EP2497184A2 - Windkraftgenerator mit innenkühlkreislauf - Google Patents

Windkraftgenerator mit innenkühlkreislauf

Info

Publication number
EP2497184A2
EP2497184A2 EP10775764A EP10775764A EP2497184A2 EP 2497184 A2 EP2497184 A2 EP 2497184A2 EP 10775764 A EP10775764 A EP 10775764A EP 10775764 A EP10775764 A EP 10775764A EP 2497184 A2 EP2497184 A2 EP 2497184A2
Authority
EP
European Patent Office
Prior art keywords
wind power
power generator
rotor
cooling
hollow shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10775764A
Other languages
English (en)
French (fr)
Inventor
Christoph Balzer
Karsten Brach
Christian Meyer
Axel MÖHLE
Andre Schlawitz
Frank Seibicke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2497184A2 publication Critical patent/EP2497184A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a wind power generator with an internal cooling circuit with a laminated stator, which has a winding system which forms winding heads on the front sides of the stator, wherein the stator is surrounded at least in the region of its laminated core by a cooling jacket, wherein permanent magnets of a rotor on a Arranged as a hollow ⁇ wave Polradmantel are arranged.
  • Wind power generators like other dynamo-electric machines, require cooling of their active parts.
  • the interior of the wind power generator ie the electrical area is endangered by foreign bodies or aggressive media, which inter alia attack the insulation or affect the elekt ⁇ cal strength. This leads to Radiobe ⁇ impairments or failure of the wind power generator. Therefore, it is common in dynamoelectric machines in such an environment to provide a closed internal cooling circuit, which is optionally recooled by external coolers.
  • This Maschi ⁇ ne has a stator and a rotor, wherein the stator and rotor each have cooling channels, which are arranged as part of a cooling circuit for a cooling medium for cooling of the stator and rotor.
  • the stator channels are formed as recesses in the stator from ⁇ with the stator channels limiting ridge on the outer periphery of the stator and schrau ⁇ benförmig and more consistently out cooling channels for a further cooling medium in a stator housing to the stator housing.
  • cooling medium increases in the Läu ⁇ ferkanäle heat from the rotor and outputs it in the rack channels on the stand.
  • DE 101 07 298 Cl a closed electric machine with surface cooling with a closed inner cooling medium circuit over the rotor body is known.
  • cooling medium channels are present in the rotor on different pitch circles of the rotor body cross section for different flow directions.
  • a wind power generator with a closed internal cooling circuit, with a laminated runner having a winding system which forms on the front sides of the stator winding ⁇ heads, the stator at least in the range of his laminated core of a Cooling jacket is surrounded, with Per ⁇ manentmagnete a rotor are arranged on a hollow shaft
  • the Polradmantel is rotatably connected via support members at its ends with a shaft or stub shafts, the hollow shaft having in its interior at least one tube whose Mantelflä ⁇ che in equidistant distance to the Polradmantel runs, and wherein on the front sides of the rotor fans are mounted.
  • the fans on the front sides of the rotor are not only designed as pure radial fan, the fan blades are attached only to a hub, but the fan blades or blades are connected to one another at one axial end by a support disc.
  • a support disc To avoid this supporting discs of the respective fans take over air control functions within the closed interior of the Windkraftgenera ⁇ tors so fluidic "short circuits".
  • ⁇ tet In order for a prescribed cooling current profile is provided leis ⁇ tet.
  • Advantageous ⁇ adhesive enough is at an axial end of the wind power generator is attached to the B-side of an external, in particular decreasing ⁇ Barer heat exchanger, in particular a ring radiator and integrated into the flow of coolant such that the coolant flow of the internal cooling circuit is recooled there.
  • FIG. 2 shows a cross section of a wind generator.
  • FIG. 1 shows, in a basic representation, a longitudinal section of a wind power generator 1 with a side A and a side B, the side A of the wind turbine of a wind turbine not shown in more detail. turned wind turbine is facing.
  • the mechanical coupling to the wind turbine itself takes place via a shaft or at least one stub shaft 7 directly or via a transmission.
  • the wind power generator 1 is housed in a housing 2, which has an inlet and an outlet opening 14, 15, which serve for the coolant supply and removal of a cooling jacket 3, which is arranged between the housing 2 and the stator 4.
  • a cooling jacket 3 and flowing in the cooling channels 17 cooling medium the losses are removed from the laminated core of the stator 4.
  • Wi ⁇ ckelkexcellent 10 are formed on the end faces of the laminated core of the stator 4, which are to be fixed by stiffening elements 16 due to their axial projection, so that movements of the winding head 10 are excluded, for example due to elektrody ⁇ namischer balancing operations.
