EP2496010A2 - Procédé de transmission de symboles de commande et d'entraînement dans un système de communication sans fil multi-utilisateur - Google Patents

Procédé de transmission de symboles de commande et d'entraînement dans un système de communication sans fil multi-utilisateur Download PDF

Info

Publication number
EP2496010A2
EP2496010A2 EP10827154A EP10827154A EP2496010A2 EP 2496010 A2 EP2496010 A2 EP 2496010A2 EP 10827154 A EP10827154 A EP 10827154A EP 10827154 A EP10827154 A EP 10827154A EP 2496010 A2 EP2496010 A2 EP 2496010A2
Authority
EP
European Patent Office
Prior art keywords
station
vht
data frame
training symbols
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP10827154A
Other languages
German (de)
English (en)
Other versions
EP2496010A4 (fr
Inventor
Yu-Ro Lee
Jung-Bo Son
Sok-Kyu Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100013612A external-priority patent/KR20110047946A/ko
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Priority to EP20164185.9A priority Critical patent/EP3691331A1/fr
Priority to PL16177778T priority patent/PL3107329T3/pl
Priority to EP16177778.4A priority patent/EP3107329B1/fr
Publication of EP2496010A2 publication Critical patent/EP2496010A2/fr
Publication of EP2496010A4 publication Critical patent/EP2496010A4/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0612Space-time modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Exemplary embodiments of the present invention relate to a method and apparatus for transmitting control and training symbols in a multi-user wireless communication system, which can improve the transmission efficiency thereof.
  • Fig. 1 is a timing diagram for explaining the occurrence of interference between stations (STAs) which simultaneously transmit data in a case in which a transmission scheme such as TGn is maintained while supporting a multi-user MIMO.
  • the respective STAS has different signal to interference plus noise ratios (SINRs), depending on channel states or interference degrees of the STAs.
  • SINRs signal to interference plus noise ratios
  • the number of LTFs is determined by the number of streams
  • a MCS is determined by a minimum transfer rate of a signal field (SIG).
  • a mixed PPDU format provides a backward compatibility with the IEEE. 802.11a/g, and a green field format supports only the IEEE 802.11n.
  • Each STA sets Network Allocation Vector ((NAV):(TXOP)) information by using length information and a modulation & coding scheme contained in a signal field of a frame.
  • NAV Network Allocation Vector
  • each STA receives a beamformed frame, and thus, STAs may not correctly detect length information and MCS of the signal field. Consequently, a hidden node problem may become more serious.
  • An embodiment of the present invention is directed to an apparatus and method for solving a hidden node problem in a wireless communication system using a multi-user MIMO.
  • Another embodiment of the present invention is directed to an apparatus and method for solving a hidden node problem in a green-field mode, in which VHT-SIG is divided into a common signal field, which can be received by all STAs, and a dedicated signal field, which includes beamformed STA information, and appropriate LTF and SIG structures are selected depending on channel states or interference degrees between STAs.
  • a method for transmitting control and training symbols in a multi-user wireless communication system includes: determining whether or not a required transfer rate of each data is met in each station through a channel estimation, upon simultaneous transmission of different data to each station; and when the required transfer rate of each data is not met, configuring a data frame so that the control and training symbols are distinguished at each station by using the combination of time, frequency and code domains, and transmitting the data frame to each station.
  • a method for transmitting control and training symbols in a multi-user wireless communication system includes: determining whether or not a required transfer rate of each data is met in each station through a channel estimation, upon simultaneous transmission of different data to each station; and when the required transfer rate of each data is met, configuring a data frame so that the control and training symbols are overlapped without being distinguished at each station, and transmitting the data frame to each station.
  • the STAs having a poor channel state increase (repeat) the length of the LTF and applies a low MCS to the VHT-SIG-D or repeats the symbols of the VHT-SIG-D. In this way, the VHT-SIG-D detection performance can be improved.
  • the STAs having a good channel state transmits the VHT-SIG-D as one or more streams and uses a high MCS to reduce the number of symbols occupied by the VHT-SIG-D, thereby increasing the transmission efficiency.
