EP2499343A2 - Thermodynamische maschine sowie verfahren zu deren betrieb - Google Patents

Thermodynamische maschine sowie verfahren zu deren betrieb

Info

Publication number
EP2499343A2
EP2499343A2 EP10782537A EP10782537A EP2499343A2 EP 2499343 A2 EP2499343 A2 EP 2499343A2 EP 10782537 A EP10782537 A EP 10782537A EP 10782537 A EP10782537 A EP 10782537A EP 2499343 A2 EP2499343 A2 EP 2499343A2
Authority
EP
European Patent Office
Prior art keywords
working fluid
machine
liquid
auxiliary gas
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10782537A
Other languages
English (en)
French (fr)
Other versions
EP2499343B1 (de
Inventor
Andreas Schuster
Andreas Sichert
Richard Aumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to PL10782537T priority Critical patent/PL2499343T3/pl
Publication of EP2499343A2 publication Critical patent/EP2499343A2/de
Application granted granted Critical
Publication of EP2499343B1 publication Critical patent/EP2499343B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • the invention relates to a thermodynamic machine with a circulation system in which a particular low-boiling working fluid circulates alternately in gas and liquid phase.
  • the machine includes one
  • the invention further relates to a method for operating such a thermodynamic machine, wherein the working fluid is heated in a circuit, relaxed, condensed and conveyed by pumping the liquid working fluid.
  • thermodynamic machine Under such a thermodynamic machine is particularly understood a machine that operates on the thermodynamic Rankine cycle.
  • the Rankine cycle is characterized by pumping the liquid working medium, evaporating the working medium at high pressure, depressurizing the gaseous working fluid to perform mechanical work, and condensing the gaseous working fluid at low pressure.
  • today's conventional steam power plants operate according to the Rankine cycle.
  • fossil-fired steam power plants produce water vapor at temperatures above 500 ° C at a pressure of over 200 bar.
  • the condensation of the relaxed water vapor takes place at about 25 ° C and a pressure of about 30 mbar.
  • thermodynamic machine A working according to the Rankine cycle thermodynamic machine and a method for their operation is known for example from WO 2005/021936 A2.
  • the working fluid is water.
  • ORC machines in which instead of the working fluid water a low-boiling, in particular organic fluid is used.
  • low-boiling is understood to mean that such a fluid boils at lower pressures relative to water or has a higher vapor pressure than water.
  • ORC machine operates in accordance with the so-called Organic Rankine Cycle (ORC).
  • ORC Organic Rankine Cycle
  • hydrocarbons, aromatic hydrocarbons, fluorinated hydrocarbons, carbon compounds, especially alkanes, fluoroethers, fluoroethane or even synthesized ones are used as working fluids for an ORC machine Silicone oils known.
  • ORC machines or systems for example, the heat sources available in geothermal or solar power plants can be used economically to generate electricity. Also, with an ORC engine so far unused waste heat of an internal combustion engine from exhaust air, cooling circuit, exhaust gas, etc. can be used to perform work or to generate electricity.
  • the vapor pressure of a liquid which belongs to a particular temperature, evaporates.
  • the undershooting of the vapor pressure can take place in quiescent or in moving liquids. For example, in a flowing liquid due to a sharp deflection or acceleration of the flow locally below the vapor pressure, so that a local evaporation takes place.
  • the locally produced vapor bubbles condense at points of higher pressure and collapse. The whole process is called cavitation.
  • cavitation occurring in the liquid phase of the working fluid represents a not inconsiderable problem. Because of the small size of the vapor bubbles, the condensation takes place very quickly. A sudden implosion of the vapor bubbles may form a microbeam. Is this directed to a surrounding wall, local pressure peaks of up to 10,000 bar can be achieved. In addition, due to the high pressures, local temperatures of well over 1000 ° C can be reached, which can lead to melting processes in the wall material. Destruction effects from cavitation can occur within hours.
  • the occurrence of cavitation undesirably reduces the flow rate of fluid. Since the density of the vapor bubbles is generally clearly different from that of the liquid, even with a small mass fraction of the working fluid, the mass flow which can be conveyed is reduced as steam at a given volume flow. With a strong formation of steam, the mass flow possibly even breaks down. For example, if the work machine is used as a pump in an ORC system, the entire cycle process may possibly come to a standstill. Due to the lack of pump power it comes to the backflow of the liquid working fluid in the condenser, whereby its effect is significantly reduced. As a result, the heat dissipation comes to a standstill. This state of the overall system is difficult to leave. It is necessary to wait until the working fluid undercooled itself by cooling. Next breaks the flow in the evaporator together, so that no heat can be dissipated. If necessary, the working fluid used can then be damaged by exceeding its stability limit.
  • a complex fluid machine which operates according to the Rankine cycle.
  • the fluid machine has a pump for pressurizing and pumping out a liquid-phase working fluid and an expansion device connected in series with the pump for generating a driving force by expanding the working fluid which is heated to become a gas-phase working fluid. It is provided to transfer the heat of the working fluid at an outlet side of the expansion device to the working fluid at an outlet side of the fluid pump.
  • thermodynamic machine of the type mentioned is known.
  • a gas / liquid solution in particular an ammonia / water solution, circulates.
  • the pressure of gas and liquid is lowered.
  • the pressure is increased.
  • the object of the invention is to develop a thermodynamic machine of the type mentioned in that the occurrence of cavitation in the liquid or in the liquid working fluid is avoided as possible.
  • thermodynamic machine of the type mentioned that the liquid working fluid in the flow of the liquid pump by adding a non-condensing auxiliary gas, a system pressure-increasing partial pressure is impressed.
  • the invention is based on the recognition that, especially in the design of an ORC machine, the possibility of an occurrence of cavitation in the liquid phase is underestimated. So it happens that in the overall design, for example, a specified for a pump flow height is not met. Such a flow height caused by the fluid column at the intake there is a necessary pressure increase. Because of the upstream condenser namely the fluid is without regard to the flow height of the pump with the saturation or condensation vapor pressure, assuming that no hypothermia takes place. When the pump is switched on, the saturation vapor pressure can then be exceeded without regard to the flow height due to the resulting suction power. It comes to cavitation.
  • the flow height for a pump is typically given by the so-called NPSH value.
  • the NPSH value (Net Positive Suction Head) is understood to mean the necessary minimum inlet height above the saturation vapor pressure. In other words, the necessary NPSH value expresses the suction power of the pump.
  • the NPSH value is given in meters. It is typically a few meters for a pump suitable here. Therefore, if the NPSH value is not met for a given pump in advance, it will happen during the Operation to not insignificant cavitation problems. There is an undesirable formation of vapor bubbles.
  • the pump has to be lowered relative to the system level, especially in the design of a small and compact ORC machine, which leads to an undesirable increase in installation space.
  • the invention now recognizes that the problem of the formation of cavitations in a thermodynamic machine can be solved by the use of a noncondensing gas. While the non-condensing gas in circulation in machines operating according to the Rankine cycle has hitherto been undesirably removed since the efficiency has been lowered, the invention now provides for deliberate introduction.
  • the invention recognizes that, in the case of a non-condensing gas in circulation, its partial pressure in the gas phase adds to the condensation pressure.
  • the resulting system pressure which is raised in the desired manner, is impressed on the liquid working fluid, in particular in the supply line of the fluid pump.
  • the disadvantages associated with the addition of a non-condensing gas to the circuit in particular an increase in the backpressure for the expansion machine, are eliminated in the case of a low-boiling working fluid by the advantages of avoiding cavitation.
  • condensation is made with water at higher pressures. Typically, at room temperature be condensed above atmospheric pressure.
  • the partial pressure necessarily generated by the auxiliary gas has less effect on the overall efficiency in the sense of the overall concept and negligible.
  • the invention makes it possible to choose the added amount of substance of the auxiliary gas so that the flow height for the pump in the sense of the available space can be reduced accordingly.
  • the counterpressure hindering the expansion machine remains at a generally acceptable level.
  • the invention offers the distinct advantage that a compact thermodynamic machine can be designed for the utilization of low-temperature heat sources.
  • the space is no longer mandatory given by the necessary flow height of the pump. Since, in principle, the non-condensing auxiliary gas can be introduced once during filling of the system, possibly even no additional structural measures are required.
  • the invention offers an extremely cost-effective option for further compaction of a thermodynamic machine.
  • the invention is outstandingly suitable for the design of small mobile machines which are used, for example, on motor vehicles for the use of the engine, coolant or exhaust gas heat.
  • auxiliary gas partial pressure is sufficiently large, so that the saturation vapor pressure is not exceeded in the flow during operation of the liquid pump.
  • this is the case, for example, when the resulting partial pressure is at least equal to the NPSH value of the liquid pump.
  • a flow height of the pump may possibly even be omitted altogether.
  • the amount of auxiliary gas supplied must be such that the resulting partial pressure exceeds the suction pressure or the converted NPSH value.
  • the invention is not necessarily limited to a thermodynamic machine operating on the Rankine cycle.
  • a machine may also be included which does not comprise any evaporation of the working fluid upstream of the expansion machine but in which a flash evaporation of the working fluid takes place in the expansion machine through a continuously increasing working space.
