auf die Adaptionsschicht.Optionally, the adaptation layer can also be applied in multiple layers. In this case, the material of the adaptation layer is repeatedly applied in several process steps. For example, the electrode is repeatedly dip-coated and dried between individual coating processes. The multi-layer application supports a homogeneous adaptation layer. Irregular surface courses of the adaptation layer are avoided. This in turn creates advantageous physical conditions for the application of the electrolyte material to the adaptation layer.

In einer bevorzugten Ausführungsform besteht die Adaptionsschicht aus einem reinen Ionen leitenden, also aus einem Elektronen nichtleitenden Material. Somit ist die erforderliche elektrische Isolation zwischen den beiden Elektroden (Anode und Kathode) bereits durch die Adaptionsschicht gewährleistet. Weitere elektronische Isolationsschichten können entfallen, so dass sich der Aufbau der Brennstoffzelle vereinfacht. Der gasdichte Elektrolyt kann deshalb auch aus einer Schicht bestehen, die - z.B. bei Betriebsbedingungen der Brennstoffzelle - eine signifikante elektronische Leitfähigkeit aufweist. Dies ist z.B. bei einem Elektrolyt aus Gadoliniumoxid-dotiertem Ceroxid (CGO) bei höheren Temperaturen (> 650°C) der Fall.In a preferred embodiment, the adaptation layer consists of a pure ion-conducting material, that is, an electron-non-conducting material. The required electrical insulation between the two electrodes (anode and cathode) is thus already ensured by the adaptation layer. Additional electronic insulation layers can be omitted, so that the structure of the fuel cell is simplified. The gas-tight electrolyte can therefore also consist of a layer that - e.g. under operating conditions of the fuel cell - has a significant electronic conductivity. This is e.g. for an electrolyte made of gadolinium oxide-doped cerium oxide (CGO) at higher temperatures (> 650 ° C).

Als Material für die Elektronen nichtleitende Adaptionsschicht kommt dotiertes Zirkoniumoxid zur Anwendung. Als Dotierung ist mindestens ein Oxid der Dotierungselemente aus der Gruppe Y, Sc, AI, Sr, Ca geeignet. So kann die Adaptionsschicht als YSZ-Schicht (Yttriumoxid-stabilisiertes Zirkoniumdioxid) ausgebildet sein.Doped zirconium oxide is used as the material for the electronically non-conductive adaptation layer. At least one oxide of the doping elements from the group Y, Sc, Al, Sr, Ca is suitable as the doping. The adaptation layer can be designed as a YSZ layer (yttrium oxide-stabilized zirconium dioxide).

Alternativ wird für die Adaptionsschicht ein Ionen und Elektronen leitendes Material (Mischleiter) eingesetzt. Besonders geeignet hierfür ist dotiertes Ceroxid. Als Dotierung ist vorteilhaft mindestens ein Oxid der Dotierungselemente aus der Gruppe Seltenerdelemente wie Gd, Sm und/oder aus der Gruppe Y, Sc, AI, Sr, Ca vorgesehen. So kann die Adaptionsschicht als CGO-Schicht ausgebildet sein. In diesem Fall sollte die elektrische Isolation zwischen den beiden Elektroden von der gasdichten Elektrolytschicht übernommen werden. Als Material für den Elektronen nichtleitenden Dünnschichtelektrolyt kommt hierbei bevorzugt eine Oxidkeramik, z.B. dotiertes Zirkoniumoxid zur Anwendung. Als Dotierung ist mindestens ein Oxid der Dotierungselemente aus der Gruppe Y, Sc, Al, Sr, Ca geeignet. So kann der Dünnschichtelektrolyt als YSZ-Schicht (Yttriumoxid-stabilisiertes Zirkoniumdioxid) ausgebildet sein.
Die vorgenannten Materialien für die Adaptionsschicht können je nach Anwendungsfall auch für den Elektrolyt verwendet werden. So können im Falle eines Elektrolyt aus CGO-Material auch Kathoden unmittelbar auf diesen Elektrolyt aufgebracht werden, die als eine mit ZrO2 reagierende Sr-Komponente ausgebildet sind, z.B. Lanthan-Strontium-Cobalt-Ferrit (LSCF) oder Lanthan-Strontium-Kobaltit (LSC).
Alternatively, an ion and electron conducting material (mixed conductor) is used for the adaptation layer. Doped cerium oxide is particularly suitable for this. At least one oxide of the doping elements from the group of rare earth elements such as Gd, Sm and / or is advantageous as the doping provided from the group Y, Sc, AI, Sr, Ca. The adaptation layer can be designed as a CGO layer. In this case, the electrical insulation between the two electrodes should be taken over by the gas-tight electrolyte layer. An oxide ceramic, for example doped zirconium oxide, is preferably used as the material for the electronically non-conductive thin-film electrolyte. At least one oxide of the doping elements from the group Y, Sc, Al, Sr, Ca is suitable as doping. The thin-layer electrolyte can be designed as a YSZ layer (yttrium oxide-stabilized zirconium dioxide).
Depending on the application, the aforementioned materials for the adaptation layer can also be used for the electrolyte. In the case of an electrolyte made of CGO material, cathodes can also be applied directly to this electrolyte, which are designed as a Sr component reacting with ZrO 2 , for example lanthanum strontium cobalt ferrite (LSCF) or lanthanum strontium cobaltite ( LSC).