  • the channel estimation performance can be improved by coordinating the LTF between the STAs.
  • a transmission/reception signal of a training sequence in a multi-user MIMO is expressed as shown below.
  • Channel estimations of STA 1 and STA 2 may be expressed as Equation 3 below.
  • h ⁇ 2 h 11 ⁇ w 12 + h 12 ⁇ w 22 + h 21 ⁇ w 11 + h 22 ⁇ w 21 ⁇ p 1 ⁇ p 2 * + n 2 ⁇ p 2 *
  • h ⁇ 1 h 11 ⁇ w 11 + h 12 ⁇ w 21 + h 11 ⁇ w 12 + h 12 ⁇ w 22 ⁇ p 2 ⁇ p 1 * + n 1 ⁇ p 1 *
  • the above-described error reducing methods increase the overhead of the LTF occupied in the frame.
  • a signal field indicating whether or not the LTF is repeated, the MCS of the SIG is reduced, and the LTF is coordinated is required.
  • the coordination of the LTF is information which must be known by all STAs coordinating the LTF. Therefore, the information should be transmitted in such a way that all STAs can receive it, not a specific beamforming.
  • a VHT-SIG is divided into a common control signal and a dedicated control signal.
  • a field which transmits the common control signal of the VHT-SIG is defined as a VHT-SIG-C
  • a field which transmits the dedicated control signal of the VHT-SIG is defined as a VHT-SIG-D.
  • a mode for STAs which do not coordinate the LTF is defined as a mode "a”
  • a mode for STAs which coordinate the LTF is defined as a mode "b”.
  • a mode in which the AP supports not the VHT STA but 11a/g/n STAs is defined as an 11a/g/n/vHT mixed mode
  • a mode which supports the IEEE 802.11n is defined as an 11n/VHT mixed mode
  • a mode which does not support the IEEE 802.11a/g/n is defined as a green-field mode.
  • the respective transmission frame format is called a PPDU format.
  • Fig. 2 is an exemplary diagram of a PPDU format in an IEEE 802.11a/g/n/VHT mixed mode in a mode "a”
  • Fig. 3 is an exemplary diagram of a PPDU format in an IEEE 802.11n/VHT mixed mode in a mode "a”.
  • the PPDU format has a common phase and a dedicated phase.
  • the common phase is defined as a phase till a VHT-SIG-C field
  • the dedicated phase is defined as a phase after the VHT-SIG-C field.
  • VHT-SIG-C fields 211 and 311 are located after an HT-SIG field.
  • VHT-SIG-C fields 221 and 321 are located after a VHT-STF field.
  • a VHT STA when a VHT STA receives the IEEE 802.11n frame format, the STA does not know whether the frame is the IEEE 802.11n frame or the VHT frame, prior to detection of the VHT-SIG-C.
  • an HT-STF for automatic gain control (AGC) may be located at a symbol position of the VHT-SIG-C, the VHT-STF symbol may be transmitted after the HT-SIG, and then, the VHT-SIG-C may be transmitted.
  • AGC automatic gain control
  • VHT-SIG-C fields 231 and 331 are located after the VHT-LTF field.
  • VHT-LTF is transmitted after the VHT-STF in order for decoding performance of the VHT-SIG-C, and then, the VHT-SIG-C fields 231 and 331 are transmitted.
  • a VHT-SIG-C field 241 may be immediately transmitted, without HT-SIG.
  • various PPDU formats may be provided.
  • all dedicated phases may have the VHT-SIG-D fields 212, 222, 232, 242, 312, 322 and 332.
  • Fig. 4 is an exemplary diagram of a green-field PPDU format in accordance with an embodiment of the present invention.
  • the green-field PPDU format may be divided into a common phase and a dedicated phase.
  • the dedicated phases start after the VHT-SIG-C fields 411 and 421. Therefore, in the dedicated phases, the VHT-SIG-D fields 412 and 422 are located in the dedicated phases.
  • VHT-STF2 and VHT-LTF1 fields and information of VHT-SIG-D and VHT-LTF2 fields are transmitted through the VHT-SIG-C field 411 all STAs can receive.
  • the VHT-LTF1 may be transmitted when the AGC is unnecessary after the VHT-SIG-C 421.
  • Fig. 5 is an exemplary diagram of a PPDU of a mixed mode format in a mode "b" for STAs coordinating an LTF
  • Fig. 6 is an exemplary diagram of a PPDU of a green-field format in a mode "b" for STAs coordinating an LTF.
  • VHT-SIG-C fields 511, 521, 531, 541, 551, 561, 611, 621, 631 and 641 divide the PPDU into the common phase and the dedicated phase.
  • the dedicated phases include the VHT-SIG-D fields 512, 522, 532, 542, 552, 562, 621, 622, 532 and 642).
  • Figs. 5(a), 5(b), 5(c) and 5(d) are identical to three cases of the mode "a" in Fig. 2 .
  • Coordination between the STAs may be performed by K STAS which simultaneously transmit data, or may be performed by necessary STAs, for example, the STAs a to b.
  • Fig. 5(a) illustrates a case in which the STAS 2 to K are coordinated. That is, the VHT-SIG-D fields 522 and 532 may be located at arbitrary positions between the VHT-SIG-C and a data field, and the positions may be designated by the information of the VHT-SIG-C.
  • the cases of Figs. 5(b), 5(c) and 5(d) may coordinate the STAs in the same manner as Fig. 5(a) .
  • FIG. 6 A case of Fig. 6 will be described below.
