EP2501917B1 - Method and device for controlling a metering control valve - Google Patents

Method and device for controlling a metering control valve Download PDF

Info

Publication number
EP2501917B1
EP2501917B1 EP10773030.1A EP10773030A EP2501917B1 EP 2501917 B1 EP2501917 B1 EP 2501917B1 EP 10773030 A EP10773030 A EP 10773030A EP 2501917 B1 EP2501917 B1 EP 2501917B1
Authority
EP
European Patent Office
Prior art keywords
parameter
value
control valve
adaptation
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10773030.1A
Other languages
German (de)
French (fr)
Other versions
EP2501917A1 (en
Inventor
Rainer Wilms
Matthias Schumacher
Joerg Kuempel
Matthias Maess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2501917A1 publication Critical patent/EP2501917A1/en
Application granted granted Critical
Publication of EP2501917B1 publication Critical patent/EP2501917B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • F02D41/248Methods of calibrating or learning characterised by the method used for learning using a plurality of learned values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically

Definitions

  • the invention relates to a method for operating a quantity control valve.
  • the invention further relates to a computer program, an electrical storage medium, and a control and regulating device.
  • the invention is particularly applicable in a fuel injection system of an internal combustion engine, wherein the fuel injection system comprises a high-pressure pump.
  • This high-pressure pump is associated, for example, a quantity control valve for supplying fuel, wherein it controls the amount of fuel delivered by the high-pressure pump.
  • the quantity control valve is provided for example with a magnetically actuated by a coil solenoid valve.
  • From the DE 10 2007 035 316 is a method for controlling a quantity control valve with a magnetically actuated by a solenoid solenoid valve is known in which the coil of the solenoid valve is energized with a first current value to close this for supplying fuel to the high-pressure pump, wherein the first current value value when closing the solenoid valve in such a way is lowered to a second current value, that an emission of audible sound, which arises during the closing of the solenoid valve during operation of the internal combustion engine, is at least partially reduced.
  • a drive signal supplied to the electromagnetic actuator is provided by at least two Defines parameters, wherein in an adaptation method, at least a first parameter of this drive signal is successively changed from a start value to a final value at a fixed second parameter, in which a closing or opening of the quantity control valve is at least indirectly not detected or just now, then the first parameter is set on the basis of the final value at least provisionally and the provisionally fixed first parameter is adjusted on the basis of at least one current operating variable of the fuel injection system or the second parameter on the basis of at least one current operating variable of the fuel injection system and the provisionally set first parameter.
  • At least one parameter of a braking pulse depends on an efficiency of the electromagnetic actuating device and / or on a supply voltage of a voltage source and / or on a temperature, in particular a component of the fuel injection system or the internal combustion engine.
  • the procedure is as follows: In an adaptation method, an energy supplied to the electromagnetic actuator is successively changed from a starting value to such a final value at which closing or opening of the quantity control valve is no longer or only just detected , The final value or a quantity based thereon is used to characterize the efficiency of the electromagnetic actuator.
  • the invention relates to a method for controlling a quantity control valve, wherein at least two parameters characterize the quantity control valve, wherein a control signal supplied to the quantity control valve is defined by at least two parameters.
  • the inventive method allows in particular the independent determination of two characteristics characterizing the behavior of the quantity control valve.
  • the inventive method for controlling a characterized by at least two parameters quantity control valve wherein a control signal supplied to the quantity control valve is defined by at least two parameters, which is characterized that based on the result of a first adaptation and a second adaptation at least one parameter is determined, or that based on the result of a first adaptation and a first parameter, a second parameter is determined, allows the determination of the specimen properties.
  • the properties of the quantity control valve vary from item to item.
  • At least one first parameter is maintained at a first constant value, and at least one second parameter is changed from a first starting value to such a final value at which closure or opening of the quantity control valve is no longer or only just ascertained is, the final value allows the determination of the characterizing relationship between the drive signal and closing / opening behavior of the quantity control valve.
  • the result is an embodiment in which the same parameter is adapted in both adaptations.
  • This embodiment is particularly easy to implement on a control unit.
  • the two results are independent, allowing the characteristic relationship between the drive signal and the closing / opening behavior of the quantity control valve to be described by two characteristics ,
  • the result is an embodiment in which different parameters are adapted in both adaptations.
  • This embodiment in conjunction with at least the first constant value and the second starting value or the first starting value and the second constant value being unequal, makes it possible to describe the characteristic relationship between the driving signal and the closing / opening behavior of the quantity control valve by two characteristics. This embodiment allows the particularly robust determination of the two characteristics describing the characteristic relationship.
  • Carrying out the method according to the invention for electromagnetically controlled quantity control valves is particularly simple if at least one of the parameters belongs to the group given by the efficiency of the quantity control valve or of an equivalent size and ohmic total resistance deviation or of an equivalent size.
  • the parameter is determined by a measurement or by an estimate or read from the control unit, it can be described in conjunction with the result of a first adaptation, the characteristic relationship between the control signal and closing / opening behavior of the quantity control valve by two parameters. This is particularly efficient because only one adaptation is necessary to determine the two parameters. If an ohmic resistance of a supply line is used as the parameter, this allows, in particular, the particularly simple determination of the ohmic total resistance deviation.
  • the preceding methods can be used in such a way that, starting from the characterizing variables, the parameters of the control signal of the quantity control valve are changed in such a way that an emission of audible sound, which occurs when the magnetic valve is closed, is at least partially reduced.
  • the inventive method thus allows a particularly good adaptation of the control of the quantity control valve to the specimen properties.
  • the reduction of the audible sound which arises when closing the quantity control valve during operation of the internal combustion engine.
  • the holding current level can be adapted to the exemplary behavior of the valve and the total ohmic resistance effective for the drive signal. For example, the holding current level can be minimized, thereby dissipating less power dissipation and avoiding unnecessarily high temperature development in the quantity control valve.
  • Another advantage is that the closing times when tightening the quantity control valve can be better pre-steered, since there is knowledge about the significant uncertain parameters, which for example, the delivery accuracy can be improved.
  • Another advantage is in controls of energized open electromagnetically controllable quantity control valves, in which the acoustic behavior during opening by a force applied by the electromagnetic control brake pulse, which slows down the movement of the armature, is improved.
  • the braking pulse can be adapted in a particularly suitable manner to the specimen properties of the quantity control valve, which improves the robustness of the desired behavior in borderline pattern cases.
  • a fuel injection system contributes in FIG. 1 Overall, the reference numeral 10. It includes an electric fuel pump 12, is conveyed with the fuel from a fuel tank 14 to a high-pressure pump 16. The high-pressure pump 16 compresses the fuel to a very high pressure and promotes it further into a fuel rail 18. To this several injectors 20 are connected, which inject the fuel in them associated combustion chambers. The pressure in the fuel rail 18 is detected by a pressure sensor 22.
  • the high-pressure pump 16 is, for example, a piston pump with a delivery piston 24, which can be displaced by a camshaft, not shown, into a reciprocating movement (double arrow 26).
  • the delivery piston 24 defines a delivery chamber 28, which can be connected via a quantity control valve 30 to the outlet of the electric fuel pump 12. Via an outlet valve 32, the delivery chamber 28 can also be connected to the fuel rail 18.
  • the quantity control valve 30 comprises an electromagnetic actuator 34 which operates in the energized state against the force of a spring 36. When de-energized, the quantity control valve 30 is open, in the energized state, it has the function of a normal inlet check valve.
  • the electromagnetic actuator 34 may be designed in particular as a magnetic coil. This is referred to below as "coil”.
  • the electromagnetic actuator 34 is driven by a control and regulating device 54, which is connected to it via a current-carrying line 56.
  • At least two parameters characterizing the quantity control valve are important. These parameters are, for example, an efficiency of the quantity control valve and an ohmic total resistance deviation.
  • the efficiency of the mass control valve 30 is defined as the ratio of the (quasi-static) attraction force on the armature that is being required for tightening to the actual quasistatic current in the coil at that moment. If the factor is normalized so that nominal valves have an efficiency of 1, for example, efficient patterns (fast tightening) have efficiency> 1, inefficient patterns (slow tightening) efficiency ⁇ 1. Efficiency is determined, for example, by tolerances in the design of the magnetic circuit as well as the other dynamic parameters. Another residual air gap, for example, leads u.a. to a decrease in efficiency, since at constant current less magnetic flux is built, resulting in less attractive force. A high spring force also leads to a decrease in the tightening force, and thus to an efficiency ⁇ 1.
  • the ohmic total resistance is composed of several serial partial resistors (eg of: coil of the quantity control valve, lines, contact resistance, output stage).
  • each of these partial resistors is subject to uncertainties of the resistance, which 30 certain deviations occur in a controlled activation of the quantity control valve. Examples of such uncertainties result, for example, from errors in the temperature model of the coil, or from uncertainties in the contact resistances in the contacts. From the Difference of the total ohmic resistance to a nominal total ohmic resistance results in the ohmic total resistance deviation.
  • FIG. 2 is plotted in the upper diagram 2a, the course of a drive voltage U over time, which is applied to the electromagnetic actuator 34. It can be seen that this drive voltage U is clocked in the embodiment in terms of pulse width modulation.