Die an der Elektrode aufgebrachte Adaptionsschicht wird vorzugsweise gesintert. Die Sintertemperatur beträgt insbesondere 950°C bis 1300°C, so dass während des Betriebes der Brennstoffzelle (z.B. SOFC, bis 850°C) keine unerwünschten Strukturänderungen mehr in der Adaptionsschicht zu erwarten sind. Um eine ausreichende mechanische Stabilität zu erreichen, wird für die Adaptionsschicht bevorzugt ein Pulver mit einer mittleren Korngröße von 30 bis 500 nm, insbesondere 150 nm, eingesetzt. Hierdurch wird außerdem eine zu starke Infiltration in eine poröse Elektrodenschicht (z.B. Anodenschicht) vermieden.The adaptation layer applied to the electrode is preferably sintered. The sintering temperature is in particular 950 ° C to 1300 ° C, so that no undesired structural changes in the adaptation layer can be expected during operation of the fuel cell (e.g. SOFC, up to 850 ° C). In order to achieve sufficient mechanical stability, a powder with an average grain size of 30 to 500 nm, in particular 150 nm, is preferably used for the adaptation layer. This also prevents excessive infiltration into a porous electrode layer (e.g. anode layer).

Die Adaptionsschicht bietet die Möglichkeit, eine stabile und gasdichte Elektrolyt-Schichtstruktur mittels Gasphasenabscheidung herzustellen. Dieses Verfahren erlaubt auch besonders dünne Elektrolytschichten. Beispielsweise kann auf die Adaptionsschicht ein Elektrolyt mit einer Schichtdicke von 0,2 bis 10 µm, vorzugsweise 1 bis 3 µm, weiter bevorzugt 1 bis 2 µm, abgeschieden werden. Besonders geeignet ist hierfür das PVD-Verfahren (physical vapour deposition).The adaptation layer offers the possibility of producing a stable and gas-tight electrolyte layer structure by means of gas phase deposition. This process also allows particularly thin electrolyte layers. For example, an electrolyte with a layer thickness of 0.2 to 10 μm, preferably 1 to 3 μm, more preferably 1 to 2 μm, can be deposited on the adaptation layer. The PVD process (physical vapor deposition) is particularly suitable for this.

Alternativ kann der Elektrolyt mittels Sol-Gel-Technologie aufgebracht werden.Alternatively, the electrolyte can be applied using sol-gel technology.

Im Folgenden wird die Erfindung an Hand einiger Figuren und eines konkreten Ausführungsbeispiels näher erläutert.The invention is explained in more detail below with the aid of a few figures and a specific exemplary embodiment.

Die Figur 1 zeigt die Oberfläche einer reduzierten Anodenstruktur (Ni/8YSZ), die auf ein hier nicht dargestelltes poröses metallisches Substrat (ITM) aufgebracht ist. Die Geometrie/Dimensionierung der Poren an der Anodenstruktur ist verhältnismäßig groß.The Figure 1 shows the surface of a reduced anode structure (Ni / 8YSZ), which is applied to a porous metallic substrate (ITM), not shown here. The geometry / dimensioning of the pores on the anode structure is relatively large.