  • a rotor 5, which has a Polradmantel 6 is rotatably connected by means of support elements 28, in particular at the axial ends of the Polradmantels 6 with a shaft or stub shafts 7.
  • the Polradmantel 6 has poles, the insbesonde ⁇ re are formed by permanent magnets 18. Each pole has, depending on the axial length of the rotor 5 and Polumble a plurality of successively and / or juxtaposed permanent magnets 18.
  • the Polradmantel 6 of the rotor 5 together with the support members 28 is a hollow shaft which is according to the invention to be ⁇ uses to create an opposite flow direction of a gasför ⁇ -shaped coolant of the wind power generator 1 in the closed interior. This is achieved in that within the hollow shaft, so ra ⁇ dial within the Polradmantels 6 tubes 29, 33 are arranged to create the predeterminable spaces within the hollow shaft. Furthermore, these tubes serve 29, 33 together with the support elements 28 of the stiffening of the entire hollow shaft, so that in this way also mechanical vibrations or impermissible torsional movements are suppressed.
  • fans 24, 25 are arranged, which give the cooling air flow within the closed dynamoelectric machine sufficient flow velocity.
  • an A-side fan 24 and a B-side fan 25 are provided.
  • the A-side fan 24 is advantageously attached to the Polradmantel 6 radially next lying tube 29 and thus creates in addition to a ra ⁇ Dialen promotion of passing from the hollow shaft cooling air flow at the same time a separation of the opposing ver ⁇ running cooling air streams at the beginning of the hollow shaft. This is achieved in particular in that the A-side fan 24 has a support plate 13 which faces the rotor 5.
  • the B-side fan 25 is also attached to the tube 29 and / or to the existing support member 28 there. Also, the Lüf ⁇ tereriel this fan 25 is moun- ted on a supporting plate 12, so that in addition to promoting the cooling air flow in the radial direction and flowing back to the partitioning of the cooling air flow is ensured from a heat exchanger.
  • the A-side fan 24 now sucks a cooling air flow 30 from the inner region of the hollow shaft, this cooling air flow has already been pre-cooled by a heat exchanger 9.
  • the heat exchanger 9 is mounted on a housing plate 27, which is supported via a bearing 19 on the shaft or a stub shaft 7. Through openings 20 of the housing shield 27 and further openings 23 in the support elements 28, the A-side fan 24 suck this cooling air flow through the inner part of the hollow shaft.
  • the A-side fan 24 now pushes the pre-cooled cooling air flow 30 radially in the direction of the winding Kopf 10, who strokes there over the winding head 10 and absorbs heat there.
  • the cooling air stream 30 splits into two partial streams.
  • a partial flow 31 flows through the active part of the rotor 5 by possibly existing substantially axially extending Pol ⁇ gaps and / or the air gap 8.
  • the other partial stream 32 is via the support plate 13 of the A-side fan 24 in a radially extending inside the pole jacket 6 axial cooling duct between Polradmantel and pipe 29 is directed and sucked in there via the B-side fan 25.
  • the two partial streams 31 and 32 unite and are amplified by this B-side fan 25 in its flow velocity and deflected to the second winding head 10.
  • the ⁇ ser now flows through guide elements 11 and ring lines and is directed after passing through the housing 27 by an air guide hood 26 mounted on the housing plate 27 heat exchanger 9. After passing through the heat exchanger 9, the cooling air is sucked in again by the A-side fan 24 through the air duct formed by the tubes 29 and 33 within the hollow shaft. In this way, this inner cooling circuit closes.
  • cooling jacket 3 in a further embodiment axially even further than in FIG 1 protrudes beyond the winding heads 10, insbe ⁇ special adapted to the length of the housing 2, in addition to the circulating cooling air inside the winding heads are additionally cooled, resulting in a discharge of the heat exchanger 9 leads.
  • FIG. 2 shows a cross section of a wind power generator, with respect. of the stator 4, the housing 2, the cooling jacket 3 and the coolant course within the wind power generator 1, as shown in FIG.
  • the cooling channel design on the axial length of the rotor 5 is now ensured by the openings 40 between the struts 38, the Polradmantel 6 and the tube 29.
  • the one cooling channel is formed by the surface 41 of the shaft 39 and the inside of the tube 29.
  • the flow in the opposite direction of this cooling channel during operation other cooling channel is formed by the inside of the Polradmantels 6 and the outer ⁇ side of the tube 29.
  • the struts 38 are designed in the respective cooling channel so that during operation of the Windkraftgenera ⁇ sector 1, the coolant flow is supported.
  • these struts 38 have a ventilator-wing-shaped construction which supports the axial flow. That is, at least some struts 38 have radially under half of the tube 29 has a different shape than radially above the tube 29.
  • the inside of the rotor 5, ie radially inside the Polradmantels 6 opposite direction coolant flow is supported.