  • the middle diagram 2b of FIG. 2 shows the corresponding coil current I.
  • the corresponding stroke H of the quantity control valve 30 is shown.
  • FIG. 2 One recognizes FIG. 2 in that the voltage signal U and the coil current I resulting therefrom initially have a so-called "pull-in pulse" 56.
  • the coil is driven at a constant voltage. It serves to build up the magnetic force of the electromagnetic actuator 34 as quickly as possible. Accordingly, there is a rapid increase in the FIG. 2 with the reference numeral 60 designated coil current.
  • the tightening pulse 56 is followed by a holding phase 58, in which the coil is driven with a pulsed voltage 64.
  • the effective drive voltage U is defined by the duty cycle of the pulse width modulated voltage signal.
  • the resulting coil current 60 shows a clock signal corresponding to the voltage signal and, depending on the effective drive voltage, an increase, a largely constant behavior (as in the exemplary embodiment in FIG. 2 shown) or a waste.
  • the coil current 60 drops to zero.
  • the stroke 62 of the quantity control valve changes such that the valve transitions from its closed state to its open state.
  • a signal for controlling the quantity control valve 30 is advantageously defined by at least two parameters.
  • these are, for example, the duty cycle during the hold phase 58 and the duration of the tightening pulse 56.
  • a pulse width modulated control is assumed below, the signal through the two parameter duty cycle during the holding phase and Duration of the tightening pulse is defined.
  • a parameter of the control of the quantity control valve 30 (for example, the duration of the tightening pulse) while maintaining constant the other parameters (eg the duty cycle during the holding phase) is successively varied until it is determined that the quantity control valve just not more or just closing.
  • the resulting value of the successively varied parameter now only allows a detection of an averaged parameter which represents the superimposed influence of the characterizing parameters, that is, for example, the efficiency and the ohmic total resistance deviation.
  • the characterizing parameters influence the properties of the quantity control valve in the same way. For example, these are the case of low efficiency and positive ohmic total resistance deviation and, secondly, the case of high efficiency and negative ohmic total resistance deviation.
  • the method according to the invention allows the independent determination of the two characterizing parameters, that is, for example, of efficiency and ohmic total resistance deviation.
  • the method according to the invention is based on the knowledge that a single measured quantity (for example the result of an adaptation) can not be used for the simultaneous reliable estimation of two independent unknown parameters (in the exemplary embodiment the efficiency and resistive total resistance deviation). If, on the other hand, according to the invention, a second adaptation is carried out, which takes place, for example, with a changed basic parameterization, then two parameters (in the exemplary embodiment the efficiency and ohmic total resistance deviation) can be determined from the result of the first adaptation and the result of the second adaptation. In the context of the exemplary embodiment, it is assumed below that the two parameters characterizing the behavior of the quantity control valve 30 are given by the efficiency and the ohmic total resistance deviation. Alternatively or additionally, other variables than characteristic quantities can be used, for example a variable equivalent to the efficiency or to the ohmic total resistance deviation.
  • FIG. 3 shows the sequence of the method according to the invention.
  • a first adaptation 90 the closing behavior of the quantity control valve 30 is varied by a variation of a parameter, eg the duration of the tightening pulse 56.
  • the result 94 of this first adaptation 90 is the value of the varied parameter in which the quantity control valve 30 no longer or just now closes.
  • a parameter e.g. the duration of the tightening pulse 56
  • the closing behavior of the quantity control valve 30 varies.
  • the result 98 of this second adaptation is the value of the varied parameter at which the quantity control valve 30 is no longer or just now closing.
  • This first parameter 102 and this possibly second parameter 104 are used in the control and regulating device 54 in order to generate, for example with the aid of a characteristic map, an improved control of the quantity control valve 30, in particular with respect to the acoustic behavior.
  • the duration of the tightening pulse 56 is varied successively while the duty cycle is kept constant during the holding phase 58, until it is determined that the quantity control valve 30 is no longer or just closing. This is done, for example, by evaluating the measuring signal of the pressure sensor 22.
  • the result 94 in this embodiment is the value of the duration of the tightening pulse at which the quantity control valve 30 is no longer or just now closing.
  • the duty cycle during the holding phase 58 while simultaneously keeping the duration of the tightening pulse 30 is varied successively until it is determined that the quantity control valve just no longer or just closes.
  • the result 98 in this embodiment is the value of the duty cycle at which the quantity control valve 30 is no longer or just now closing.
  • FIG. 4 An alternative embodiment is in FIG. 4 shown.
  • a first adaptation 90 the closing behavior of the quantity control valve 30 is varied by a variation of a parameter, eg the duration of the tightening pulse 56.
  • the result 94 of this first adaptation 90 is the value of the varied parameter in which the quantity control valve 30 no longer or just now closes.
  • a first parameter 102 is provided.
  • a second parameter 104 is determined.
  • This first parameter 102 and this second parameter 104 are used in the control and regulating device 54 in order to generate, for example with the aid of a characteristic map, an improved control of the quantity control valve 30, in particular with regard to the acoustic behavior.
  • the default 100 can be given, for example, by measuring the ohmic total resistance deviation.
  • This is done according to the invention particularly advantageous by the evaluation of a current value of the drive signal at a predetermined voltage and a predetermined duty cycle.
  • the determination of the ohmic total resistance deviation is then particularly simple.
  • the effective current according to the invention is particularly advantageous over a plurality of phases of the pulse width modulated drive signal in the steady state with saturated current, i. at a flat stroke profile 62.
  • the evaluation over several phases of the pulse width modulated drive signal allows the particularly simple determination of an effective current for determining the ohmic total resistance deviation.
  • the determination of the current in the steady state with saturated current and without movement of an armature of the quantity control valve makes it possible to exclude feedback effects and thus enables the particularly accurate determination of the total ohmic resistance deviation.
  • the efficiency as a second parameter is then determined on the basis of the measurement of the total ohmic resistance deviation and on the result of the first adaptation.
  • FIG. 5 describes the relationship of the first adaptation 90 and the second adaptation 92 to one another.
  • a first parameter 110-eg the duty cycle during the hold phase 58- is held at a first constant value 112 and a second parameter 114 -for example the duration of the pull-in pulse 56- is changed from a first start value 116 to such a final value. in which a closing or opening of the quantity control valve 30 is no longer or just just determined.
  • a third parameter 118 - e.g. the duty cycle during hold phase 58 - is held at a second constant value 120 and a fourth parameter 122 - e.g. the duration of the tightening pulse 56 - changed from a second starting value 124 to such a final value, in which a closing or opening of the quantity control valve 30 is not or only just determined.
  • the first parameter 110 and the third parameter 118 both correspond to the duty cycle during the hold phase 58 and the second parameter 114 and the fourth parameter 122 both correspond to the duration of the pull-in pulse 56.
  • the first parameter 110 thus corresponds to the third parameter 118 and the second parameter 114 the fourth parameter 122.
  • Analogous to FIG. 5 is in FIG. 6 another possible embodiment shown.
  • the duty cycle during the hold phase 58 is held at a second constant value 120 and the duration of the pull-in pulse 56 is changed
  • the duration of the pull-in pulse 56 is maintained at a first constant value 110 and the duty cycle during the hold phase changed.
  • the first parameter 110 and the fourth parameter 122 both correspond, for example, both to the duration of the pull-in pulse 56
  • the second parameter 114 and the third parameter 118 both correspond to the duty cycle during the hold phase 58.
  • the first parameter 110 corresponds to the fourth parameter 122 and second parameter 114 is the third parameter 118.
  • the start parameterization be different from the constant value and the starting value.
  • the first constant value 112 is different from the second constant value 120, or the first start value 116 is different from the second start value 124, or both.
  • the inventive method for identifying at least two parameters is advantageously repeated at long intervals.
  • the reason for this is the fact that, over time, a slow change in the characteristics, e.g. efficiency, occurs. This is caused for example by wear. Since this change is slow, it is advantageous to store the determined parameters, for example in the control unit.
  • maps are used in the method described, it is advantageous to adapt these maps to the current battery voltage, since the currents in the control of the quantity control valve and possibly the result of an adaptation (in particular, if the adapted parameter is given by the duty cycle) of the Battery voltage can depend.
  • the ohmic total resistance deviation is made available via a measurement in the method described, it is advantageous to repeat this measurement at short intervals, since the change in the resistance occurs as a function of the situation.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zum Betreiben eines Mengensteuerventils. Gegenstand der Erfindung sind ferner ein Computerprogramm, ein elektrisches Speichermedium, sowie eine Steuer- und Regeleinrichtung. Die Erfindung ist insbesondere einsetzbar in einem Kraftstoffeinspritzsystem einer Brennkraftmaschine, wobei das Kraftstoffeinspritzsystem eine Hochdruckpumpe umfasst. Dieser Hochdruckpumpe ist beispielsweise ein Mengensteuerventil zum Zuleiten von Kraftstoff zugeordnet, wobei es die von der Hochdruckpumpe geförderte Kraftstoffmenge steuert. Das Mengensteuerventil ist beispielsweise mit einem durch eine Spule elektromagnetisch betätigbaren Magnetventil versehen.The invention relates to a method for operating a quantity control valve. The invention further relates to a computer program, an electrical storage medium, and a control and regulating device. The invention is particularly applicable in a fuel injection system of an internal combustion engine, wherein the fuel injection system comprises a high-pressure pump. This high-pressure pump is associated, for example, a quantity control valve for supplying fuel, wherein it controls the amount of fuel delivered by the high-pressure pump. The quantity control valve is provided for example with a magnetically actuated by a coil solenoid valve.