  • continuous phase conversions can be made.
  • mixtures of different working media can also be used as the working fluid so as to achieve an ideal mode of operation of the machine adapted to the given conditions.
  • auxiliary gas (right-hand part of FIG. 2) results in a system pressure at the pump which is added from the saturation vapor pressure ps and the partial pressure p par t of the auxiliary gas. After switching on the pump, this system pressure is again reduced by the suction pressure PNPSH specified by the NPSH value. If the resulting due to the introduced auxiliary gas partial pressure p par t this non-condensing gas is greater than or at least equal to the suction pressure PNPSH at the intake manifold of the pump, the input pressure p E but now at least equal to or greater than the saturation vapor pressure ps. Cavitation is thus prevented.
  • the auxiliary pressure difference ⁇ between the system pressure and the saturation vapor pressure advantageously this is at least PNPSH, calculated the necessary amount of substance x, the auxiliary gas after
  • the amount of substance x, the auxiliary gas is then so dimensioned that even under unfavorable conditions, so with reduced condensation temperatures and thus reduced saturation vapor pressures, sufficient auxiliary gas is present. It should also be noted that part of the auxiliary gas goes into solution and thus is no longer available for generating a pressure difference. Also, different operating phases of the machine (partial load, full load) can be taken into account in the dimensioning of the supplied amount of material of the auxiliary gas.
  • the height can be correspondingly reduced by the fact that the actual flow height of the liquid pump compared to a necessary flow height, which takes into account the NPSH value and optionally a supercooling of the liquid working fluid is reduced.
  • An additional subcooling of the liquid will reduce the necessary flow height due to the reduced vapor pressure.
  • the possible, further reduction of the actual flow height is given by the partial pressure of the introduced auxiliary gas. In this case, to maintain certain reserves even a low flow height can be maintained despite appropriate supply of the auxiliary gas.
  • a reduction of the flow height is compensated insofar by a corresponding amount of substance of the auxiliary gas.
  • the introduction point for the auxiliary gas can in principle be provided at any point in the circulation system of the machine.
  • the introduction point can be designed here for a single introduction or for a repeated introduction of the auxiliary gas.
  • the auxiliary gas is available directly at the required point in the circulation.
  • the auxiliary gas is introduced into the liquid phase on the cold side of the cyclic process.
  • the auxiliary gas can also be easily removed there, since it can be collected in the condenser.
  • the machine may be "cold-started", causing the auxiliary gas to flow slowly into the condenser
  • a compressor may be used to add the auxiliary gas, or alternatively a pressure bottle may be connected connected.
  • the non-condensing auxiliary gas is such a gas which does not condense under the conditions prevailing or prevailing in the cycle of the thermodynamic machine.
  • auxiliary gas for example, noble gases or nitrogen are suitable as such an auxiliary gas.
  • suitable organic gases come into question.
  • the non-condensing auxiliary gas will move to some extent with the working fluid in the thermodynamic machine cycle.
  • so-called tube bundle heat exchangers are provided with the working fluid water for the condenser.
  • the tubes are flowed through by a cooling liquid inside.
  • the gaseous working fluid flows along the outside of the tubes, condenses on their surface and drips off as condensate or liquid phase.
  • the non-condensing auxiliary gas optionally accumulates in such a condenser depending on its orientation.
  • the auxiliary gas remains as an insulating layer around the tubes, thereby reducing the efficiency of the condenser.
  • the non-condensing auxiliary gas can only be reduced by a withdrawal against the flow direction of the condensate or by diffusion.
  • the condenser is advantageously configured to entrain the auxiliary gas in the flow direction of the condensate or of the liquid working fluid.
  • a capacitor is designed, for example, as an air condenser or by means of plate heat exchange elements.
  • the gaseous working fluid flows through the interior of pipes, which are flowed around outside, for example, by air, but also by another coolant.
  • the auxiliary gas is at least partially pushed by subsequent gaseous working fluid through the tubes in the flow direction.
  • capacitors which are formed by means of plate heat exchange elements.
  • the gaseous working fluid flows through the interstices of the plate heat exchange elements and will take part of the auxiliary gas from the condenser. The given for a tube bundle heat exchanger undesirable effect of forming an insulating layer is thereby reduced.
  • a sensor for detecting the auxiliary gas concentration is arranged in the reservoir.
  • a sensor for detecting the auxiliary gas concentration is arranged in the reservoir.
  • substance amount of the auxiliary gas can be measured and when falling below or exceeding a predetermined limit, a warning signal can be output. According to the warning signal then a certain amount of substance of the auxiliary gas can be supplied or withdrawn.
  • thermodynamic machine is particularly suitable for a mobile system in a motor vehicle, wherein the
  • Heat exchanger is thermally coupled to a waste heat source of the vehicle.
  • a waste heat source constitutes, for example, the coolant, other equipment such as e.g. Oil, the engine block itself or the exhaust gas.
  • the expansion machine coupled to generate electricity with a corresponding generator is preferably designed as a positive displacement machine.
  • a displacement machine is for example a screw or piston ex- Panning machine or a Scrollexpansionsmaschine.
  • a vane machine can be used.
  • the object directed to a method according to the invention is achieved by the feature combination according to claim 9. Accordingly, it is provided for a method for operating a thermodynamic machine that the liquid working fluid in a pump flow by adding a non-condensing auxiliary gas, a system pressure-increasing partial pressure is impressed.
  • Fig. 1 shows schematically an ORC machine with an imprinted in the pump flow partial pressure of an auxiliary gas
  • Fig. 2 is a schematic representation of various pressure conditions.
  • an ORC machine 1 is shown schematically, as it is particularly suitable as a mobile system for utilizing the waste heat of internal combustion engines.
  • the ORC machine 1 comprises, in a circulation system 2 as a heat exchanger 3, an evaporator, an expansion machine 5, a condenser 6 and a liquid pump 8.
  • the illustrated ORC machine 1 operates according to the Rankine cycle, wherein the expansion machine 5 Work to drive a generator 9 is performed.
  • the generator 9 is designed in particular for feeding in the recovered current into the vehicle's on-board electrical system or connected thereto.
  • the working fluid 10 a hydrocarbon is used, which has a much higher vapor pressure than water.
  • the working fluid 10 is in a closed circuit.
  • liquid working fluid 10 is evaporated in the evaporator 3 at a high pressure.
  • the expansion machine 5 which is designed as a positive displacement machine, the gaseous working fluid 10 relaxes while performing the work.
  • the expanded gaseous working fluid 10 is condensed in the condenser 6 at low pressure.
  • the saturation vapor pressure occurring in the condenser 6 is about 1.2 bar.
  • the condensate or the liquid working fluid 10 is collected in a storage tank 11 before it is again pumped by the pump 8 for evaporation.
  • a waste heat removal 14 is provided for cooling the condenser 6, .
  • this may be circulating air of a motor vehicle, wherein the heat of condensation of the working fluid of the circulating air is supplied for heating the passenger compartment, for example.
  • the condenser 6 is designed as an air condenser in which the working fluid 10 to be cooled flows in the interior of flow-around tubes.
  • the heat is supplied to the evaporator 3 via a waste heat supply 16.
  • the evaporator 3 is supplied via a suitable heat exchange heat from the exhaust gas of the vehicle engine.
  • heat can be supplied from the cooling circuit of the internal combustion engine.
  • the waste heat of the internal combustion engine and the exhaust gas generated can be supplied to the evaporator 3 in total via a corresponding third medium.
  • a supply point 18 for introducing a non-condensing auxiliary gas 20 into the circuit of the ORC machine 1 is provided on the condenser 6.
  • a specific amount of substance Xi of the auxiliary gas 20 can be introduced into the circulation of the ORC machine.
  • the amount of substance X in this case is such that in the flow of the pump 8, the partial pressure of the auxiliary gas 20 and the saturation vapor pressure of the working fluid 10 (resulting from the condensation in the condenser 6) added to a system pressure such that after switching on the pump Saturation vapor pressure of Working fluid is not fallen below.
  • the amount of substance x such that the resulting partial pressure of the auxiliary gas is greater than the suction pressure corresponding to the NPSH value of the pump.
  • cavitation is prevented in the flow and in particular at the suction nozzle of the liquid pump. Since the saturation vapor pressure of the working fluid 10 does not fall below during operation, there are no vapor bubbles formed there.
  • the flow height 21 (shown schematically here) is clearly lowered compared to the NPSH value of the liquid pump 8 to only a few tens of centimeters.
  • a sensor 22 for measuring the concentration of the auxiliary gas 20 is arranged in the storage tank 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Es werden eine thermodynamische Maschine (1) mit einem Kreislauf-System (2), in dem ein insbesondere niedrig-siedendes Arbeitsfluid (10) abwechselnd in Gas- und Flüssigphase zirkuliert, mit einem Wärmeübertrager (3), mit einer Entspannungsmaschine (5), mit einem Kondensator (6) und mit einer Flüssigkeitspumpe (8) sowie ein Verfahren zu deren Betrieb angegeben. Dabei ist vorgesehen, dass dem flüssigen Arbeitsfluid (10) im Vorlauf der Flüssigkeitspumpe (8) durch Zugabe eines nicht-kondensierenden Hilfsgases (20) ein den Systemdruck erhöhender Partialdruck aufgeprägt ist. Unter Vermeidung von Kavitation im flüssigen Arbeitsfluid (10) können kompakte, kleinbauende ORC-Maschinen realisiert werden.

