EP2496676B1 - Compositions pour lessive - Google Patents

Compositions pour lessive Download PDF

Info

Publication number
EP2496676B1
EP2496676B1 EP09748116.2A EP09748116A EP2496676B1 EP 2496676 B1 EP2496676 B1 EP 2496676B1 EP 09748116 A EP09748116 A EP 09748116A EP 2496676 B1 EP2496676 B1 EP 2496676B1
Authority
EP
European Patent Office
Prior art keywords
perfume
particles
micro
deposition
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP09748116.2A
Other languages
German (de)
English (en)
Other versions
EP2496676A1 (fr
Inventor
Paul Ferguson
Christopher Clarkson Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42307884&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2496676(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP2496676A1 publication Critical patent/EP2496676A1/fr
Application granted granted Critical
Publication of EP2496676B1 publication Critical patent/EP2496676B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin

Definitions

  • This invention relates to improvement to laundry compositions. More particularly, the invention is directed to laundry compositions comprising perfume and micro-fibrous cellulose.
  • Perfume is an important ingredient of laundry products.
  • the perfume provides a pleasing fragrance for the consumer and is a sensorial cue that the product has performed its intended function, providing clean and fresh laundered garments.
  • Perfume however is an expensive component, and a problem in the field is that perfume deposition from laundry products is inefficient.
  • EP 1 844 759 discloses compositions which increase perfume deposition comprising a fragrance material, a derivatised polysaccharide, a branched polyglycerol-modified silicone and a surfactant. It is believed therein that the perfume deposition enhancement is attributable to the synergistic effect between the derivatised polysaccharide and the branched polyglycerol-modified silicone.
  • US patent application US 2007/0197779 discloses a structurant consisting of bacterially produced micro-fibrous cellulose combined with carboxy methyl cellulose and xanthan gum as dispersion aids.
  • US 2008/0108541 and US 2008/0146485 disclose surfactant systems which use micro-fibrous cellulose to suspend particulates therein.
  • WO 2009/101545 discloses a structured liquid detergent composition in the form of a liquid matrix made up of an external structuring system of a bacterial cellulose network; water; and surfactant system including an anionic surfactant; a nonionic surfactant; a cationic surfactant; an ampholytic surfactant; a zwitterionic surfactant; or mixtures thereof.
  • WO 2008/145547 discloses a process for the manufacture of core-shell perfume particles by emulsion polymerisation and to the products obtainable by such a process.
  • the core of the particles comprises a perfume and the shell (which preferably comprises an aminoplast polymer) also comprises a non-ionic deposition aid (such as locust bean gum) which is substantive to textiles.
  • WO 2007/062833 provides an encapsulate comprising a benefit agent core (preferably containing perfume), one or more inner shells (preferably of melamine urea or melamine formaldehyde) and an outer shell comprising a polymer.
  • a benefit agent core preferably containing perfume
  • one or more inner shells preferably of melamine urea or melamine formaldehyde
  • an outer shell comprising a polymer.
  • micro-fibrous cellulose can be used to increase the deposition of perfume on fabric, thus solving the aforementioned problem.
  • the invention relates to the use of micro-fibrous cellulose to increase the deposition of perfume particles on fabric.
  • micro-fibrous cellulose may be used as part of a laundry composition.
  • the term “comprising” means including, made up of, composed of, consisting and/or consisting essentially of.
  • a formula shall be considered physically "stable" when after 1 week at 21 degrees Celsius it exhibits no signs of phase separation.
  • the process to make a laundry detergent composition comprising micro-fibrous cellulose comprises mixing together in any order 5 to 80 wt.% of an anionic and/or nonionic surfactant, 0.001 to 5 wt.% micro-fibrous cellulose and 0.025 to 10 wt.% perfume particles.
  • micro-fibrous cellulose is added to the surfactant as a pre-mix in water.
  • perfume particles are post-dosed to the surfactant.
  • the emulsion can be included in laundry detergent products taking a number of forms.