Aus der DE 10 2007 035 316 ist ein Verfahren zur Ansteuerung eines Mengensteuerventils mit einem durch eine Spule elektromagnetisch betätigbaren Magnetventil bekannt, bei dem die Spule des Magnetventils mit einem ersten Stromwert bestromt wird, um dieses zum Zuleiten von Kraftstoff zur Hochdruckpumpe zu schließen, wobei der erste Stromwertwert beim Schließen des Magnetventils derart auf einen zweiten Stromwert abgesenkt wird, dass eine Abstrahlung hörbaren Schalls, der beim Schließen des Magnetventils im Betrieb der Brennkraftmaschine entsteht, zumindest teilweise reduziert wird.From the DE 10 2007 035 316 is a method for controlling a quantity control valve with a magnetically actuated by a solenoid solenoid valve is known in which the coil of the solenoid valve is energized with a first current value to close this for supplying fuel to the high-pressure pump, wherein the first current value value when closing the solenoid valve in such a way is lowered to a second current value, that an emission of audible sound, which arises during the closing of the solenoid valve during operation of the internal combustion engine, is at least partially reduced.

Aus der nicht vorveröffentlichten DE 10 2008 054 513 bzw. WO2010/066675 ist ein Verfahren zur Ansteuerung eines von einer elektromagnetischen Betätigungseinrichtung beeinflussten Mengensteuerventils bekannt. Ein der elektromagnetischen Betätigungseinrichtung zugeführtes Ansteuersignal ist durch mindestens zwei Parameter definiert, wobei in einem Adaptionsverfahren mindestens ein erster Parameter dieses Ansteuersignals bei festgelegtem zweitem Parameter von einem Startwert sukzessive bis zu einem Endwert verändert wird, bei dem ein Schließen beziehungsweise Öffnen des Mengensteuerventils wenigstens mittelbar nicht mehr beziehungsweise gerade erst detektiert wird, danach der erste Parameter auf der Basis des Endwerts mindestens vorläufig festgelegt wird und der vorläufig festgelegte erste Parameter auf der Basis von mindestens einer aktuellen Betriebsgröße des Kraftstoffeinspritzsystems oder der zweite Parameter auf der Basis von mindestens einer aktuellen Betriebsgröße des Kraftstoffeinspritzsystems und des vorläufig festgelegten ersten Parameters angepasst wird.From the not pre-published DE 10 2008 054 513 or. WO2010 / 066675 For example, a method for driving a quantity control valve influenced by an electromagnetic actuator is known. A drive signal supplied to the electromagnetic actuator is provided by at least two Defines parameters, wherein in an adaptation method, at least a first parameter of this drive signal is successively changed from a start value to a final value at a fixed second parameter, in which a closing or opening of the quantity control valve is at least indirectly not detected or just now, then the first parameter is set on the basis of the final value at least provisionally and the provisionally fixed first parameter is adjusted on the basis of at least one current operating variable of the fuel injection system or the second parameter on the basis of at least one current operating variable of the fuel injection system and the provisionally set first parameter.

Auch die US 2005/0092301 bildet einen Stand der Technik.Also the US 2005/0092301 constitutes a state of the art.

Diese aus dem Stand der Technik bekannten Adaptionsverfahren variieren die Parameter des Ansteuersignals des Mengensteuerventils derart, dass das Schließverhalten des Mengensteuerventils in entsprechender Weise gewählt ist. Eine Charakterisierung des Verhaltens des Mengensteuerventils findet nicht statt.These known from the prior art adaptation method vary the parameters of the drive signal of the quantity control valve such that the closing behavior of the quantity control valve is selected in a corresponding manner. A characterization of the behavior of the quantity control valve does not take place.

Aus der nicht vorveröffentlichten DE 10 2008 054 512 wird für die Ansteuerung eines von einer elektromagnetischen Betätigungseinrichtung betätigten Mengensteuerventils vorgeschlagen, dass mindestens ein Parameter eines Bremsimpulses von einer Effizienz der elektromagnetischen Betätigungseinrichtung und/oder von einer Versorgungsspannung einer Spannungsquelle und/oder von einer Temperatur, insbesondere einer Komponente des Kraftstoffeinspritzsystems oder der Brennkraftmaschine abhängt. Zur Charakterisierung der Effizienz der elektromagnetischen Betätigungseinrichtung wird wie folgt vorgegangen: In einem Adaptionsverfahren wird eine der elektromagnetischen Betätigungseinrichtung zugeführte Energie von einem Startwert sukzessive bis zu einem solchen Endwert verändert, bei dem ein Schließen bzw. Öffnen des Mengensteuerventils nicht mehr bzw. gerade erst detektiert wird. Der Endwert oder eine auf diesem basierende Größe wird zur Charakterisierung der Effizienz der elektromagnetischen Betätigungseinrichtung verwendet.From the not pre-published DE 10 2008 054 512 For controlling a quantity control valve actuated by an electromagnetic actuating device, it is proposed that at least one parameter of a braking pulse depends on an efficiency of the electromagnetic actuating device and / or on a supply voltage of a voltage source and / or on a temperature, in particular a component of the fuel injection system or the internal combustion engine. To characterize the efficiency of the electromagnetic actuator, the procedure is as follows: In an adaptation method, an energy supplied to the electromagnetic actuator is successively changed from a starting value to such a final value at which closing or opening of the quantity control valve is no longer or only just detected , The final value or a quantity based thereon is used to characterize the efficiency of the electromagnetic actuator.

Zur besonders genauen Anpassung der Ansteuerung des Mengensteuerventils an die Exemplareigenschaften bedarf es einer genauen Charakterisierung der Exemplareigenschaften. Zu dieser Charakterisierung sind häufig zwei oder mehr Kenngrößen notwendig. Mit nur einer Messung wie im Stand der Technik bekannt können jedoch nicht zwei Kenngrößen unabhängig voneinander ermittelt werden.For a particularly accurate adaptation of the control of the quantity control valve to the specimen properties, an exact characterization of the specimen properties is required. Often two or more parameters are necessary for this characterization. However, with only one measurement as known in the art, two characteristics can not be determined independently.

Offenbarung der ErfindungDisclosure of the invention

Die Erfindung betrifft ein Verfahren zur Ansteuerung eines Mengensteuerventils, wobei wenigstens zwei Kenngrößen das Mengensteuerventil charakterisieren, wobei ein dem Mengensteuerventil zugeführtes Ansteuersignal durch mindestens zwei Parameter definiert ist. Das erfindungsgemäße Verfahren erlaubt insbesondere die unabhängige Ermittlung von zwei das Verhalten des Mengensteuerventils charakterisierenden Kenngrößen.The invention relates to a method for controlling a quantity control valve, wherein at least two parameters characterize the quantity control valve, wherein a control signal supplied to the quantity control valve is defined by at least two parameters. The inventive method allows in particular the independent determination of two characteristics characterizing the behavior of the quantity control valve.

Es ist insbesondere zur Reduktion der Abstrahlung hörbaren Schalls beim Schließen des Mengensteuerventils vorteilhaft, die Ansteuerung des Mengensteuerventils in geeigneter Art und Weise an die Exemplareigenschaften des Mengensteuerventils anzupassen. Das erfindungsgemäße Verfahren zur Ansteuerung eines durch wenigstens zwei Kenngrößen charakterisierten Mengensteuerventils, wobei ein dem Mengensteuerventil zugeführtes Ansteuersignal durch mindestens zwei Parameter definiert ist, welches dadurch gekennzeichnet ist,
dass ausgehend von dem Ergebnis einer ersten Adaption und einer zweiten Adaption wenigstens eine Kenngröße ermittelt wird, oder dass ausgehend von dem Ergebnis einer ersten Adaption und einer ersten Kenngröße eine zweite Kenngröße ermittelt wird, erlaubt die Ermittlung der Exemplareigenschaften. Die Eigenschaften des Mengensteuerventils variieren von Exemplar zu Exemplar.
It is particularly advantageous for reducing the emission audible sound when closing the quantity control valve to adapt the control of the quantity control valve in a suitable manner to the specimen properties of the quantity control valve. The inventive method for controlling a characterized by at least two parameters quantity control valve, wherein a control signal supplied to the quantity control valve is defined by at least two parameters, which is characterized
that based on the result of a first adaptation and a second adaptation at least one parameter is determined, or that based on the result of a first adaptation and a first parameter, a second parameter is determined, allows the determination of the specimen properties. The properties of the quantity control valve vary from item to item.

Wird bei der Adaption wenigstens ein erster Parameter auf einem ersten Konstantwert gehalten, und wenigstens ein zweiter Parameter von einem ersten Startwert bis zu einem solchen Endwert verändert, bei dem ein Schließen bzw. Öffnen des Mengensteuerventils gerade nicht mehr bzw. gerade erst ermittelt wird, so erlaubt der Endwert die Ermittlung der charakterisierenden Beziehung zwischen Ansteuersignal und Schließ-/Öffnungsverhalten des Mengensteuerventils.During adaptation, at least one first parameter is maintained at a first constant value, and at least one second parameter is changed from a first starting value to such a final value at which closure or opening of the quantity control valve is no longer or only just ascertained is, the final value allows the determination of the characterizing relationship between the drive signal and closing / opening behavior of the quantity control valve.

Dadurch, dass in einer zweiten Adaption wenigstens ein dritter Parameter auf einem zweiten Konstantwert gehalten wird, und wenigstens ein vierter Parameter von einem zweiten Startwert bis zu einem solchen Endwert verändert wird, bei dem ein Schließen bzw. Öffnen des Mengensteuerventils gerade nicht mehr bzw. gerade erst ermittelt wird erlaubt, ist es in Verbindung mit dem Endwert der ersten Adaption möglich, die charakterisierende Beziehung zwischen Ansteuersignal und Schließ-/Öffnungsverhalten des Mengensteuerventils genau zu bestimmen. Das erfindungsgemäße Verfahren ist kostengünstig zu realisieren, da keine zusätzlichen Stückkosten entstehen.Characterized in that in a second adaptation, at least a third parameter is maintained at a second constant value, and at least a fourth parameter is changed from a second start value to such a final value, in which closing or opening of the quantity control valve just no longer or straight is first determined is determined, it is possible in conjunction with the end value of the first adaptation to determine the characterizing relationship between the control signal and closing / opening behavior of the quantity control valve exactly. The inventive method is inexpensive to implement, since no additional unit costs arise.

Entspricht bei dieser ersten und zweiten Adaption der erste Parameter dem dritten Parameter und der zweite Parameter dem vierten Parameter, so ergibt sich eine Ausführungsform, bei der bei beiden Adaptionen der gleiche Parameter adaptiert wird. Diese Ausführungsform ist auf einer Steuer-/Regeleinheit besonders einfach zu implementieren. Sind bei dieser Ausführungsform wenigstens der erste Konstantwert und der zweite Konstantwert oder der erste Startwert und der zweite Startwert ungleich, so sind die beiden Ergebnisse unabhängig, was es erlaubt, die charakteristische Beziehung zwischen Ansteuersignal und Schließ-/Öffnungsverhalten des Mengensteuerventils durch zwei Kenngrößen zu beschreiben.If in this first and second adaptation the first parameter corresponds to the third parameter and the second parameter corresponds to the fourth parameter, the result is an embodiment in which the same parameter is adapted in both adaptations. This embodiment is particularly easy to implement on a control unit. In this embodiment, if at least the first constant value and the second constant value or the first start value and the second start value are unequal, the two results are independent, allowing the characteristic relationship between the drive signal and the closing / opening behavior of the quantity control valve to be described by two characteristics ,

Entspricht bei dieser ersten und zweiten Adaption der erste Parameter dem vierten Parameter der zweite Parameter dem dritten Parameter, so ergibt sich eine Ausführungsform, bei der bei beiden Adaptionen unterschiedliche Parameter adaptiert werden. Diese Ausführungsform in Verbindung damit, dass wenigstens der erste Konstantwert und der zweite Startwert oder der erste Startwert und zweite Konstantwert ungleich sind, erlaubt es, die charakteristische Beziehung zwischen Ansteuersignal und Schließ-/Öffnungsverhalten des Mengensteuerventils durch zwei Kenngrößen zu beschreiben. Diese Ausführungsform erlaubt die besonders robuste Ermittlung der zwei die charakteristische Beziehung beschreibenden Kenngrößen.If, in this first and second adaptation, the first parameter corresponds to the fourth parameter, the second parameter corresponds to the third parameter, the result is an embodiment in which different parameters are adapted in both adaptations. This embodiment, in conjunction with at least the first constant value and the second starting value or the first starting value and the second constant value being unequal, makes it possible to describe the characteristic relationship between the driving signal and the closing / opening behavior of the quantity control valve by two characteristics. This embodiment allows the particularly robust determination of the two characteristics describing the characteristic relationship.

