EP2497094A1 - Method for producing a magnet, magnet, and electric machine - Google Patents

Method for producing a magnet, magnet, and electric machine

Info

Publication number
EP2497094A1
EP2497094A1 EP10776629A EP10776629A EP2497094A1 EP 2497094 A1 EP2497094 A1 EP 2497094A1 EP 10776629 A EP10776629 A EP 10776629A EP 10776629 A EP10776629 A EP 10776629A EP 2497094 A1 EP2497094 A1 EP 2497094A1
Authority
EP
European Patent Office
Prior art keywords
magnetic material
magnet
binder
metal oxide
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10776629A
Other languages
German (de)
French (fr)
Inventor
Ingo Zeitler
Ulrike Mock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2497094A1 publication Critical patent/EP2497094A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to a method for producing a magnet, wherein the
  • Magnet is formed at least from a magnetic material and a binder and then cured.
  • the invention further relates to a magnet and an electric machine.
  • the magnetic material is for example iron or ferrite.
  • the magnetic material is often present as a powder, which is sintered or pressgensintert to produce the magnet.
  • the magnetic material can also be mixed with the binder. From the magnetic material binder mixture, the magnet is then shaped and cured.
  • the molding may include, for example, a casting or spraying.
  • the binder can be or comprise a plastic, in particular PPS (polyphenylene sulfide). After curing the
  • Magnets the magnetic material is physically bordered by the binder or involved in this. However, if a magnet produced in this way comes in contact with oxygen or a corrosive medium, it tends to be heavily corroded, which necessitates protection of the magnet. Widely used are metallic protective layers, which, for example
  • the method with the features mentioned in claim 1 has the advantage that the magnet produced has a better corrosion resistance than known from the prior art magnets, in particular to fuels and their additives.
  • This is achieved according to the invention by producing a metal oxide chemically bound to the magnetic material from the binder during curing. After curing, therefore, there is a matrix of the metal oxide, in which the magnetic material is enclosed or embedded. The metal oxide matrix is chemically bound to the magnetic material. The magnetic material is thus held by the metal oxide matrix or metal oxide structure. With a magnet manufactured in this way, it is not necessary to provide an additional protective layer.
  • binders especially organic binders such as plastics (PPS)
  • PPS plastics
  • Example water and salts increased.
  • the magnetic material is only physically bound in the binder. There is no chemical bond between the magnetic material and the binder, which even increases the permeation of corrosion-promoting substances into the magnet when corrosion occurs. Such a permeation can not occur in a magnet which is produced according to the inventive method, because the magnetic material is chemically bonded to the metal oxide.
  • a siloxane-based binder is used. Due to the chemical structure of such a binder, the chemical see bonding of the magnetic material to the binder or the siloxane matrix. The latter is permeation-proof. Both the chemical bonding of the magnetic material to the binder and the permeation-proof siloxane matrix contribute to a drastically increased corrosion protection.
  • thickeners and / or flow limiters (such as partially crosslinked polyacrylic acid) can be used to prevent sedimentation of the magnetic material.
  • a development of the invention provides that the metal oxide is produced in a sol-gel process.
  • the magnetic material should therefore be installed in a corrosion-protecting, produced by the sol-gel process metal oxide matrix.
  • the sol-gel process is used to prepare non-metallic, inorganic or hybrid polymeric materials from colloidal dispersions. The latter are also referred to as brine.
  • the sol can arise from different precursors. By gelation, the sol passes into the gel, the latter being a colloid. During the sol-gel process, the network formation of the metal oxide or the chemical bonding of the magnetic material to it occurs.
  • a development of the invention provides that at least one rare earth material is used as the magnetic material. Magnets made of rare earth materials exceed the performance of conventional iron magnets many times and are therefore preferred.
  • the rare earth elements are scandium, yttrium, lanthanum and lanthanides.
  • the latter include cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • the rare earth material has at least one rare earth metal.
  • an alloy of neodymium, iron and boron (Nd 2 Fei 4 B) is used. Magnets which have the rare earth material, however, are again much more susceptible to corrosion than conventional magnets.
  • the metallic, in particular nickel and / or zinc, protective layer is provided.
  • the oxide protective layer may be used, in which a metal alkoxide solution is applied to the magnet. This protective layer can be used for tion of the magnetic material in the metal oxide matrix usually omitted, however, be provided in addition to achieve better protection.
  • a development of the invention provides that at least one siloxane, a silane, in particular alkoxysilane or ethoxysilane, particularly preferably tetraethoxysilane, a metal halide, a metal alkoxide and / or metal oxide nanoparticles are used as constituent of the binder.
  • the substances mentioned form the so-called precursors.
  • the use of only one precursor or a combination of several precursors is possible.
  • various silicon alkoxides can be used, such as
  • Tetraethoxylsilane (TEOS) and its modifications. In the latter, one or more alkoxide groups are replaced by organic molecules. The resulting materials are also referred to as "organofunctional silanes.” Ethoxysilanes can also be formally used to formally esterify silicic acid with ethanol groups, or substances can be used in which the silica is treated with alcohols such as methanol, propanol, and the like , Butanol and the like, diols such as glycol, propanediol or the like, or triols such as glycerol, etc.
  • the binder may contain precursors of zirconium, aluminum, cerium, titanium and / or other transition metals Nanoparticles, especially of Al 2 O 3, ZrO 2 and / or TiO 2 , and / or inorganic nanoparticles are also used.
  • Silica in particular fumed silica, can also be part of the binder.
  • silanes in particular alkoxysilanes
  • Si0 2 metal oxide
  • a 3D network of metal oxide here: Si0 2
  • metal halides for example mono-, di- or trichloromethylsilanes
  • metal alkoxides for example tetraethoxysilane (TEOS) or all the variants already listed above.
  • Metal halides are more reactive than metal alkoxides, which is why in such combinations, the polymerization can be started by simply increasing the temperature of the magnetic material-binder mixture. In this way, the 3D metal oxide Matrix, which includes the magnetic material and is chemically bonded to this.
  • By-products are only halogenated alkanes, which are removed after preparation of the magnet together with any existing solvents.
  • zirconium, aluminum, cerium, titanium and the other transition metals it is also possible to use compounds of these elements as precursors.
  • a development of the invention provides that the binder and / or the magnetic material are introduced into a solvent.
  • the solvent is primarily intended to process the magnetic material and / or the
  • Binder to simplify, in particular to allow the forming of the magnet.
  • the solvent is preferably eliminated during curing of the magnet from this.
  • the solvent may be water and / or alcohol or have water and / or alcohol.
  • an aprotic solvent can also be used.
  • the magnetic material and the binder are dispersed in the solvent.
  • a development of the invention provides that the binder and the magnetic material, an additive, in particular consisting of nanoparticles, a polymer solution and / or silica, is supplied.
  • the additive is added to the mixture of magnetic material and binder.
  • the additive may comprise nanoparticles, the polymer solution and / or the silica.
  • the nanoparticles are, for example, nanoparticles of metal oxides, while the polymer solution is preferably an organic polymer solution and the silica is a fumed silica. If the solvent is provided, the additive is also dispersed in this.
  • a development of the invention provides that the magnetic material, the binder and / or the solvent are poured into a mold in which the curing is carried out.
  • the magnet is therefore a molded component.
  • the magnetic material is chemically bonded to the metal oxide while it forms the metal oxide matrix.
  • the magnet can therefore be produced in almost any shape simply by pouring into the mold.
  • the curing is carried out in the mold.
  • the curing may take place before or during a drying and / or sintering process.
  • the metal oxide is added, for example, by means of the sol-gel process. next generated and then carried out a drying process to remove any solvent from the magnet.
  • the curing is carried out simultaneously with the drying and / or sintering process, in particular when the curing by heat application of the magnet or the
  • Magnetic material-binder mixture takes place. It is also possible, by directly applying the magnetic material and the binder, preferably dissolved in the solvent, to apply a magnetic coating to a surface. This coating can be applied using common application techniques, such as spraying, dipping, rolling, spin coating and the like, in particular also over a large area. Alternatively, segmented magnetic surfaces may be selectively formed, for example using a mask.
  • a development of the invention provides that the magnet is at least partially provided with a coating, in particular sol-gel coating.
  • the magnet consisting of the magnetic material and the metal oxide chemically bonded to it, is very well suited for the chemical bonding of the coating, in particular if the sol-gel coating is provided.
  • a sol-gel lacquer is used to apply the coating.
  • a functional sol-gel varnish is used to create the additional surface effects. In this way, the corrosion resistance of the magnet can be further increased. In principle, however, any type of coating can be provided.
  • the invention further relates to a magnet, in particular produced using the method described above, wherein the magnet is formed at least from a magnetic material and a binder and then cured. It is provided that the magnetic material is enclosed in a generated during curing, chemically bound to the magnetic material metal oxide.
  • the magnet is characterized by the fact that it has an extremely high corrosion resistance even without additional coating, especially when in contact with fuels and their additives. For this reason, the magnet is outstandingly suitable for electrical machines, in particular electric motors, for example as part of a fuel pump.
  • the magnet can be used for any magnet components which may be wise may come in contact with fuel or have complex geometries that can not or only with difficulty be made by plastic injection molding processes or sintering process.
  • the invention further relates to an electric machine, in particular an electric motor, with at least one magnet, in particular according to the above embodiments and in particular produced using the method according to the preceding embodiments, wherein the magnet is formed at least from a magnetic material and a binder and then cured. It is provided that the magnetic material is enclosed in a generated during curing, chemically bound to the magnetic material metal oxide. During curing, the metal oxide is produced from the binders. This bonds to the magnetic material and forms a metal oxide matrix. In this way, both an excellent dimensional stability of the magnet and a good corrosion resistance is ensured.
  • FIG. 1 shows an embodiment of a magnet
  • FIG. 2 shows a schematic representation of a first production step of the magnet
  • Figure 3 is a schematic representation of another manufacturing step of the magnet
  • Figure 4 is a schematic structural view of the magnet, which consists of a magnetic material and a chemically bonded to this metal oxide.
  • FIG. 1 shows a magnet 1 which is fastened on a metal shaft 2.
  • the magnet 1 is poured onto the shaft 2 and thus secured thereto.
  • the magnet 1 consists of a magnetic material 3 (not shown here) and a binder 4 (also not shown here), which together be shaped and then cured.
  • a metal oxide is produced from the binder, which is chemically bonded to the magnetic material and forms a metal oxide matrix, which encloses the magnetic material.
  • the magnetic material 3 of the magnet 1 is protected against external influences, in particular corrosive influences.
  • FIG. 2 shows a first production step for producing the magnet 1.
  • the magnetic material 3, the binder 4 and one or more additives 6 are dispersed in a solvent 5, so that a homogeneous dispersion of magnetic material 3, binder 4, solvent 5 and additive 6 is present ,
  • the dispersion is used as a sol in a sol-gel process.
  • the sol is gelled into a gel 7 ("wet gel"), whereby metal oxide 8 is produced from the binder 4.
  • the metal of the metal oxide is, for example, SiO 2 , ZrO 2 , Al 2 O 3 or the like At least after curing, it is chemically bound to the magnetic material 3.
  • Such a compound 9 is in the
  • FIG. 4 shows a detail of the connection 9 made of magnetic material 3 and metal oxide 8.
  • the metal oxide 8 is Si0 2 .
  • solvent 5 water (H 2 0) is used.
  • the silicon can be substituted by other metals, for example zirconium or aluminum.
  • the magnetic material used is preferably a rare earth material, for example Nd 2 Fei 4 B, that is to say neodymium.
  • Nd 2 Fei 4 B is significantly more powerful than magnets made of conventional magnetic materials, such as iron or ferrite. Due to the chemical bond between magnetic material 3 and metal oxide 8, the magnet 1 is extremely resistant to corrosion.
  • the magnet 1 is cast as a molded component, wherein this takes place in a form in which the curing is carried out.
  • the magnetic material 3 and the binder 4, in particular after introduction into the solvent 5, can be applied directly to a surface in order to produce a magnetic coating. It is also possible, during the contract gens to use a masking technique, for example, to selectively produce a segmented magnetic surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