Abstract

Die Erfindung betrifft einen Windkraftgenerator (1) mit einem geschlossenen Innenkühlkreislauf, mit einem geblecht ausgeführten Ständer (4), der ein Wicklungssystem aufweist, das an den Stirnseiten des Ständers Wickelköpfe (10) ausbildet, wobei der Ständer (4) zumindest im Bereich seines Blechpakets von einem Kühlmantel (3) umgeben ist, wobei Permanentmagnete (18) eines Läufers (5) auf einem als Hohlwelle ausgebildeten Polradmantel (6) angeordnet sind, wobei der Polradmantel (6) über Tragelemente (28) an seinen Stirnseiten mit einer Welle (7) oder Wellenstummeln drehfest verbunden ist, wobei die Hohlwelle in ihrem Inneren zumindest ein Rohr (29, 33) aufweist, dessen Mantelfläche in äquidistantem Abstand zum Polradmantel (6) verläuft, und wobei an den Stirnseiten des Läufers (5) Lüfter (24, 25) angebracht sind.

Description

Beschreibung
Windkraftgenerator mit Innenkühlkreislauf Die Erfindung betrifft einen Windkraftgenerator mit Innenkühlkreislauf mit einem geblecht ausgeführten Ständer, der ein Wicklungssystem aufweist, das an den Stirnseiten des Ständers Wickelköpfe ausbildet, wobei der Ständer zumindest im Bereich seines Blechpakets von einem Kühlmantel umgeben ist, wobei Permanentmagnete eines Läufers auf einem als Hohl¬ welle ausgebildeten Polradmantel angeordnet sind.
Windkraftgeneratoren benötigen ebenso wie andere dynamoelektrische Maschinen eine Kühlung ihrer Aktivteile. Dabei ist insbesondere der Innenraum des Windkraftgenerators, also der elektrische Bereich durch Fremdkörper oder aggressive Medien gefährdet, die u.a. die Isolierung angreifen oder die elekt¬ rische Festigkeit beeinträchtigen. Dies führt zu Betriebsbe¬ einträchtigungen oder zum Ausfall des Windkraftgenerators. Deshalb ist es bei dynamoelektrischen Maschinen in einem derartigen Umfeld üblich, einen geschlossenen Innenkühlkreislauf vorzusehen, der ggf. durch externe Kühler rückgekühlt wird.
Aus der DE 199 19 040 C2 ist eine Synchronmaschine mit Schen- kelpolläufern oder Vollpolläufern für große Windenergieanlagen, insbesondere im Off-shore-Bereich bekannt. Diese Maschi¬ ne weist einen Ständer und einen Läufer auf, wobei Ständer und Läufer jeweils Kühlkanäle aufweisen, die als Teil eines Kühlkreislaufs für ein Kühlmedium zum Kühlen von Ständer und Läufer angeordnet sind. Dabei sind die Ständerkanäle als Aus¬ nehmungen im Ständer mit einem die Ständerkanäle begrenzenden Steg am Außenumfang des Ständers ausgebildet und Kühlkanäle für ein weiteres Kühlmedium in einem Ständergehäuse schrau¬ benförmig und mehrgängig um das Ständergehäuse geführt. Auf diese Art und Weise nimmt das Kühlmedium im Bereich der Läu¬ ferkanäle Wärme aus dem Läufer auf und gibt diese im Bereich der Ständerkanäle an den Ständer ab. Aus der DE 101 07 298 Cl ist eine geschlossene elektrische Maschine mit Oberflächenkühlung mit einem geschlossenen inneren Kühlmedienkreislauf über den Rotorkörper bekannt. Dabei sind im Läufer Kühlmedienkanäle auf unterschiedlichen Teil- kreisen des Rotorkörperquerschnitts für unterschiedliche Strömungsrichtungen vorhanden.
Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, ei¬ ne dynamoelektrische Maschine, insbesondere einen Windkraft- generator zu schaffen, dessen Innenraum abgeschlossen ist, und der dennoch eine ausreichende effiziente Kühlung auf¬ weist. Dabei soll insbesondere für langsam laufende Wind- kraftgeneratoren eine ausreichende Kühlung vorgesehen werden. Die Lösung der gestellten Aufgabe gelingt durch einen Wind- kraftgenerator mit einem geschlossenen Innenkühlkreislauf, mit einem geblecht ausgeführten Ständer, der ein Wicklungssystem aufweist, das an den Stirnseiten des Ständers Wickel¬ köpfe ausbildet, wobei der Ständer zumindest im Bereich sei- nes Blechpakets von einem Kühlmantel umgeben ist, wobei Per¬ manentmagnete eines Läufers auf einem als Hohlwelle ausgebil¬ deten Polradmantel angeordnet sind, wobei der Polradmantel über Tragelemente an seinen Stirnseiten mit einer Welle oder Wellenstummeln drehfest verbunden ist, wobei die Hohlwelle in ihrem Inneren zumindest ein Rohr aufweist, dessen Mantelflä¬ che in äquidistantem Abstand zum Polradmantel verläuft, und wobei an den Stirnseiten des Läufers Lüfter angebracht sind.
Vorteilhafterweise wird dabei der Windkraftgenerator mit nur einer Getriebestufe bei mittlerer Drehzahl angetrieben. Dies hat den großen Vorteil, dass er gegenüber der komplett ge¬ triebelosen Generatorvariante den Einsatz von direkt am Läu¬ fer angeordneten Lüftern ermöglicht, so dass auf zusätzlich anzutreibende und zu regelnde Fremdlüfter verzichtet werden kann.