Die Durchführung des erfindungsgemäßen Verfahren für pulsweitenmodulierte Ansteuersignale ist besonders einfach möglich, wenn einer der Parameter zu der Gruppe gegeben aus Tastverhältnis während einer Haltephase oder einer äquivalenten Größe und Dauer eines Anzugimpulses oder einer äquivalenten Größe gehört.It is particularly easy to carry out the method according to the invention for pulse-width-modulated drive signals if one of the parameters belongs to the group given by duty cycle during a hold phase or an equivalent size and duration of a pull-in pulse or an equivalent variable.

Die Durchführung des erfindungsgemäßen Verfahrens für elektromagnetisch angesteuerte Mengensteuerventile ist besonders einfach, wenn wenigstens eine der Kenngrößen zu der Gruppe gegeben aus Effizienz des Mengensteuerventils oder einer äquivalenten Größe und ohmscher Gesamtwiderstandsabweichung oder einer äquivalenter Größe gehört.Carrying out the method according to the invention for electromagnetically controlled quantity control valves is particularly simple if at least one of the parameters belongs to the group given by the efficiency of the quantity control valve or of an equivalent size and ohmic total resistance deviation or of an equivalent size.

Wird die Kenngröße durch eine Messung oder durch eine Schätzung ermittelt oder aus der Steuer- und Regeleinheit ausgelesen, so kann hieraus in Verbindung mit dem Ergebnis einer ersten Adaption die charakteristische Beziehung zwischen Ansteuersignal und Schließ-/Öffnungsverhalten des Mengensteuerventils durch zwei Kenngrößen beschrieben werden. Dies ist besonders effizient, da zur Ermittlung der zwei Kenngrößen nur eine Adaption notwendig ist. Wird hierbei als Kenngröße ein ohmscher Widerstand einer Zuleitung verwendet wird, erlaubt dies insbesondere die besonders einfache Ermittlung der ohmschen Gesamtwiderstandsabweichung.If the parameter is determined by a measurement or by an estimate or read from the control unit, it can be described in conjunction with the result of a first adaptation, the characteristic relationship between the control signal and closing / opening behavior of the quantity control valve by two parameters. This is particularly efficient because only one adaptation is necessary to determine the two parameters. If an ohmic resistance of a supply line is used as the parameter, this allows, in particular, the particularly simple determination of the ohmic total resistance deviation.

Die vorhergehenden Verfahren können derart genutzt werden, dass ausgehend von den charakterisierenden Größen die Parameter des Ansteuersignals des Mengensteuerventils derart verändert werden, dass eine Abstrahlung hörbaren Schalls, der beim Schließen des Magnetventils entsteht, zumindest teilweise reduziert wird.The preceding methods can be used in such a way that, starting from the characterizing variables, the parameters of the control signal of the quantity control valve are changed in such a way that an emission of audible sound, which occurs when the magnetic valve is closed, is at least partially reduced.

Die Realisierung der vorhergehenden Verfahren erfolgt vorteilhafterweise mit einem Computerprogramm, das zur Anwendung in einem Verfahren nach einer der vorhergehenden Beschreibungen programmiert ist.The implementation of the preceding methods is advantageously carried out with a computer program programmed for use in a method according to one of the preceding descriptions.

Das erfindungsgemäße Verfahren erlaubt also eine besonders gute Anpassung der Ansteuerung des Mengensteuerventils an die Exemplareigenschaften. Ein Vorteil ist die Reduktion des hörbaren Schalls, der beim Schließen des Mengensteuerventils im Betrieb der Brennkraftmaschine entsteht. Ein weiterer Vorteil ist, dass das Haltestromniveau an das Exemplarverhalten des Ventils und den für das Ansteuersignal wirksamen ohmschen Gesamtwiderstand angepasst werden kann. Beispielsweise kann das Haltestromniveau minimiert werden, wodurch weniger Verlustleistung dissipiert und eine unnötig hohe Temperaturentwicklung im Mengensteuerventil vermieden wird. Ein weiterer Vorteil ist, dass sich die Schließzeiten beim Anziehen des Mengensteuerventils besser vorsteuern lassen, da Kenntnis über die wesentlichen unsicheren Parameter besteht, wodurch beispielsweise die Fördergenauigkeit verbessert werden kann.The inventive method thus allows a particularly good adaptation of the control of the quantity control valve to the specimen properties. On Advantage is the reduction of the audible sound, which arises when closing the quantity control valve during operation of the internal combustion engine. A further advantage is that the holding current level can be adapted to the exemplary behavior of the valve and the total ohmic resistance effective for the drive signal. For example, the holding current level can be minimized, thereby dissipating less power dissipation and avoiding unnecessarily high temperature development in the quantity control valve. Another advantage is that the closing times when tightening the quantity control valve can be better pre-steered, since there is knowledge about the significant uncertain parameters, which for example, the delivery accuracy can be improved.

Ein weiterer Vorteil besteht bei Ansteuerungen von unbestromt offenen elektromagnetisch ansteuerbaren Mengensteuerventilen, bei denen das akustische Verhalten beim Öffnen durch einen durch die elektromagnetische Ansteuerung aufgebrachten Bremsimpuls, welcher die Bewegung des Ankers abbremst, verbessert wird. Hier kann der Bremsimpuls in besonders geeigneter Weise an die Exemplareigenschaften des Mengensteuerventils angepasst werden, was die Robustheit des gewünschten Verhaltens in Grenzmusterfällen verbessert.Another advantage is in controls of energized open electromagnetically controllable quantity control valves, in which the acoustic behavior during opening by a force applied by the electromagnetic control brake pulse, which slows down the movement of the armature, is improved. Here, the braking pulse can be adapted in a particularly suitable manner to the specimen properties of the quantity control valve, which improves the robustness of the desired behavior in borderline pattern cases.

Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:

Figur 1
eine schematische Darstellung eines Kraftstoffeinspritzsystems einer Brennkraftmaschine mit einer Hochdruckpumpe und einem Mengensteuerventil;
Figur 2
drei Diagramme, in denen schematisch eine Ansteuerspannung einer Magnetspule, eine Bestromung einer Magnetspule und ein Hub eines Ventilelements des Mengensteuerventils von Figur 1 über der Zeit aufgetragen sind;
Figur 3
ein schematischer Ablaufplan einer Ausführungsform des erfindungsgemäßen Verfahrens;
Figur 4
ein schematischer Ablaufplan einer anderen Ausführungsform als in Figur 3 dargestellt des erfindungsgemäßen Verfahrens;
Figur 5
eine schematische Darstellung des Verhältnisses der beiden Adaptionen und der variierten und auf einem Konstantwert gehaltenen Parameter, für den Fall dass in beiden Adaptionen der gleiche Parameter variiert wird;
Figur 6
analog zu Figur 5, mit einer anderen Konstellation der variierten und auf einem Konstantwert gehaltenen Parameter, für den Fall dass in beiden Adaptionen nicht der gleiche Parameter variiert wird.
Hereinafter, embodiments of the invention will be explained in more detail with reference to the accompanying drawings. In the drawing show:
FIG. 1
a schematic representation of a fuel injection system of an internal combustion engine with a high-pressure pump and a quantity control valve;
FIG. 2
three diagrams in which schematically a drive voltage of a solenoid coil, a current supply of a solenoid and a stroke of a valve element of the quantity control valve of FIG. 1 are plotted over time;
FIG. 3
a schematic flow diagram of an embodiment of the method according to the invention;
FIG. 4
a schematic flow diagram of another embodiment than in FIG. 3 represented the method according to the invention;
FIG. 5
a schematic representation of the ratio of the two adaptions and the varied and held on a constant value parameter, for the case that in both adaptations, the same parameter is varied;
FIG. 6
analogous to FIG. 5 , with a different constellation of the varied and constant value parameters, in case the same parameter is not varied in both adaptations.

Ein Kraftstoffeinspritzsystem trägt in Figur 1 insgesamt das Bezugszeichen 10. Es umfasst eine elektrische Kraftstoffpumpe 12, mit der Kraftstoff aus einem Kraftstofftank 14 zu einer Hochdruckpumpe 16 gefördert wird. Die Hochdruckpumpe 16 verdichtet den Kraftstoff auf einen sehr hohen Druck und fördert ihn weiter in ein Kraftstoffrail 18. An dieses sind mehrere Injektoren 20 angeschlossen, die den Kraftstoff in ihnen zugeordnete Brennräume einspritzen. Der Druck im Kraftstoffrail 18 wird von einem Drucksensor 22 erfasst.A fuel injection system contributes in FIG. 1 Overall, the reference numeral 10. It includes an electric fuel pump 12, is conveyed with the fuel from a fuel tank 14 to a high-pressure pump 16. The high-pressure pump 16 compresses the fuel to a very high pressure and promotes it further into a fuel rail 18. To this several injectors 20 are connected, which inject the fuel in them associated combustion chambers. The pressure in the fuel rail 18 is detected by a pressure sensor 22.

Bei der Hochdruckpumpe 16 handelt es sich beispielsweise um eine Kolbenpumpe mit einem Förderkolben 24, der von einer nicht gezeigten Nockenwelle in eine Hin- und Herbewegung (Doppelpfeil 26) versetzt werden kann. Der Förderkolben 24 begrenzt einen Förderraum 28, der über ein Mengensteuerventil 30 mit dem Auslass der elektrischen Kraftstoffpumpe 12 verbunden werden kann. Über ein Auslassventil 32 kann der Förderraum 28 ferner mit dem Kraftstoffrail 18 verbunden werden.The high-pressure pump 16 is, for example, a piston pump with a delivery piston 24, which can be displaced by a camshaft, not shown, into a reciprocating movement (double arrow 26). The delivery piston 24 defines a delivery chamber 28, which can be connected via a quantity control valve 30 to the outlet of the electric fuel pump 12. Via an outlet valve 32, the delivery chamber 28 can also be connected to the fuel rail 18.