Figur 2 zeigt einen Querschliff der mit einem Elektrolyt beschichteten Anodenstruktur gemäß Figur 1. Der mehrschichtige Elektrolyt wurde mittels PVD-Beschichtung auf die Anodenstruktur aufgebracht und besteht aus einer CGO-Schicht (E1), einer 8YSZ-Schicht (E2) und einer weiteren CGO-Schicht (E3). Deutlich erkennbar ist das kolumnare Schichtwachstum des Elektrolyten mit einem gefächerten, unregelmäßigen Wachstum. Das inhomogene Wachstum der Elektrolytschichten insbesondere auf den Ni-Partikeln verhindert den erforderlichen gasdichten Schichtaufbau des Elektrolyts. Figure 2 shows a cross section of the anode structure coated with an electrolyte Figure 1 , The multilayer electrolyte was applied to the anode structure by means of a PVD coating and consists of a CGO layer (E1), an 8YSZ layer (E2) and a further CGO layer (E3). The columnar layer growth of the electrolyte with a fanned, irregular growth is clearly recognizable. The inhomogeneous growth of the electrolyte layers, in particular on the Ni particles, prevents the required gas-tight layer structure of the electrolyte.

Die Figur 3 zeigt die Oberflächenstruktur der auf eine Anodenstruktur aufgebrachten Adaptionsschicht. Deutlich erkennbar ist die im Vergleich zur Anodenstruktur gemäß Figur 1 erheblich verkleinerte Porengröße der Poren der Adaptionsschicht.
Die Figur 4 zeigt einen Querschliff der Adaptionsschicht gemäß Figur 3 und eines darauf aufgebrachten Elektrolyt. Der Elektrolyt ist als eine einzige Schicht aus CGO ausgebildet und wurde mittels PVD-Verfahren aufgebracht. Das Wachstum der Elektrolyt-Schicht ist ungestört und homogen, so dass die erforderliche Gasdichtheit des Elektrolyts erreicht wird.
The Figure 3 shows the surface structure of the adaptation layer applied to an anode structure. This is clearly recognizable in comparison with the anode structure Figure 1 significantly reduced pore size of the pores of the adaptation layer.
The Figure 4 shows a cross section of the adaptation layer according to Figure 3 and an electrolyte applied thereon. The electrolyte is formed as a single layer of CGO and was applied using a PVD process. The growth of the electrolyte layer is undisturbed and homogeneous, so that the required gas tightness of the electrolyte is achieved.

Beispiele für den Aufbau der erfindungsgemäßen Anordnung bzw. der Brennstoffzelle sind den Figuren 5 und 6 schematisch entnehmbar.Examples of the structure of the arrangement or the fuel cell according to the invention are the Figures 5 and 6 schematically removable.

Gemäß Fig. 5 (Variante A) ist auf ein metallisches poröses Substrat S (ITM), das mit einer Diffusionsbarriere D versehen ist, eine poröse Anodenstruktur A aufgebracht. Auf diese Anodenstruktur sind nacheinander folgende Schichten aufgebracht: eine poröse Adaptionsschicht AD, eine gasdichte Elektrolytschicht E, eine poröse Kathode K. Bei diesem Aufbau werden beispielsweise folgende Materialien verwendet:

S:
FeCr-Legierung oder CFY-Legierung.
D:
Diffusionsbarriere aus LSM oder CGO.
A:
Ni/8YSZ (Cermetgemisch aus Nickel und einem mit 8 Mol-% Yttriumoxid stabilisiertem Zirkondioxid) oder NiO/8YSZ (Gemisch aus Nickeloxid und einem mit 8 Mol-% Yttriumoxid stabilisiertem Zirkondioxid).
AD:
YSZ (Yttriumoxid-stabilisiertes Zirkoniumdioxid) oder ScSZ (Scandiumoxid-stabilisiertes Zirkoniumdioxid).
E:
CGO.
K:
LSCF oder LSM oder LSC.
According to Fig. 5 (Variant A) is a porous anode structure on a metallic porous substrate S (ITM) which is provided with a diffusion barrier D. A applied. The following layers are applied in succession to this anode structure: a porous adaptation layer AD, a gas-tight electrolyte layer E, a porous cathode K. The following materials are used in this construction, for example:
S:
FeCr alloy or CFY alloy.
D:
Diffusion barrier made of LSM or CGO.
A:
Ni / 8YSZ (cermet mixture of nickel and a zirconium dioxide stabilized with 8 mol% yttrium oxide) or NiO / 8YSZ (mixture of nickel oxide and a zirconium dioxide stabilized with 8 mol% yttrium oxide).
AD:
YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia).
e:
CGO.
K:
LSCF or LSM or LSC.