The invention relates to a method for producing a magnet (1), wherein the magnet (1) is formed from at least one magnetic material (3) and one binding agent (4) and is subsequently hardened. According to the invention, a metal oxide (8) that is chemically bonded to the magnetic material (3) is produced from the binding agent (4) during hardening. The invention further relates to a magnet (1) and an electric machine.

Description

Beschreibung  description
Titel title
Verfahren zur Herstellung eines Magnets sowie Magnet und elektrische Maschine Die Erfindung betrifft ein Verfahren zur Herstellung eines Magnets, wobei der The invention relates to a method for producing a magnet, wherein the
Magnet zumindest aus einem Magnetwerkstoff und einem Bindemittel geformt und anschließend ausgehärtet wird. Die Erfindung betrifft weiterhin einen Magnet sowie eine elektrische Maschine. Stand der Technik Magnet is formed at least from a magnetic material and a binder and then cured. The invention further relates to a magnet and an electric machine. State of the art
Verfahren der eingangs genannten Art sind aus dem Stand der Technik bekannt. Der Magnetwerkstoff ist beispielsweise Eisen beziehungsweise Ferrit. Der Magnetwerkstoff liegt dabei häufig als Pulver vor, welches gesintert beziehungsweise pressgensintert wird, um den Magnet herzustellen. Alternativ oder zusätzlich kann der Magnetwerkstoff auch mit dem Bindemittel vermengt werden. Aus dem Magnetwerkstoff- Bindemittel-Gemisch wird anschließend der Magnet geformt und ausgehärtet. Das Formen kann dabei beispielsweise ein Gießen oder Spritzen umfassen. Das Bindemittel kann ein Kunststoff, insbesondere PPS (Po- lyphenylensulfid), sein oder einen solchen umfassen. Nach dem Aushärten desMethods of the type mentioned are known from the prior art. The magnetic material is for example iron or ferrite. The magnetic material is often present as a powder, which is sintered or pressgensintert to produce the magnet. Alternatively or additionally, the magnetic material can also be mixed with the binder. From the magnetic material binder mixture, the magnet is then shaped and cured. The molding may include, for example, a casting or spraying. The binder can be or comprise a plastic, in particular PPS (polyphenylene sulfide). After curing the
Magnets ist der Magnetwerkstoff von dem Bindemittel physikalisch eingefasst beziehungsweise in dieses eingebunden. Gerät ein so hergestellter Magnet jedoch in Kontakt mit Sauerstoff beziehungsweise einem korrosiven Medium, so neigt er zu starker Korrosion, was einen Schutz des Magnets notwendig macht. Weit verbreitet sind dabei metallische Schutzschichten, welche beispielsweiseMagnets, the magnetic material is physically bordered by the binder or involved in this. However, if a magnet produced in this way comes in contact with oxygen or a corrosive medium, it tends to be heavily corroded, which necessitates protection of the magnet. Widely used are metallic protective layers, which, for example
Nickel und/oder Zink aufweisen, mit welchen vor allem pressgesinterte Magnete vor Korrosion geschützt werden. Ebenso sind oxidische Schutzschichten bekannt, die in Form einer Lösung eines Metallalkoxids in einem Lösungsmittel auf den Magnet aufgetragen werden. Die Herstellung des Magnets unter Vermengen des Magnetwerkstoffs mit dem Bindemittel weist gegenüber dem direkten Sintern des Magnetwerkstoffs für viele Anwendungsfälle eine deutlich höhere Flexibilität auf und ist daher vorzuziehen. Ebenso wird durch den Einbau des Magnetwerkstoffs in das Bindemittel, beispielsweise den Kunststoff (vorzugsweise in Form eines Kunststoffgranulats), ein gewisser Schutz des Magnetwerkstoffs vor Korrosion gewährleistet. Vor allem bei Kontakt des Magnets mit Treibstoffen und de- ren Additiven kommt es jedoch auch bei solchen Magneten nach kurzer Zeit zu starker Korrosion, was schließlich zum Ausfall eines den Magneten aufweisenden Systems führen kann. Have nickel and / or zinc, with which especially pressed sintered magnets are protected from corrosion. Likewise known are oxide protective layers which are applied to the magnet in the form of a solution of a metal alkoxide in a solvent. The preparation of the magnet by mixing the magnetic material with the binder has over the direct sintering of the magnetic material for many applications a much higher flexibility and is therefore preferable. Likewise, the incorporation of the magnetic material in the binder, for example, the plastic (preferably in the form of a plastic granules), a certain protection of the magnetic material against corrosion guaranteed. However, especially when the magnet comes into contact with fuels and their additives, such magnets also cause strong corrosion after a short time, which can ultimately lead to the failure of a system having the magnet.
Offenbarung der Erfindung Disclosure of the invention
Demgegenüber weist das Verfahren mit den in Anspruch 1 genannten Merkmalen den Vorteil auf, dass der hergestellte Magnet eine bessere Korrosionsbeständigkeit aufweist als aus dem Stand der Technik bekannte Magnete, insbesondere gegenüber Treibstoffen und deren Additiven. Dies wird erfindungsge- mäß erreicht, indem aus dem Bindemittel während des Aushärtens ein chemisch an den Magnetwerkstoff gebundenes Metalloxid erzeugt wird. Nach dem Aushärten liegt also eine Matrix aus dem Metalloxid vor, in welche der Magnetwerkstoff eingefasst beziehungsweise eingebettet ist. Dabei ist die Metalloxid-Matrix chemisch an den Magnetwerkstoff gebunden. Der Magnetwerkstoff wird also von der Metalloxid-Matrix beziehungsweise Metalloxid-Struktur gehalten. Bei einem auf diese Weise hergestellten Magnet ist es nicht notwendig, eine zusätzliche Schutzschicht vorzusehen. Bei den aus dem Stand der Technik bekannten Bindemitteln, vor allem organischen Bindemitteln wie beispielsweise Kunststoffe (PPS), kommt es bei Kontakt mit einem korrosiven Medium wie Treibstoff zu ei- ner Quellung, was die Permeation von korrosionsfordernden Stoffen wie zumIn contrast, the method with the features mentioned in claim 1 has the advantage that the magnet produced has a better corrosion resistance than known from the prior art magnets, in particular to fuels and their additives. This is achieved according to the invention by producing a metal oxide chemically bound to the magnetic material from the binder during curing. After curing, therefore, there is a matrix of the metal oxide, in which the magnetic material is enclosed or embedded. The metal oxide matrix is chemically bound to the magnetic material. The magnetic material is thus held by the metal oxide matrix or metal oxide structure. With a magnet manufactured in this way, it is not necessary to provide an additional protective layer. In the known from the prior art binders, especially organic binders such as plastics (PPS), it comes in contact with a corrosive medium such as fuel to a swelling, which the permeation of corrosion-demanding materials such