Das Mengensteuerventil 30 umfasst eine elektromagnetische Betätigungseinrichtung 34, die im bestromten Zustand gegen die Kraft einer Feder 36 arbeitet. Im stromlosen Zustand ist das Mengensteuerventil 30 offen, im bestromten Zustand hat es die Funktion eines normalen Einlass-Rückschlagventils. Die elektromagnetische Betätigungseinrichtung 34 kann insbesondere als eine Magnetspule ausgebildet sein. Diese wird im Folgenden als "Spule" bezeichnet.The quantity control valve 30 comprises an electromagnetic actuator 34 which operates in the energized state against the force of a spring 36. When de-energized, the quantity control valve 30 is open, in the energized state, it has the function of a normal inlet check valve. The electromagnetic actuator 34 may be designed in particular as a magnetic coil. This is referred to below as "coil".

Die elektromagnetische Betätigungseinrichtung 34 wird von einer Steuer- und Regeleinrichtung 54 angesteuert, welche mit ihr über eine stromführende Leitung 56 verbunden ist.The electromagnetic actuator 34 is driven by a control and regulating device 54, which is connected to it via a current-carrying line 56.

Es wird erfindungsgemäß erkannt, dass zur geeigneten Ansteuerung des Mengensteuerventils wenigstens zwei das Mengensteuerventil charakterisierende Kenngrößen wichtig sind. Diese Kenngrößen sind beispielsweise eine Effizienz des Mengensteuerventils und eine ohmsche Gesamtwiderstandsabweichung.It is recognized according to the invention that for suitable control of the quantity control valve at least two parameters characterizing the quantity control valve are important. These parameters are, for example, an efficiency of the quantity control valve and an ohmic total resistance deviation.

Die Effizienz des Mengensteuerventils 30 ist definiert als das Verhältnis der (quasistatischen) Anziehungskraft auf den Anker, die gerade zum Anziehen erforderlich ist, zu dem in diesem Moment wirksamen quasistatischen Strom in der Spule. Wird der Faktor normiert, sodass nominelle Ventile eine Effizienz von beispielsweise 1 aufweisen, so haben effiziente Muster (schnelles Anziehen) eine Effizienz > 1, ineffiziente Muster (langsames Anziehen) eine Effizienz < 1. Die Effizienz ist bestimmt durch beispielsweise Toleranzen im Aufbau des Magnetkreises sowie der sonstigen dynamischen Parameter. Ein weiterer Restluftspalt beispielsweise führt u.a. zu einer Abnahme der Effizienz, da bei konstantem Strom weniger Magnetfluss aufgebaut wird, und damit weniger anziehende Kraft resultiert. Eine hohe Federkraft führt ebenso zu einer Abnahme der Anzugskraft, und damit zu einer Effizienz < 1.The efficiency of the mass control valve 30 is defined as the ratio of the (quasi-static) attraction force on the armature that is being required for tightening to the actual quasistatic current in the coil at that moment. If the factor is normalized so that nominal valves have an efficiency of 1, for example, efficient patterns (fast tightening) have efficiency> 1, inefficient patterns (slow tightening) efficiency <1. Efficiency is determined, for example, by tolerances in the design of the magnetic circuit as well as the other dynamic parameters. Another residual air gap, for example, leads u.a. to a decrease in efficiency, since at constant current less magnetic flux is built, resulting in less attractive force. A high spring force also leads to a decrease in the tightening force, and thus to an efficiency <1.

Der ohmsche Gesamtwiderstand setzt sich aus mehreren seriellen Teilwiderständen zusammen (z.B. von: Spule des Mengensteuerventils, Leitungen, Übergangswiderstände, Endstufe). Jeder dieser Teilwiderstände ist jedoch mit Unsicherheiten des Widerstandes behaftet, womit bei einer vorgesteuerten Ansteuerung des Mengensteuerventils 30 gewisse Abweichungen auftreten. Beispiele für solche Unsicherheiten resultieren beispielsweise aus Fehlern im Temperaturmodell der Spule, oder aus Unsicherheiten in den Übergangswiderständen in den Kontakten. Aus der Differenz des ohmschen Gesamtwiderstands zu einem nominellen ohmschen Gesamtwiderstand ergibt sich die ohmsche Gesamtwiderstandsabweichung.The ohmic total resistance is composed of several serial partial resistors (eg of: coil of the quantity control valve, lines, contact resistance, output stage). However, each of these partial resistors is subject to uncertainties of the resistance, which 30 certain deviations occur in a controlled activation of the quantity control valve. Examples of such uncertainties result, for example, from errors in the temperature model of the coil, or from uncertainties in the contact resistances in the contacts. From the Difference of the total ohmic resistance to a nominal total ohmic resistance results in the ohmic total resistance deviation.

In Figur 2 ist im oberen Diagramm 2a der Verlauf einer Ansteuerspannung U über der Zeit aufgetragen, die an der elektromagnetischen Betätigungseinrichtung 34 angelegt wird. Man erkennt, dass diese Ansteuerspannung U im Ausführungsbeispiel getaktet ist im Sinne einer Pulsweitenmodulation. Das mittlere Diagramm 2b von Figur 2 zeigt den entsprechenden Spulenstrom I. Im unteren Diagramm 2c von Figur 2 ist der entsprechende Hub H des Mengensteuerventils 30 gezeigt.In FIG. 2 is plotted in the upper diagram 2a, the course of a drive voltage U over time, which is applied to the electromagnetic actuator 34. It can be seen that this drive voltage U is clocked in the embodiment in terms of pulse width modulation. The middle diagram 2b of FIG. 2 shows the corresponding coil current I. In the lower diagram 2c of FIG. 2 the corresponding stroke H of the quantity control valve 30 is shown.

Man erkennt aus Figur 2, dass das Spannungssignal U und der sich hieraus ergebende Spulenstrom I zunächst einen sogenannten "Anzugimpuls" 56 aufweisen. Während dieses Anzugimpulses wird die Spule mit einer konstanten Spannung angesteuert. Er dient dazu, die Magnetkraft der elektromagnetischen Betätigungseinrichtung 34 möglichst schnell aufzubauen. Entsprechend ergibt sich ein rascher Anstieg des in Figur 2 mit dem Bezugszeichen 60 bezeichneten Spulenstroms. An den Anzugimpuls 56 schließt sich eine Haltephase 58 an, in der die Spule mit einer getakteten Spannung 64 angesteuert wird. Die effektive Ansteuerspannung U wird durch das Tastverhältnis des pulsweitenmodulierten Spannungssignals definiert. Der sich ergebende Spulenstrom 60 zeigt eine dem Spannungssignal entsprechende Taktung und abhängig von der effektiven Ansteuerspannung einen Anstieg, ein weitgehend konstantes Verhalten (wie im Ausführungsbeispiel in Figur 2 dargestellt) oder einen Abfall.One recognizes FIG. 2 in that the voltage signal U and the coil current I resulting therefrom initially have a so-called "pull-in pulse" 56. During this tightening pulse, the coil is driven at a constant voltage. It serves to build up the magnetic force of the electromagnetic actuator 34 as quickly as possible. Accordingly, there is a rapid increase in the FIG. 2 with the reference numeral 60 designated coil current. The tightening pulse 56 is followed by a holding phase 58, in which the coil is driven with a pulsed voltage 64. The effective drive voltage U is defined by the duty cycle of the pulse width modulated voltage signal. The resulting coil current 60 shows a clock signal corresponding to the voltage signal and, depending on the effective drive voltage, an increase, a largely constant behavior (as in the exemplary embodiment in FIG FIG. 2 shown) or a waste.

Man erkennt ebenfalls aus Figur 2 am Hub H des Mengensteuerventils 30, dass das Mengensteuerventil zunächst in seinem geöffneten Zustand ist, sich dann aufgrund des sich durch den Anzugimpuls ergebenden Spulenstroms in Bewegung setzt und zu einem Zeitpunkt t2 schließt und in Anschlag geht, was zu einem Anschlaggeräusch führt.It also recognizes FIG. 2 at the stroke H of the quantity control valve 30, that the quantity control valve is initially in its open state, then sets in motion due to the coil current resulting from the tightening pulse and closes at a time t 2 and goes into attack, resulting in a striking noise.

Nach dem Ende der Haltephase 58 der Spannungsansteuerung der Spule fällt der Spulenstrom 60 auf null ab. Der Hub 62 des Mengensteuerventils verändert sich dergestalt, dass das Ventil von seinem geschlossenen in seinen offenen Zustand übergeht.After the end of the hold phase 58 of the voltage drive of the coil, the coil current 60 drops to zero. The stroke 62 of the quantity control valve changes such that the valve transitions from its closed state to its open state.

Es wird erfindungsgemäß erkannt, dass ein Signal zur Ansteuerung des Mengensteuerventils 30 vorteilhafterweise durch mindestens zwei Parameter definiert ist. Im Falle einer pulsweitenmodulierten Ansteuerung beim Schließen des Mengensteuerventils 30 sind dies beispielsweise das Tastverhältnis während der Haltephase 58 und die Dauer des Anzugimpulses 56. Im Rahmen des Ausführungsbeispiels wird im Folgenden von einer pulsweitenmodulierten Ansteuerung ausgegangen, deren Signal durch die zwei Parameter Tastverhältnis während der Haltephase und Dauer des Anzugimpulses definiert ist.It is recognized according to the invention that a signal for controlling the quantity control valve 30 is advantageously defined by at least two parameters. In the case of a pulse width modulated control when closing the quantity control valve 30, these are, for example, the duty cycle during the hold phase 58 and the duration of the tightening pulse 56. In the exemplary embodiment, a pulse width modulated control is assumed below, the signal through the two parameter duty cycle during the holding phase and Duration of the tightening pulse is defined.