Gemäß Fig. 6 (Variante B) ist auf ein metallisches poröses Substrat S (ITM) eine poröse Kathode K aufgebracht. Auf diese Kathode K sind nacheinander folgende Schichten aufgebracht: eine poröse Adaptionsschicht AD, eine gasdichte Elektrolytschicht E, eine poröse Anode A. Bei diesem Aufbau werden beispielsweise folgende Materialien verwendet:

S:
FeCr-Legierung oder CFY-Legierung.
K:
LSM oder LSCF oder LSC.
AD:
CGO.
E:
YSZ oder ScSZ.
A:
Ni/8YSZ oder NiO/8YSZ.
According to Fig. 6 (Variant B), a porous cathode K is applied to a metallic porous substrate S (ITM). The following layers are applied in succession to this cathode K: a porous adaptation layer AD, a gas-tight electrolyte layer E, a porous anode A. The following materials are used in this construction, for example:
S:
FeCr alloy or CFY alloy.
K:
LSM or LSCF or LSC.
AD:
CGO.
e:
YSZ or ScSZ.
A:
Ni / 8YSZ or NiO / 8YSZ.

Das Aufbringen eines gasdichten Dünnschichtelektrolyt stellt gewisse Anforderungen an die darunter liegende Schichtstruktur bezüglich Rauhigkeit und/oder Porengröße, die durch eine Adaptionsschicht erfüllt werden können. Werden pulvermetallurgische poröse Substrate (z.B. mit einer Korngröße von < 125 µm) mit einer Anodenstruktur beschichtet, so kann letztere eine mittlere Porengröße bis zu 1,5 µm aufweisen (siehe Figur 1). Die Rauhigkeit der Oberfläche dieser Anodenstruktur sollte für den quadratischen Mittenrauwert Rq kleiner als 3 µm, vorzugsweise kleiner als 2 µm, für den quadratischen Mikromittenrauheitswert R q μ

Figure imgb0004
kleiner als 1 µm, vorzugsweise kleiner als 0,6 µm, und für die mittlere Rautiefe Rz kleiner 10 µm, vorzugsweise kleiner 6 µm, sowie für die mittlere Mikrorautiefe R z μ
Figure imgb0005
kleiner 4 µm, vorzugsweise kleiner 2 µm betragen.The application of a gas-tight thin-layer electrolyte places certain demands on the underlying layer structure with regard to roughness and / or pore size, which can be fulfilled by an adaptation layer. If powder-metallurgical porous substrates (eg with a grain size of <125 µm) are coated with an anode structure, the latter can have a medium one Pore size up to 1.5 µm (see Figure 1 ). The roughness of the surface of this anode structure should be less than 3 μm, preferably less than 2 μm, for the square micro-center roughness value for the square mean roughness value R q R q μ
Figure imgb0004
less than 1 µm, preferably less than 0.6 µm, and for the mean roughness depth R z less than 10 µm, preferably less than 6 µm, and for the mean microroughness depth R z μ
Figure imgb0005
less than 4 microns, preferably less than 2 microns.

Zur Ermittlung der Rauhigkeiten wurde der Lasertopograph CT200 (Cybertechnolgies GmbH, Ingolstadt) mit einem konfokalen Lasersensor LT9010 verwendet (Messfleckgröße ca. 2µm, vertikale Auflösung 10nm). Die in 1um Schrittweite vermessenen Primärprofile wurden vor der Anwendung der DIN-Vorschriften mit einem Gaussfilter, α=ln(2), Filterlänge 5µm, gefiltert, um einzelne Fehlsignale aufgrund von Mehrfachreflexen zu minimieren.The laser topograph CT200 (Cybertechnolgies GmbH, Ingolstadt) with a confocal laser sensor LT9010 was used to determine the roughness (measuring spot size approx. 2µm, vertical resolution 10nm). The primary profiles measured in 1 µm increments were filtered with a Gaussian filter, α = ln (2), filter length 5 µm, in order to minimize individual false signals due to multiple reflections before the DIN regulations were applied.

Für die über das Linienschnittverfahren ermittelten Korn- und Porengrößen des gesinterten Gefüges wurden für jede Kenngröße jeweils mindestens drei rasterelektronenmikroskopische Aufnahmen von Querschliffen der Schichten ausgewertet. Dabei wurden 500 - 1000 Linien pro Aufnahme eingezeichnet. Bei einer Pixelanzahl der rasterelektronischen Aufnahmen von 1024x768 Pixeln wurde für die Adaptionsschicht ein Gesamtausschnitt der Breite von 5 bis 15 µm gewählt.At least three scanning electron micrographs of cross sections of the layers were evaluated for each parameter for the grain and pore sizes of the sintered structure determined using the line cutting method. 500-1,000 lines were drawn per image. With a number of pixels of the raster electronic recordings of 1024x768 pixels, a total section of the width of 5 to 15 µm was chosen for the adaptation layer.