  • the cases of Figs. 6(a) and 6(b) are identical to the three cases in the mode a of Fig. 3 .
  • Coordination between the STAs may be performed by K STAS which simultaneously transmit data, or may be performed by necessary STAs, for example, the STAs a to b.
  • Fig. 6(a) illustrates a case in which the STAS 2 to K are coordinated.
  • STAs may be coordinated in the same manner as that of Fig. 6(a) .
  • the VHT-SIG-D fields 612, 622, 632 and 642 may be located at arbitrary positions between the VHT-SIG-C and a data field, and the positions may be designated by the information contained in the VHT-SIG-C of the corresponding frame.
  • a control message contained in a signal field will be exemplarily described below.
  • VHT-SIG1 common control signal, VHT-SIG-C
  • VHT-SIG-C common control signal
  • VHT-SIG1 (VHT-SIG-C) contains the following information.
  • LTF coordination methods may be provided depending on time-domain, frequency-domain, and code-domain coordination.
  • Figs. 7A to 7D are exemplary diagrams for explaining an LTF coordination method in the cases of mode b-1, mode b-2, mode b-3, and mode b-4.
  • Figs. 7A to 7D data are simultaneously transmitted to four STAs, and each STA receives one stream.
  • Fig. 7A illustrates an example in which STAs are configured to transmit data in division by using different symbols which are time-domain values
  • Fig. 7B illustrates an example in which STAs are configured to transmit data in division by using different subcarriers which are frequency-domain values
  • Fig. 7C illustrates an example in which STAs transmit data in division by using symbols, which are time- and frequency-domain values, and different codes in each STAs as symbol axes
  • Fig. 7D illustrates an example in which STAs transmit data in division by using subcarriers, which are frequency- and code-domain values, and different codes in each STAs as subcarrier axes.
  • Figs. 7A to 7D in the cases in which the respective STAs receive n streams, LTF corresponding to each STA is expanded to n LTFs, and they are coordinated in each STA.
  • the configuration can be easily derived from one stream.
  • a new LTF coordination method can be configured from combinations of these modes, and such a configuration can be easily derived from the existing modes.
  • C is a code which spreads into time or frequency or time/code or time/frequency domain, constituting a spread matrix.
  • the spread matrix an orthogonal matrix, a discrete Fourier transform (DFT) matrix, and a unitary matrix may be used.
  • m is an spatial time stream index corresponding to a spatial domain, and is equal to a total sum of the number of spatial time streams when STAs intending to simultaneously transmit data to MU-MIMO are coordinated.
  • w is a precoding matrix for transmission of MU-MIMO
  • g is a TX antenna index.
  • OFDM can expand to a subcarrier which is the unit of the frequency domain, and a subcarrier index is skipped in Equation 4 above.
  • Fig. 8A when the mode is spread to the time domain like in the mode b-1 and the time-domain unit is a symbol, only the diagonal elements of the spread matrix has values, off-diagonal elements are zero. This is illustrated in Fig. 8A .
  • Fig. 8A is an exemplary diagram of a spread matrix when the mode b-1 is spread to the time domain and the time-domain unit is a symbol.
  • a horizontal axis is a symbol
  • a vertical axis is a spatial time stream.
  • the mode is spread to the frequency domain like the mode b-2 and the frequency-domain unit is a subcarrier
  • the diagonal elements of the spread matrix have values, like the expansion of the time domain. This is illustrated in Fig. 8B .
  • Fig. 8B is an exemplary diagram of a spread matrix when the mode b-2 is spread to the frequency domain and the frequency-domain unit is the subcarrier.
  • a horizontal axis is a subcarrier
  • the vertical axis is a spatial time stream.
  • the spread matrix may be illustrated like in Fig. 8C , when the mode is spread to the time and code domains like the mode b-3 and the time-domain unit is a symbol.
  • Fig. 8C is an exemplary diagram of a spread matrix when the mode b-3 is spread to the time and code domains and the time-domain unit is a symbol.
  • a horizontal axis is a symbol
  • a vertical axis is a spatial time stream.
  • the spread matrix may be illustrated like Fig. 8D .
  • Fig. 8D is an exemplary diagram of a spread matrix when the mode b-4 is spread to the frequency and code domains and the frequency-domain unit is a subcarrier.
  • a horizontal axis is a subcarrier
  • a vertical axis is a spatial time stream.
  • the spread matrix can be configured by easily expanding in the symbol/subcarrier form in which the symbol and the subcarrier are combined.
  • the total spatial time stream to be transmitted is allocated in each STA, it may be exemplified like Fig. 8E .
  • Fig. 8E is an exemplary diagram when the total spatial time stream to be transmitted is allocated in each STA.