  • the laundry detergent composition may be a main wash composition, a rinse composition, or a pre- or after-wash treatment composition, all of which may be dilutable or non-dilutable.
  • Main wash compositions are preferred.
  • compositions of the invention may be in any physical form e.g. a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or liquid, especially, an aqueous based liquid.
  • the compositions may be used in laundry compositions, especially in liquid, gel, powder or tablet laundry composition.
  • the pH range of the composition is from pH 7-12, preferably from pH 8.5 to 9.5. It is desirable to buffer the formulation at whatever the target pH of the composition is.
  • the invention relates to the use of micro-fibrous cellulose to increase the deposition of perfume particles on fabric.
  • the preferred substrate for deposition is clothes.
  • micro-fibrous cellulose is particularly applicable for compositions which comprise perfume particles which are in the form of perfume encapsulates.
  • micro-fibrous cellulose is also especially applicable for perfume particles (particularly perfume encapsulates) which have been modified by a deposition aid.
  • the deposition aid in this case is preferably a polysaccharide, more preferably locust bean gum.
  • Preferred micro-fibrous celluloses suitable for use in embodiments of the present invention include those described in US 2007/019779 (CP Kelco). Particular preferred materials are those obtained from Acetobacter . These materials are available in the marketplace from CP Kelco (Atlanta, Georgia USA).
  • the micro-fibrous cellulose has an individual fibre diameter of from about 40nm to 0.5 ⁇ m, for example 0.1 ⁇ m.
  • micro-fibrous cellulose is non-ionic.
  • the micro-fibrous cellulose is present at a level of from 0.001 to 5 wt.%, preferably from 0.01 to 2.5 wt.%, more preferably 0.01 to 1 wt.%, optionally from 0.02 to 0.75 wt.%, for example from 0.025 to 0.4 wt.%.
  • the perfume is present in the form of perfume particles. These particles are incorporated in the laundry composition at a level of from 0.001 to 10 wt.%, preferably 0.0025 to 3 wt.%, most preferably 0.05 to 2 wt.%.
  • the perfume is typically present in an amount of from 10 to 85 wt.% by total weight of the perfume particle, preferably from 20 to 75 wt.% of the particle.
  • the perfume suitably has a molecular weight of from 50 to 500.
  • perfume particles preferably polymeric core-shell perfume encapsulates
  • many other types of particle can be envisaged as the carrier.
  • Perfumes have been adsorbed onto a clay or zeolite material that is then admixed into particulate detergent compositions:
  • U.S. Pat. No. 4,539,135 discloses particulate laundry compounds comprising a clay or zeolite material carrying perfume.
  • Other perfume delivery systems are taught by WO 97/34982 and WO 98/41607 , published by The Procter & Gamble.
  • WO 97/34982 discloses particles comprising perfume loaded zeolite and a release barrier, which is an agent derived from a wax and having a size (i.e., a cross-sectional area) larger than the size of the pore openings of the zeolite carrier.
  • WO 98/41607 discloses glassy particles comprising agents useful for laundry or cleaning compositions and a glass derived from one or more of at least partially-water-soluble hydroxylic compounds.
  • PVP polyvinyl pyrrolidone
  • PVA polyvinyl alcohol
  • cellulose ethers polystyrene
  • polyacrylates polymethacrylates
  • Aminoplast core-shell particles are particularly preferred.
  • Suitable particle sizes for the benefit agent range from nanometre scale to micron scale and even to millimetre scale. Typical particle sizes range from 1 micron to 1 mm, with, for encapsulated perfumes, particle sizes in the range of 5-50 microns being preferred, especially particles of 10-30 microns. Larger particles can be employed in the form of functional, but visible "beads", typically of a size range of 0.1-5mm.
  • the perfume particles When the perfume particles are present at a level of 1.5 wt.% and have a polymeric melamine-formaldehyde shell, then the perfume particles additionally comprise a deposition aid.
  • the perfume particles are preferably provided with a deposition aid.
  • a deposition aid can preferably be incorporated in the shell of an encapsulated perfume particle.
  • the deposition aid is preferably attached to the particle by means of a covalent bond, entanglement or strong adsorption, preferably by a covalent bond or entanglement and most preferably by means of a covalent bond.