Description

Beschreibung
Thermodynamische Maschine sowie Verfahren zu deren Betrieb
Die Erfindung betrifft eine thermodynamische Maschine mit einem Kreislauf- System, in dem ein insbesondere niedrig siedendes Arbeitsfluid abwechselnd in Gas- und Flüssigphase zirkuliert. Dabei umfasst die Maschine einen
Wärmeübertrager, eine Entspannungsmaschine, einen Kondensator und eine Flüssigkeitspumpe. Die Erfindung betrifft weiter ein Verfahren zum Betrieb einer derartigen thermodynamischen Maschine, wobei das Arbeitsfluid in einem Kreislauf erhitzt, entspannt, kondensiert und durch Pumpen des flüssigen Arbeitsfluids gefördert wird.
Unter einer solchen thermodynamischen Maschine wird insbesondere eine Maschine verstanden, die nach dem thermodynamischen Rankine-Kreisprozess arbeitet. Der Rankine-Kreisprozess ist hierbei durch ein Pumpen des flüssigen Arbeitsmediums, durch ein Verdampfen des Arbeitsmediums bei hohem Druck, durch ein Entspannen des gasförmigen Arbeitsfluids unter Verrichtung von mechanischer Arbeit sowie durch ein Kondensieren des gasförmigen Arbeitsfluids bei niedrigem Druck gekennzeichnet. Nach dem Rankine-Kreisprozess arbeiten beispielsweise heutige konventionelle Dampfkraftwerke. Typischerweise wird bei fossil beheizten Dampfkraftwerken bei einem Druck von über 200 bar Wasserdampf mit Temperaturen von über 500°C erzeugt. Die Kondensation des entspannten Wasserdampfes findet bei etwa 25°C und einem Druck von ca. 30 mbar statt.
Eine nach dem Rankine-Kreisprozess arbeitende thermodynamische Maschine sowie ein Verfahren zu deren Betrieb ist beispielsweise aus der WO 2005/021936 A2 bekannt. Als Arbeitsfluid dient hierbei Wasser.
Sollen Wärmequellen zur Verdampfung des Arbeitsfluids genutzt werden, die zur Wärmesenke nur einen relativ niedrigen Temperaturunterschied aufweisen, so genügt der mit dem Arbeitsfluid Wasser erreichbare Wirkungsgrad nicht mehr zu einer wirtschaftlichen Arbeitsweise. Solche Wärmequellen können jedoch mit Hilfe von sogenannten ORC-Maschinen erschlossen werden, in denen statt dem Ar- beitsfluid Wasser ein niedrig siedendes, insbesondere organisches Fluid eingesetzt ist. Unter dem Begriff„niedrig- siedend" wird insofern verstanden, dass ein solches Fluid gegenüber Wasser bei niedrigeren Drücken siedet bzw. im Vergleich zu Wasser einen höheren Dampfdruck aufweist. Eine ORC-Maschine arbeitet entsprechend dem so genannten Organic-Rankine-Cycle(ORC)-Kreisprozess, d.h. im Wesentlichen mit einem von Wasser verschiedenen, insbesondere organischen, niedrig-siedenden Arbeitsfluid. Als Arbeitsfluide für eine ORC-Maschine sind beispielsweise Kohlenwasserstoffe, aromatische Kohlenwasserstoffe, fluorierte Kohlenwasserstoffe, Kohlenstoffverbindungen, insbesondere Alkane, Fluor- ether, Fluorethan oder auch synthetisierte Silikonöle bekannt.
Mittels ORC-Maschinen bzw. -Anlagen können beispielsweise die in Geothermie- oder Solarkraftwerken zur Verfügung stehenden Wärmequellen wirtschaftlich zur Stromerzeugung genutzt werden. Auch kann mit einer ORC-Maschine bislang ungenutzte Abwärme eines Verbrennungsmotors aus Abluft, Kühlkreislauf, Abgas etc. zur Verrichtung von Arbeit oder zur Stromerzeugung genutzt werden.
Wenn der zu einer jeweiligen Temperatur gehörende Dampfdruck einer Flüssigkeit unterschritten wird, verdampft diese. Die Unterschreitung des Dampfdrucks kann in ruhenden oder in sich bewegenden Flüssigkeiten stattfinden. Beispielsweise kann bei einer strömenden Flüssigkeit aufgrund einer scharfen Umlenkung oder Beschleunigung der Strömung lokal der Dampfdruck unterschritten werden, so dass ein örtliches Verdampfen stattfindet. Die lokal entstehenden Dampfblasen kondensieren an Stellen höheren Druckes wieder und fallen in sich zusammen. Der Gesamtvorgang wird als Kavitation bezeichnet.
Bei einer thermodynamischen Maschine der eingangs genannten Art stellt eine in der flüssigen Phase des Arbeitsfluids auftretende Kavitation ein nicht unerhebliches Problem dar. Aufgrund der geringen Größe der Dampfblasen findet das Kondensieren dieser nämlich sehr schnell statt. Durch eine plötzliche Implosion der Dampfblasen bildet sich hierbei gegebenenfalls ein Mikrostrahl aus. Ist dieser auf eine umgebende Wand gerichtet, so können lokal Druckspitzen bis zu 10.000 bar erreicht werden. Zusätzlich können durch die hohen Drücke lokale Temperaturen von weit über 1000 °C erreicht werden, was zu Schmelzvorgängen im Wandmaterial führen kann. Zerstörungseffekte durch Kavitationen können innerhalb von Stunden auftreten.
Bei einer Pumpe verringert das Auftreten von Kavitation zudem unerwünschterweise den Durchsatz an Fluid. Da sich die Dampfblasen in ihrer Dichte in aller Regel deutlich von der Flüssigkeit unterscheiden, reduziert sich selbst bei einem geringen Massenanteil des Arbeitsfluids als Dampf bei einem gegebenen Volumenstrom der förderbare Massenstrom. Bei einer starken Dampfentstehung bricht der Massenstrom gegebenenfalls sogar zusammen. Ist die Arbeitsmaschine beispielsweise als Pumpe in einer ORC-Anlage eingesetzt, so kann unter Umständen der gesamte Kreislauf-Prozess zum Erliegen kommen. Durch die mangelnde Pumpleistung kommt es zum Rückstau des flüssigen Arbeitsfluids im Kondensator, wodurch dessen Wirkung erheblich verringert ist. Hierdurch kommt die Wärmeabfuhr zum Erliegen. Dieser Zustand des Gesamtsystems kann nur schwer verlassen werden. Es muss abgewartet werden, bis das Arbeitsfluid durch Abkühlung selbst unterkühlt. Weiter bricht die Durchströmung im Verdampfer zusammen, so dass auch keine Wärme mehr abgeführt werden kann. Gegebenenfalls kann dann das verwendete Arbeitsfluid durch Überschreiten seiner Stabilitätsgrenze Schaden nehmen.
Für eine nach dem Rankine-Kreisprozess arbeitende Maschine ist das Problem des Auftretens von Kavitation beispielsweise in der EP 1 624 269 A2 beschrieben. Dort soll eine Kavitation in dem Arbeitsfluid Wasser innerhalb des Kondensators sowie der nachfolgenden Pumpe dadurch verhindert werden, dass am Kondensator eine spezifische Druck- und Temperaturregelung vorgesehen ist. Dafür sind entsprechende Druck- und Temperatursensoren umfasst. Insbesondere wird der Wasserpegel im Kondensator auf ein vorbestimmtes Niveau gehalten. Unterstützt wird dies durch ein Ablassventil, welches Wasser oder nicht-kondensierende Gase nach außen abführt. Auch in der US 7,131 ,290 B2 ist für eine nach dem Rankine-Kreisprozess arbeitende Maschine die Bedeutung eines gleichbleibenden Wasserpegels im Kondensator beschrieben. Insbesondere ist die Auswirkung eines veränderlichen Wasserpegels auf die zur Wirkung kommenden Kühlflächen im Kondensator angegeben. Dringt aufgrund der im Kondensator herrschenden Unterdruckverhältnisse nicht-kondensierendes Gas wie Luft in das Kreislaufsystem des Arbeitsfluids ein, so sammelt sich dieses insbesondere im Kondensator. Um einen hieraus resultierenden Verlust der Kühlleistung zu verhindern, schlägt die US 7,131 ,290 B2 eine entsprechende Trenn- und Ablassvorrichtung vor.