  • STA 1 uses two spatial time streams
  • STA 2 uses three spatial time streams
  • STA K uses one spatial time stream.
  • all STAs need not use the same number of the spatial time streams.
  • each STA uses two spatial time streams
  • the spread matrix uses a DFT matrix
  • the allocation of the spread matrix in each STA may be illustrated like Fig. 8F .
  • a horizontal axis is a spatial time stream
  • a vertical axis is a symbol, a subcarrier, or a symbol/subcarrier.
  • the values of the first row and the first column are 1.
  • it should be noted that they have a value of x exp(-j2 ⁇ /6).
  • each STA uses two spatial time streams, and a unitary matrix having real values is used as the spread matrix
  • the allocation of the spread matrix in each STA may be illustrated like Fig. 8G .
  • a horizontal axis is a spatial time stream
  • a vertical axis is a symbol, a subcarrier, or a symbol/subcarrier.
  • each element value of the spread matrix may have an arbitrary value.
  • the spread matrix may be a DFT matrix or a unitary matrix.
  • the symbols required in the time domain is four.
  • the calculation of the spread matrix can be performed as in Fig. 8H by applying 4x4 partial matrix which is a part of 8x8 matrix.
  • Fig. 9 is a flowchart for determining a PPDU format in accordance with a preferred embodiment of the present invention.
  • the AP collects channel information of each STA through sounding or feedback information.
  • interference between the STAs is estimated from the channel information collected at step 900 by applying a precoding algorithm, such as ZF, MMSE, Sphere encoder, and so on.
  • the AP determines whether or not the STAs meet necessary performance. This step is done for distinguish STAs which do not meet the required performance because a channel estimation error is increased by an increased interference between the STAs. That is, the STAs which do not meet the required performance perform an LTF coordination, and the STAs which meet the required performance do not perform an LTF coordination.
  • step 904 When the determination result of step 904 is met, that is, when the VHT-LTF coordination is not performed, the AP operates in a mode "a". In this case, the AP proceeds to step 906 to determine MCS of VHT-SIG-D by using the estimated SINR of the STA. When the estimated SINR is high, higher MCS is applied to the VHT-SIG-D, instead of BPSK. When the estimated SINR is low, the lowest MCS is transmitted.
  • step 904 when the determination result of step 904 is not met, that is, when the VHT-LTF coordination is performed, the AP operates in a mode "b". In this case, the AP proceeds to step 908 to select an appropriate coordination mode by using mobility, delay spread, SINR information of STAs which are coordinated by the AP.
  • the AP applies the mode b-3 when the delay spread is large and applies the mode b-4 when the delay spread is small.
  • the AP reduces the number of the simultaneous transmission users and applies the mode b-3 to obtain a gain by a dispreading.
  • the AP proceeds to step 910 to determine whether or not the VHT-LTF/VHT-SIG is repeated, and determine the number of repetition of the VHT-LTF/VHT-SIG. That is, when the AP coordinates the LTF, it can repeat the LTF in order to further improve the channel estimation performance. Thus, the number of repetition of the VHT-LTF/VHT-SIG is determined. In addition, the AP can increase the detection probability of the dedicated control signal by repeating the VHT-SIG-D.
  • the AP proceeds to step 912 to determine a PPDU format, and configures the PPDU and transmits the configured PPDU.
  • the receiving end operates as follows in the 11a/g/n/VHT mixed mode.
  • the receiving method in 11 n/VHT mixed mode/VHT green-field mode in the mode a and the mixed mode and the green-field mode in the mode b can be easily configured from the above operation structures.
  • the embodiments of the present invention can be applied to the cases of transmitting a training symbol in a high-rate wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
EP20100827154 2009-10-30 2010-10-30 Procédé de transmission de symboles de commande et d'entraînement dans un système de communication sans fil multi-utilisateur Ceased EP2496010A4 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20164185.9A EP3691331A1 (fr) 2009-10-30 2010-10-30 Procédé de transmission de symboles de commande et d'apprentissage dans un système de communication sans fil multi-utilisateurs
PL16177778T PL3107329T3 (pl) 2009-10-30 2010-10-30 Sposób nadawania symboli kontrolnych i treningowych w systemie komunikacji bezprzewodowej obsługującym wielu użytkowników
EP16177778.4A EP3107329B1 (fr) 2009-10-30 2010-10-30 Procédé de transmission de commande et symboles d'apprentissage dans un système de communication sans fil multi-utilisateur