  • entanglement as used herein is meant that the deposition aid is for example adsorbed onto the particle as polymerisation proceeds and the particle grows in size, part of the adsorbed deposition aid becomes buried within the interior of the particle.
  • the deposition aid can be nonionic, cationic or anionic.
  • the deposition aid is a polysaccharide.
  • the polysaccharide preferably has a ß-1,4-linked backbone and is substantive to cellulose.
  • the polysaccharide is cellulose, a cellulose derivative, or another ⁇ -1,4-linked polysaccharide having an affinity for cellulose, such as polymannan, polyglucan, polyglucomannan, polyxyloglucan and polygalactomannan or a mixture thereof. More preferably, the polysaccharide is selected from the group consisting of polyxyloglucan and polygalactomannan.
  • preferred polysaccharides are locust bean gum, tamarind xyloglucan, guar gum or mixtures thereof. Most preferably, the deposition aid is locust bean gum.
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
  • perfume in this context is not only meant a fully formulated product fragrance, but also selected components of that fragrance, particularly those which are prone to loss, such as the so-called 'top notes'.
  • the perfume component could also be in the form of a profragrance.
  • WO 2002/038120 relates to photo-labile pro-fragrance conjugates which upon exposure to electromagnetic radiation are capable of releasing a fragrant species.
  • Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]). Examples of well known top-notes include citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Top notes typically comprise 15 to 25 wt.% of a perfume composition and in those embodiments of the invention which contain an increased level of top-notes it is envisaged at that least 20 wt.% would be present within the encapsulate.
  • Typical perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300°C, preferably 100 to 250°C.
  • perfume components which have a low LogP (i.e. those which will be partitioned into water), preferably with a LogP of less than 3.0.
  • materials, of relatively low boiling point and relatively low LogP have been called the "delayed blooming" perfume ingredients and include the following materials:
  • perfume components it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the encapsulated perfume.
  • Part or all of the perfume may be in the form of a pro-fragrance.
  • a pro-fragrance is any material which comprises a fragrance precursor that can be converted into a fragrance.
  • Suitable pro-fragrances are those that generate perfume components which are aldehydes.
  • Aldehydes useful in perfumery include but are not limited to phenylacetaldehyde, p-methyl phenylacetaldehyde, p-isopropyl phenylacetaldehyde, methyinonyl acetaldehyde, phenylpropanal, 3- (4-t-butylphenyl)-2-methyl propanal, 3- (4-t-butylphenyl)- propanal, 3- (4-methoxyphenyl)-2-methylpropanal, 3- (4-isopropylphenyl)-2- methylpropanal, 3-(3, 4-methylenedioxyphenyl)-2-methyl propanal, 3- (4- ethylpheny)-2, 2-dimethylpropanal, phenylbutanal, 3-methyl-5-phenylpentanal, hexanal, trans-2-hexenal, cis-
  • perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian. By means of the present invention these materials can be transferred to textile articles that will be worn or otherwise come into contact with the human body (such as handkerchiefs and bed-linen).
  • essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
  • the perfume may be encapsulated alone or co-encapsulated with carrier materials, further deposition aids and/or fixatives.
  • Preferred materials to be co-encapsulated with the perfume include waxes, paraffins, stabilizers and fixatives.
  • An optional yet preferred component of capsule is a formaldehyde scavenger.
  • Formaldehyde scavenger is chosen from: sodium bisulfite, urea, cysteine, cysteamine, lysine, glycine, serine, carnosine, histidine, glutathione, 3,4-diaminobenzoic acid, allantoin, glycouril, anthranilic acid, methyl anthranilate, methyl 4-aminobenzoate, ethyl acetoacetate, acetoacetamide, malonamide, ascorbic acid, 1,3-dihydroxyacetone dimer, biuret, oxamide, benzoguanamine, pyroglutamic acid, pyrogallol, methyl gallate, ethyl gallate, propyl gallate, triethanol amine, succinamide, thiabendazole,
  • Preferred formaldehyde scavengers are sodium bisulfite, ethyl acetoacetate, acetoacetamide, ethylenediamine-N,N'-bisacetoacetamide, ascorbic acid, 2,2-dimethyl-1,3-dioxan-4,6-dione, helional, triplal, lilial and mixtures thereof.