Aus der DE 10 2006 013 190 A1 ist eine komplexe Fluidmaschine bekannt, die nach dem Clausius-Rankine-Kreisprozess arbeitet. Die Fluidmaschine hat eine Pumpe zum Unter-Druck-Setzen und Auspumpen eines Flüssigphasen- Arbeitsfluids und eine mit der Pumpe in Reihe verbundene Expansionsvorrichtung zum Erzeugen einer Antriebskraft durch Expansion des Arbeitsfluids, welches geheizt wird, um zu einem Gasphasen-Arbeitsfluid zu werden. Dabei ist vorgesehen, die Wärme des Arbeitsfluids an einer Auslassseite der Expansionsvorrichtung auf das Arbeitsfluid an einer Auslassseite der Fluidpumpe zu übertragen.
Aus der DE 36 41 122 A1 ist eine transportable Antriebseinheit zum Umsetzen von Wärme bekannt, die als eine thermodynamische Maschine der eingangs genannten Art ausgebildet ist und nach dem Rankine-Kreisprozess arbeitet.
Aus der DE 7 225 314 U ist eine Dampfkraftanlage bekannt, wobei ein organisches Arbeitsmittel im Rankine-Kreisprozess verwendet ist.
Auch aus der US 4,291 ,232 ist eine thermodynamische Maschine der eingangs genannten Art bekannt. Dabei zirkuliert als Arbeitsfluid eine Gas-/Flüssigkeits- Lösung, insbesondere eine Ammoniak/Wasser-Lösung. Durch die Lösung des Gases in der Flüssigkeit wird der Druck von Gas und Flüssigkeit abgesenkt. Durch Separieren des Gases unter Termperaturerhöhung wird der Druck erhöht. Aufgabe der Erfindung ist es, eine thermodynamische Maschine der eingangs genannten Art dahingehend weiterzubilden, dass das Auftreten von Kavitation in der Flüssigkeit bzw. im flüssigen Arbeitsfluid möglichst vermieden ist. Weiter ist es eine Aufgabe der Erfindung, ein entsprechendes Verfahren zum Betrieb einer solchen thermodynamischen Maschine anzugeben, wobei Kavitation in der Flüssigkeit möglichst vermieden ist.
Bezüglich der Maschine wird die gestellte Aufgabe erfindungsgemäß durch die Merkmalskombination gemäß Anspruch 1 gelöst. Demnach ist für eine thermodynamische Maschine der eingangs genannten Art vorgesehen, dass dem flüssigen Arbeitsfluid im Vorlauf der Flüssigkeitspumpe durch Zugabe eines nicht-konden- sierenden Hilfsgases ein den Systemdruck erhöhender Partialdruck aufgeprägt ist.
Die Erfindung geht dabei von der Erkenntnis aus, dass insbesondere bei der Konzeption einer ORC-Maschine die Möglichkeit eines Auftretens von Kavitation in der flüssigen Phase unterschätzt wird. So kommt es vor, dass bei der Gesamtkonzeption beispielsweise eine für eine Pumpe angegebene Vorlaufhöhe nicht eingehalten wird. Eine solche Vorlaufhöhe bewirkt durch die Fluidsäule am Ansaugstutzen dort eine notwendige Druckerhöhung. Aufgrund des vorgeschalteten Kondensators liegt nämlich das Fluid ohne Beachtung der Vorlaufhöhe an der Pumpe mit dem Sättigungs- oder Kondensationsdampfdruck an, sofern man davon ausgeht, dass kein Unterkühlung stattfindet. Bei Einschalten der Pumpe kann dann ohne Beachtung der Vorlaufhöhe durch die entstehenden Saugleistung der Sättigungsdampfdruck unterschritten werden. Es kommt zur Kavitation.
Die Vorlaufhöhe für eine Pumpe ist typischerweise durch den so genannten NPSH-Wert gegeben. Unter dem NPSH-Wert (Net Positive Suction Head) wird hierbei die notwendige Mindestzulaufhöhe über dem Sättigungsdampfdruck verstanden. Mit anderen Worten drückt der notwendige NPSH-Wert die Saugleistung der Pumpe aus. Der NPSH-Wert wird in Meter angegeben. Er beträgt für eine hier geeignete Pumpe typischerweise einige Meter. Wird für eine gegebene Pumpe im Vorlauf demnach der NPSH-Wert nicht eingehalten, so kommt es während des Betriebs zu nicht unerheblichen Kavitationsproblemen. Es kommt zu einer unerwünschten Bildung von Dampfblasen.
Nachteiligerweise muss insofern gerade bei der Konzeption einer kleinen und kompakten ORC-Maschine die Pumpe bezüglich des Anlagenniveaus abgesenkt angeordnet werden, was zu einer unerwünschten Bauraumvergrößerung führt.
Alternativen zur Vermeidung von Kavitation in der flüssigen Phase des
Arbeitsfluids, wie beispielsweise eine Unterkühlung des Arbeitsfluids zur Absenkung des Dampfdrucks, sind wegen des zusätzlichen Aufwands teuer. Auch resultiert ein zusätzlicher Flächenbedarf. Zudem muss mehr Energie zur Aufheizung des unterkühlten Arbeitsfluids aufgebracht werden. In gleichem Maße ist der Einsatz einer Vorpumpe zum Erzeugen eines Zusatzdruckes am Saugstutzen nicht wirtschaftlich. Im Übrigen wird auch durch eine Zusatzpumpe zusätzlicher
Bauraum benötigt.
In überraschender Weise erkennt die Erfindung nun, dass sich das Problem der Entstehung von Kavitationen in einer thermodynamischen Maschine durch den Einsatz eines nicht-kondensierenden Gases lösen lässt. Während bislang in nach dem Rankine-Kreisprozess arbeitenden Maschinen im Kreislauf befindliches nicht- kondensierendes Gas als unerwünscht, da den Wirkungsgrad absenkend, aufwändig entfernt wurde, sieht die Erfindung nun ein bewusstes Einbringen vor.
Die Erfindung erkennt nämlich, dass sich im Falle eines im Kreislauf befindlichen nicht-kondensierenden Gases dessen Partialdruck in der Gasphase zum Kondensationsdruck addiert. Der hieraus resultierende, in der gewünschten Art und Weise angehobene Systemdruck prägt sich dem flüssigen Arbeitsfluid insbesondere im Vorlauf der Flüssigkeitspumpe auf. Die mit der Zugabe eines nicht-kondensierenden Gases in den Kreislauf verbundenen Nachteile wie insbesondere eine Erhöhung des Gegendrucks für die Entspannungsmaschine wird im Falle eines niedrig-siedenden Arbeitsfluids durch die Vorteile einer Vermeidung von Kavitation aufgehoben. Im Falle eines niedrig-siedenden Arbeitsfluids wird gegenüber Wasser bei höheren Drücken kondensiert. Typischerweise kann bei Raumtemperatur über Atmosphärendruck kondensiert werden. Der durch das Hilfsgas notwendig erzeugte Partialdruck wirkt sich insofern weniger und im Sinne des Gesamtkonzeptes vernachlässigbar auf den Gesamtwirkungsgrad aus.
Im Detail erlaubt es die Erfindung, die zugegebene Stoffmenge des Hilfsgases so zu wählen, dass die Vorlaufhöhe für die Pumpe im Sinne des zur Verfügung stehenden Bauraums entsprechend verringert werden kann. Zugleich kann hierbei beachtet werden, dass der für die Entspannungsmaschine hinderliche Gegendruck in einem insgesamt akzeptablen Niveau verbleibt.
Die Erfindung bietet insofern den deutlichen Vorteil, dass eine kompakte thermo- dynamische Maschine zur Ausnutzung von Niedertemperatur-Wärmequellen kon- zeptioniert werden kann. Der Bauraum ist dabei durch die notwendige Vorlaufhöhe der Pumpe nicht mehr zwingend vorgegeben. Da grundsätzlich das nicht- kondensierende Hilfsgas beim Befüllen der Anlage einmalig mit eingebracht werden kann, sind gegebenenfalls sogar keinerlei baulichen Zusatzmaßnahmen erforderlich. Insofern bietet die Erfindung eine äußerst kostengünstige Möglichkeit zu einer weiteren Kompaktierung einer thermodynamischen Maschine. Die Erfindung eignet sich insofern hervorragend, um kleine mobile Maschinen zu konzep- tionieren, die beispielsweise auf Kraftfahrzeugen zur Nutzung der Motoren-, Kühlmittel- oder Abgaswärme eingesetzt werden.