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20090104616 2009-10-30
KR1020100013612A KR20110047946A (ko) 2009-10-30 2010-02-12 무선통신시스템에서 제어 및 훈련 심볼 전송 장치 및 방법
PCT/KR2010/007574 WO2011053070A2 (fr) 2009-10-30 2010-10-30 Procédé de transmission de symboles de commande et d'entraînement dans un système de communication sans fil multi-utilisateur

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP20164185.9A Division EP3691331A1 (fr) 2009-10-30 2010-10-30 Procédé de transmission de symboles de commande et d'apprentissage dans un système de communication sans fil multi-utilisateurs
EP16177778.4A Division EP3107329B1 (fr) 2009-10-30 2010-10-30 Procédé de transmission de commande et symboles d'apprentissage dans un système de communication sans fil multi-utilisateur

Publications (2)

Publication Number Publication Date
EP2496010A2 true EP2496010A2 (fr) 2012-09-05
EP2496010A4 EP2496010A4 (fr) 2013-11-06

Family

ID=43922893

Family Applications (3)

Application Number Title Priority Date Filing Date
EP20164185.9A Pending EP3691331A1 (fr) 2009-10-30 2010-10-30 Procédé de transmission de symboles de commande et d'apprentissage dans un système de communication sans fil multi-utilisateurs
EP20100827154 Ceased EP2496010A4 (fr) 2009-10-30 2010-10-30 Procédé de transmission de symboles de commande et d'entraînement dans un système de communication sans fil multi-utilisateur
EP16177778.4A Active EP3107329B1 (fr) 2009-10-30 2010-10-30 Procédé de transmission de commande et symboles d'apprentissage dans un système de communication sans fil multi-utilisateur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20164185.9A Pending EP3691331A1 (fr) 2009-10-30 2010-10-30 Procédé de transmission de symboles de commande et d'apprentissage dans un système de communication sans fil multi-utilisateurs

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16177778.4A Active EP3107329B1 (fr) 2009-10-30 2010-10-30 Procédé de transmission de commande et symboles d'apprentissage dans un système de communication sans fil multi-utilisateur

Country Status (8)

Country Link
US (3) US8923261B2 (fr)
EP (3) EP3691331A1 (fr)
JP (8) JP5380606B2 (fr)
KR (10) KR101790205B1 (fr)
CN (2) CN102714815B (fr)
ES (1) ES2809528T3 (fr)
PL (1) PL3107329T3 (fr)
WO (1) WO2011053070A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3206351A4 (fr) * 2014-10-08 2018-06-06 LG Electronics Inc. Procédé d'émission d'une trame in système de réseau local sans fil