  • the laundry composition comprises a surfactant, preferably a detersive surfactant.
  • Suitable surfactants comprise nonionic surfactants and anionic surfactants.
  • surfactants may be chosen from the surfactants described in " Surface Active Agents” Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of "McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
  • the surfactants used are saturated.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are C 6 to C 22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.
  • Suitable anionic detergent compounds which may be used are usually watersoluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the preferred anionic detergent compounds are sodium C 11 to C 15 alkyl benzene sulphonates and sodium C 12 to C 18 alkyl sulphates.
  • anionic surfactants include fatty acid-based soaps containing between C 8 -C 26 carbon atoms. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides.
  • the total amount of surfactant present in the liquid composition is from 5 to 65 wt.%.
  • the total amount of surfactant is from 10 to 65 wt.%, preferably from 15 to 50 wt.%.
  • surfactants such as amphoteric, zwitterionic and cationic surfactants may also be present in addition to the aforementioned nonionic and/or anionic surfactants.
  • the laundry composition may additionally comprise one or more of the following optional ingredients.
  • the laundry composition optionally comprises from 1 to 50 wt.% of a builder.
  • the builder is present at a level of from 1 to 40 wt.%.
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • the size is in the range 0.1 to 10 microns (as measured by The Mastersizer 2000 particle size analyzer using laser diffraction ex MalvernTM).
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • the composition may also contain 0-50 wt.% of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate are preferred builders.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt.%.
  • Aluminosilicates are materials having the general formula: 0.8-1.5 M 2 O. Al 2 O 3 . 0.8-6 SiO 2 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to aluminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt.% of phosphate.
  • the laundry composition preferably comprises a blue or violet shading agent in the range from 0.0001 to 0.01 wt.%.
  • the shading agents reduce the perception of damage to many coloured garments and increase whiteness of white garments.
  • the shading agents are preferably selected from blue and violet dyes of the solvent disperse basic, direct and acid type listed in the colour index (Society of Dyers and Colourists and American Association of Textile Chemists and Colorists 2002).
  • a direct violet or direct blue dyes is present.
  • the dyes are bis -azo, tris -azo dyes or triphendioxazine dye.
  • the carcinogenic benzidene based dyes are not preferred.
  • the laundry composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g.
  • Preferred fluorescers are: sodium 2-(4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]trazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfoslyryl)biphenyl.
  • the laundry composition may comprise one or more polymers.
  • polymers are carboxymethylcellulose, poly(ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers, lauryl methacrylate/acrylic acid copolymers, and cationic polysaccharide-based polymers.
  • a liquid detergent composition may optionally include a hydrotrope, which can prevent liquid crystal formation.
  • Suitable hydrotropes include but are not limited to propylene glycol, ethanol, urea, salts of benzene sulphonate, toluene sulphonate, xylene sulphonate or cumene sulphonate.
  • Suitable salts include but are not limited to sodium, potassium, ammonium, monoethanolamine, triethanolamine.
  • the hydrotrope is selected from the group consisting of propylene glycol, xylene sulfonate, ethanol, and urea to provide optimum performance.
  • the amount of the hydrotrope is generally in the range of from 0 to 30%, preferably from 0.5 to 30%, more preferably from 0.5 to 30%, most preferably from 1 to 15%.
  • micro-fibrous cellulose to enhance the deposition of perfume particles is shown in this example.
  • Encapsulted perfume particles (perfume encaps) were tested for deposition from laundry formulations with and without micro-fibrous cellulose.