In einer vorteilhaften Ausgestaltung ist der durch die Zugabe des Hilfsgases resultierende Partialdruck ausreichend groß, damit im Vorlauf bei Betrieb der Flüssigkeitspumpe der Sättigungsdampfdruck nicht unterschritten ist. Wie im Folgenden dargelegt wird, ist dies unter gewissen Vereinfachungsannahmen (keine zusätzliche Unterkühlung der Flüssigkeit) beispielsweise dann der Fall, wenn der resultierende Partialdruck wenigstens dem NPSH-Wert der Flüssigkeitspumpe entspricht. Eine Vorlaufhöhe der Pumpe kann gegebenenfalls sogar ganz entfallen. Unter realen Bedingungen muss die Menge des zugeführten Hilfsgases so bemessen werden, dass der resultierende Partialdruck den Saugdruck bzw. den umgerechneten NPSH-Wert übersteigt. Die Erfindung ist nicht zwingend auf eine thermodynamische Maschine eingeschränkt, die nach dem Rankine-Kreisprozess arbeitet. Beispielsweise kann auch eine Maschine umfasst sein, die keine Verdampfung des Arbeitsfluids vor der Entspannungsmaschine umfasst, sondern bei welcher in der Entspannungsmaschine durch einen sich kontinuierlich vergrößernden Arbeitsraum eine Flash- Verdampfung des Arbeitsfluids erfolgt. Insbesondere können kontinuierliche Phasenumwandlungen vorgenommen werden.
Im Sinne einer ORC-Maschine können als Arbeitsfluid auch Mischungen verschiedener Arbeitsmedien eingesetzt werden, um so eine an die gegebenen Bedingungen angepasste ideale Arbeitsweise der Maschine zu erzielen.
Unter Bezugnahme auf Fig. 2, linkes Teilbild, stellt sich in einer thermodynami- schen Maschine des Standes der Technik im Kondensator entsprechend der gegebenen Temperatur der Sättigungsdampfdruck ps des Arbeitsfluids ein. Wird die Pumpe zum Abzug der flüssigen Phase des Arbeitsfluids eingeschaltet, so wird am Ansaugstutzen ein Saugdruck gemäß dem gegebenen NPSH-Wert erzeugt. Um diesen Saugdruck PNPSH verringert sich der Sättigungsdampfdruck ps. Als Folge resultiert an der Pumpe ein Eingangsdruck pE, der kleiner ist als der Sättigungsdampfdruck ps. Folglich kommt es zur Bildung von Dampfblasen mithin zur Kavitation.
Durch ein zugegebenes nicht-kondensierendes Hilfsgas (rechtes Teilbild der Figur 2) resultiert an der Pumpe ein Systemdruck, der sich aus dem Sättigungsdampfdruck ps und dem Partialdruck ppart des Hilfsgases addiert. Nach Einschalten der Pumpe wird dieser Systemdruck wiederum um den durch den NPSH-Wert vorgegebenen Saugdruck PNPSH reduziert. Ist der aufgrund des eingebrachten Hilfsgases resultierende Partialdruck ppart dieses nicht-kondensierenden Gases größer als oder zumindest gleich dem Saugdruck PNPSH am Ansaugstutzen der Pumpe, so ist der Eingangsdruck pE nun aber zumindest gleich oder größer als der Sättigungsdampfdruck ps. Eine Kavitation ist somit verhindert. Für eine gewünschte, durch das Hilfsgas aufzubringende Druckdifferenz Δρ zwischen dem Systemdruck und dem Sättigungsdampfdruck, vorteilhafterweise ist dies wenigstens PNPSH , berechnet sich die notwendige Stoffmenge x, des Hilfsgases nach
Für ein reales System wird dann die Stoffmenge x, des Hilfsgases so bemessen, dass auch bei ungünstigen Bedingungen, also bei verringerten Kondensationstemperaturen und damit verringerten Sättigungsdampfdrücken, ausreichend Hilfsgas vorhanden ist. Auch ist zu berücksichtigen, dass ein Teil des Hilfsgases in Lösung geht und somit nicht mehr zur Erzeugung einer Druckdifferenz zur Verfügung steht. Auch können bei der Bemessung der zugeführten Stoffmenge des Hilfsgases unterschiedliche Betriebsphasen der Maschine (Teillast, Volllast) berücksichtigt werden.
In einer bevorzugten Ausgestaltung der Maschine kann gemäß den vorgenannten Ausführungen die Bauhöhe entsprechend dadurch verringert werden, dass die tatsächliche Vorlaufhöhe der Flüssigkeitspumpe gegenüber einer notwendigen Vorlaufhöhe, die den NPSH-Wert und gegebenenfalls eine Unterkühlung des flüssigen Arbeitsfluids berücksichtigt, verringert ist. Durch eine zusätzliche Unterkühlung der Flüssigkeit wird sich die notwendige Vorlaufhöhe aufgrund des herabgesetzten Dampfdrucks verringern. Die mögliche, weitere Verringerung der tatsächlichen Vorlaufhöhe ist durch den Partialdruck des eingebrachten Hilfsgases gegeben. Dabei kann zur Einhaltung gewisser Reserven auch eine geringe Vorlaufhöhe trotz entsprechender Einspeisung des Hilfsgases beibehalten werden. Eine Reduzierung der Vorlaufhöhe wird insofern durch eine entsprechende Stoffmenge des Hilfsgases kompensiert.
Die Einbringstelle für das Hilfsgas kann grundsätzlich an einer beliebigen Stelle des Kreislaufsystems der Maschine vorgesehen sein. Die Einbringstelle kann hierbei für ein einmaliges Einbringen oder für ein wiederholtes Einbringen des Hilfsgases ausgelegt sein. In einer bevorzugten Ausgestaltung ist eine Einbring- stelle für das Hilfsgases zwischen der Entspannungsmaschine und der Flüssigkeitspumpe vorgesehen. Damit steht das Hilfsgas unmittelbar an der benötigten Stelle im Kreislauf zur Verfügung. Das Hilfsgas ist auf der kalten Seite des Kreisprozesses in die flüssige Phase eingebracht. Insbesondere kann das Hilfsgas dort auch leicht abgezogen werden, da es sich im Kondensator sammeln lässt. Dazu kann beispielsweise die Maschine„kaltgefahren" werden, wodurch das Hilfsgas langsam in den Kondensator strömt. Zur Zugabe des Hilfsgases kann beispielsweise ein Kompressor verwendet werden. Alternativ kann eine Druckflasche angeschlossen sein. Eine Zugabe des Hilfsgases auf der heißen Seite des Kreisprozesses ist mit Mehraufwand verbunden.
Das nicht-kondensierende Hilfsgas ist ein solches Gas, welches unter den im Kreislauf der thermodynamischen Maschine herrschenden oder gegebenen Bedingungen nicht kondensiert. Als ein solches Hilfsgas eignen sich beispielsweise Edelgase oder Stickstoff. Auch kommen geeignete organische Gase in Frage.
Das nicht-kondensierende Hilfsgas wird sich in gewissem Umfang mit dem Ar- beitsfluid im Kreislauf der thermodynamischen Maschine bewegen. Üblicherweise sind in nach dem Rankine-Kreisprozess arbeitenden Maschinen mit dem Arbeits- fluid Wasser für den Kondensator so genannte Rohrbündel-Wärmetauscher vorgesehen. Dabei werden die Rohre innen von einer Kühlflüssigkeit durchströmt.
Das gasförmige Arbeitsfluid strömt außen an den Rohren entlang, kondensiert auf deren Oberfläche und tropft als Kondensat oder flüssige Phase ab.
Nachteiligerweise reichert sich in einem solchen Kondensator abhängig von seiner Ausrichtung jedoch gegebenenfalls das nicht-kondensierenden Hilfsgas an. In diesem Fall verbleibt das Hilfsgas als eine isolierende Schicht um die Rohre, wodurch der Wirkungsgrad des Kondensators reduziert wird. Das nicht-kondensierende Hilfsgas kann nur abgebaut werden durch einen Abzug entgegen der Strömungsrichtung des Kondensats oder durch Diffusion. Um bei Zugabe eines nicht-kondensierenden Hilfsgases diesen Nachteil zu vermeiden, ist der Kondensator vorteilhafterweise zu einer Mitnahme des Hilfsgases in Strömungsrichtung des Kondensats bzw. des flüssigen Arbeitsfluids ausgestaltet. Ein solcher Kondensator ist beispielsweise als ein Luftkondensator oder mittels Plattenwärmetauschelementen ausgebildet. Bei einem Luftkondensator strömt das gasförmige Arbeitsfluid durch das Innere von Rohren, die außen beispielsweise von Luft, aber auch von einem sonstigen Kühlmittel umströmt werden. In diesem Fall wird das Hilfsgas in Strömungsrichtung zumindest teilweise von nachfolgendem gasförmigen Arbeitsfluid durch die Rohre geschoben. Ebenfalls gilt dies für Kondensatoren, die mittels Plattenwärmetauschelementen gebildet sind. Auch hier strömt das gasförmige Arbeitsfluid durch die Zwischenräume der Plattenwärmetauschelemente und wird ein Teil des Hilfsgases mit aus dem Kondensator nehmen. Der für einen Rohrbündel-Wärmetauscher gegebene unerwünschte Effekt der Ausbildung einer Isolierschicht wird hierdurch verringert.