Für die Adaptionsschicht wurde ein 8YSZ-Pulver einer mittleren dispergierbaren Primärpartikelgröße von 150 nm und einer spezifischen Oberfläche von 13 m2/g eingesetzt (TZ-8Y, Tosoh Corp., Japan). Eine Tauchsuspension wurde mit Mahlkugeln der Durchmesser 5 und 10 mm versetzt und auf einer Rollenbank 48 Stunden homogenisiert, bestehend aus 67,2 Gew.-% Lösungsmittel DBE (Dibasische Ester, Lemro Chemieprodukte Michael Mrozyk KG, Grevenbroich), 30,5 Gew.-% 8YSZ-Pulver (TZ-8Y) und 2,3 Gew.-% Ethylcellulose als Bindemittel (Fluka, 3-5,5 mPa s, Sigma-Aldrich Chemie GmbH, München). Die Trägersubstrate mit daran aufgebrachter Anodenstruktur wurden vertikal in die Suspension eingetaucht und nach einem Trocknungsschritt in H2-Atmosphäre bei 1200°C für 3 Stunden gesintert. Je nach Beschichtungsparameter (Tauchgeschwindigkeit, Abtropfzeit) ergab sich eine Adaptionsschichtdicke von 10 bis 20 µm. Die so aufgebrachte Adaptionsschicht zeigte einen quadratischen Mittenrauwert Rq von 1,2 µm und eine mittlere Rautiefe Rz von 5,8 µm. Der quadratische Mikromittenrauheitswert R q μ

Figure imgb0006
zeigte einen Wert von 0,21 µm und die gemittelte Mikrorautiefe R z μ
Figure imgb0007
zeigte einen Wert von 0,67 µm. Neben dieser leichten Absenkung der Rauhigkeitswerte zeigte sich eine deutliche Verringerung der mittleren Porengröße an der Oberfläche der Adaptionsschicht. Während die Oberfläche der Anodenstruktur eine mittlere Porengröße von ca. 610 nm, aufwies (siehe Figur 1), betrug die mittlere Porengröße der Adaptionsschicht in diesem Fall ca. 240 nm (siehe Figur 3). Auf der Adaptionsschicht konnte eine dichte Elektrolyt-Schicht aus Gd2O3-dotiertem CeO2 (CGO) mittels Gasphasenabscheidung (Elektronenstrahlverdampfung bei 870°C, EB-PVD) mit einer Schichtdicke von ca. 1,7 µm aufgebracht werden. Die Gasdichtheit dieses Elektrolyt wurde mittels He-Lecktest zu 3,4 x 10-3 (hPa dm3) / (s cm2) für eine Druckdifferenz von 1000 hPa ermittelt. Dieser Wert entspricht gängigen anodengestützten Brennstoffzellen im reduzierten Zustand.An 8YSZ powder with an average dispersible primary particle size of 150 nm and a specific surface area of 13 m 2 / g was used for the adaptation layer (TZ-8Y, Tosoh Corp., Japan). An immersion suspension was mixed with grinding balls with a diameter of 5 and 10 mm and homogenized on a roller bench for 48 hours, consisting of 67.2% by weight of solvent DBE (Dibasic ester, Lemro Chemical Products Michael Mrozyk KG, Grevenbroich), 30.5% by weight. % 8YSZ powder (TZ-8Y) and 2.3% by weight of ethyl cellulose as a binder (Fluka, 3-5.5 mPa s, Sigma-Aldrich Chemie GmbH, Munich). The carrier substrates with the anode structure applied to them were immersed vertically in the suspension and, after a drying step in an H 2 atmosphere, sintered at 1200 ° C. for 3 hours. Depending on the coating parameters (Immersion speed, dripping time), an adaptation layer thickness of 10 to 20 µm was obtained. The adaptation layer applied in this way had a square mean roughness value R q of 1.2 μm and an average roughness depth R z of 5.8 μm. The square micro-center roughness R q μ
Figure imgb0006
showed a value of 0.21 µm and the average microroughness R z μ
Figure imgb0007
showed a value of 0.67 µm. In addition to this slight reduction in the roughness values, there was a significant reduction in the average pore size on the surface of the adaptation layer. While the surface of the anode structure had an average pore size of approx. 610 nm (see Figure 1 ), the average pore size of the adaptation layer in this case was approx. 240 nm (see Figure 3 ). A dense electrolyte layer of Gd 2 O 3 -doped CeO 2 (CGO) could be applied to the adaptation layer by means of gas phase deposition (electron beam evaporation at 870 ° C, EB-PVD) with a layer thickness of approx. 1.7 µm. The gas tightness of this electrolyte was determined by means of a He leak test to be 3.4 × 10 -3 (hPa dm 3 ) / (s cm 2 ) for a pressure difference of 1000 hPa. This value corresponds to common anode-supported fuel cells in the reduced state.