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251605B2 (ja) * 2009-03-02 2013-07-31 ソニー株式会社 通信装置、および利得制御方法
KR101721671B1 (ko) * 2009-10-26 2017-03-30 한국전자통신연구원 다중 모드 무선 통신 시스템에서 패킷 모드 자동 검출 방법, 상기 패킷 모드 자동 검출을 위한 시그널 필드 전송방법 및 상기 패킷 모드에 기반한 이득 제어 방법
EP3691331A1 (fr) 2009-10-30 2020-08-05 Electronics And Telecommunications Research Institute Procédé de transmission de symboles de commande et d'apprentissage dans un système de communication sans fil multi-utilisateurs
KR20110082685A (ko) * 2010-01-12 2011-07-20 삼성전자주식회사 다중 사용자 다중 입출력 시스템의 프리엠블 생성 방법 및 상기 방법이 채용된 데이터 전송 장치와 단말
US8774222B2 (en) * 2011-02-10 2014-07-08 Electronics And Telecommunications Research Institute Method for generating and transmitting frame in a wireless local area network and apparatus for supporting the same
US20120263141A1 (en) * 2011-04-15 2012-10-18 Qualcomm Incorporated Systems and methods for range extension of wireless communication in sub gigahertz bands
US8824371B2 (en) * 2011-05-13 2014-09-02 Qualcomm Incorporated Systems and methods for wireless communication of packets having a plurality of formats
US8942320B2 (en) * 2011-10-27 2015-01-27 Marvell World Trade Ltd. Data unit format for multi-user data in long-range wireless local area networks (WLANs)
WO2013091205A1 (fr) * 2011-12-21 2013-06-27 France Telecom Research & Development Beijing Company Limited Émission descendante dans un système mu-mimo
US9497000B2 (en) 2012-02-14 2016-11-15 Lg Electronics Inc. Method for transmitting data units in wireless LAN systems and apparatus for supporting same
US9729285B2 (en) * 2013-06-13 2017-08-08 Avago Technologies General Ip (Singapore) Pte. Ltd Flexible OFDMA packet structure for wireless communications
US9439161B2 (en) * 2013-07-17 2016-09-06 Qualcomm Incorporated Physical layer design for uplink (UL) multiuser multiple-input, multiple-output (MU-MIMO) in wireless local area network (WLAN) systems
WO2015060514A1 (fr) * 2013-10-22 2015-04-30 엘지전자 주식회사 Procédé et dispositif d'empêchement de brouillage dans une zone de service en chevauchement
US9474073B2 (en) * 2013-10-31 2016-10-18 Qualcomm Incorporated Methods and apparatus for multiple user uplink bandwidth allocation
EP3161990A4 (fr) 2014-06-27 2018-03-14 Techflux Ltd. Signalisation de bande passante
EP3162015B1 (fr) 2014-06-27 2021-08-11 Techflux Inc. Procédé et dispositif de transmission d'une unité de données
EP3496507B1 (fr) * 2014-07-31 2022-02-23 Huawei Technologies Co., Ltd. Dispositif de transmission et procédé de transmission de trame de données
US10237753B2 (en) 2014-08-11 2019-03-19 Electronics And Telecommunications Research Institute Method for transmitting frame using selective beamforming and apparatus for performing the method
KR102131654B1 (ko) * 2014-08-25 2020-07-08 주식회사 윌러스표준기술연구소 무선 통신 방법 및 이를 이용한 무선 통신 단말
US20160065467A1 (en) * 2014-08-29 2016-03-03 Mediatek Inc. Configurable Signaling Field and its Indication
KR102144936B1 (ko) 2014-09-30 2020-08-14 한국전자통신연구원 무선랜 시스템에서의 무선 통신 방법 및 무선 통신 장치
JP6430641B2 (ja) 2014-11-07 2018-11-28 華為技術有限公司Huawei Technologies Co.,Ltd. 情報送信方法、アクセスポイントおよびユーザ装置
CN107210987B (zh) * 2015-02-04 2020-06-30 Lg电子株式会社 在无线通信系统中用于多用户发送和接收的方法及其装置
KR102511448B1 (ko) 2015-02-24 2023-03-17 니폰 덴신 덴와 가부시끼가이샤 무선 lan 기지국 장치 및 무선 lan 단말 장치
CN114364028A (zh) * 2015-04-20 2022-04-15 韦勒斯标准与技术协会公司 使用训练信号的无线通信方法和无线通信终端
CN112491518B (zh) * 2015-06-29 2023-10-31 韦勒斯标准与技术协会公司 与传统无线通信终端共存的无线通信方法和无线通信终端
US11178661B2 (en) 2016-02-04 2021-11-16 Lg Electronics Inc. Method and device for generating STF signals by means of binary sequence in wireless LAN system
US10356784B2 (en) * 2016-06-14 2019-07-16 Lg Electronics Inc. Method and apparatus for constructing control field including information regarding resource unit in wireless local area network system
CN110892751B (zh) 2017-06-20 2023-12-26 索尼公司 无线通信设备、通信系统和通信方法
WO2019044486A1 (fr) * 2017-08-28 2019-03-07 ソニー株式会社 Programme, procédé et programme de communication sans fil
EP3695523A1 (fr) * 2017-10-09 2020-08-19 Telefonaktiebolaget LM Ericsson (PUBL) Atténuation des interférences dans un réseau de communications
CN113422744A (zh) * 2018-06-22 2021-09-21 华为技术有限公司 信道估计方法、装置以及通信系统
EP4118785A1 (fr) * 2020-03-13 2023-01-18 Interdigital Patent Holdings, Inc. Procédés, architectures, appareils et systèmes ayant trait à la signalisation de couche physique dans un système de réseau local sans fil (« wlan »)
KR20230132343A (ko) 2022-03-08 2023-09-15 주식회사 마키나락스 개발환경을 제공하는 방법
KR102442577B1 (ko) 2022-03-08 2022-09-13 주식회사 마키나락스 개발환경을 제공하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193340A1 (en) * 2005-02-08 2006-08-31 Airgo Networks, Inc. Wireless messaging preambles allowing for beamforming and legacy device coexistence
WO2010120692A1 (fr) * 2009-04-13 2010-10-21 Marvell World Trade Ltd. Format de trame de couche physique pour réseau local sans fil (wlan)