Weiter bevorzugt ist im Vorlagebehälter ein Sensor zur Erfassung der Hilfsgas- konzentration angeordnet. Mittels eines derartigen Sensors, der im Gasraum oberhalb der gesammelten Flüssigkeit des Arbeitsfluids angeordnet sein wird, kann beispielsweise die sich im Kreislaufssystem befindliche Stoffmenge des Hilfsgases gemessen und bei Unterschreiten oder Überschreiten eines vorgegebenen Grenzwertes ein Warnsignal ausgegeben werden. Entsprechend dem Warnsignal kann dann eine bestimmte Stoffmenge des Hilfsgases zugeführt oder abgezogen werden.
Wie vorbeschrieben eignet sich die angegebene thermodynamische Maschine insbesondere für eine mobile Anlage in einem Kraftfahrzeug, wobei der
Wärmeübertrager wärmetechnisch an eine Abwärmequelle des Fahrzeugs gekoppelt ist. Eine solche Abwärmequelle stellt beispielsweise das Kühlmittel, ein sonstiges Betriebsmittel wie z.B. Öl, der Motorblock selbst oder das Abgas dar.
Die zur Stromerzeugung mit einem entsprechenden Generator gekoppelte Entspannungsmaschine ist bevorzugt als eine Verdrängermaschine ausgebildet. Eine derartige Verdrängermaschine ist beispielsweise eine Schrauben- oder Kolbenex- pansionsmaschine oder eine Scrollexpansionsmaschine. Auch kann eine Flügelzellenmaschine eingesetzt sein.
Die auf ein Verfahren gerichtete Aufgabe wird erfindungsgemäß durch die Merkmalskombination gemäß Anspruch 9 gelöst. Demnach ist für ein Verfahren zum Betrieb einer thermodynamischen Maschine vorgesehen, dass dem flüssigen Ar- beitsfluid in einem Pumpenvorlauf durch Zugabe eines nicht-kondensierenden Hilfsgases ein den Systemdruck erhöhender Partialdruck aufgeprägt wird.
Weitere bevorzugte Ausgestaltungen können den auf ein Verfahren gerichteten Unteransprüchen entnommen werden. Dabei können die für die Maschine genannten Vorteile sinngemäß entsprechend übertragen werden.
Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Dabei zeigen:
Fig. 1 schematisch eine ORC-Maschine mit einem im Pumpenvorlauf aufgeprägten Partialdruck eines Hilfsgases und
Fig. 2 eine schematische Darstellung verschiedener Druckverhältnisse.
In Fig. 1 ist schematisch eine ORC-Maschine 1 dargestellt, wie sie sich insbesondere als eine mobile Anlage zur Ausnutzung der Abwärme von Verbrennungskraftmaschinen eignet. Die ORC-Maschine 1 umfasst hierbei in einem Kreislauf- System 2 als einen Wärmeübertrager 3 einen Verdampfer, eine Entspannungsmaschine 5, einen Kondensator 6 sowie eine Flüssigkeitspumpe 8. Die dargestellte ORC-Maschine 1 arbeitet nach dem Rankine-Kreisprozess, wobei an der Entspannungsmaschine 5 Arbeit zum Antrieb eines Generators 9 verrichtet wird. Der Generator 9 ist insbesondere zu einer Einspeisung des gewonnenen Stromes in das fahrzeugeigene Bordnetz ausgebildet bzw. hieran angeschlossen. Als Arbeits- fluid 10 ist ein Kohlenwasserstoff verwendet, der gegenüber Wasser einen deutlich höheren Dampfdruck aufweist. Das Arbeitsfluid 10 befindet sich in einem abgeschlossenen Kreislauf. Das über die Flüssigkeitspumpe 8 geförderte flüssige Arbeitsfluid 10 wird in dem Verdampfer 3 bei einem hohen Druck verdampft. An der Entspannungsmaschine 5, die als eine Verdrängermaschine ausgebildet ist, entspannt sich das gasförmige Arbeitsfluid 10 unter Verrichtung der Arbeit. Das entspannte gasförmige Arbeitsfluid 10 wird in dem Kondensator 6 bei niedrigem Druck kondensiert. Der sich im Kondensator 6 einstellende Sättigungsdampfdruck beträgt etwa 1 ,2 bar. Das Kondensat bzw. das flüssige Arbeitsfluid 10 wird in einem Vorlagebehälter 11 gesammelt, bevor es durch die Pumpe 8 erneut zur Verdampfung gefördert wird.
Zur Kühlung des Kondensators 6 ist eine Abwärmeabfuhr 14 vorgesehen. Beispielsweise kann dies Umluft eines Kraftfahrzeugs sein, wobei die Kondensationswärme des Arbeitsfluids der Umluft beispielsweise zur Aufheizung des Fahrgastinnenraumes zugeführt wird. Der Kondensator 6 ist als ein Luftkondensator ausgebildet, in dem das zu kühlende Arbeitsfluid 10 im Inneren von umströmten Rohren entlang strömt.
Zur Verdampfung des von der Pumpe 8 geförderten Arbeitsfluids 10 wird dem Verdampfer 3 über eine Abwärmezufuhr 16 Wärme zugeführt. Dazu wird dem Verdampfer 3 über eine geeignete Wärmetauschung Wärme vom Abgas des Fahrzeugmotors zugeführt. Alternativ kann Wärme aus dem Kühlkreislauf des Verbrennungsmotors zugeführt werden. Auch kann die Abwärme des Verbrennungsmotors sowie des erzeugten Abgases insgesamt über ein entsprechendes Drittmedium dem Verdampfer 3 zugeführt werden.
Zwischen der Entspannungsmaschine 5 und der Flüssigkeitspumpe 8 ist am Kondensator 6 eine Einbringstelle 18 zur Einbringung eines nicht-kondensierenden Hilfsgases 20 in den Kreislauf der ORC-Maschine 1 vorgesehen. Über ein entsprechendes Ventil kann ein- oder mehrmalig eine spezifische Stoffmenge Xi des Hilfsgases 20 in den Kreislauf der ORC-Maschine eingebracht werden. Die Stoffmenge X, ist hierbei so bemessen, dass sich im Vorlauf der Pumpe 8 der Partial- druck des Hilfsgases 20 und der Sättigungsdampfdruck des Arbeitsfluids 10 (resultierend aus der Kondensation im Kondensator 6) zu einem Systemdruck derart addiert, dass nach Einschalten der Pumpe der Sättigungsdampfdruck des Arbeitsfluids nicht unterschritten wird. Es wird hierdurch auch ein Unterschreiten des Sättigungsdampfdruckes an Umlenkungen des strömenden Arbeitsfluids in flüssiger Phase verhindert. Insbesondere ist die Stoffmenge x, derart bemessen, dass der resultierende Partialdruck des Hilfsgases größer ist als der dem NPSH- Wert der Pumpe entsprechende Saugdruck. Insofern wird im Vorlauf und insbesondere am Saugstutzen der Flüssigkeitspumpe 8 Kavitation verhindert. Da der Sättigungsdampfdruck des Arbeitsfluids 10 während des Betriebes nicht unterschritten wird, bilden sich dort keine Dampfblasen aus.
Die Vorlaufhöhe 21 (hier schematisch eingezeichnet) ist gegenüber dem NPSH- Wert der Flüssigkeitspumpe 8 deutlich auf nur wenige zehn Zentimeter abgesenkt. Im Vorlagebehälter 11 ist ein Sensor 22 zur Messung der Konzentration des Hilfsgases 20 angeordnet.
Bezugszeichenliste
1 ORC-Maschine
2 Kreislaufsystem
3 Wärmeübertrager
5 Entspannungsmaschine
6 Kondensator
8 Flüssigkeitspumpe
9 Generator
10 Arbeitsfluid
11 Vorlagebehälter 14 Abwärmeabfuhr 16 Abwärmezufuhr 18 Einbringstelle
20 Hilfsgas
21 Vorlauf höhe
22 Sensor