Beispiel Wasser und Salzen erhöht. Zudem ist, wie bereits vorstehend ausgeführt, der Magnetwerkstoff lediglich physikalisch in das Bindemittel eingebunden. Es liegt keine chemische Bindung zwischen Magnetwerkstoff und Bindemittel vor, wodurch die Permeation von korrosionsfordernden Stoffen in den Magnet bei einsetzender Korrosion sogar noch erhöht wird. Eine solche Permeation kann bei einem Magnet, welcher gemäß dem erfindungsgemäßen Verfahren hergestellt wird, nicht auftreten, weil der Magnetwerkstoff chemisch an das Metalloxid gebunden ist. Example water and salts increased. In addition, as already stated above, the magnetic material is only physically bound in the binder. There is no chemical bond between the magnetic material and the binder, which even increases the permeation of corrosion-promoting substances into the magnet when corrosion occurs. Such a permeation can not occur in a magnet which is produced according to the inventive method, because the magnetic material is chemically bonded to the metal oxide.
Beispielsweise kommt ein Bindemittel auf Siloxanbasis zum Einsatz. Aufgrund der chemischen Struktur eines solchen Bindemittels kommt es zu der chemi- sehen Bindung des Magnetwerkstoffs an das Bindemittel beziehungsweise die Siloxanmatrix. Letztere ist permeationsdicht. Sowohl die chemische Anbindung des Magnetwerkstoffs an das Bindemittel als auch die permeationsdichte Siloxanmatrix tragen zu einem drastisch erhöhten Korrosionsschutz bei. Zusätzlich können Verdicker und/oder Fließgrenzenbildner (wie teilvernetzte Polyacrylsäu- re) eingesetzt werden, um ein Sedimentieren des Magnetwerkstoffs zu verhindern. For example, a siloxane-based binder is used. Due to the chemical structure of such a binder, the chemical see bonding of the magnetic material to the binder or the siloxane matrix. The latter is permeation-proof. Both the chemical bonding of the magnetic material to the binder and the permeation-proof siloxane matrix contribute to a drastically increased corrosion protection. In addition, thickeners and / or flow limiters (such as partially crosslinked polyacrylic acid) can be used to prevent sedimentation of the magnetic material.
Eine Weiterbildung der Erfindung sieht vor, dass das Metalloxid in einem Sol- Gel-Prozess erzeugt wird. Der Magnetwerkstoff soll also in eine vor Korrosion schützende, durch den Sol-Gel-Prozess hergestellte Metalloxid-Matrix eingebaut werden. Der Sol-Gel-Prozess dient zur Herstellung nicht-metallischer, anorganischer oder hybridpolymerer Materialien aus kolloidalen Dispersionen. Letztere werden auch als Sole bezeichnet. Das Sol kann dabei aus unterschiedlichen Präkursoren entstehen. Durch Gelierung geht das Sol in das Gel über, wobei letzteres ein Kolloid darstellt. Während des Sol-Gel-Prozesses kommt es zu der Netzwerkbildung des Metalloxids beziehungsweise der chemischen Anbindung des Magnetwerkstoffs an dieses. Eine Weiterbildung der Erfindung sieht vor, dass als Magnetwerkstoff zumindest ein Seltenerdwerkstoff verwendet wird. Magnete aus Seltenerdwerkstoffen übertreffen die Leistung herkömmlicher Magnete aus Eisen um ein Vielfaches und werden daher bevorzugt eingesetzt. Als Metalle der seltenen Erden werden die Elemente Scandium, Yttrium und Lanthan sowie die Lanthanoide bezeichnet. Zu Letzteren gehören Cer, Praseodym, Neodym, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium und Lutetium. Der Seltenerdwerkstoff weist mindestens ein Metall der seltenen Erden auf. Beispielsweise wird eine Legierung aus Neodym, Eisen und Bor (Nd2Fei4B) verwendet. Magnete, welche den Seltenerdwerkstoff aufweisen, sind jedoch nochmals deutlich korrosionsanfälliger als herkömmliche Magnete. Vor allem bei pressgesinterten Magneten aus einem solchen Magnetwerkstoff wird daher die metallische, insbesondere Nickel und/oder Zink aufweisende Schutzschicht vorgesehen. Alternativ kann, wie bereits vorstehend beschrieben, die oxidische Schutzschicht verwendet werden, bei welcher eine Metallalkoxid- Lösung auf den Magnet appliziert wird. Diese Schutzschicht kann bei Einlage- rung des Magnetwerkstoffs in die Metalloxid-Matrix üblicherweise entfallen, jedoch zum Erzielen eines besseren Schutzes zusätzlich vorgesehen sein. A development of the invention provides that the metal oxide is produced in a sol-gel process. The magnetic material should therefore be installed in a corrosion-protecting, produced by the sol-gel process metal oxide matrix. The sol-gel process is used to prepare non-metallic, inorganic or hybrid polymeric materials from colloidal dispersions. The latter are also referred to as brine. The sol can arise from different precursors. By gelation, the sol passes into the gel, the latter being a colloid. During the sol-gel process, the network formation of the metal oxide or the chemical bonding of the magnetic material to it occurs. A development of the invention provides that at least one rare earth material is used as the magnetic material. Magnets made of rare earth materials exceed the performance of conventional iron magnets many times and are therefore preferred. The rare earth elements are scandium, yttrium, lanthanum and lanthanides. The latter include cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. The rare earth material has at least one rare earth metal. For example, an alloy of neodymium, iron and boron (Nd 2 Fei 4 B) is used. Magnets which have the rare earth material, however, are again much more susceptible to corrosion than conventional magnets. Especially in the case of press-sintered magnets made of such a magnetic material, therefore, the metallic, in particular nickel and / or zinc, protective layer is provided. Alternatively, as already described above, the oxide protective layer may be used, in which a metal alkoxide solution is applied to the magnet. This protective layer can be used for tion of the magnetic material in the metal oxide matrix usually omitted, however, be provided in addition to achieve better protection.
Eine Weiterbildung der Erfindung sieht vor, dass als Bestandteil des Bindemittels zumindest ein Siloxan, ein Silan, insbesondere Alkoxysilan oder Ethoxysilan, besonders bevorzugt Tetraethoxysilan, ein Metallhalogenid, ein Metallalkoxid und/oder Metalloxid-Nanopartikel verwendet werden. Die genannten Stoffe bilden dabei die sogenannten Präkursoren. Dabei ist die Verwendung lediglich eines Präkursors oder eine Kombination mehrere Präkursoren möglich. Insbesondere können verschiedene Silizium-Alkoxide eingesetzt werden, wie beispielsweiseA development of the invention provides that at least one siloxane, a silane, in particular alkoxysilane or ethoxysilane, particularly preferably tetraethoxysilane, a metal halide, a metal alkoxide and / or metal oxide nanoparticles are used as constituent of the binder. The substances mentioned form the so-called precursors. The use of only one precursor or a combination of several precursors is possible. In particular, various silicon alkoxides can be used, such as