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233462B2 (en) * 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
EP1751921A1 (fr) 2004-05-13 2007-02-14 Koninklijke Philips Electronics N.V. Format d'unite de donnees par paquets de protocole a supertrame dote d'une agregation de paquets a plusieurs debits pour systemes sans fil
JP2007537655A (ja) 2004-05-13 2007-12-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ieee802.11n用の異なるデータレートを備えたマルチプル・レシーバ・アグリゲーション
CN1954553A (zh) * 2004-05-13 2007-04-25 皇家飞利浦电子股份有限公司 用于无线系统的具有多速率分组聚合的超帧协议分组数据单元格式
US20060153283A1 (en) * 2005-01-13 2006-07-13 Scharf Louis L Interference cancellation in adjoint operators for communication receivers
JP5313506B2 (ja) * 2005-02-09 2013-10-09 アギア システムズ インコーポレーテッド マルチアンテナ通信システムにおける短縮されたロングトレーニングフィールドによるプリアンブルトレーニングの方法及び装置
US7476620B2 (en) 2005-03-25 2009-01-13 Dupont Air Products Nanomaterials Llc Dihydroxy enol compounds used in chemical mechanical polishing compositions having metal ion oxidizers
TW200644537A (en) 2005-06-09 2006-12-16 Samsung Electronics Co Ltd Method and apparatus for receiving data with down compatibility in high throughput wireless network
US7711061B2 (en) * 2005-08-24 2010-05-04 Broadcom Corporation Preamble formats supporting high-throughput MIMO WLAN and auto-detection
US8619658B2 (en) * 2005-09-21 2013-12-31 Interdigital Technology Corporation Method and apparatus for transmission management in a wireless communication system
US20070097930A1 (en) 2005-10-27 2007-05-03 Samsung Electronics Co., Ltd. Method of implementing the Multi-MCS-Multi-Receiver Aggregation'' scheme in IEEE 802.11n standard
US20070097911A1 (en) * 2005-10-31 2007-05-03 Samsung Electronics Co., Ltd. Unifying multi-MCS-multi-receiver aggregation (MMRA) and single-MCS-multi-receiver aggregation (SMRA) for IEEE 802.11n standard
US8787841B2 (en) 2006-06-27 2014-07-22 Qualcomm Incorporated Method and system for providing beamforming feedback in wireless communication systems
JP2008124832A (ja) * 2006-11-13 2008-05-29 Sharp Corp 基地局装置、移動局装置、無線通信システム、セルサーチ方法およびプログラム
US8054914B2 (en) * 2007-01-30 2011-11-08 Texas Instruments Incorporated Noise variance estimation
US7710939B2 (en) 2007-02-06 2010-05-04 Samsung Electronics Co., Ltd. Method and system for power saving in wireless local area communication networks
EP2130308B1 (fr) * 2007-03-22 2018-12-19 Marvell World Trade Ltd. Livre de codes variable pour système mimo
US20090031185A1 (en) * 2007-07-23 2009-01-29 Texas Instruments Incorporated Hybrid arq systems and methods for packet-based networks
CN101355553A (zh) * 2007-07-25 2009-01-28 株式会社Ntt都科摩 基于无线网状网中的流量负载自适应地提高吞吐量的方法
KR20090013140A (ko) * 2007-07-31 2009-02-04 삼성전자주식회사 무선 통신 시스템에서 다수의 다중 입력 다중 출력 모드를지원하는 장치 및 방법
CN101836369A (zh) * 2007-08-27 2010-09-15 北方电讯网络有限公司 使用基于mimo的网络编码的通信系统
KR101087813B1 (ko) * 2007-08-31 2011-11-29 후지쯔 가부시끼가이샤 무선 통신 시스템 및 무선 통신 방법
KR20090079480A (ko) * 2008-01-18 2009-07-22 삼성전자주식회사 다중사용자 다중안테나 시스템에서 채널 품질 추정을 위한장치 및 방법
US9497744B2 (en) * 2008-03-04 2016-11-15 Koninklijke Philips N.V. Signaling of transmission settings in multi-user systems
KR101408938B1 (ko) * 2008-04-02 2014-06-17 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 다중 입출력 무선통신 시스템에서 일반화된 아이겐 분석을이용한 빔포밍 장치 및 방법
CN101562476B (zh) * 2008-04-16 2013-02-27 中兴通讯股份有限公司 一种无线通信系统中控制信道的设计和发送方法
KR101336961B1 (ko) * 2008-04-17 2013-12-04 삼성전자주식회사 다중 입출력 무선통신 시스템에서 미드앰블을 이용한프리코딩 장치 및 방법
US20100046656A1 (en) * 2008-08-20 2010-02-25 Qualcomm Incorporated Preamble extensions
US8270909B2 (en) * 2009-03-31 2012-09-18 Marvell World Trade Ltd. Sounding and steering protocols for wireless communications
US8599804B2 (en) * 2009-08-07 2013-12-03 Broadcom Corporation Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications
US9503931B2 (en) * 2009-08-12 2016-11-22 Qualcomm Incorporated Enhancements to the MU-MIMO VHT preamble to enable mode detection
KR20110027533A (ko) 2009-09-09 2011-03-16 엘지전자 주식회사 다중 안테나 시스템에서 제어정보 전송 방법 및 장치
EP2491663B1 (fr) * 2009-10-23 2015-07-29 Marvell World Trade Ltd. Indication de séquence d'apprentissage pour réseau WLAN
EP3691331A1 (fr) 2009-10-30 2020-08-05 Electronics And Telecommunications Research Institute Procédé de transmission de symboles de commande et d'apprentissage dans un système de communication sans fil multi-utilisateurs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193340A1 (en) * 2005-02-08 2006-08-31 Airgo Networks, Inc. Wireless messaging preambles allowing for beamforming and legacy device coexistence
WO2010120692A1 (fr) * 2009-04-13 2010-10-21 Marvell World Trade Ltd. Format de trame de couche physique pour réseau local sans fil (wlan)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Draft Standard for Information Technology Telecommunications and information exchange between systems. Local and metropolitan area networks. Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications:Amendment 5:Enhancements for Higher Throughput", IEEE P802.11N/D9.0 , pages 1,2,276-297, XP002606795, Retrieved from the Internet: URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4810960 [retrieved on 2010-10-25] *
See also references of WO2011053070A2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3206351A4 (fr) * 2014-10-08 2018-06-06 LG Electronics Inc. Procédé d'émission d'une trame in système de réseau local sans fil
US10257837B2 (en) 2014-10-08 2019-04-09 Lg Electronics Inc. Method for transmitting frame in wireless LAN system
US10667271B2 (en) 2014-10-08 2020-05-26 Lg Electronics Inc. Method for transmitting frame in wireless LAN system
EP3934139A1 (fr) * 2014-10-08 2022-01-05 LG Electronics Inc. Procédé de transmission de trame dans un système de réseau lan sans fil