Claims

Ansprüche
Thermodynamische Maschine (1) mit einem Kreislauf-System
(2), in dem ein insbesondere niedrig siedendes Arbeitsfluid (10) abwechselnd in Gas- und Flüssigphase zirkuliert, mit einem Wärmeübertrager
(3), mit einer Entspannungsmaschine (5), mit einem Kondensator (6) und mit einer Flüssigkeitspumpe (8),
dadurch gekennzeichnet,
dass dem flüssigen Arbeitsfluid (10) im Vorlauf der Flüssigkeitspumpe (8) durch Zugabe eines nicht-kondensierenden Hilfsgases (20) ein den Systemdruck erhöhender Partialdruck aufgeprägt ist.
Thermodynamische Maschine (1) nach Anspruch 1 ,
dadurch gekennzeichnet,
dass der durch Zugabe des Hilfsgases (20) resultierende Partialdruck ausreichend groß ist, damit im Vorlauf bei Betrieb der Flüssigkeitspumpe (8) der Sättigungsdampfdruck nicht unterschritten ist.
Thermodynamischer Maschine (1) nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die tatsächliche Vorlaufhöhe (21) der Flüssigkeitspumpe (8) gegenüber einer notwendigen Vorlaufhöhe, die den NPSH-Wert und gegebenenfalls eine Unterkühlung des flüssigen Arbeitsfluids (10) berücksichtigt, verringert ist.
4. Thermodynamische Maschine (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Einbringstelle (18) für das Hilfsgas (20) zwischen der Entspannungsmaschine (5) und der Flüssigkeitspumpe (8) vorgesehen ist.
5. Thermodynamische Maschine (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Kondensator (6) zu einer Mitnahme des Hilfsgases (20) in Strömungsrichtung des Arbeitsfluids (10), insbesondere als ein Luftkondensator oder mittels Plattenwärmetauschelementen, ausgebildet ist.
6. Thermodynamische Maschine (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Entspannungsmaschine (5) eine Verdrängermaschine ist.
7. Thermodynamische Maschine (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass in einem Vorlagebehälter (11) des flüssigen Arbeitsfluids (10) ein Sensor (22) zur Erfassung der Hilfsgaskonzentration angeordnet ist.
8. Verwendung einer thermodynamischen Maschine (1) nach einem der vorhergehenden Ansprüche als mobile Anlage für ein Kraftfahrzeug, wobei der Wärmeübertrager (3) wärmetechnisch mit einer Abwärmequelle (16) des Kraftfahrzeugs gekoppelt ist.
9. Verfahren zum Betrieb einer thermodynamischen Maschine (1), wobei in einem Kreislauf-System (2) ein insbesondere niedrig siedendes Arbeitsfluid (10) abwechselnd in Gas- und Flüssigphase zirkuliert, und wobei das Ar- beitsfluid (10) erhitzt, entspannt, kondensiert und durch Pumpen der Flüssigkeit gefördert wird,
dadurch gekennzeichnet,
dass dem flüssigen Arbeitsfluid (10) in einem Pumpenvorlauf durch Zugabe eines nicht-kondensierenden Hilfsgases (20) ein den Systemdruck erhöhender Partialdruck aufgeprägt wird.
Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass das Hilfsgas (20) in einer solchen Menge eingebracht wird, dass der resultierende Partialdruck ausreichend groß ist, um während der Förderung des flüssigen Arbeitsfluids
(10) im Pumpenvorlauf den Sättigungsdampfdruck nicht zu unterschreiten.
11. Verfahren nach Anspruch 9 oder 10,
dadurch gekennzeichnet,
dass das Hilfsgas (20) dem entspannten, gasförmigen Arbeitsfluid (10) zugegeben wird.
12. Verfahren nach einem der Ansprüche 9 bis 11 ,
dadurch gekennzeichnet,
dass das Hilfsgas (20) während des Kondensierens des Arbeitsfluids (10) überwiegend in Strömungsrichtung weitertransportiert wird.
13. Verfahren nach einem der Ansprüche 9 bis 12,
dadurch gekennzeichnet,
dass das Arbeitsfluid (10) in einer Verdrängermaschine entspannt wird.
14. Verfahren nach einem der Ansprüche 9 bis 13,
dadurch gekennzeichnet,
dass zum Erhitzen und/oder Verdampfen des Arbeitsfluids (10) Abwärme eines Kraftfahrzeugs herangezogen wird (16).
EP10782537.4A 2009-11-14 2010-10-30 Thermodynamische maschine sowie verfahren zu deren betrieb Active EP2499343B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10782537T PL2499343T3 (pl) 2009-11-14 2010-10-30 Maszyna termodynamiczna oraz sposób jej eksploatacji

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009053390A DE102009053390B3 (de) 2009-11-14 2009-11-14 Thermodynamische Maschine sowie Verfahren zu deren Betrieb
PCT/EP2010/006640 WO2011057724A2 (de) 2009-11-14 2010-10-30 Thermodynamische maschine sowie verfahren zu deren betrieb

Publications (2)

Publication Number Publication Date
EP2499343A2 true EP2499343A2 (de) 2012-09-19
EP2499343B1 EP2499343B1 (de) 2013-12-11

Family

ID=43927322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10782537.4A Active EP2499343B1 (de) 2009-11-14 2010-10-30 Thermodynamische maschine sowie verfahren zu deren betrieb

Country Status (14)

Country Link
US (1) US8646273B2 (de)
EP (1) EP2499343B1 (de)
JP (1) JP5608755B2 (de)
KR (1) KR101752160B1 (de)
CN (1) CN102639818B (de)
BR (1) BR112012011409B1 (de)
CA (1) CA2780791C (de)
DE (1) DE102009053390B3 (de)
ES (1) ES2447827T3 (de)
IL (1) IL219426A (de)
MX (1) MX2012005586A (de)
PL (1) PL2499343T3 (de)
RU (1) RU2534330C2 (de)
WO (1) WO2011057724A2 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000100A1 (de) 2011-01-06 2012-07-12 Cummins Intellectual Property, Inc. Rankine-kreisprozess-abwärmenutzungssystem
DE202012101448U1 (de) * 2012-04-19 2013-07-22 Gunter Krauss Stickstoffantriebssystem
US9284857B2 (en) * 2012-06-26 2016-03-15 The Regents Of The University Of California Organic flash cycles for efficient power production
DE102012024017B4 (de) * 2012-12-08 2016-03-10 Pegasus Energietechnik AG Vorrichtung zum Umwandeln von thermischer Energie mit einer Druckerhöhungseinrichtung
DE202013100814U1 (de) * 2013-01-11 2014-04-14 Becker Marine Systems Gmbh & Co. Kg Vorrichtung zur Erzeugung von Energie
DE102013202285A1 (de) * 2013-02-13 2014-08-14 Andrews Nawar Verfahren und Vorrichtung zur Erzeugung von Energie, insbesondere elektrischer Energie
EP2865854B1 (de) 2013-10-23 2021-08-18 Orcan Energy AG Vorrichtung und Verfahren zum zuverlässigen Starten von ORC Systemen
WO2015099417A1 (ko) * 2013-12-23 2015-07-02 김영선 전기자동차 발전시스템
DE102014002336A1 (de) * 2014-02-12 2015-08-13 Nawar Andrews Verfahren und Vorrichtung zur Erzeugung von Energie, insbesondere elektrischer Energie
FR3020090B1 (fr) * 2014-04-16 2019-04-12 IFP Energies Nouvelles Dispositif de controle d'un circuit ferme fonctionnant selon un cycle de rankine et procede utilisant un tel dispositif
EP2933442B1 (de) 2014-04-16 2016-11-02 Orcan Energy AG Vorrichtung und Verfahren zur Erkennung von Leckagen in geschlossenen Kreisprozessen
JP6423614B2 (ja) * 2014-05-13 2018-11-14 株式会社神戸製鋼所 熱エネルギー回収装置
EP3161276B1 (de) * 2014-06-26 2018-04-04 Volvo Truck Corporation Wärmerückgewinnungssystem
DK3006682T3 (da) * 2014-10-07 2022-09-12 Orcan Energy Ag Indretning og fremgangsmåde til drift af en varmeoverføringsstation
EP3015660B1 (de) 2014-10-31 2018-12-05 Orcan Energy AG Verfahren zum betreiben eines thermodynamischen kreisprozesses
ES2586425B1 (es) * 2015-02-19 2018-06-08 Expander Tech, S.L. Sistema de anti-cavitación eficiente de bombas para ciclos de potencia rankine orgánicos
FR3084913B1 (fr) 2018-08-09 2020-07-31 Faurecia Systemes Dechappement Systeme thermique a circuit rankine
DE102019003744A1 (de) * 2019-05-23 2020-11-26 Madalin Vinersar Vorrichtung und Verfahren zur Energieerzeugung, insbesondere zur Erzeugung von elektrischem Strom
JP7716288B2 (ja) 2021-09-17 2025-07-31 三菱重工マリンマシナリ株式会社 動力回収システム
SE547323C2 (en) 2023-02-10 2025-07-01 Climeon Ab Thermodynamic system comprising a pump assembly