Tetraethoxylsilan (TEOS) und dessen Abwandlungen. Bei Letzteren werden eine oder mehrere Alkoxidgruppen durch organische Moleküle ersetzt. Die dabei entstehenden Stoffe werden auch als„Organofunktionelle Silane" bezeichnet. Ebenso können die Ethoxysilane eingesetzt werden. Bei diesen wird formal Kieselsäu- re mit Ethanolgruppen verestert. Alternativ können auch Stoffe eingesetzt werden, bei welchen die Kieselsäure mit Alkoholen, wie beispielsweise Methanol, Propanol, Butanol und dergleichen, Diolen, wie beispielsweise Glycol, Propandiol oder dergleichen, oder Triolen, wie beispielsweise Glycerin, verestert sind. Ebenso kann das Bindemittel Präkursoren des Zirkonium, Aluminium, Cer, Titan und/oder anderer Übergangsmetalle aufweisen. Zusätzlich oder alternativ können Metalloxid-Nanopartikel, insbesondere aus Al203, Zr02 und/oder Ti02, und/oder anorganische Nanopartikel verwendet werden. Auch Kieselsäure, insbesondere pyrogene Kieselsäure, kann Bestandteil des Bindemittels sein. Die vorstehend genannten Silane, insbesondere Alkoxysilane, reagieren mit Wasser zu Kieselsäure, die anschließend mit sich selbst zu einem 3D-Netzwerk aus Metalloxid (hier: Si02) kondensiert. Anschließend werden vor allem volatile Reaktionsprodukte entfernt. Für wasserempfindliche Magnetwerkstoffe stehen auch Präkursoren bereit, die ohne Zusatz von Wasser zu einem Metalloxid bezie- hungsweise zu einer Metalloxid-Matrix polymerisiert werden können. Hierzu zählen Kombinationen aus Metallhalogeniden (zum Beispiel Mono-, Di- oder Trich- lormethylsilane) mit Metallaloxiden (beispielsweise Tetraethoxysilan (TEOS) oder alle bereits vorstehend aufgeführten Varianten). Metallhalogenide sind reaktiver als Metallalkoxide, weswegen in derartigen Kombinationen die Polymerisation über einfache Temperaturerhöhung des Magnetwerkstoff-Bindemittel-Gemischs gestartet werden kann. Auf diese Weise entsteht wiederum die 3D-Metalloxid- Matrix, welche den Magnetwerkstoff einschließt und chemisch an diesen gebunden ist. Als Nebenprodukte entstehen lediglich Halogen-Alkane, die nach Herstellung des Magnets zusammen mit eventuell vorhandenen Lösungsmitteln entfernt werden. Anstatt der aufgeführten Elemente Zirkonium, Aluminium, Cer, Ti- tan und der weiteren Übergangsmetalle können auch Verbindungen dieser Elemente als Präkursoren eingesetzt werden. Tetraethoxylsilane (TEOS) and its modifications. In the latter, one or more alkoxide groups are replaced by organic molecules. The resulting materials are also referred to as "organofunctional silanes." Ethoxysilanes can also be formally used to formally esterify silicic acid with ethanol groups, or substances can be used in which the silica is treated with alcohols such as methanol, propanol, and the like , Butanol and the like, diols such as glycol, propanediol or the like, or triols such as glycerol, etc. Also, the binder may contain precursors of zirconium, aluminum, cerium, titanium and / or other transition metals Nanoparticles, especially of Al 2 O 3, ZrO 2 and / or TiO 2 , and / or inorganic nanoparticles are also used.Silica, in particular fumed silica, can also be part of the binder.The abovementioned silanes, in particular alkoxysilanes, react with water to silica, which then selfs t condensed to a 3D network of metal oxide (here: Si0 2 ). Subsequently, especially volatile reaction products are removed. For water-sensitive magnetic materials precursors are also available which can be polymerized without the addition of water to form a metal oxide or a metal oxide matrix. These include combinations of metal halides (for example mono-, di- or trichloromethylsilanes) with metal alkoxides (for example tetraethoxysilane (TEOS) or all the variants already listed above). Metal halides are more reactive than metal alkoxides, which is why in such combinations, the polymerization can be started by simply increasing the temperature of the magnetic material-binder mixture. In this way, the 3D metal oxide Matrix, which includes the magnetic material and is chemically bonded to this. By-products are only halogenated alkanes, which are removed after preparation of the magnet together with any existing solvents. Instead of the listed elements zirconium, aluminum, cerium, titanium and the other transition metals, it is also possible to use compounds of these elements as precursors.
Eine Weiterbildung der Erfindung sieht vor, dass das Bindemittel und/oder der Magnetwerkstoff in ein Lösungsmittel eingebracht werden. Das Lösungsmittel ist vor allem dazu vorgesehen, die Verarbeitung des Magnetwerkstoffs und/oder desA development of the invention provides that the binder and / or the magnetic material are introduced into a solvent. The solvent is primarily intended to process the magnetic material and / or the
Bindemittels zu vereinfachen, insbesondere das Formen des Magnets zu ermöglichen. Das Lösungsmittel wird bevorzugt bei dem Aushärten des Magnets aus diesem ausgeschieden. Das Lösungsmittel kann Wasser und/oder Alkohol sein beziehungsweise Wasser und/oder Alkohol aufweisen. Alternativ oder zusätzlich kann auch ein aprotisches Lösungsmittel eingesetzt werden. Der Magnetwerkstoff und das Bindemittel werden in das Lösungsmittel eindispergiert. Binder to simplify, in particular to allow the forming of the magnet. The solvent is preferably eliminated during curing of the magnet from this. The solvent may be water and / or alcohol or have water and / or alcohol. Alternatively or additionally, an aprotic solvent can also be used. The magnetic material and the binder are dispersed in the solvent.
Eine Weiterbildung der Erfindung sieht vor, dass dem Bindemittel und dem Magnetwerkstoff ein Additiv, insbesondere bestehend aus Nanopartikeln, einer Poly- merlösung und/oder Kieselsäure, zugeführt wird. Vor dem Formen des Magnets wird also das Additiv dem Gemisch aus Magnetwerkstoff und Bindemittel hinzugefügt. Das Additiv kann dabei Nanopartikel, die Polymerlösung und/oder die Kieselsäure aufweisen. Die Nanopartikel sind beispielsweise Nanopartikel aus Metalloxiden, während die Polymerlösung bevorzugt eine organische Polymerlö- sung und die Kieselsäure eine pyrogene Kieselsäure ist. Ist das Lösungsmittel vorgesehen, so wird auch das Additiv in dieses eindispergiert. A development of the invention provides that the binder and the magnetic material, an additive, in particular consisting of nanoparticles, a polymer solution and / or silica, is supplied. Thus, before forming the magnet, the additive is added to the mixture of magnetic material and binder. The additive may comprise nanoparticles, the polymer solution and / or the silica. The nanoparticles are, for example, nanoparticles of metal oxides, while the polymer solution is preferably an organic polymer solution and the silica is a fumed silica. If the solvent is provided, the additive is also dispersed in this.