In der Anmeldung zitierte Literatur:Literature cited in the application:

  • [1] T.S. Smith: "Morphological Characterization of Porous Coatings." In: "Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications", ASTM STP953, J.E. Lemmons, Hrsg., American Society for Testing and Materials, Philadelphia, 1987, S. 92-102 .[1] TS Smith: "Morphological Characterization of Porous Coatings." In: "Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications", ASTM STP953, JE Lemmons, ed., American Society for Testing and Materials, Philadelphia, 1987, pp. 92-102 ,
  • [2] M.I. Mendelson: "Average Grain Size in Polycrystalline Ceramics", J. Am. Ceram. Soc. 52 [8] (1969), 443-446 .[2] MI Mendelson: "Average Grain Size in Polycrystalline Ceramics", J. Am. Ceram. Soc. 52 [8] (1969), 443-446 ,

Claims (13)

  1. An arrangement for a fuel cell, having
    - at least one electrode (A, K), present in reduced form
    - an electrolyte (E),
    - a metallic porous carrier substrate (8) as a carrier for the electrode (A, K) and the electrolyte,
    - an adaptation layer (AD) arranged between the reduced electrode present and the electrolyte for adapting the electrolyte (E) to this electrode (A, K),
    characterised in that
    - the adaptation layer (AD) has an average pore size which is smaller than the average pore size of the reduced electrode present (A, K),
    and
    - having an adaptation layer (AD) made from doped zirconium oxide, wherein the doping contains at least one oxide of the doping elements from the group Y, Sc, Al, Sr, Ca, or
    - having an adaptation layer (AD) made from doped cerium oxide, wherein the doping contains at least one oxide of the doping elements from the group of the rare earth elements and/or from the group Y, Sc, Al, Sr, Ca
    - wherein the electrolyte is a gastight thin layer electrolyte with a maximum layer thickness of 10 µm.
  2. The arrangement according to claim 1, characterised in that the average pore size of the adaptation layer (AD) is at most half as large as the average pore size of the electrode (A, K).
  3. The arrangement according to claim 1 or 2, characterised in that the average pore size of the adaptation layer (AD) is at most 500 nm, preferably at most 350 nm.
  4. The arrangement according to one of the preceding claims, characterised in that the adaptation layer (AD) has an average surface roughness Rq smaller than 2.5 µm, preferably at most 1.5 µm, more preferably at most 1.0 µm.
  5. The arrangement according to one of the preceding claims, characterised in that the electrode is designed as an anode (A).
  6. The arrangement according to one of the preceding claims, characterised in that the electrolyte (E) is directly arranged on the layer surface of the adaptation layer (AD), the layer surface facing towards the electrolyte (E).
  7. The arrangement according to one of the preceding claims, characterised in that the adaptation layer (AD) has a thickness from 3 to 20 µm, preferably from 3 to 7 µm.
  8. The arrangement according to one of the preceding claims, characterised in that the electrolyte (E) has a thickness from 0.2 to 10 µm, preferably from 1 to 3 µm.
  9. The arrangement according to one of the preceding claims, characterised by an electrolyte (E) made from a material that is non-conductive for electrons.
  10. The arrangement according to claim 9, characterised by an electrolyte (E) made from doped zirconium oxide, wherein the doping contains at least one oxide of the doping elements from the group Y, Sc, Al, Sr, Ca.
  11. The arrangement according to one of the preceding claims 1 to 8, characterised by an electrolyte (E) made from a material that is conductive for ions and electrons.
  12. The arrangement according to claim 11, characterised by an electrolyte (E) made from doped cerium oxide, wherein the doping contains at least one oxide of the doping elements from the group of the rare earth elements such as Gd, Sm, and/or from the group Y, Sc, Al, Sr, Ca.
  13. A method for producing an arrangement for a fuel cell according to one of claims 1-12, having an electrode (A, K) and an electrolyte (E), characterised by the following method steps:
    a) provision of a metallic, porous carrier substrate (8) as a carrier for the electrode (A, K) and the electrolyte (E),
    b) application of the electrode (A, K) to the carrier substrate (8),
    c) sintering of the electrode structure (A, K) applied to the carrier substrate (8) in a reduced atmosphere,
    d) application of a porous adaptation layer (AD) to the electrode (A, K) for adapting the electrolyte (E) to this electrode (A, K), wherein the average pore size of the adaptation layer (AD) is smaller than the average pore size of this electrode (A, K), and
    e) application of the electrolyte (E) to the adaptation layer (AD).
EP10784263.5A 2009-11-18 2010-11-17 Assembly for a fuel cell and method for producing same Active EP2502296B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10784263.5A EP2502296B1 (en) 2009-11-18 2010-11-17 Assembly for a fuel cell and method for producing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09014400A EP2325931A1 (en) 2009-11-18 2009-11-18 Assembly for a fuel cell and method for producing same
EP10784263.5A EP2502296B1 (en) 2009-11-18 2010-11-17 Assembly for a fuel cell and method for producing same
PCT/EP2010/007002 WO2011060928A1 (en) 2009-11-18 2010-11-17 Assembly for a fuel cell and method for the production thereof