  • Perfume encaps modified by addition of a locust bean gum deposition aid were also tested.
  • the micro-fibrous cellulose used was commercially available from CP Kelco.
  • Locust bean gum (11.2g) was dissolved in hot (70-80°C) de-ionised water (739.14g) by mixing with a high speed homogeniser (Silverson) at 10,000rpm for 10 minutes until completely solubilised. The solution was then allowed to cool to room temperature under static conditions. It was then transferred to a reaction vessel fitted with an overhead stirrer, condenser, thermocouple (attached to heating mantle) and nitrogen inlet.
  • Perfume encapsulates (1894.7g, 53.2% solids, 30 ⁇ m particle size) and vinyl acetate (112g) were added, and the contents purged with nitrogen for 10 minutes, after which point the vessel and contents were left over a nitrogen blanket for the duration of the reaction.
  • the temperature was then raised to 70°C, and aqueous ascorbic acid solution (2.8g in 25g de-ionised water) together with aqueous hydrogen peroxide solution (8g, 35% active) were added to initiate the polymerisation.
  • aqueous ascorbic acid solution (0.56g in 5g de-ionised water) and aqueous hydrogen peroxide (1.6g, 35% active) were added to improve the kinetics, and the polymerisation was allowed to continue for a further 30 minutes.
  • the sample was then allowed to cool to room temperature under stirring.
  • the white latex that was obtained consisted of -40% solids.
  • the residual vinyl acetate was in the region of 1000 p.p.m., which equates to a conversion of >99.5 % of the monomer.
  • Example 1b Deposition of the LBG-PVAc modified encapsulates in the presence of micro-fibrous cellulose
  • a section of unfluoresced cotton measuring 20cm by 20cm was placed into each wash liquor and the Linitest pots were sealed.
  • the Linitest is a laboratory scale washing machine (Ex. Heraeus).
  • the equipment is designed and built to comply with the requirements for international standard test specifications. It is used for small scale detergency and stain removal testing particularly when low liquor to cloth ratios are required.
  • the model used in this case has a single rotation speed of 40rpm.
  • the carrier is capable of accommodating twelve 500ml steel containers and can be operated at temperatures up to 100°C.
  • the Linitest comprises a 20 litre tank, control system and drive mechanism. Permanent thermostatically controlled tubular heating elements in the base of the tank heat the bath liquor to the required temperature.
  • the stainless steel construction throughout ensures efficient heat transfer to the specimen containers that are mounted on a rotating horizontal carrier driven by a geared motor. The rotating movement of the carrier 'throws' the liquid from one end of the container to the other in a continuous action. This movement simulates the mechanical washing process and additional mechanical action can be obtained by using steel ball bearings or discs.
  • Linitest pots were attached to the Linitester cradle and rotated 45 minutes at 40°C to simulate the main wash.
  • the concentration of the particles remaining the liquor after the wash could be determined and hence the level deposited (wash deposition) on the cloth could be determined by difference.
  • the Linitest pots were then thoroughly rinsed and the 'wrung' cloths returned to the pots and 100ml of Wirral water was added.
  • the Linitester bath water was drained and the pots attached to the cradle and rotated for 10 minutes at ambient temperature ( ⁇ 20°C) to simulate a rinse procedure.
  • the clothes were then removed and wrung by hand.
  • a 5ml aliquot of the rinse solution was taken and the absorbance at 400nm determined.
  • the percentage loss from the cloth could be determined. This procedure was repeated to simulate and determine losses from the second rinse.
  • Table 1 Deposition of Perfume Laundry Detergent (Persil Small and Mighty) Perfume Encaps Micro-fibrous Cellulose % Deposition after wash process (main wash and 2 rinses) Concentrated Liquid Not Modified None 10.4 ⁇ 1.7 Concentrated Liquid LBG-PVAc Shell None 28.4 ⁇ 1.0 Concentrated Liquid Not Modified 0.125% 14.8 ⁇ 3.0 Concentrated Liquid LBG-PVAc Shell 0.125% 34.6 ⁇ 1.4
  • micro-fibrous cellulose improves the deposition of perfume, both of unmodified perfume encapsulates, and especially also for perfume encapsulates which have had their shell modified with a deposition aid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Claims (7)