Durch zusätzlich innerhalb des Polradmantels angeordnete Roh¬ re werden Kühlkanäle geschaffen, die die Kühleffizienz und den Strömungsverlauf im Innenraum des Windkraftgenerators strukturieren und so zu einer effizienten Kühlung im Innenraum des Windkraftgenerators führen. Vorteilhafterweise sind die Lüfter an den Stirnseiten des Läufers nicht nur als reine Radiallüfter ausgeführt, deren Lüfterschaufeln nur an einer Nabe befestigt sind, vielmehr sind die Lüfterschaufeln bzw. -flügel an einem axialen Ende durch eine Tragscheibe miteinander verbunden. Diese Trag- Scheiben der jeweiligen Lüfter übernehmen Luftleitfunktionen innerhalb des geschlossenen Innenraums des Windkraftgenera¬ tors, so strömungstechnische "Kurzschlüsse" vermieden werden. Damit wird ein vorgeschriebener Kühlstromverlauf gewährleis¬ tet .
An einem axialen Ende des Windkraftgenerators ist, vorteil¬ hafterweise an der B-Seite ein externer, insbesondere abnehm¬ barer Wärmetauscher, insbesondere ein Ringkühler angebracht und in den Kühlmittelstrom derart integriert, dass der Kühl- mittelstrom des Innenkühlkreislaufs dort rückgekühlt wird.
Durch diese Art der Platzierung ist eine leichte Zugänglichkeit gewährleistet, so dass ein Austausch oder Wartungsarbei¬ ten an diesem Wärmetauscher leicht vorzunehmen sind. Die Zugänglichkeit einzelner Komponenten des Windkraftgenera¬ tors und/oder dessen Funktionstüchtigkeit ist insbesondere im Off-shore-Bereich von außerordentlicher Bedeutung.
Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung werden in den schematisch dargestellten Ausführungsbeispielen näher erläutert; darin zeigen:
FIG 1 einen Längsschnitt eines Windgenerators,
FIG 2 einen Querschnitt eines Windgenerators.
Figur 1 zeigt in prinzipieller Darstellung einen Längsschnitt eines Windkraftgenerators 1 mit einer Seite A und einer Seite B, wobei die Seite A der Windturbine einer nicht näher darge- stellten Windkraftanlage zugewandt ist. Die mechanische An- kopplung zur Windturbine selbst, geschieht über eine Welle oder zumindest einen Wellenstummel 7 direkt oder aber über ein Getriebe. Der Windkraftgenerator 1 ist in einem Gehäuse 2 untergebracht, das einen Ein- und eine Auslassöffnung 14, 15 aufweist, die zur Kühlmittelzufuhr bzw. -abfuhr eines Kühlmantels 3 dienen, der zwischen Gehäuse 2 und dem Ständer 4 angeordnet ist. Durch diesen Kühlmantel 3 und das in den Kühlkanälen 17 fließende Kühlmedium werden aus dem Blechpaket des Ständers 4 die Verluste abtransportiert werden.
An den Stirnseiten des Blechpakets des Ständers 4 sind Wi¬ ckelköpfe 10 angeformt, die aufgrund ihrer axialen Ausladung durch Versteifungselemente 16 zu fixieren sind, so dass Bewe- gungen des Wickelkopfes 10 beispielsweise aufgrund elektrody¬ namischer Ausgleichsvorgänge ausgeschlossen sind.
Ein Läufer 5, der einen Polradmantel 6 aufweist, ist mittels Tragelementen 28, insbesondere an den axialen Enden des Pol- radmantels 6 mit einer Welle oder Wellenstummeln 7 drehfest verbunden. Der Polradmantel 6 weist Pole auf, die insbesonde¬ re durch Permanentmagnete 18 ausgebildet werden. Dabei weist jeder Pol je nach axialer Länge des Läufers 5 und Polbreite mehrere hintereinander und/oder nebeneinander angeordnete Permanentmagnete 18 auf. Außerdem sind die Permanentmagnete
18 in Taschen des Polradmantels 6, oder auf seiner Oberfläche angeordnet und in diesem Fall durch eine geeignete Vorrich¬ tung, beispielsweise eine Bandage gehalten. Durch elektromagnetische Wechselwirkungen mit dem Wicklungs¬ system des Ständers 4 wird die rotatorische Energie der Wind¬ turbine in elektrische Energie umformt.
Der Polradmantel 6 des Läufers 5 bildet zusammen mit den Tragelementen 28 eine Hohlwelle, die erfindungsgemäß dazu be¬ nutzt wird, eine gegensinnige Strömungsrichtung eines gasför¬ migen Kühlmittels im geschlossenen Innenraum des Windkraftgenerators 1 zu schaffen. Dies gelingt dadurch, dass innerhalb der Hohlwelle, also ra¬ dial innerhalb des Polradmantels 6 Rohre 29, 33 angeordnet sind, die vorgebbare Zwischenräume innerhalb der Hohlwelle schaffen. Des Weiteren dienen diese Rohre 29, 33 zusammen mit den Tragelementen 28 der Versteifung der gesamten Hohlwelle, so dass auf diese Art und Weise auch mechanische Schwingungen oder unzulässige Torsionsbewegungen unterdrückt werden.
An den Stirnseiten des Läufers 5 sind Lüfter 24, 25 angeord- net, die dem Kühlluftstrom innerhalb der geschlossenen dynamoelektrischen Maschine eine ausreichende Strömungsgeschwindigkeit verleihen. So ist ein A-seitiger Lüfter 24 und ein B-seitiger Lüfter 25 vorgesehen. Der A-seitige Lüfter 24 ist vorteilhafterweise an dem dem Polradmantel 6 radial nächst- liegenden Rohr 29 befestigt und schafft somit neben einer ra¬ dialen Förderung eines aus der Hohlwelle tretenden Kühlluftstroms gleichzeitig eine Trennung der dort gegensinnig ver¬ laufenden Kühlluftströme zu Beginn der Hohlwelle. Dies wird insbesondere dadurch erreicht, dass der A-seitige Lüfter 24 eine Tragscheibe 13 aufweist, die dem Läufer 5 zugewandt ist.