Publications (2)

Publication Number Publication Date
EP2502296A1 EP2502296A1 (en) 2012-09-26
EP2502296B1 true EP2502296B1 (en) 2020-02-12

Family

ID=42077208

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09014400A Withdrawn EP2325931A1 (en) 2009-11-18 2009-11-18 Assembly for a fuel cell and method for producing same
EP10784263.5A Active EP2502296B1 (en) 2009-11-18 2010-11-17 Assembly for a fuel cell and method for producing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09014400A Withdrawn EP2325931A1 (en) 2009-11-18 2009-11-18 Assembly for a fuel cell and method for producing same

Country Status (6)

Country Link
US (1) US20130189606A1 (en)
EP (2) EP2325931A1 (en)
JP (1) JP5809159B2 (en)
CA (1) CA2781129A1 (en)
TW (1) TW201131875A (en)
WO (1) WO2011060928A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068239A1 (en) * 2010-11-17 2012-05-24 Zimmer, Inc. Ceramic monoblock implants with osseointegration fixation surfaces
DE102011083541A1 (en) * 2011-09-27 2013-03-28 Siemens Aktiengesellschaft storage element
DE102013008472A1 (en) * 2013-05-21 2014-11-27 Plansee Composite Materials Gmbh Multi-layered layer arrangement for a solid electrolyte
DE102015223704B4 (en) * 2015-11-30 2018-10-25 Robert Bosch Gmbh Membrane electrode assembly and method for its production, fuel cell, exhaust gas probe and electrochemical device
JP6910171B2 (en) * 2017-03-22 2021-07-28 大阪瓦斯株式会社 Manufacturing method of electrochemical element and electrochemical element
JP6910170B2 (en) * 2017-03-22 2021-07-28 大阪瓦斯株式会社 Substrate with electrode layer for metal-supported electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157386A1 (en) * 2002-02-20 2003-08-21 Ion America Corporation Load matched power generation system including a solid oxide fuel cell and a heat pump and an optional turbine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626342A1 (en) * 1996-07-01 1998-01-08 Forschungszentrum Juelich Gmbh Procedure for making solid electrolyte as thin layer on porous electrode for fuel-cell
DE19819453A1 (en) * 1998-04-30 1999-11-11 Forschungszentrum Juelich Gmbh Solid oxide fuel cell
DE10309968A1 (en) * 2003-03-07 2004-09-23 Forschungszentrum Jülich GmbH Method for producing a layer system comprising a metallic carrier and an anode functional layer
DE10343652B4 (en) 2003-09-20 2005-09-29 Elringklinger Ag Method for producing a solder joint between a substrate and a contact element of a fuel cell unit and fuel cell unit
US7745031B2 (en) * 2004-06-10 2010-06-29 Technical University Of Denmark Solid oxide fuel cell
US20060113034A1 (en) * 2004-10-29 2006-06-01 Seabaugh Matthew M Electrochemical cell architecture and method of making same via controlled powder morphology
ES2292313B1 (en) * 2005-09-27 2009-02-16 Ikerlan, S. Coop. SOLID OXIDE FUEL CELL WITH FERRITIC SUPPORT.
JP5179718B2 (en) * 2005-12-14 2013-04-10 日本特殊陶業株式会社 Solid oxide fuel cell, solid oxide fuel cell stack, and method for producing solid oxide fuel cell
AT9543U1 (en) * 2006-07-07 2007-11-15 Plansee Se METHOD FOR PRODUCING AN ELECTRICALLY CONDUCTIVE LAYER
JP4883364B2 (en) * 2007-03-23 2012-02-22 株式会社豊田中央研究所 Porous support / hydrogen selective permeable membrane substrate and porous support fuel cell
DE102007015358A1 (en) 2007-03-30 2008-10-02 Forschungszentrum Jülich GmbH Layer system for an electrolyte of a high-temperature fuel cell and method for producing the same
JP5160131B2 (en) * 2007-04-06 2013-03-13 本田技研工業株式会社 Electrolyte / electrode assembly and method for producing the same
US20090011314A1 (en) * 2007-07-05 2009-01-08 Cheng-Chieh Chao Electrode/electrolyte interfaces in solid oxide fuel cells
US8067129B2 (en) * 2007-11-13 2011-11-29 Bloom Energy Corporation Electrolyte supported cell designed for longer life and higher power
US20110003084A1 (en) * 2008-02-25 2011-01-06 National Research Council Of Canada Process of Making Ceria-Based Electrolyte Coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157386A1 (en) * 2002-02-20 2003-08-21 Ion America Corporation Load matched power generation system including a solid oxide fuel cell and a heat pump and an optional turbine