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7225314U (de) * 1971-07-06 1973-11-15 Sundstrand Corp Erhitzer-Ekonomiser-Vorrichtung für eine Dampfkraftanlage mit organischem Arbeitsmittel
US4291232A (en) * 1979-07-09 1981-09-22 Cardone Joseph T Liquid powered, closed loop power generating system and process for using same
JPS58144613A (ja) * 1982-02-22 1983-08-29 Mitsubishi Heavy Ind Ltd 発電プラントのホツトウエルタンク
JPS5951109A (ja) * 1982-09-17 1984-03-24 Hitachi Ltd 蒸気原動所の復水器真空保持装置
JPS6020093A (ja) * 1983-07-14 1985-02-01 Mitsubishi Heavy Ind Ltd 熱回収系
US4738111A (en) * 1985-12-04 1988-04-19 Edwards Thomas C Power unit for converting heat to power
JPS62210391A (ja) * 1986-03-10 1987-09-16 Toshiba Corp 地熱発電システムにおける復水器のガス除去装置
IL101002A (en) * 1991-02-20 2001-01-28 Ormat Turbines 1965 Ltd Method of and means for using a two phase fluid for generating power in a rankine cycle power plant
RU2148722C1 (ru) * 1998-09-24 2000-05-10 Научно-исследовательская фирма "Эн-Ал" Энергетический цикл, в котором используется смесь
DE19853206C1 (de) * 1998-11-18 2000-03-23 Siemens Ag Verfahren zur Kondensatanwärmung in einem Speisewasserbehälter eines Dampfkraftwerkes
JP2004353517A (ja) * 2003-05-28 2004-12-16 Ebara Corp 発電装置
US6986251B2 (en) * 2003-06-17 2006-01-17 Utc Power, Llc Organic rankine cycle system for use with a reciprocating engine
BRPI0413986A (pt) 2003-08-27 2006-11-07 Ttl Dynamics Ltd sistema de recuperação de energia, usos de hfe-7100 ou hexano ou água e de um dos alcanos, sistema de geração de energia elétrica, unidade de turbina de afluxo radial, mancal, acoplamento magnético rotativo, método realizado em um sistema de recuperação de energia para extrair energia a apartir de uma fonte de calor residual, método de controle de um sistema de recuperação de energia, e, sistemas de controle programável e de purificação de fluido de trabalho para um sistema de conversão de energia
EP1624269A3 (de) 2003-10-02 2006-03-08 HONDA MOTOR CO., Ltd. Kühlungsregelungsvorrichtung für Kondensator
US7131290B2 (en) 2003-10-02 2006-11-07 Honda Motor Co., Ltd. Non-condensing gas discharge device of condenser
US7225621B2 (en) * 2005-03-01 2007-06-05 Ormat Technologies, Inc. Organic working fluids
JP4493531B2 (ja) * 2005-03-25 2010-06-30 株式会社デンソー 膨張機付き流体ポンプおよびそれを用いたランキンサイクル
GB0513463D0 (en) * 2005-07-01 2005-08-10 Highview Entpr Ltd Injection apparatus for cryogenic engines
US20090320478A1 (en) * 2006-01-04 2009-12-31 General Electric Company Reduced boundary layer separation steam jet air ejector assembly and method
RU2304722C1 (ru) * 2006-05-11 2007-08-20 Общество с ограниченной ответственностью "Теплофизика-2Т" Энергетический цикл а.в. серогодского
GB2442743A (en) * 2006-10-12 2008-04-16 Energetix Group Ltd A Closed Cycle Heat Transfer Device
SE530868C2 (sv) * 2007-02-09 2008-09-30 Volvo Lastvagnar Ab Kylsystem
JP2008231981A (ja) * 2007-03-19 2008-10-02 Sanden Corp 内燃機関の廃熱利用装置
DE102008013545B4 (de) * 2008-03-11 2015-11-05 Alfred Becker Gmbh Vorrichtung und Verfahren zur Abwärmenutzung mittels eines ORC-Prozesses
US8297355B2 (en) * 2008-08-22 2012-10-30 Texaco Inc. Using heat from produced fluids of oil and gas operations to produce energy
CN101408115B (zh) * 2008-11-11 2011-04-06 西安交通大学 一种适用于车用发动机余热回收的热力循环系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011057724A2 *

Also Published As

Publication number Publication date
US20120227404A1 (en) 2012-09-13
WO2011057724A2 (de) 2011-05-19
US8646273B2 (en) 2014-02-11
KR101752160B1 (ko) 2017-06-29
RU2534330C2 (ru) 2014-11-27
KR20120115225A (ko) 2012-10-17
WO2011057724A3 (de) 2011-10-13
CA2780791A1 (en) 2011-05-19
JP2013510984A (ja) 2013-03-28
RU2012124416A (ru) 2013-12-20
CA2780791C (en) 2015-06-02
CN102639818A (zh) 2012-08-15
IL219426A0 (en) 2012-06-28
CN102639818B (zh) 2015-03-25
PL2499343T3 (pl) 2014-05-30
EP2499343B1 (de) 2013-12-11
DE102009053390B3 (de) 2011-06-01
IL219426A (en) 2016-10-31
MX2012005586A (es) 2012-05-29
BR112012011409B1 (pt) 2020-02-11
JP5608755B2 (ja) 2014-10-15
BR112012011409A2 (pt) 2016-05-03
ES2447827T3 (es) 2014-03-13

Similar Documents

Publication Publication Date Title
DE102009053390B3 (de) Thermodynamische Maschine sowie Verfahren zu deren Betrieb
DE68926220T2 (de) Verfahren und Vorrichtung zur Dampfkrafterzeugung
EP2748434B1 (de) Anlage zur speicherung thermischer energie
DE102006043139B4 (de) Vorrichtung zur Gewinnung von mechanischer oder elektrischer Energie aus der Abwärme eines Verbrennungsmotors eines Kraftfahrzeugs
EP2357349B2 (de) System zur Abwärmenutzung einer Brennkraftmaschine mit Einfrierschutzeinrichtung
DE102013009351B3 (de) Anlage und Verfahren zur Rückgewinnung von Energie aus Wärme in einem thermodynamischen Kreisprozess
DE102014223626A1 (de) Vorrichtung und Verfahren zur Rückgewinnung von Abwärmeenergie und ein Nutzkraftfahrzeug
DE3022284A1 (de) Verfahren und einrichtung zum speichern und hochtransformieren der temperatur von waerme
DE102011117054A1 (de) Vorrichtung zur Energierückgewinnung aus einem Abwärmestrom einer Verbrennungskraftmaschine in einem Fahrzeug mit einem Arbeitsmedium-Kreislauf und Verfahren zur Leckage-Erkennung in einem Arbeitsmedium-Kreislauf
EP2653668A1 (de) Verfahren zum Laden und Entladen eines Wärmespeichers und Anlage zur Speicherung und Abgabe von thermischer Energie, geeignet für dieses Verfahren
DE102009042584A1 (de) Wärmeübertrager und System zur Nutzung von Abwärme eines Verbrennungsmotors
DE112016000565B4 (de) Einheit zum Umwandeln von Wärme in mechanische Energie
DE102013210425A1 (de) Anlage und Verfahren zum Aufbereiten von Wasser
DE102010054667B3 (de) Frostsichere Dampfkreisprozessvorrichtung und Verfahren für deren Betrieb
WO2008055720A2 (de) Arbeitsmedium für dampfkreisprozesse
DE102016215836A1 (de) Vorrichtung und Verfahren zur Energierückgewinnung
WO2012152602A1 (de) Leitungskreis und verfahren zum betreiben eines leitungskreises zur abwärmenutzung einer brennkraftmaschine
WO2017081248A1 (de) Anordnung und verfahren zur rückgewinnung von energie aus der abwärme mindestens einer brennkraftmaschine
DE102013016461A1 (de) Verfahren zum Betrieb eines Niedertemperaturkraftwerkes, sowie Niedertemperaturkraftwerk selbst
DE102011101665A1 (de) Wärmeeinheit zum Erzeugen elektrischer Energie
DE102022125604B4 (de) System und Verfahren zur Energiewandlung und Energiespeicherung
EP2577002B1 (de) Verfahren und vorrichtung zur speicherung und abgabe von energie
WO2014117924A2 (de) Verfahren zum betrieb eines niedertemperaturkraftwerkes, sowie niedertemperaturkraftwerk selbst
DE102010034229A1 (de) Brennkraftmaschine mit zumindest zwei Wärmerückgewinnungsvorrichtungen und ein Verfahren zum Betrieb der Brennkraftmaschine
DE10361318A1 (de) Anlage zur Entsalzung von Meerwasser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120502

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 644736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010005668

Country of ref document: DE

Effective date: 20140206

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2447827

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005668

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

26N No opposition filed

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005668

Country of ref document: DE

Effective date: 20140912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141030

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ORCAN ENERGY AG, DE

Free format text: FORMER OWNER: ORCAN ENERGY GMBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010005668

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010005668

Country of ref document: DE

Owner name: ORCAN ENERGY AG, DE

Free format text: FORMER OWNER: ORCAN ENERGY GMBH, 81379 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ORCAN ENERGY AG

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101030

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ORCAN ENERGY AG, DE

Effective date: 20160805

Ref country code: FR

Ref legal event code: CJ

Effective date: 20160805

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: ORCAN ENERGY AG; DE

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN DE JURIDISCHE ENTITEIT; FORMER OWNER NAME: ORCAN ENERGY GMBH

Effective date: 20160617

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 644736

Country of ref document: AT

Kind code of ref document: T

Owner name: ORCAN ENERGY AG, DE

Effective date: 20160803

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241022

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20241218

Year of fee payment: 15

Ref country code: BE

Payment date: 20241022

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241021

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241025

Year of fee payment: 15

Ref country code: AT

Payment date: 20241021

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20241031

Year of fee payment: 15

Ref country code: ES

Payment date: 20241118

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20241023

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20241101

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20251023

Year of fee payment: 16