Der B-seitige Lüfter 25 ist ebenfalls am Rohr 29 und/oder an dem dort vorhandenen Tragelement 28 angebracht. Auch die Lüf¬ terflügel dieses Lüfters 25 sind an einer Tragscheibe 12 be- festigt, so dass neben einer Förderung des Kühlluftstroms in radialer Richtung auch eine Abschottung des rückströmenden Kühlluftstroms aus einem Wärmetauscher 9 gewährleistet ist.
Der A-seitige Lüfter 24 saugt nun einen Kühlluftstrom 30 aus dem inneren Bereich der Hohlwelle, wobei dieser Kühlluftstrom bereits durch einen Wärmetauscher 9 vorgekühlt wurde. Der Wärmetauscher 9 ist an einem Gehäuseschild 27, das über ein Lager 19 an der Welle oder einem Wellenstummel 7 abgestützt ist, angebracht. Durch Öffnungen 20 des Gehäuseschilds 27 und weiteren Öffnungen 23 in den Tragelementen 28 kann der A-seitige Lüfter 24 diesen Kühlluftstrom über den inneren Teil der Hohlwelle ansaugen. Der A-seitige Lüfter 24 schiebt nunmehr den vorgekühlten Kühlluftstrom 30 radial in Richtung Wickel- köpf 10, der dort über den Wickelkopf 10 streicht und dort Wärme aufnimmt.
Danach spaltet sich der Kühlluftstrom 30 in zwei Teilströme auf. Ein Teilstrom 31 durchströmt das Aktivteil des Läufers 5 durch ggf. vorhandene im Wesentlichen axial verlaufende Pol¬ lücken und/oder den Luftspalt 8. Der andere Teilstrom 32 wird über die Tragscheibe 13 des A-seitigen Lüfters 24 in einen radial innerhalb des Polmantels 6 verlaufenden axialen Kühl- kanal zwischen Polradmantel und Rohr 29 gelenkt und dort über den B-seitigen Lüfter 25 angesogen. Am Ende des Aktivteils des Läufers 5 vereinigen sich die beiden Teilströme 31 und 32 und werden durch diesen B-seitigen Lüfter 25 in ihrer Strömungsgeschwindigkeit verstärkt und auf den zweiten Wickelkopf 10 umgelenkt.
Im weiteren Verlauf dieses Kühlmittelstroms durchströmt die¬ ser nun Leitelemente 11 bzw. Ringleitungen und wird nach Passieren des Gehäuses 27 durch eine Luftführungshaube 26 auf den im Gehäuseschild 27 montierten Wärmetauscher 9 gelenkt. Nach Passieren des Wärmetauschers 9 wird die Kühlluft durch den durch die Rohre 29 und 33 gebildeten Luftkanal innerhalb der Hohlwelle wieder vom A-seitigen Lüfter 24 angesaugt. Auf diese Art und Weise schließt sich dieser innere Kühlkreis- lauf.
Durch Einsatz der Wellenlüfter 24, 25 wird der Gesamtwirkungsgrad des Windkraftgenerators 1 erhöht, da keine Energie¬ versorgung für den Betrieb eines Fremdlüfters bereitgestellt werden muss.
Durch die am Polradmantel 6 befestigte Tragelemente 28 der Wellenstummel 7 ist eine vereinfachte Luftführung mittels eingeschweißter 21 oder verschraubter Rohre 29, 33 möglich, die an den Tragelementen 28 zentriert werden. Außerdem entsteht so ein Bypass, wodurch die Wärmeverluste auch durch Konvektion des Polrades abgeführt werden können. Die Tragele- mente 28 sind zur Kühlluftdurchströmung mit Öffnungen 23 versehen .
Falls der Kühlmantel 3 in einer weiteren Ausgestaltung axial noch weiter als in FIG 1 über die Wickelköpfe 10 ragt, insbe¬ sondere der Länge des Gehäuses 2 angepasst, werden neben der umströmenden Kühlluft im Inneren auch die Wickelköpfe zusätzlich gekühlt, was zu einer Entlastung des Wärmetauschers 9 führt .
FIG 2 zeigt einen Querschnitt eines Windkraftgenerators, der bzgl . des Ständers 4, des Gehäuses 2, des Kühlmantels 3 und des Kühlmittelsverlauf innerhalb des Windkraftgenerators 1 wie in FIG 1 ausgeführt ist.
Unterschiede ergeben sich lediglich in dem Aufbau des Läufers 5, der aber auch den grundsätzlichen erfinderischen Gedanken des Kühlmittelsumlaufs beinhaltet. In FIG 1 weisen die dort aufgeführten Tragelemente 28 Öffnun¬ gen 23 auf, die den erfindungsgemäßen Kühlmittelumlauf ges¬ tatten. In FIG 2 wird der Polradmantel 6, also das Läufer¬ blechpaket und das Rohr 29 durch sternförmige Streben 38 gehalten, die sich auf einer Welle 39 abstützen, die vorteil- hafterweise aus Gewichtsgründen auch hohl ausgeführt ist.
Der Kühlkanalgestaltung auf der axialen Länge des Läufers 5 wird nunmehr durch die Öffnungen 40 zwischen den Streben 38, dem Polradmantel 6 und dem Rohr 29 gewährleistet. Dabei wird der eine Kühlkanal durch die Oberfläche 41 der Welle 39 und der Innenseite des Rohres 29 gebildet. Der in Gegenrichtung dieses Kühlkanals im Betrieb durchströmte andere Kühlkanal wird durch die Innenseite des Polradmantels 6 und der Außen¬ seite des Rohres 29 gebildet.
Vorteilhafterweise sind die Streben 38 in dem jeweiligen Kühlkanal so gestaltet, dass im Betrieb des Windkraftgenera¬ tors 1 die Kühlmittelströmung unterstützt wird. Dies gelingt insbesondere dadurch, dass diese Streben 38 einen lüfterflü- gelförmigen Aufbau aufweisen, der die axiale Strömung unterstützt. D.h. zumindest einige Streben 38 weisen radial unter halb des Rohres 29 eine andere Form auf, als radial oberhalb des Rohres 29. Damit wird die innerhalb des Läufers 5, also radial innerhalb des Polradmantels 6 gegensinnige Kühlmittel Strömung unterstützt.