Eine Weiterbildung der Erfindung sieht vor, dass der Magnetwerkstoff, das Bindemittel und/oder das Lösungsmittel in eine Form gegossen werden, in welcher das Aushärten durchgeführt wird. Der Magnet ist demnach ein Formbauteil. Während des Aushärtens wird der Magnetwerkstoff chemisch an das Metalloxid gebunden, während dieses die Metalloxid-Matrix ausbildet. Der Magnet kann also in nahezu jeder Form einfach durch Gießen in die Form hergestellt werden. Das Aushärten wird in der Form durchgeführt. Dabei kann das Aushärten vor einem Trocknungs- und/oder Sinterprozess oder während desselben erfolgen. In erste- rem Fall wird das Metalloxid beispielsweise mittels des Sol-Gel-Prozesses zu- nächst erzeugt und anschließend ein Trocknungsprozess durchgeführt, um eventuell vorhandenes Lösungsmittel aus dem Magnet zu entfernen. Alternativ kann es jedoch auch vorgesehen sein, dass das Aushärten gleichzeitig mit dem Trocknungs- und/oder Sinterprozess durchgeführt wird, insbesondere wenn das Aushärten durch Wärmebeaufschlagung des Magnets beziehungsweise desA development of the invention provides that the magnetic material, the binder and / or the solvent are poured into a mold in which the curing is carried out. The magnet is therefore a molded component. During curing, the magnetic material is chemically bonded to the metal oxide while it forms the metal oxide matrix. The magnet can therefore be produced in almost any shape simply by pouring into the mold. The curing is carried out in the mold. The curing may take place before or during a drying and / or sintering process. In the first case, the metal oxide is added, for example, by means of the sol-gel process. next generated and then carried out a drying process to remove any solvent from the magnet. Alternatively, however, it can also be provided that the curing is carried out simultaneously with the drying and / or sintering process, in particular when the curing by heat application of the magnet or the
Magnetwerkstoff-Bindemittel-Gemischs erfolgt. Es ist auch möglich, durch direktes Auftragen des Magnetwerkstoffs und des Bindemittels, vorzugsweise gelöst in dem Lösungsmittel, eine magnetische Beschichtung auf eine Oberfläche aufzubringen. Diese Beschichtung kann mit Hilfe gängiger Applikationstechniken, wie beispielsweise Sprühen, Tauchen, Walzen, Spincoaten und dergleichen aufgetragen werden, insbesondere auch großflächig. Alternativ können segmentierte magnetische Oberflächen selektiv ausgebildet werden, beispielsweise unter Verwendung einer Maske. Eine Weiterbildung der Erfindung sieht vor, dass der Magnet zumindest bereichsweise mit einer Beschichtung, insbesondere Sol-Gel-Beschichtung, versehen wird. Der Magnet, bestehend aus dem Magnetwerkstoff und dem mit diesem chemisch verbundenen Metalloxid eignet sich sehr gut für die chemische Anbin- dung der Beschichtung, insbesondere wenn die Sol-Gel-Beschichtung vorgese- hen ist. Vorzugsweise wird ein Sol-Gel-Lack verwendet um die Beschichtung aufzubringen. Dabei wird ein funktioneller Sol-Gel-Lack verwendet, um die zusätzlichen Oberflächeneffekte hervorzurufen. Auf diese Weise kann die Korrosionsbeständigkeit des Magnets weiter erhöht werden. Grundsätzlich kann jedoch jede Art von Beschichtung vorgesehen sein. Magnetic material-binder mixture takes place. It is also possible, by directly applying the magnetic material and the binder, preferably dissolved in the solvent, to apply a magnetic coating to a surface. This coating can be applied using common application techniques, such as spraying, dipping, rolling, spin coating and the like, in particular also over a large area. Alternatively, segmented magnetic surfaces may be selectively formed, for example using a mask. A development of the invention provides that the magnet is at least partially provided with a coating, in particular sol-gel coating. The magnet, consisting of the magnetic material and the metal oxide chemically bonded to it, is very well suited for the chemical bonding of the coating, in particular if the sol-gel coating is provided. Preferably, a sol-gel lacquer is used to apply the coating. A functional sol-gel varnish is used to create the additional surface effects. In this way, the corrosion resistance of the magnet can be further increased. In principle, however, any type of coating can be provided.
Die Erfindung betrifft weiterhin einen Magnet, insbesondere hergestellt unter Verwendung des vorstehend beschriebenen Verfahrens, wobei der Magnet zumindest aus einem Magnetwerkstoff und einem Bindemittel geformt und anschließend ausgehärtet ist. Dabei ist vorgesehen, dass der Magnetwerkstoff in ein während des Aushärtens erzeugtes, chemisch an den Magnetwerkstoff gebundenes Metalloxid eingefasst ist. Der Magnet zeichnet sich dadurch aus, dass er bereits ohne zusätzliche Beschichtung eine äußerst hohe Korrosionsbeständigkeit aufweist, insbesondere bei Kontakt mit Treibstoffen und deren Additiven. Aus diesem Grund eignet sich der Magnet hervorragend für elektrische Maschi- nen, insbesondere Elektromotoren, beispielsweise als Teil einer Kraftstoffpumpe.The invention further relates to a magnet, in particular produced using the method described above, wherein the magnet is formed at least from a magnetic material and a binder and then cured. It is provided that the magnetic material is enclosed in a generated during curing, chemically bound to the magnetic material metal oxide. The magnet is characterized by the fact that it has an extremely high corrosion resistance even without additional coating, especially when in contact with fuels and their additives. For this reason, the magnet is outstandingly suitable for electrical machines, in particular electric motors, for example as part of a fuel pump.
Generell ist der Magnet für jegliche Magnetbauteile verwendbar, die möglicher- weise in Kontakt mit Treibstoff geraten können oder komplexe Geometrien aufweisen, die über Kunststoff-Spritzguß-Prozesse oder Sinterprozesses nicht oder lediglich schwierig hergestellt werden können. In general, the magnet can be used for any magnet components which may be wise may come in contact with fuel or have complex geometries that can not or only with difficulty be made by plastic injection molding processes or sintering process.
Die Erfindung betrifft weiterhin eine elektrische Maschine, insbesondere einen Elektromotor, mit mindestens einem Magnet, insbesondere gemäß den vorstehenden Ausführungen und insbesondere hergestellt unter Verwendung des Verfahrens gemäß den vorstehenden Ausführungen, wobei der Magnet zumindest aus einem Magnetwerkstoff und einem Bindemittel geformt und anschließend ausgehärtet ist. Dabei ist vorgesehen, dass der Magnetwerkstoff in ein während des Aushärtens erzeugtes, chemisch an den Magnetwerkstoff gebundenes Metalloxid eingefasst ist. Während des Aushärtens wird aus den Bindemitteln das Metalloxid erzeugt. Dieses verbindet sich mit dem Magnetwerkstoff und bildet eine Metalloxid-Matrix. Auf diese Weise ist sowohl eine hervorragende Formstabilität des Magnets als auch eine gute Korrosionsbeständigkeit gewährleistet. The invention further relates to an electric machine, in particular an electric motor, with at least one magnet, in particular according to the above embodiments and in particular produced using the method according to the preceding embodiments, wherein the magnet is formed at least from a magnetic material and a binder and then cured. It is provided that the magnetic material is enclosed in a generated during curing, chemically bound to the magnetic material metal oxide. During curing, the metal oxide is produced from the binders. This bonds to the magnetic material and forms a metal oxide matrix. In this way, both an excellent dimensional stability of the magnet and a good corrosion resistance is ensured.