  1. Utilisation de cellulose micro-fibreuse pour augmenter le dépôt de particules de parfum sur du tissu.
  2. Utilisation selon la revendication 1, dans laquelle les particules de parfum sont des particules noyau-enveloppe polymères.
  3. Utilisation selon la revendication 1 ou la revendication 2, dans laquelle les particules de parfum présentent une enveloppe de mélamine-formaldéhyde.
  4. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle les particules de parfum comprennent une aide au dépôt.
  5. Utilisation selon la revendication 4, dans laquelle l'aide au dépôt comprend un polysaccharide.
  6. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle les particules de parfum sont des encapsulats de parfum noyau-enveloppe polymères avec une aide au dépôt de gomme de caroube.
  7. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la cellulose micro-fibreuse est présente à une teneur de 0,01 à 2,5 % en masse, de préférence de 0,01 à 1 % en masse, encore mieux de 0,02 à 0,75 % en masse.
EP09748116.2A 2009-11-05 2009-11-05 Compositions pour lessive Revoked EP2496676B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/064702 WO2011054389A1 (fr) 2009-11-05 2009-11-05 Compositions pour lessive

Publications (2)

Publication Number Publication Date
EP2496676A1 EP2496676A1 (fr) 2012-09-12
EP2496676B1 true EP2496676B1 (fr) 2016-06-29

Family

ID=42307884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09748116.2A Revoked EP2496676B1 (fr) 2009-11-05 2009-11-05 Compositions pour lessive

Country Status (5)

Country Link
EP (1) EP2496676B1 (fr)
CN (1) CN102695786B (fr)
BR (1) BR112012010662A2 (fr)
ES (1) ES2593808T3 (fr)
WO (1) WO2011054389A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375856A1 (fr) 2017-03-16 2018-09-19 The Procter & Gamble Company Composition d'adoucissant textile comprenant un agent bénéfique encapsulé
EP3375855A1 (fr) 2017-03-16 2018-09-19 The Procter & Gamble Company Composition d'adoucissant textile comprenant un agent bénéfique encapsulé
US10287366B2 (en) 2017-02-15 2019-05-14 Cp Kelco Aps Methods of producing activated pectin-containing biomass compositions

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2496676B1 (fr) 2009-11-05 2016-06-29 Unilever PLC Compositions pour lessive
DE102012206014A1 (de) 2012-04-12 2013-10-17 Henkel Ag & Co. Kgaa Mikrofibrilläre Cellulose als schmutzablösevermögender Wirkstoff
EP3447113B1 (fr) 2013-07-12 2021-06-02 The Procter & Gamble Company Compositions liquides structurées
SG11201605137VA (en) * 2013-12-31 2016-07-28 Philip Morris Products Sa Smoking article with liquid release component
EP3130657A1 (fr) * 2015-08-12 2017-02-15 Unilever PLC Composition et procédé de nettoyage de surface dure
EP3293248B1 (fr) 2016-09-12 2019-10-23 The Procter & Gamble Company Compositions détergentes contenants des fibres cellulosiques
US10385297B2 (en) 2017-03-16 2019-08-20 The Procter & Gamble Company Methods for making encapsulate-containing product compositions
US10385296B2 (en) 2017-03-16 2019-08-20 The Procter & Gamble Company Methods for making encapsulate-containing product compositions
US10611988B2 (en) 2017-03-16 2020-04-07 The Procter & Gamble Company Methods for making encapsulate-containing product compositions
GB2574006B (en) * 2018-05-21 2023-05-10 Reckitt Benckiser Vanish Bv Peroxide laundry formulation
WO2024138309A1 (fr) * 2022-12-26 2024-07-04 Specialty Operations France Compositions opacifiantes pour formulations de nettoyage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101545A1 (fr) 2008-02-15 2009-08-20 The Procter & Gamble Company Composition détergente liquide comprenant une structure externe constituée d'un réseau de cellulose bactérienne
WO2009126960A2 (fr) 2008-04-11 2009-10-15 Amcol International Corporation Encapsulation d'une fragrance dans un multicouche
WO2011054389A1 (fr) 2009-11-05 2011-05-12 Unilever Plc Compositions pour lessive