Claims

Patentansprüche
1. Windkraftgenerator (1) mit einem geschlossenen Innenkühl- kreislauf, mit einem geblecht ausgeführten Ständer (4), der ein Wicklungssystem aufweist, das an den Stirnseiten des Ständers Wickelköpfe (10) ausbildet, wobei der Ständer (4) zumindest im Bereich seines Blechpakets von einem Kühlmantel (3) umgeben ist, wobei Permanentmagnete (18) eines Läufers (5) auf einem als Hohlwelle ausgebildeten Polradmantel (6) angeordnet sind, wobei der Polradmantel (6) über Tragelemente (28) an seinen Stirnseiten mit einer Welle (7) oder Wellenstummeln drehfest verbunden ist, wobei die Hohlwelle in ihrem Inneren zumindest ein Rohr (29,33) aufweist, dessen Mantelfläche in äquidistantem Abstand zum Polradmantel (6) verläuft, und wobei an den Stirnseiten des Läufers (5) Lüfter (24, 25) angebracht sind.
2. Windkraftgenerator (1) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass das Rohr (29) innerhalb der Hohlwelle derart angeordnet ist, dass sich innerhalb der Hohlwelle Kühlkanäle ergeben, die eine gegensinnige Strö¬ mungsrichtung eines Kühlluftstromes innerhalb der Hohlwelle gestattet .
3. Windkraftgenerator (1) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass die Lüfter (24,25) auf der jeweiligen Stirnseite des Läufers (5) Lüfter¬ flügel aufweisen, die jeweils an einer Tragscheibe (12,13) befestigt sind, wobei die Tragscheibe (12,13) zugleich Luft- leitfunktion übernimmt.
4. Windkraftgenerator (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass ein weiteres Rohr (33) sich innerhalb der Hohlwelle be- findet, das zur Versteifung des Läufers (5) und/oder weiteren Kühlkanalgestaltung beiträgt.
5. Windkraftgenerator (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass sich an einer Seite des Windkraftgenerators (1) ein ins¬ besondere abnehmbarer Wärmetauscher (9) befindet, der das im Innenraum befindliche gasförmige Medium des geschlossenen Kühlkreislaufes rückkühlt.
EP10775764A 2009-11-02 2010-10-25 Windkraftgenerator mit innenkühlkreislauf Withdrawn EP2497184A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009051651A DE102009051651B4 (de) 2009-11-02 2009-11-02 Windkraftgenerator mit Innenkühlkreislauf
PCT/EP2010/066068 WO2011051228A2 (de) 2009-11-02 2010-10-25 Windkraftgenerator mit innenkühlkreislauf

Publications (1)

Publication Number Publication Date
EP2497184A2 true EP2497184A2 (de) 2012-09-12

Family

ID=43466469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10775764A Withdrawn EP2497184A2 (de) 2009-11-02 2010-10-25 Windkraftgenerator mit innenkühlkreislauf

Country Status (7)