Die Erfindung wird im Folgenden anhand der in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert, ohne dass eine Beschränkung der Erfindung erfolgt. Es zeigen: The invention will be explained in more detail below with reference to the embodiments illustrated in the drawings, without any limitation of the invention. Show it:
Figur 1 eine Ausführungsform eines Magnets, FIG. 1 shows an embodiment of a magnet,
Figur 2 eine schematische Darstellung eines ersten Herstellungsschritts des Magnets, FIG. 2 shows a schematic representation of a first production step of the magnet,
Figur 3 eine schematische Darstellung eines weiteren Herstellungsschritts des Magnets, und Figure 3 is a schematic representation of another manufacturing step of the magnet, and
Figur 4 eine schematische Strukturansicht des Magnets, wobei dieser aus einem Magnetwerkstoff und einem chemisch an diesen gebundenes Metalloxid besteht. Figure 4 is a schematic structural view of the magnet, which consists of a magnetic material and a chemically bonded to this metal oxide.
Die Figur 1 zeigt einen Magnet 1 , der auf einer Welle 2 aus Metall befestigt ist. Bevorzugt ist der Magnet 1 auf die Welle 2 aufgegossen und damit an dieser befestigt. Der Magnet 1 besteht aus einem Magnetwerkstoff 3 (hier nicht dargestellt) und einem Bindemittel 4 (hier ebenfalls nicht dargestellt), die gemeinsam geformt und anschließend ausgehärtet werden. Während des Aushärtens wird aus dem Bindemittel ein Metalloxid erzeugt, welches chemisch an den Magnetwerkstoff gebunden ist und eine Metalloxid-Matrix ausbildet, welche den Magnetwerkstoff einfasst. Auf diese Weise ist der Magnetwerkstoff 3 des Magnets 1 vor äußeren Einflüssen, insbesondere Korrosionseinflüssen, geschützt. FIG. 1 shows a magnet 1 which is fastened on a metal shaft 2. Preferably, the magnet 1 is poured onto the shaft 2 and thus secured thereto. The magnet 1 consists of a magnetic material 3 (not shown here) and a binder 4 (also not shown here), which together be shaped and then cured. During curing, a metal oxide is produced from the binder, which is chemically bonded to the magnetic material and forms a metal oxide matrix, which encloses the magnetic material. In this way, the magnetic material 3 of the magnet 1 is protected against external influences, in particular corrosive influences.
Die Figur 2 zeigt einen ersten Herstellungsschritt zur Herstellung des Magnets 1. In ein Lösungsmittel 5 wird der Magnetwerkstoff 3, das Bindemittel 4 und ein oder mehrere Additive 6 eindispergiert, sodass eine homogene Dispersion aus Magnetwerkstoff 3, Bindemittel 4, Lösungsmittel 5 und Additiv 6 vorliegt. Die Dispersion wird als Sol in einem Sol-Gel-Prozess verwendet. In diesem wird das Sol zu einem Gel 7 („nasses Gel") geliert. Dabei wird aus dem Bindemittel 4 Metalloxid 8 erzeugt. Das Metall des Metalloxids ist dabei beispielsweise Si02, Zr02, Al203 oder dergleichen. Das Metalloxid 8 ist zumindest nach dem Aushärten che- misch an den Magnetwerkstoff 3 gebunden. Eine solche Verbindung 9 ist in derFIG. 2 shows a first production step for producing the magnet 1. The magnetic material 3, the binder 4 and one or more additives 6 are dispersed in a solvent 5, so that a homogeneous dispersion of magnetic material 3, binder 4, solvent 5 and additive 6 is present , The dispersion is used as a sol in a sol-gel process. In this case, the sol is gelled into a gel 7 ("wet gel"), whereby metal oxide 8 is produced from the binder 4. The metal of the metal oxide is, for example, SiO 2 , ZrO 2 , Al 2 O 3 or the like At least after curing, it is chemically bound to the magnetic material 3. Such a compound 9 is in the
Figur 3 hervorgehoben und in der Figur 4 vergrößert dargestellt. Figure 3 highlighted and shown enlarged in Figure 4.
Die Figur 4 zeigt einen Ausschnitt der Verbindung 9 aus Magnetwerkstoff 3 und Metalloxid 8. In dem dargestellten Beispiel ist das Metalloxid 8 Si02. Als Lö- sungsmittel 5 wird Wasser (H20) eingesetzt. Prinzipiell ist das Silizium jedoch durch andere Metalle, beispielsweise Zirkonium oder Aluminium, substituierbar. Als Magnetwerkstoff wird bevorzugt ein Seltenerdwerkstoff, beispielsweise Nd2Fei4B, also Neodym aufweisend, verwendet. Ein solcher Magnet 1 ist deutlich leistungsfähiger als Magnete aus herkömmlichen Magnetwerkstoffen, wie bei- spielsweise Eisen oder Ferrit. Durch die chemische Verbindung zwischen Magnetwerkstoff 3 und Metalloxid 8 ist der Magnet 1 äußerst korrosionsbeständig. Vorteilhafterweise ist eine Matrix 10, welche von dem Metalloxid 8 ausgebildet ist, zusätzlich permeationsdicht, sodass die Permeation von korrosionsfördern- den Medien in die Matrix 10 zumindest teilweise verhindert wird. FIG. 4 shows a detail of the connection 9 made of magnetic material 3 and metal oxide 8. In the illustrated example, the metal oxide 8 is Si0 2 . As solvent 5, water (H 2 0) is used. In principle, however, the silicon can be substituted by other metals, for example zirconium or aluminum. The magnetic material used is preferably a rare earth material, for example Nd 2 Fei 4 B, that is to say neodymium. Such a magnet 1 is significantly more powerful than magnets made of conventional magnetic materials, such as iron or ferrite. Due to the chemical bond between magnetic material 3 and metal oxide 8, the magnet 1 is extremely resistant to corrosion. Advantageously, a matrix 10, which is formed by the metal oxide 8, additionally permeation-tight, so that the permeation of korrosionsfördern- the media in the matrix 10 is at least partially prevented.
Bevorzugt ist der Magnet 1 als Formbauteil gegossen, wobei dies in einer Form erfolgt, in welcher auch das Aushärten durchgeführt wird. Alternativ kann der Magnetwerkstoff 3 und das Bindemittel 4, insbesondere nach Einbringen in das Lösungsmittel 5, direkt auf eine Oberfläche aufgebracht werden, um eine magne- tische Beschichtung herzustellen. Ebenso ist es möglich, während des Auftra- gens eine Maskentechnik einzusetzen, beispielsweise um eine segmentierte magnetische Oberfläche selektiv herzustellen. Preferably, the magnet 1 is cast as a molded component, wherein this takes place in a form in which the curing is carried out. Alternatively, the magnetic material 3 and the binder 4, in particular after introduction into the solvent 5, can be applied directly to a surface in order to produce a magnetic coating. It is also possible, during the contract gens to use a masking technique, for example, to selectively produce a segmented magnetic surface.