Bei dem aus dem Stand der Technik bekannten Adaptionsverfahren wird ein Parameter der Ansteuerung des Mengensteuerventils 30 (beispielsweise die Dauer des Anzugimpulses) bei gleichzeitigem Konstanthalten der anderen Parameter (z.B. dem Tastverhältnis währen der Haltephase) sukzessive variiert, bis festgestellt wird, dass das Mengensteuerventil gerade nicht mehr oder gerade noch schließt. Der sich ergebende Wert des sukzessive variierten Parameters gestattet nun lediglich eine Erfassung einer gemittelten Kenngröße, die den überlagerten Einflusses der charakterisierenden Kenngrößen, also beispielsweise der Effizienz und der ohmschen Gesamtwiderstandsabweichung, darstellt. Identifizierbar sind hiermit im Wesentlichen zwei Extremfälle, in denen die charakterisierenden Kenngrößen die Eigenschaften des Mengensteuerventils in der gleichen Weise beeinflussen. Dies sind beispielsweise erstens der Fall geringer Effizienz und positiver ohmscher Gesamtwiderstandsabweichung und zweitens der Fall hoher Effizient und negativer ohmscher Gesamtwiderstandsabweichung.In the known from the prior art adaptation method, a parameter of the control of the quantity control valve 30 (for example, the duration of the tightening pulse) while maintaining constant the other parameters (eg the duty cycle during the holding phase) is successively varied until it is determined that the quantity control valve just not more or just closing. The resulting value of the successively varied parameter now only allows a detection of an averaged parameter which represents the superimposed influence of the characterizing parameters, that is, for example, the efficiency and the ohmic total resistance deviation. Essentially two extreme cases can be identified, in which the characterizing parameters influence the properties of the quantity control valve in the same way. For example, these are the case of low efficiency and positive ohmic total resistance deviation and, secondly, the case of high efficiency and negative ohmic total resistance deviation.

Hingegen sind in diesem Beispiel insbesondere die drei Fälle von erstens geringer Effizienz und negativer ohmscher Gesamtwiderstandsabweichung, zweitens hoher Effizienz und positiver ohmscher Gesamtwiderstandsabweichung und drittens nomineller Effizienz und verschwindender ohmscher Gesamtwiderstandsabweichung mit dem aus dem Stand der Technik bekannten Adaptionsverfahren nicht zu unterscheiden.On the other hand, in this example in particular the three cases of firstly low efficiency and negative ohmic resistance deviation, secondly high efficiency and positive ohmic total resistance deviation and thirdly nominal efficiency and vanishing ohmic total resistance deviation are indistinguishable from the adaptation method known from the prior art.

Das erfindungsgemäße Verfahren erlaubt die unabhängige Ermittlung der beiden charakterisierenden Kenngrößen, also beispielsweise von Effizienz und ohmscher Gesamtwiderstandsabweichung.The method according to the invention allows the independent determination of the two characterizing parameters, that is, for example, of efficiency and ohmic total resistance deviation.

Dem erfindungsgemäßen Verfahren liegt die Erkenntnis zugrunde, dass eine einzige Messgröße (z.B. das Ergebnis einer Adaption) nicht zur gleichzeitigen zuverlässigen Schätzung von zwei unabhängigen unbekannten Kenngrößen (im Ausführungsbeispiel die Effizienz und ohmsche Gesamtwiderstandsabweichung) benutzt werden kann. Wird hingegen erfindungsgemäß eine zweite Adaption durchgeführt, die beispielsweise mit geänderter Grundparametrierung stattfindet, so lassen sich aus dem Ergebnis der ersten Adaption und dem Ergebnis der zweiten Adaption zwei Kenngrößen (im Ausführungsbeispiel die Effizienz und ohmsche Gesamtwiderstandsabweichung) ermitteln. Im Rahmen des Ausführungsbeispiels wird im Folgenden davon ausgegangen, dass die zwei das Verhalten des Mengensteuerventils 30 charakterisierenden Kenngrößen durch die Effizienz und die ohmsche Gesamtwiderstandsabweichung gegeben sind. Alternativ oder ergänzend können andere Größen als Kenngrößen verwendet werden, beispielsweise eine zur Effizienz oder zur ohmschen Gesamtwiderstandsabweichung äquivalente Größe.The method according to the invention is based on the knowledge that a single measured quantity (for example the result of an adaptation) can not be used for the simultaneous reliable estimation of two independent unknown parameters (in the exemplary embodiment the efficiency and resistive total resistance deviation). If, on the other hand, according to the invention, a second adaptation is carried out, which takes place, for example, with a changed basic parameterization, then two parameters (in the exemplary embodiment the efficiency and ohmic total resistance deviation) can be determined from the result of the first adaptation and the result of the second adaptation. In the context of the exemplary embodiment, it is assumed below that the two parameters characterizing the behavior of the quantity control valve 30 are given by the efficiency and the ohmic total resistance deviation. Alternatively or additionally, other variables than characteristic quantities can be used, for example a variable equivalent to the efficiency or to the ohmic total resistance deviation.

Figur 3 zeigt den Ablauf des erfindungsgemäßen Verfahrens. In einer ersten Adaption 90 wird durch eine Variation eines Parameters, z.B. der Dauer des Anzugimpulses 56, das Schließverhalten des Mengensteuerventils 30 variiert. Das Ergebnis 94 dieser ersten Adaption 90 ist der Wert des variierten Parameters bei dem das Mengensteuerventil 30 gerade nicht mehr bzw. gerade erst schließt. FIG. 3 shows the sequence of the method according to the invention. In a first adaptation 90, the closing behavior of the quantity control valve 30 is varied by a variation of a parameter, eg the duration of the tightening pulse 56. The result 94 of this first adaptation 90 is the value of the varied parameter in which the quantity control valve 30 no longer or just now closes.

In einer zweiten Adaption 92 wird durch die Variation eines Parameters, z.B. der Dauer des Anzugimpulses 56, das Schließverhalten des Mengensteuerventils 30 variiert. Das Ergebnis 98 dieser zweiten Adaption ist der Wert des variierten Parameters, bei dem das Mengensteuerventil 30 gerade nicht mehr bzw. gerade erst schließt.In a second adaptation 92, the variation of a parameter, e.g. the duration of the tightening pulse 56, the closing behavior of the quantity control valve 30 varies. The result 98 of this second adaptation is the value of the varied parameter at which the quantity control valve 30 is no longer or just now closing.

Ausgehend von dem Ergebnis 94 der ersten Adaption 90 und dem Ergebnis 98 der zweiten Adaption 92 werden mittels einer Berechnung 96 , z.B. einer Berechnung oder eines Kennfelds, eine erste Kenngröße 102 - z.B. die Effizienz und ggf. eine zweite Kenngröße 104 - z.B. die ohmsche Gesamtwiderstandsabweichung - ermittelt. Diese erste Kenngröße 102 und diese ggf. zweite Kenngröße 104 werden in der Steuer- und Regeleinrichtung 54 benutzt, um beispielsweise mit Hilfe eines Kennfelds eine insbesondere bzgl. des akustischen Verhaltens verbesserte Ansteuerung des Mengensteuerventils 30 zu generieren.Starting from the result 94 of the first adaptation 90 and the result 98 of the second adaptation 92, by means of a calculation 96, for example a Calculation or a map, a first parameter 102 - eg the efficiency and possibly a second characteristic 104 - eg the resistive total resistance - determined. This first parameter 102 and this possibly second parameter 104 are used in the control and regulating device 54 in order to generate, for example with the aid of a characteristic map, an improved control of the quantity control valve 30, in particular with respect to the acoustic behavior.

In der Adaption 90 wird beispielsweise die Dauer des Anzugimpulses 56 bei gleichzeitigem Konstanthalten des Tastverhältnisses während der Haltephase 58 sukzessive variiert, bis festgestellt wird, dass das Mengensteuerventil 30 gerade nicht mehr oder gerade noch schließt. Dies geschieht beispielsweise durch Auswertung des Messsignals des Drucksensors 22. Das Ergebnis 94 ist in diesem Ausführungsbeispiel der Wert der Dauer des Anzugimpulses, bei der das Mengensteuerventil 30 gerade nicht mehr oder gerade noch schließt.In the adaptation 90, for example, the duration of the tightening pulse 56 is varied successively while the duty cycle is kept constant during the holding phase 58, until it is determined that the quantity control valve 30 is no longer or just closing. This is done, for example, by evaluating the measuring signal of the pressure sensor 22. The result 94 in this embodiment is the value of the duration of the tightening pulse at which the quantity control valve 30 is no longer or just now closing.

Analog wird in der Adaption 92 beispielsweise das Tastverhältnis während der Haltephase 58 bei gleichzeitigem Konstanthalten der Dauer des Anzugimpulses 30 sukzessive variiert, bis festgestellt wird, dass das Mengensteuerventil gerade nicht mehr oder gerade noch schließt. Das Ergebnis 98 ist in diesem Ausführungsbeispiel der Wert des Tastverhältnisses, bei dem das Mengensteuerventil 30 gerade nicht mehr oder gerade noch schließt.Similarly, in the adaptation 92, for example, the duty cycle during the holding phase 58 while simultaneously keeping the duration of the tightening pulse 30 is varied successively until it is determined that the quantity control valve just no longer or just closes. The result 98 in this embodiment is the value of the duty cycle at which the quantity control valve 30 is no longer or just now closing.

Eine alternative Ausführungsform ist in Figur 4 dargestellt. In einer ersten Adaption 90 wird durch eine Variation eines Parameters, z.B. der Dauer des Anzugimpulses 56, das Schließverhalten des Mengensteuerventils 30 variiert. Das Ergebnis 94 dieser ersten Adaption 90 ist der Wert des variierten Parameters bei dem das Mengensteuerventil 30 gerade nicht mehr bzw. gerade erst schließt.An alternative embodiment is in FIG. 4 shown. In a first adaptation 90, the closing behavior of the quantity control valve 30 is varied by a variation of a parameter, eg the duration of the tightening pulse 56. The result 94 of this first adaptation 90 is the value of the varied parameter in which the quantity control valve 30 no longer or just now closes.

Durch eine Vorgabe 100, beispielsweise durch eine Messung, wird eine erste Kenngröße 102 zur Verfügung gestellt. Ausgehend von dem Ergebnis der ersten Adaption 90 und der ersten Kenngröße 102 wird eine zweite Kenngröße 104 ermittelt.By a default 100, for example by a measurement, a first parameter 102 is provided. Based on the result of the first adaptation 90 and the first parameter 102, a second parameter 104 is determined.