Country Link
US (1) US9287747B2 (de)
EP (1) EP2497184A2 (de)
CN (1) CN102598479B (de)
BR (1) BR112012011582A2 (de)
DE (1) DE102009051651B4 (de)
RU (1) RU2519061C2 (de)
WO (1) WO2011051228A2 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ609843A (en) * 2010-11-04 2015-05-29 Wobben Properties Gmbh Wind energy installation having a synchronous generator, and slowly rotating synchronous generator
JP5879116B2 (ja) * 2011-12-15 2016-03-08 株式会社日立製作所 回転電機及びそれを備えた鉄道車両並びに電動車両
DK2662952T3 (en) * 2012-05-11 2015-09-14 Siemens Ag Generator, especially for a wind turbine
CN102916550B (zh) * 2012-08-10 2015-03-04 杭州奥泰电器有限公司 内散热式直流无刷电机
CN102801238B (zh) * 2012-08-15 2014-09-17 北京交通大学 一种利于散热的永磁电机转子
EP2757666B1 (de) * 2013-01-17 2015-06-24 Siemens Aktiengesellschaft Verbesserte Kühlung einer elektrischen Maschine
NO335892B1 (no) * 2013-04-10 2015-03-16 Smartmotor As Undervanns elektromekanisk energiomformer
DE102013207241A1 (de) * 2013-04-22 2014-10-23 Siemens Aktiengesellschaft Elektrische Maschine mit einer verbesserten Kühlung des Wickelkopfs
EP2922179A1 (de) * 2014-03-17 2015-09-23 Siemens Aktiengesellschaft Rotor einer rotierenden elektrischen Maschine
DE102014106453A1 (de) * 2014-05-08 2015-11-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromaschine für den Einsatz im KFZ-Bereich
EP2949574B1 (de) 2014-05-30 2018-07-11 ABB Schweiz AG Pod-Antriebseinheit eines Schiffs
EP2975742B1 (de) * 2014-07-14 2017-08-30 Siemens Aktiengesellschaft Elektrische Maschine mit verbesserter Kühlung
DE102014017273A1 (de) 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014223959A1 (de) * 2014-11-25 2016-05-25 Robert Bosch Gmbh Elektrische Maschine mit reduziertem Streufluss durch Gehäuse
EP3046225A1 (de) 2015-01-16 2016-07-20 Siemens Aktiengesellschaft Elektrische rotierende Maschine mit einseitiger Kühlung und Verfahren zur einseitigen Kühlung
CN104600886B (zh) * 2015-01-27 2017-01-25 新疆金风科技股份有限公司 永磁直驱风力发电机、系统及其定子
CN104810942B (zh) 2015-04-15 2017-03-01 新疆金风科技股份有限公司 永磁直驱风力发电机、系统及其定子
EP3136549A1 (de) 2015-08-24 2017-03-01 Siemens Aktiengesellschaft Synchrone reluktanzmaschine
EP3142231A1 (de) * 2015-09-08 2017-03-15 ABB Technology AG Stromgenerator
JP2017118719A (ja) * 2015-12-25 2017-06-29 株式会社日立製作所 回転電機
CN105591497A (zh) * 2016-03-23 2016-05-18 中车永济电机有限公司 定子独立通风冷却式永磁电机
EP4274006A3 (de) * 2016-06-07 2024-01-10 Tesla, Inc. Elektromotorabwärmemodus zum erwärmen einer batterie
DE102016216479A1 (de) 2016-09-01 2018-03-01 Siemens Aktiengesellschaft Rotorhohlwelle mit Doppelwandung
FR3062253B1 (fr) * 2017-01-25 2020-06-12 IFP Energies Nouvelles Machine electrique tournante fermee comportant un systeme de refroidissement interne par air des aimants dans le rotor
EP3560080A1 (de) * 2017-02-02 2019-10-30 Siemens Gamesa Renewable Energy A/S Kühlanordnung
EP3379696A1 (de) 2017-03-21 2018-09-26 Siemens Aktiengesellschaft Synchrone reluktanzmaschine
DE102018104074A1 (de) 2018-02-22 2019-08-22 Thyssenkrupp Ag Rotor, Rotorwelle und elektrische Maschine
RU185018U1 (ru) * 2018-05-17 2018-11-19 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Ротор электрической машины
TWI678867B (zh) * 2018-07-09 2019-12-01 群光電能科技股份有限公司 變頻器整合馬達
DE112019006640T5 (de) * 2019-01-10 2021-10-07 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Motor und inverter-integrierte rotierbare elektrische maschine
DE102019218088A1 (de) * 2019-11-22 2021-05-27 Zf Friedrichshafen Ag Rotor für eine elektrische Maschine
FR3105649B1 (fr) * 2019-12-19 2021-11-26 Valeo Equip Electr Moteur Machine électrique tournante refroidie
CN112117858A (zh) * 2020-09-25 2020-12-22 卧龙电气(上海)中央研究院有限公司 一种具有冷却结构的电机
CN114665662A (zh) * 2020-12-23 2022-06-24 新疆金风科技股份有限公司 发电机以及风力发电机组
US11932078B2 (en) 2021-03-31 2024-03-19 Tesla, Inc. Electric vehicle heat pump using enhanced valve unit
EP4145683B1 (de) * 2021-09-06 2023-11-22 MAHLE International GmbH Hohlwelle für einen rotor eines elektromotors
CN114400810A (zh) * 2021-12-30 2022-04-26 中车永济电机有限公司 一种强迫通风冷却式永磁同步电机的转子密封结构
US20240055948A1 (en) * 2022-08-15 2024-02-15 Rolls-Royce Plc Electric machine with combined rotor and cooling fan
US20240055947A1 (en) * 2022-08-15 2024-02-15 Rolls-Royce Plc Electric machine with air cooled rotor