Also Published As

Publication number Publication date
JP6307558B2 (ja) 2018-04-04
JP5788944B2 (ja) 2015-10-07
US20120263158A1 (en) 2012-10-18
WO2011053070A2 (fr) 2011-05-05
KR20200107916A (ko) 2020-09-16
CN107465488B (zh) 2021-07-13
KR20220004780A (ko) 2022-01-11
JP6578399B2 (ja) 2019-09-18
ES2809528T3 (es) 2021-03-04
KR102157149B1 (ko) 2020-09-17
EP3691331A1 (fr) 2020-08-05
CN102714815A (zh) 2012-10-03
KR20180116203A (ko) 2018-10-24
US20150117429A1 (en) 2015-04-30
KR101790205B1 (ko) 2017-10-25
US8923261B2 (en) 2014-12-30
CN107465488A (zh) 2017-12-12
JP5380606B2 (ja) 2014-01-08
US11856578B2 (en) 2023-12-26
KR20110048018A (ko) 2011-05-09
CN102714815B (zh) 2017-11-03
JP6816229B2 (ja) 2021-01-20
KR102275553B1 (ko) 2021-07-09
KR20180012842A (ko) 2018-02-06
JP2014033455A (ja) 2014-02-20
KR20170120542A (ko) 2017-10-31
KR20230031872A (ko) 2023-03-07
EP3107329A1 (fr) 2016-12-21
US11006393B2 (en) 2021-05-11
PL3107329T3 (pl) 2020-11-16
JP2016195409A (ja) 2016-11-17
KR101824933B1 (ko) 2018-02-02
JP2018125866A (ja) 2018-08-09
EP3107329B1 (fr) 2020-05-06
KR102618767B1 (ko) 2023-12-28
JP2016007003A (ja) 2016-01-14
JP2013509795A (ja) 2013-03-14
KR102504695B1 (ko) 2023-02-28
US20210266888A1 (en) 2021-08-26
KR20240004162A (ko) 2024-01-11
WO2011053070A3 (fr) 2011-09-01
KR20190110989A (ko) 2019-10-01
JP7479276B2 (ja) 2024-05-08
EP2496010A4 (fr) 2013-11-06
KR20210087426A (ko) 2021-07-12
KR102026989B1 (ko) 2019-09-30
JP2021057912A (ja) 2021-04-08
KR101911399B1 (ko) 2018-10-24
JP2019216465A (ja) 2019-12-19
JP2023022191A (ja) 2023-02-14
KR102348700B1 (ko) 2022-01-07

Similar Documents

Publication Publication Date Title
US11856578B2 (en) Method for transmitting control and training symbols in multi-user wireless communication system
KR102603802B1 (ko) 무선 통신 시스템에서 다중 사용자 송수신을 위한 방법 및 이를 위한 장치
EP3110035A1 (fr) Procédé et appareil pour transmettre une trame dans un réseau local (lan) sans fil
US20240137936A1 (en) Method for transmitting control and training symbols in multi-user wireless communication system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120530

R17D Deferred search report published (corrected)

Effective date: 20110901

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20131007

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 28/06 20090101AFI20130930BHEP

Ipc: H04L 5/00 20060101ALI20130930BHEP

Ipc: H04W 48/08 20090101ALI20130930BHEP

Ipc: H04W 84/12 20090101ALI20130930BHEP

Ipc: H04B 7/04 20060101ALI20130930BHEP

17Q First examination report despatched

Effective date: 20140620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20160419