Also Published As

Publication number Publication date
EP2325931A1 (en) 2011-05-25
US20130189606A1 (en) 2013-07-25
TW201131875A (en) 2011-09-16
WO2011060928A1 (en) 2011-05-26
CA2781129A1 (en) 2011-05-26
WO2011060928A8 (en) 2012-10-11
EP2502296A1 (en) 2012-09-26
JP2013511799A (en) 2013-04-04
JP5809159B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
EP2502297B1 (en) Anode for a high temperature fuel cell and production of same
EP2676318B1 (en) Layered structure and use thereof to form a ceramic layered structure between an interconnect and a cathode of a high-temperature fuel cell
DE19547700C2 (en) Electrode substrate for a fuel cell
EP2502296B1 (en) Assembly for a fuel cell and method for producing same
DE4237602A1 (en) High temperature fuel cell stack and process for its manufacture
EP0788175A1 (en) High temperature fuel cell with an electrolyte thin film
DE102006030393A1 (en) Anode for a high temperature fuel cell comprises a porous ceramic structure with a first electron-conducting phase and a second ion-conducting phase containing yttrium or scandium-stabilized zirconium dioxide
EP3000149B1 (en) Multi-layer sandwich structure for a solid-state electrolyte
EP2654115B1 (en) Method for producing a carrier substrate, carrier substrate and electrochemical device
EP2669984B1 (en) Layered anode system for electrochemical applications and process of manufacturing the same
EP2335314B1 (en) Planar high-temperature fuel cell
DE102006056251B4 (en) High temperature fuel cell with ferritic component and method of operating the same
WO2008119321A1 (en) Layer system for an electrolyte of a high-temperature fuel cell, and method for producing same
EP2342777A1 (en) Tubular high-temperature fuel cell, method for the manufacture thereof and fuel cell system comprising the same
WO2013045230A1 (en) Method for the production of a solid electrolyte fuel cell
JP6837122B2 (en) Electrochemical cell
EP3697944B1 (en) Fuel gas electrode and method for producing a fuel gas electrode
DE9304984U1 (en) High temperature fuel cell stack
WO2018191765A1 (en) Electrode-electrolyte unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141029

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010016485

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01M0004860000

Ipc: H01M0008121300

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 4/86 20060101ALI20190717BHEP

Ipc: H01M 8/126 20160101ALI20190717BHEP

Ipc: H01M 8/1213 20160101AFI20190717BHEP

Ipc: H01M 4/90 20060101ALI20190717BHEP

Ipc: H01M 8/1246 20160101ALI20190717BHEP

Ipc: H01M 4/88 20060101ALI20190717BHEP

Ipc: H01M 8/1253 20160101ALI20190717BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190905

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1233306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016485

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016485

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20211117

Year of fee payment: 12

Ref country code: DE

Payment date: 20211005

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20211123

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010016485

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1233306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601