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE949757C (de) * 1952-09-25 1956-09-27 Siemens Ag Einrichtung zur Innenkuehltung der Laeuferwicklung von elektrischen Stromerzeugern
US2991377A (en) * 1957-01-28 1961-07-04 Vickers Electrical Co Ltd Cooling of flame proof motors
US3610975A (en) * 1969-07-30 1971-10-05 Westinghouse Electric Corp Dynamoelectric machine with improved cooling means
DE2019956A1 (de) * 1970-04-24 1971-11-04 Siemens Ag Anordnung zur Kuehlung von Rotationskoerpern
US3621908A (en) * 1970-09-04 1971-11-23 Dynatherm Corp Transporting thermal energy through a rotating device
SU1241354A1 (ru) 1984-01-13 1986-06-30 Ленинградское Электромашиностроительное Производственное Объединение "Электросила" Им.С.М.Кирова Электрическа машина
DE3703594A1 (de) * 1987-02-06 1988-09-08 Bbc Brown Boveri & Cie Gasgekuehlte elektrische maschine
US5038853A (en) * 1989-01-17 1991-08-13 Callaway Sr James K Heat exchange assembly
RU2032832C1 (ru) 1991-02-12 1995-04-10 Виталий Сергеевич Максимов Ветроэлектрический быстроходный агрегат
DE4115485A1 (de) * 1991-05-11 1992-11-12 Mulfingen Elektrobau Ebm Antriebseinheit fuer doppelluefter
RU2041545C1 (ru) 1992-08-18 1995-08-09 Виктор Иванович Ветохин Электрическая микромашина ветохина (эммв)
AT403864B (de) * 1994-06-13 1998-06-25 Abb Daimler Benz Transp Kühlsystem für eine elektrische maschine
EP0989658A1 (de) * 1998-09-28 2000-03-29 The Swatch Group Management Services AG Flussigkeitsgekühlter elektrischen Asynchronmaschine
DE19919040C2 (de) 1999-02-25 2002-06-20 Helmuth Beneke Synchronmaschine oder Asychronmaschine für große Windenergieanlagen
CN2427922Y (zh) * 2000-06-05 2001-04-25 杨泰和 具有封闭型冷却结构的回转电机
DE10107298C1 (de) 2001-02-16 2002-07-04 Krebs & Aulich Gmbh Geschlossene elektrische Maschine mit Oberflächenkühlung
US20040036367A1 (en) * 2002-01-30 2004-02-26 Darin Denton Rotor cooling apparatus
GB0208565D0 (en) * 2002-04-13 2002-05-22 Rolls Royce Plc A compact electrical machine
US7042109B2 (en) * 2002-08-30 2006-05-09 Gabrys Christopher W Wind turbine
US7247959B2 (en) * 2002-10-11 2007-07-24 Siemens Power Generation, Inc. Dynamoelectric machine with arcuate heat exchanger and related methods
US6943469B2 (en) * 2002-11-01 2005-09-13 Siemens Westinghouse Power Corporation Supplemented zonal ventilation system for electric generator
DE10307813B4 (de) * 2003-02-24 2006-05-24 Siemens Ag Elektrische Maschine
US7431567B1 (en) * 2003-05-30 2008-10-07 Northern Power Systems Inc. Wind turbine having a direct-drive drivetrain
TWI220328B (en) * 2003-06-06 2004-08-11 Delta Electronics Inc Fastening structure for tandem motor
EP1731760A1 (de) * 2004-03-31 2006-12-13 Intellectual Property Bank Corp. Ausladewindmühle mit vertikalwelle
US7154193B2 (en) * 2004-09-27 2006-12-26 General Electric Company Electrical machine with double-sided stator
DE102005027953A1 (de) * 2005-06-16 2006-12-28 Siemens Ag Permanentmagneterregte elektrische Maschine mit Rotorkühlung
TWI307992B (en) * 2005-06-30 2009-03-21 Delta Electronics Inc Dual fan and motor thereof
US7528497B2 (en) * 2006-07-11 2009-05-05 Hamilton Sundstrand Corporation Wind-turbine with load-carrying skin
RU71386U1 (ru) 2007-05-31 2008-03-10 Александр Петрович Богила Ветроэнергетическая установка с вертикальным ротором
EP2063115B1 (de) * 2007-11-26 2019-06-05 Siemens Gamesa Renewable Energy A/S Direktantriebsgenerator und Windturbine
ATE501356T1 (de) * 2008-01-17 2011-03-15 Gamesa Innovation And Technology S L Getriebeeinheit für eine windturbine
US7466053B1 (en) * 2008-04-10 2008-12-16 Vladimir Radev Dual-rotor electric traction motor
CN201336609Y (zh) * 2009-01-19 2009-10-28 江门金羚电机有限公司 一种具有内风冷系统的小功率电动机
NO330062B1 (no) * 2009-09-11 2011-02-14 Blaaster Wind Technologies As Vindturbin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011051228A2 *

Also Published As

Publication number Publication date
DE102009051651B4 (de) 2012-01-26
BR112012011582A2 (pt) 2016-06-28
RU2012122746A (ru) 2013-12-10
US20120217756A1 (en) 2012-08-30
DE102009051651A1 (de) 2011-05-12
CN102598479A (zh) 2012-07-18
WO2011051228A3 (de) 2012-01-12
RU2519061C2 (ru) 2014-06-10
WO2011051228A2 (de) 2011-05-05
US9287747B2 (en) 2016-03-15
CN102598479B (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
EP2497184A2 (de) Windkraftgenerator mit innenkühlkreislauf
EP1586769B1 (de) Turmkopf einer Windenergieanlage
DE19636591C2 (de) Synchrongenerator für einen getriebelosen Windenergiekonverter
EP2030308B1 (de) Verfahren zur Kühlung eines Rohrturbinengenerators und Rohturbinengenerator
DE102011012454A1 (de) Elektrische Maschine
WO2009033925A2 (de) Windkraftanlage mit wärmetauschersystem
EP0907556A1 (de) Gondelartig anzuordnender schiffsantrieb mit synchronmotor
EP2412630B1 (de) Antrieb eines Heckrotors eines Hubschraubers
WO2018134044A1 (de) Statorträger eines getriebelosen windgenerators
WO2017050447A1 (de) Kühlung einer elektrischen rotierenden maschine
WO2011048038A2 (de) Generator
EP3245715B1 (de) Elektromotor mit verbesserter kühlung
DE102022109871A1 (de) Transversalflussmaschine
WO2019141518A1 (de) Drehgestell eines schienenfahrzeugs
EP3472462B1 (de) Modular aufgebaute windenergieanlage
DE102008017376A1 (de) Generatorgehäuse für eine Windenergieanlage
DE102013100453A1 (de) Innenkühlkreislaufsystem für rotierende elektrische Maschinen
DE10225221B4 (de) Belüftung eines Ringmotors für eine Rohrmühle
EP3577745B1 (de) Kühlung einer elektrischen maschine
EP2179491B1 (de) Elektrische maschine mit öffnungen im lagerschildunterteil
EP3804095B1 (de) Rotor für eine elektrische maschine, insbesondere eines kraftfahrzeugs, sowie elektrische maschine, insbesondere für ein kraftfahrzeug
DE102010036890A1 (de) Permanentmagnetmaschine und Rotor
DE102018208706A1 (de) System zum Kühlen einer Elektromaschine
EP3084926B1 (de) Rotor einer rotierenden elektrischen maschine
WO2012025432A1 (de) Pumpe oder verdichter mit gekühltem elektromotor und mittels magnetkupplung angetriebene kühlmittelpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120411

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20130521

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190501