Claims

Ansprüche claims
1 . Verfahren zur Herstellung eines Magnets (1 ), wobei der Magnet (1 ) zumindest aus einem Magnetwerkstoff (3) und einem Bindemittel (4) geformt und anschließend ausgehärtet wird, dadurch gekennzeichnet, dass aus dem Bindemittel (4) während des Aushärtens ein chemisch an den Magnetwerkstoff (3) gebundenes Metalloxid (8) erzeugt wird. 1 . Method for producing a magnet (1), wherein the magnet (1) is formed at least from a magnetic material (3) and a binder (4) and then cured, characterized in that from the binder (4) during curing, a chemically the magnetic material (3) bonded metal oxide (8) is generated.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Metalloxid (8) in einem Sol-Gel-Prozess erzeugt wird. 2. The method according to claim 1, characterized in that the metal oxide (8) is produced in a sol-gel process.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Magnetwerkstoff (3) zumindest ein Seltenerdwerkstoff verwendet wird. 3. The method according to any one of the preceding claims, characterized in that at least one rare earth material is used as magnetic material (3).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Bestandteil des Bindemittels (4) zumindest ein Siloxan, ein Silan, insbesondere Alkoxysilan oder Ethoxysilan, besonders bevorzugt Tetraethoxysilan, ein Metallhalogenid, ein Metallalkoxid und/oder Metalloxid- Nanopartikel verwendet werden. 4. The method according to any one of the preceding claims, characterized in that as part of the binder (4) at least one siloxane, a silane, especially alkoxysilane or ethoxysilane, more preferably tetraethoxysilane, a metal halide, a metal alkoxide and / or metal oxide nanoparticles are used.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bindemittel (4) und/oder der Magnetwerkstoff (3) in ein Lösungsmittel (5) eingebracht werden. 5. The method according to any one of the preceding claims, characterized in that the binder (4) and / or the magnetic material (3) are introduced into a solvent (5).
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Bindemittel (4) und dem Magnetwerkstoff (3) ein Additiv (6), insbesondere bestehend aus Nanopartikeln, einer Polymerlösung und/oder Kieselsäure, zugeführt wird. 6. The method according to any one of the preceding claims, characterized in that the binder (4) and the magnetic material (3) an additive (6), in particular consisting of nanoparticles, a polymer solution and / or silica, is supplied.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Magnetwerkstoff (3), das Bindemittel (4) und/oder das Lösungsmittel (5) in eine Form gegossen werden, in welcher das Aushärten durchgeführt wird. 7. The method according to any one of the preceding claims, characterized in that the magnetic material (3), the binder (4) and / or the solvent (5) are poured into a mold in which the curing is carried out.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Magnet (1 ) zumindest bereichsweise mit einer Beschich- tung, insbesondere Sol-Gel-Beschichtung, versehen wird. 8. The method according to any one of the preceding claims, characterized in that the magnet (1) at least partially with a coating tion, in particular sol-gel coating, is provided.
9. Magnet (1 ), insbesondere hergestellt unter Verwendung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche, wobei der Magnet (1 ) zumindest aus einem Magnetwerkstoff (3) und einem Bindemittel (4) geformt und anschließend ausgehärtet ist, dadurch gekennzeichnet, dass der Magnetwerkstoff in ein während des Aushärtens erzeugtes, chemisch an den Magnetwerkstoff (3) gebundenes Metalloxid (8) eingefasst ist. 9. magnet (1), in particular produced using the method according to one or more of the preceding claims, wherein the magnet (1) at least of a magnetic material (3) and a binder (4) is formed and then cured, characterized in that the magnetic material is enclosed in a metal oxide (8) which is chemically bonded to the magnetic material (3) during hardening.
10. Elektrische Maschine, insbesondere Elektromotor, mit mindestens einem Magnet (1 ), insbesondere gemäß Anspruch 9 und insbesondere hergestellt unter Verwendung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 8, wobei der Magnet (1 ) zumindest aus einem Magnetwerkstoff (3) und einem Bindemittel (4) geformt und anschließend ausgehärtet ist, dadurch gekennzeichnet, dass der Magnetwerkstoff in ein während des Aushärtens erzeugtes, chemisch an den Magnetwerkstoff gebundenes Metalloxid (8) eingefasst ist. 10. Electrical machine, in particular electric motor, with at least one magnet (1), in particular according to claim 9 and in particular produced using the method according to one or more of claims 1 to 8, wherein the magnet (1) consists of at least one magnetic material (3). and a binder (4) is formed and then cured, characterized in that the magnetic material is enclosed in a generated during the curing, chemically bonded to the magnetic material metal oxide (8).
EP10776629A 2009-11-05 2010-10-29 Method for producing a magnet, magnet, and electric machine Withdrawn EP2497094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009046426A DE102009046426A1 (en) 2009-11-05 2009-11-05 Method for producing a magnet and magnet and electric machine
PCT/EP2010/066432 WO2011054746A1 (en) 2009-11-05 2010-10-29 Method for producing a magnet, magnet, and electric machine