Diese erste Kenngröße 102 und diese zweite Kenngröße 104 werden in der Steuer- und Regeleinrichtung 54 benutzt, um beispielsweise mit Hilfe eines Kennfelds eine insbesondere bzgl. des akustischen Verhaltens verbesserte Ansteuerung des Mengensteuerventils 30 zu generieren.This first parameter 102 and this second parameter 104 are used in the control and regulating device 54 in order to generate, for example with the aid of a characteristic map, an improved control of the quantity control valve 30, in particular with regard to the acoustic behavior.

Die Vorgabe 100 kann beispielsweise durch eine Messung der ohmschen Gesamtwiderstandsabweichung gegeben sein. Dies erfolgt erfindungsgemäß besonders vorteilhaft durch die Auswertung eines Stromwertes des Ansteuersignals bei einer vorgegebenen Spannung und vorgegebenem Tastverhältnis. Die Ermittlung der ohmschen Gesamtwiderstandsabweichung ist dann besonders einfach. Bei der im Ausführungsbeispiel verwendeten pulsweitenmodulierten Ansteuerung wird der Effektivstrom erfindungsgemäß besonders vorteilhaft über mehrere Phasen des pulsweitenmodulierten Ansteuersignals hinweg im stationären Zustand bei gesättigtem Strom, d.h. bei flachem Hubverlauf 62. Die Auswertung über mehrere Phasen des pulsweitenmodulierten Ansteuersignals erlaubt die besonders einfache Ermittlung eines Effektivstroms zur Ermittlung der ohmschen Gesamtwiderstandsabweichung. Die Bestimmung des Stroms im stationären Zustand bei gesättigtem Strom und ohne Bewegung eines Ankers des Mengensteuerventils ermöglicht es, Rückkopplungseffekte auszuschließen und ermöglicht somit die besonders genaue Ermittlung der ohmschen Gesamtwiderstandsabweichung.The default 100 can be given, for example, by measuring the ohmic total resistance deviation. This is done according to the invention particularly advantageous by the evaluation of a current value of the drive signal at a predetermined voltage and a predetermined duty cycle. The determination of the ohmic total resistance deviation is then particularly simple. In the pulse width modulated control used in the exemplary embodiment, the effective current according to the invention is particularly advantageous over a plurality of phases of the pulse width modulated drive signal in the steady state with saturated current, i. at a flat stroke profile 62. The evaluation over several phases of the pulse width modulated drive signal allows the particularly simple determination of an effective current for determining the ohmic total resistance deviation. The determination of the current in the steady state with saturated current and without movement of an armature of the quantity control valve makes it possible to exclude feedback effects and thus enables the particularly accurate determination of the total ohmic resistance deviation.

Die Effizienz als zweite Kenngröße wird dann ausgehend von der Messung der ohmschen Gesamtwiderstandsabweichung und von dem Ergebnis der 1. Adaption ermittelt.The efficiency as a second parameter is then determined on the basis of the measurement of the total ohmic resistance deviation and on the result of the first adaptation.

Figur 5 beschreibt das Verhältnis der ersten Adaption 90 und der zweiten Adaption 92 zueinander. Bei dem ersten Adaptionsverfahren 90 wird ein erster Parameter 110 - z.B. das Tastverhältnis während der Haltephase 58 - auf einem ersten Konstantwert 112 gehalten und ein zweiter Parameter 114 - z.B. die Dauer des Anzugimpulses 56- von einem ersten Startwert 116 bis zu einem solchen Endwert verändert, bei dem ein Schließen bzw. Öffnen des Mengensteuerventils 30 gerade nicht mehr bzw. gerade erst ermittelt wird. FIG. 5 describes the relationship of the first adaptation 90 and the second adaptation 92 to one another. In the first adaptation method 90, a first parameter 110-eg the duty cycle during the hold phase 58-is held at a first constant value 112 and a second parameter 114 -for example the duration of the pull-in pulse 56- is changed from a first start value 116 to such a final value. in which a closing or opening of the quantity control valve 30 is no longer or just just determined.

Bei dem zweiten Adaptionsverfahren 92 wird ein dritter Parameter 118 - z.B. das Tastverhältnis während der Haltephase 58 - auf einem zweiten Konstantwert 120 gehalten und ein vierter Parameter 122 - z.B. die Dauer des Anzugimpulses 56 - von einem zweiten Startwert 124 bis zu einem solchen Endwert verändert, bei dem ein Schließen bzw. Öffnen des Mengensteuerventils 30 gerade nicht mehr bzw. gerade erst ermittelt wird.In the second adaptation method 92, a third parameter 118 - e.g. the duty cycle during hold phase 58 - is held at a second constant value 120 and a fourth parameter 122 - e.g. the duration of the tightening pulse 56 - changed from a second starting value 124 to such a final value, in which a closing or opening of the quantity control valve 30 is not or only just determined.

In dem in Figur 5 dargestellten Ausführungsbeispiel entsprechen also z.B. der erste Parameter 110 und der dritte Parameter 118 beide dem Tastverhältnis während der Haltephase 58 und der zweite Parameter 114 und der vierte Parameter 122 beide der Dauer des Anzugimpulses 56. Der erste Parameter 110 entspricht mithin dem dritten Parameter 118 und der zweite Parameter 114 dem vierten Parameter 122.In the in FIG. 5 Thus, for example, the first parameter 110 and the third parameter 118 both correspond to the duty cycle during the hold phase 58 and the second parameter 114 and the fourth parameter 122 both correspond to the duration of the pull-in pulse 56. The first parameter 110 thus corresponds to the third parameter 118 and the second parameter 114 the fourth parameter 122.

Analog zur Figur 5 ist in Figur 6 eine andere mögliche Ausführungsform dargestellt. Beispielsweise wird in der ersten Adaption 90 das Tastverhältnis während der Haltephase 58 auf einem zweiten Konstantwert 120 gehalten und die Dauer des Anzugimpulses 56 verändert, und in der zweiten Adaption 92 die Dauer des Anzugimpulses 56 auf einem ersten Konstantwert 110 gehalten und das Tastverhältnis während der Haltephase verändert. Der erste Parameter 110 und der vierte Parameter 122 entsprechen also beide z.B. beide der Dauer des Anzugimpulses 56, und der zweite Parameter 114 und der dritte Parameter 118 beide dem Tastverhältnis während der Haltephase 58. Der erste Parameter 110 entspricht mithin dem vierten Parameter 122 und der zweite Parameter 114 dem dritten Parameter 118.Analogous to FIG. 5 is in FIG. 6 another possible embodiment shown. For example, in the first adaptation 90, the duty cycle during the hold phase 58 is held at a second constant value 120 and the duration of the pull-in pulse 56 is changed, and in the second adaptation 92 the duration of the pull-in pulse 56 is maintained at a first constant value 110 and the duty cycle during the hold phase changed. Thus, the first parameter 110 and the fourth parameter 122 both correspond, for example, both to the duration of the pull-in pulse 56, and the second parameter 114 and the third parameter 118 both correspond to the duty cycle during the hold phase 58. Thus, the first parameter 110 corresponds to the fourth parameter 122 and second parameter 114 is the third parameter 118.

Zur Unabhängigkeit der ersten Adaption 90 von der zweiten Adaption 92 ist wichtig, dass die Startparametrierung aus jeweils Konstantwert und Startwert unterschiedlich sind. In der in Figur 5 dargestellten Konstellation bedeutet dies, dass entweder der erste Konstantwert 112 von dem zweiten Konstantwert 120 unterschiedlich ist, oder der erste Startwert 116 von dem zweiten Startwert 124 unterschiedlich ist, oder beides.For the independence of the first adaptation 90 from the second adaptation 92, it is important that the start parameterization be different from the constant value and the starting value. In the in FIG. 5 This means that either the first constant value 112 is different from the second constant value 120, or the first start value 116 is different from the second start value 124, or both.

In der in Figur 6 dargestellten Konstellation bedeutet dies, dass entweder der erste Konstantwert 112 von dem zweiten Startwert 124 unterschiedlich sein muss, oder der erste Startwert 116 von dem zweiten Konstantwert 120 unterschiedlich sein muss, oder beides.In the in FIG. 6 This means that either the first constant value 112 is different from the second start value 124 or the first seed 116 must be different from the second constant 120, or both.

Das erfindungsgemäße Verfahren zur Identifikation wenigstens zweier Kenngrößen wird vorteilhafterweise in weiten Abständen wiederholt. Der Grund dafür ist die Tatsache, dass mit der Zeit eine langsame Änderung der Kenngrößen, z.B. der Effizienz, auftritt. Dies ist beispielsweise durch Verschleiß bedingt. Da diese Änderung langsam ist, ist es vorteilhaft, die ermittelten Kenngrößen beispielsweise in der Steuer- und Regeleinheit zu speichern.The inventive method for identifying at least two parameters is advantageously repeated at long intervals. The reason for this is the fact that, over time, a slow change in the characteristics, e.g. efficiency, occurs. This is caused for example by wear. Since this change is slow, it is advantageous to store the determined parameters, for example in the control unit.

Werden in dem beschriebenen Verfahren Kennfelder verwendet, ist es vorteilhaft, diese Kennfelder an die aktuelle Batteriespannung anzupassen, da die Ströme in der Ansteuerung des Mengensteuerventils und ggf. das Ergebnis einer Adaption (insbesondere, wenn der adaptierte Parameter durch das Tastverhältnis gegeben ist) von der Batteriespannung abhängen können.If maps are used in the method described, it is advantageous to adapt these maps to the current battery voltage, since the currents in the control of the quantity control valve and possibly the result of an adaptation (in particular, if the adapted parameter is given by the duty cycle) of the Battery voltage can depend.

Wird in dem beschriebenen Verfahren die ohmsche Gesamtwiderstandsabweichung über eine Messung zur Verfügung gestellt, ist es vorteilhaft, diese Messung in kurzen Abständen zu wiederholen, da die Änderung des Widerstandes situationsbezogen auftritt.If the ohmic total resistance deviation is made available via a measurement in the method described, it is advantageous to repeat this measurement at short intervals, since the change in the resistance occurs as a function of the situation.