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0524659D0 (en) * 2005-12-02 2006-01-11 Unilever Plc Improvements relating to fabric treatment compositions
US9045716B2 (en) * 2006-11-08 2015-06-02 Cp Kelco U.S., Inc. Surfactant thickened systems comprising microfibrous cellulose and methods of making same
GB0710369D0 (en) * 2007-06-01 2007-07-11 Unilever Plc Improvements relating to perfume particles
GB0808293D0 (en) * 2008-05-08 2008-06-11 Unilever Plc Laundry detergent composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101545A1 (fr) 2008-02-15 2009-08-20 The Procter & Gamble Company Composition détergente liquide comprenant une structure externe constituée d'un réseau de cellulose bactérienne
WO2009126960A2 (fr) 2008-04-11 2009-10-15 Amcol International Corporation Encapsulation d'une fragrance dans un multicouche
WO2011054389A1 (fr) 2009-11-05 2011-05-12 Unilever Plc Compositions pour lessive

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287366B2 (en) 2017-02-15 2019-05-14 Cp Kelco Aps Methods of producing activated pectin-containing biomass compositions
US11008407B2 (en) 2017-02-15 2021-05-18 Cp Kelco Aps Activated pectin-containing biomass compositions and products
US11987650B2 (en) 2017-02-15 2024-05-21 Cp Kelco Aps Activated pectin-containing biomass compositions and products
EP3375856A1 (fr) 2017-03-16 2018-09-19 The Procter & Gamble Company Composition d'adoucissant textile comprenant un agent bénéfique encapsulé
EP3375855A1 (fr) 2017-03-16 2018-09-19 The Procter & Gamble Company Composition d'adoucissant textile comprenant un agent bénéfique encapsulé
WO2018170356A1 (fr) 2017-03-16 2018-09-20 The Procter & Gamble Company Composition d'assouplissant comprenant un agent bénéfique encapsulé
WO2018170357A1 (fr) 2017-03-16 2018-09-20 The Procter & Gamble Company Composition d'adoucissant pour tissus comprenant un agent bénéfique encapsulé
US11142723B2 (en) 2017-03-16 2021-10-12 The Procter & Gamble Company Fabric softener composition comprising encapsulated benefit agent

Also Published As

Publication number Publication date
EP2496676A1 (fr) 2012-09-12
WO2011054389A1 (fr) 2011-05-12
ES2593808T3 (es) 2016-12-13
BR112012010662A2 (pt) 2017-08-08
CN102695786A (zh) 2012-09-26
CN102695786B (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
EP2496676B1 (fr) Compositions pour lessive
US8158571B2 (en) Fabric treatment composition comprising a core-shell particle bound to a phthalate-containing polymer
JP4926316B2 (ja) 香料組成物
CA2897612C (fr) Compositions de traitement comprenant des microcapsules, des amines primaires et secondaires, et des piegeurs de formaldehyde
EP3194543B1 (fr) Composition de blanchiment
AU759299B2 (en) Delivery system having encapsulated porous carrier loaded with additives, particularly detergent additives such as perfumes
US8637445B2 (en) Fabric treatment compositions comprising targeted benefit agents
CN104797698B (zh) 在洗涤和清洁组成物中的胶囊剂系统的稳定
US20080221003A1 (en) Consumer products having varying odor patterns
US20060223725A1 (en) Detergent composition
US20080207481A1 (en) Consumer products having varying odors
WO2009135765A1 (fr) Procédé de préparation d’une composition détergente liquide pour le linge
JP2001518135A (ja) 多数の表面被覆を有する洗濯用添加剤粒子
JP2008500900A (ja) カプセル封止された粒子
US20100331229A1 (en) Bleaching compositions comprising a perfume delivery system
EP2748297B1 (fr) Perfectionnements apportés aux polymères, auxiliaires de dépôt, agents traitants ciblés et compositions de traitement de substrats
AU2015317265A1 (en) Whitening composition
US11661569B2 (en) Liquid detergent composition comprising suspended solid particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140919

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809131

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009039474

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2593808

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161213

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 809131

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602009039474

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20170329

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER GAMBLE COMPANY

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161105

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20170329

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20170329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191127

Year of fee payment: 11

Ref country code: ES

Payment date: 20191220

Year of fee payment: 11

Ref country code: FR

Payment date: 20191120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20191104

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191120

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009039474

Country of ref document: DE

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201105

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201105

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201105

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201105

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 602009039474

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 602009039474

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20221121