Publications (1)

Publication Number Publication Date
EP2497094A1 true EP2497094A1 (en) 2012-09-12

Family

ID=43216654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10776629A Withdrawn EP2497094A1 (en) 2009-11-05 2010-10-29 Method for producing a magnet, magnet, and electric machine

Country Status (7)

Country Link
US (1) US20120319807A1 (en)
EP (1) EP2497094A1 (en)
JP (1) JP2013509734A (en)
KR (1) KR20120096483A (en)
CN (1) CN102667971A (en)
DE (1) DE102009046426A1 (en)
WO (1) WO2011054746A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218498A1 (en) * 2012-10-11 2014-04-17 Siemens Aktiengesellschaft Dynamoelectric machine with a multi-pole rotor with permanent magnets and their manufacture
DE102013004985A1 (en) * 2012-11-14 2014-05-15 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet
DE102013213494A1 (en) * 2013-07-10 2015-01-29 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet and electric machine with such a permanent magnet
DE102015213957B4 (en) * 2015-07-23 2019-03-14 Volkswagen Aktiengesellschaft A method for producing a hybrid magnet as well as hybrid magnet produced by the method and an electric machine comprising the hybrid magnet
JP7346985B2 (en) * 2019-08-01 2023-09-20 株式会社レゾナック Method for manufacturing rare earth bonded magnet compound and method for manufacturing rare earth bonded magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639101A (en) * 1986-06-30 1988-01-14 Seiko Epson Corp Manufacture of magnet
JPH0669009A (en) * 1992-08-19 1994-03-11 Matsushita Electric Ind Co Ltd Manufacture of rare earth-iron based magnet
US5435859A (en) * 1992-08-06 1995-07-25 Erd Corporation Method of producing a rare earth bond magnet
US5464576A (en) * 1991-04-30 1995-11-07 Matsushita Electric Industrial Co., Ltd. Method of making isotropic bonded magnet
JPH08111306A (en) * 1994-10-07 1996-04-30 Mitsubishi Materials Corp Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder
JPH10321427A (en) * 1997-05-16 1998-12-04 Hitachi Metals Ltd Rare-earth magnet of high electric resistance and manufacture thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107883B2 (en) * 1985-03-28 1995-11-15 株式会社東芝 Iron core manufacturing method
JPH04219902A (en) * 1990-12-20 1992-08-11 Kobe Steel Ltd Dust core material and its manufacture
JPH09260126A (en) * 1996-01-16 1997-10-03 Tdk Corp Iron powder for dust core, dust core and manufacture thereof
JP2001076914A (en) * 1998-12-17 2001-03-23 Sumitomo Special Metals Co Ltd Rare-earth based permanent magnet and manufacture thereof
JP3278647B2 (en) * 1999-01-27 2002-04-30 住友特殊金属株式会社 Rare earth bonded magnet
JP2001172782A (en) * 1999-12-16 2001-06-26 Ishizuka Glass Co Ltd Treating agent for magnetic stock, magnetic member with coating film and producing method therefor
EP1369439B1 (en) * 2001-01-25 2006-08-09 Sekisui Chemical Co., Ltd. Polyvinyl acetal, polyvinyl acetal composition, ink, coating material, dispersant, heat-developable photosensitive material, ceramic green sheet, primer for plastic lens, recording agent for water-based ink, and adhesive for metal foil
JP2005148499A (en) * 2003-11-17 2005-06-09 Kaneka Corp Magnet roller
CN1934660A (en) * 2004-06-30 2007-03-21 信越化学工业株式会社 Corrosion-resistant rare earth magnets and process for production thereof
EP1852199B1 (en) * 2005-01-25 2012-01-04 Diamet Corporation Mg-CONTAINING OXIDE COATED IRON POWDER

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639101A (en) * 1986-06-30 1988-01-14 Seiko Epson Corp Manufacture of magnet
US5464576A (en) * 1991-04-30 1995-11-07 Matsushita Electric Industrial Co., Ltd. Method of making isotropic bonded magnet
US5435859A (en) * 1992-08-06 1995-07-25 Erd Corporation Method of producing a rare earth bond magnet
JPH0669009A (en) * 1992-08-19 1994-03-11 Matsushita Electric Ind Co Ltd Manufacture of rare earth-iron based magnet
JPH08111306A (en) * 1994-10-07 1996-04-30 Mitsubishi Materials Corp Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder
JPH10321427A (en) * 1997-05-16 1998-12-04 Hitachi Metals Ltd Rare-earth magnet of high electric resistance and manufacture thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011054746A1 *

Also Published As

Publication number Publication date
WO2011054746A1 (en) 2011-05-12
KR20120096483A (en) 2012-08-30
US20120319807A1 (en) 2012-12-20
DE102009046426A1 (en) 2011-05-12
JP2013509734A (en) 2013-03-14
CN102667971A (en) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2011054746A1 (en) Method for producing a magnet, magnet, and electric machine
DE102013018182A1 (en) Method and device for producing three-dimensional models with binder system
EP2712462A1 (en) Insulation systems having improved partial discharge resistance, and method for producing same
DE60036766T2 (en) A method of making a rare earth metal based permanent magnet having a corrosion resistant layer
DE112009002116T5 (en) Powder for a core of magnetic powder, powdered magnetic core and process for producing these products
EP1518889A1 (en) Curable reactive resin system
DE102018214641B4 (en) Potting compound, method for electrically isolating an electrical or electronic component using the potting compound, electrically insulated component produced by such a method and using the potting compound
EP3630433B1 (en) Method for producing a printed concrete element
EP3044853B1 (en) Slot sealing compound, slot seal, and a method for producing a slot seal
EP3169640B1 (en) Production of a slip and component composed of the slip
DE102006019614B4 (en) Aging resistant permanent magnet made of an alloy powder and process for its preparation
AT412207B (en) PROTECTIVE COATINGS ON CARBON SUBSTRATES AND METHOD FOR THE PRODUCTION THEREOF
DE102016203313A1 (en) Binder system for producing a slurry and component made with the slurry
KR20170137968A (en) Manufacturing method of power inductor
WO2020193209A1 (en) Formulation for an insulation system, insulation system therefrom and electric machine having insulation system
EP2674271A1 (en) Production method for powder compact, and powder compact
DE102012223323A1 (en) Method for producing a stator of an electric machine, stator and electric machine
WO2014079647A1 (en) Enamelled wire
WO2019020337A1 (en) Method for producing a component, in particular for a motor vehicle, and component
DE102011077021A1 (en) Method for producing electrically-insulated ceramic coating on piston or bearing component i.e. rolling body, of needle cage, involves applying mixture on component, and drying mixture with temperature between specific degrees Celsius
WO2015003849A1 (en) Anisotropic rare earths-free plastic-bonded high-performance permanent magnet having nanocristalline structure, and method for production thereof
EP3166903B1 (en) Production of a slip and component of the slip
DE102015014316A1 (en) building material system
DE10213756A1 (en) Cooling circuit or component, comprises a coating composed of an organic hybrid material in the areas exposed to coolant
DE202009010871U1 (en) Thermal insulation molding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141028

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150508