Weiterhin ist es vorteilhaft, drei oder mehr unabhängige Adaptionen durchzuführen, da so die Genauigkeit der ermittelten Kenngrößen weiter verbessert werden kann. Hierbei ist ggf. ein Algorithmus zur Minimierung einer definierten Abweichung erforderlich, der beispielsweise zusammen mit entsprechenden Kennfeldern in der Steuer- und Regeleinheit abgelegt ist.Furthermore, it is advantageous to carry out three or more independent adaptations, since this way the accuracy of the determined parameters can be further improved. In this case, if necessary, an algorithm for minimizing a defined deviation is required, which is stored, for example, together with corresponding maps in the control and regulation unit.

Claims (11)

  1. Method for actuating a metering valve (30), wherein at least two characteristic variables characterize the metering valve (30), wherein an actuation signal which is fed to the metering valve is defined by at least two parameters, characterized in that the one characteristic variable is the efficiency of the metering valve or an equivalent variable, and the other characteristic variable is an ohmic overall resistance difference or an equivalent variable, and in that the one characteristic variable (102) and the other characteristic variable (104) are determined on the basis of the result of a first adaptation (90) and a second adaptation (92).
  2. Method according to Claim 1, characterized in that during the first adaptation (90) at least one first parameter (110) is kept at a first constant value (112), and at least one second parameter (114) is changed from a first starting value (116) to such an end value at which closing or opening of the metering valve (30) is just no longer determined or is actually just determined.
  3. Method according to Claim 2, characterized in that during the second adaptation (92) the first parameter (110) is kept at a second constant value (120), and the second parameter (114) is changed from a second starting value (124) to such an end value at which closing or opening of the metering valve (30) is just no longer determined or is actually just determined.
  4. Method according to Claim 3, characterized in that at least the first constant value (112) and the second constant value (118) or the first starting value (116) and the second starting value (124) are not the same.
  5. Method according to Claim 3, characterized in that at least the first constant value (112) and the second starting value (124) or the first starting value (116) and the second constant value (120) are not the same.
  6. Method according to one of Claims 2 to 5, characterized in that at least one of the parameters is part of the following group: pulse duty factor during a holding phase (58) or a variable which characterizes this variable; duration of an attraction pulse (56) or a variable which characterizes this variable.
  7. Method according to Claim 6, characterized in that a resistance of a feed line (56) is used as a characteristic variable.
  8. Method according to Claim 7, characterized in that the determination of the resistance of the feed line (56) takes place by means of an evaluation of a current value of the actuation signal at a predefined voltage and predefined pulse duty factor.
  9. Computer program, characterized in that it is programmed for use in a method according to one of the preceding claims.
  10. Electrical storage medium for an open-loop and/or closed-loop control device (54) of a fuel injection system, characterized in that a computer program for use in a method according to Claims 1 to 8 is stored in said storage medium.
  11. Open-loop and/or closed-loop control device (54) for a fuel injection system, characterized in that it is programmed for use in a method according to one of Claims 1 to 8.
EP10773030.1A 2009-11-17 2010-10-21 Method and device for controlling a metering control valve Active EP2501917B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910046783 DE102009046783A1 (en) 2009-11-17 2009-11-17 Method and device for controlling a quantity control valve
PCT/EP2010/065873 WO2011061038A1 (en) 2009-11-17 2010-10-21 Method and device for controlling a rate control valve

Publications (2)

Publication Number Publication Date
EP2501917A1 EP2501917A1 (en) 2012-09-26
EP2501917B1 true EP2501917B1 (en) 2019-01-23

Family

ID=43431997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10773030.1A Active EP2501917B1 (en) 2009-11-17 2010-10-21 Method and device for controlling a metering control valve

Country Status (7)

Country Link
US (1) US9026337B2 (en)
EP (1) EP2501917B1 (en)
KR (1) KR101731135B1 (en)
CN (1) CN102686859B (en)
DE (1) DE102009046783A1 (en)
IN (1) IN2012DN02190A (en)
WO (1) WO2011061038A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012019232A1 (en) * 2012-10-01 2014-04-03 Robert Bosch Gmbh Method for driving hydraulic valve assembly for providing variable flow cross section, involves connecting two switching valves of hydraulic valve assembly in parallel, and controlling switching valves through respective pulse signals
DE102012218370B4 (en) * 2012-10-09 2015-04-02 Continental Automotive Gmbh Method and device for controlling a valve
DE102015104108A1 (en) * 2014-03-20 2015-09-24 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) PARAMETER ESTIMATION IN AN ACTOR
US9664159B2 (en) * 2014-03-20 2017-05-30 GM Global Technology Operations LLC Parameter estimation in an actuator
DE102014206231A1 (en) * 2014-04-02 2015-10-08 Continental Automotive Gmbh Method for operating a high-pressure pump of an injection system and injection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066675A1 (en) * 2008-12-11 2010-06-17 Robert Bosch Gmbh Method for operating a fuel injection system of an internal combustion engine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704011B2 (en) * 1999-12-20 2005-10-05 本田技研工業株式会社 Evaporative fuel processing device for internal combustion engine
JP4363197B2 (en) * 2003-03-10 2009-11-11 株式会社デンソー Fuel injection control device for internal combustion engine
DE10315318A1 (en) * 2003-04-04 2004-10-14 Robert Bosch Gmbh Method for operating an internal combustion engine
JP4042057B2 (en) 2003-11-04 2008-02-06 株式会社デンソー Valve opening adjustment device and common rail fuel injection device
DE10358858A1 (en) * 2003-12-16 2005-07-14 Robert Bosch Gmbh Method and device for operating an inductive load with different electrical voltages
DE102004049812B4 (en) * 2004-10-12 2017-09-14 Robert Bosch Gmbh Method for operating a fuel injection system, in particular of a motor vehicle
KR100693610B1 (en) 2005-06-30 2007-03-14 현대자동차주식회사 A fuel supplying apparatus in LPI engine
DE102007030280A1 (en) * 2006-07-05 2008-01-10 Robert Bosch Gmbh Method for operating an internal combustion engine
DE102006032466B3 (en) * 2006-07-13 2007-09-13 Siemens Ag Fuel e.g. diesel, quantity controlling valve`s characteristic adapting method for use in motor vehicle, involves controlling quantity controlling valve with test equipment in operating point having operating parameter for providing fuel
JP4353270B2 (en) 2007-05-08 2009-10-28 株式会社デンソー Fuel injection characteristic detection device and engine control system
DE102007028900B4 (en) * 2007-06-22 2013-06-27 Continental Automotive Gmbh Method and device for diagnosing an injection valve of an internal combustion engine that is in communication with a fuel rail
DE102007035316B4 (en) 2007-07-27 2019-12-24 Robert Bosch Gmbh Method for controlling a solenoid valve of a quantity control in an internal combustion engine
DE102007050304A1 (en) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Method for controlling a fuel supply system of an internal combustion engine
DE102007058230A1 (en) * 2007-12-04 2009-06-10 Robert Bosch Gmbh Method for compensation of tolerance of quantity control valve for fuel pump in fuel supply system for internal combustion engine, involves activating quantity control valve by magnet by control current
DE102008054512B4 (en) * 2008-12-11 2021-08-05 Robert Bosch Gmbh Method for operating a fuel injection system of an internal combustion engine
DE102009060262A1 (en) * 2009-12-23 2011-06-30 Samson Aktiengesellschaft, 60314 Method and arrangement for controlling a process fluid flow and positioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066675A1 (en) * 2008-12-11 2010-06-17 Robert Bosch Gmbh Method for operating a fuel injection system of an internal combustion engine

Also Published As

Publication number Publication date
EP2501917A1 (en) 2012-09-26
KR20120102636A (en) 2012-09-18
WO2011061038A1 (en) 2011-05-26
CN102686859A (en) 2012-09-19
KR101731135B1 (en) 2017-04-27
DE102009046783A1 (en) 2011-05-19
US20120283883A1 (en) 2012-11-08
CN102686859B (en) 2016-08-17
US9026337B2 (en) 2015-05-05
IN2012DN02190A (en) 2015-08-21

Similar Documents

Publication Publication Date Title
EP2376761B1 (en) Method for operating a fuel injection system of an internal combustion engine
DE102012213883B4 (en) Equalization of the current flow through a fuel injector for different partial injection processes of a multiple injection
EP2379868B1 (en) Method for controlling a magnetic valve of a rate control in an internal combustion engine
WO2010121868A1 (en) Method for operating an injection valve
WO2011003704A1 (en) Determining the closing time of a fuel injection valve based on evaluating the actuation voltage
WO2009016044A1 (en) Method for controlling a solenoid valve of a quantity controller in an internal combustion engine
DE102010041320B4 (en) Determination of the closing time of a control valve of an indirectly driven fuel injector
DE102009027311A1 (en) Method for operating an internal combustion engine
DE102009000132A1 (en) Method for operating a fuel injection system
EP2501917B1 (en) Method and device for controlling a metering control valve
DE102017206477A1 (en) METHOD AND DEVICE FOR OPTIMUM DRIVE SIGNAL CONTROL OF AN ELECTROMAGNETICALLY ACTIVATED ADJUSTING MEMBER
WO2014121982A1 (en) Method for operating a fuel injection system of an internal combustion engine
EP2724011B1 (en) Method and apparatus for controlling a fuel supply pump of an internal combustion engine
WO2014170068A1 (en) Method and device for controlling a volume regulation valve
DE10047964A1 (en) Actuator control equipment has electromagnet control unit that switches either electromagnet from attraction phase to holding phase once generated magnetic flux reaches set value
EP2852748B1 (en) Method for operating a fuel system for an internal combustion engine
EP2501916B1 (en) Method and device for actuating an amount control valve
WO2011082902A1 (en) Method and control appliance for operating a valve
DE102011080858B4 (en) Method for operating a solenoid valve taking a variable into account
WO2011082901A1 (en) Method and control appliance for operating a valve
DE102004013425B4 (en) Solenoid valve control system and control method
DE102017209523B3 (en) Method for determining the prevailing in a fuel injection valve fuel pressure
DE102017204849B3 (en) Method for detecting a change in a working path of a magnet armature of a fuel injection valve forming at least part of a total air gap
DE102013207162A1 (en) A method, apparatus and computer program for reducing inrush current for a valve of a high pressure pump
DE102016105723A1 (en) Pump controller

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181024

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1091640

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015766

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015766

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191022

Year of fee payment: 10

Ref country code: IT

Payment date: 20191021

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191021

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191021

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191021

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1091640

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101021

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221215

Year of fee payment: 13