EP2495764B1 - Detection matrix with improved polarisation conditions and manufacturing method - Google Patents
Detection matrix with improved polarisation conditions and manufacturing method Download PDFInfo
- Publication number
- EP2495764B1 EP2495764B1 EP12354012.2A EP12354012A EP2495764B1 EP 2495764 B1 EP2495764 B1 EP 2495764B1 EP 12354012 A EP12354012 A EP 12354012A EP 2495764 B1 EP2495764 B1 EP 2495764B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- contact
- area
- conductivity type
- photodetectors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011159 matrix material Substances 0.000 title claims description 42
- 238000001514 detection method Methods 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000758 substrate Substances 0.000 claims description 74
- 230000008520 organization Effects 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 4
- 230000010287 polarization Effects 0.000 description 31
- 239000002800 charge carrier Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000028161 membrane depolarization Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 1
- 238000005513 bias potential Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000003702 image correction Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
- H01L27/14649—Infrared imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14603—Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
Definitions
- the invention relates to an electromagnetic radiation detection device comprising a matrix of photodetectors arranged on a substrate and to its method of production.
- photodetector In the field of detection devices, there is commonly a photodetector associated with a read circuit.
- the photodetector delivers a signal representative of the observed scene and this signal is analyzed by the read circuit.
- the polarization of the photodetector is obtained by means of the substrate potential imposed on a first terminal of the photodetector and by means of a reference potential imposed on the second terminal of the photodetector, by a capacitive transimpedance amplifier type reading device.
- the photodetector In order to obtain more and more information on the observed scene, the photodetector has given way to a plurality of photodetectors. There is, moreover, a constant increase in the number of photodetectors integrated in a detection circuit in order to increase the definition of the detector. However, the integration of a large number of photodetectors causes difficulties of implementation and operation.
- the plurality of photodetectors is integrated in the form of a matrix.
- An electrically conductive bias ring surrounds the array to impose the substrate potential on the array. There are then a large number of matrix-organized photodetectors and all the photodetectors are connected more or less directly to the substrate potential.
- This organization brings an undeniable gain with regard to the density of integration, but it generates a difficulty in the polarization of the different photodetectors.
- the photodiodes are generally reverse biased in order to deliver a current representative of the observed scene.
- the photodiode then plays the role of a current generator.
- the polarization of the photodiode is applied on one side by the substrate and on the other by the read circuit.
- the electrical modeling of a photodiode of the matrix may be represented by a dynamic resistor connected in parallel with the current generator and a series-connected series resistor of the assembly.
- the series resistance of the photodiode may cause a change in the polarization at its terminals. Indeed, depending on the intensity of the current generated by the current source, the potential at the terminals of the photodiode may change.
- the matrix organization of the different photodiodes makes these evolutions of potentials can accumulate and result in the depolarization of one or more photodiodes located in the central part of the matrix.
- the document US2001 / 0012133 describes an array of photodiodes with different polarization configurations of the photodiodes.
- a contact is made by photodiode with or without the production of a peripheral polarization ring.
- the contacts arranged in a column separate photodiode matrices.
- the document EP1667353 describes a matrix of photodiodes made in an N-type substrate. Each photodiode is surrounded by an N-type well and a P-type well.
- the detection device comprises a plurality of photodetectors 1 which are organized in a matrix.
- the photodetectors 1 are organized according to a first axis of organization X, that is to say that the photodetectors 1 form a row or a column along this first axis X.
- the photodetectors are organized along the X axis with a repetition pitch P.
- the plurality of photodetectors 1 is also organized along a second organization axis Y which is secant to the first organization axis X.
- the first organization axis X is perpendicular to the second axis In this way, the photodetectors 1 are organized relative to one another according to two different directions represented by the first and the second axis of organization.
- the photodetectors 1 are aligned with each other along one or more lines parallel to the X axis and they are optionally aligned along one or more lines parallel to the Y axis.
- the photodetectors 1 are then organized in rows and columns. .
- the matrix of photodetectors 1 is formed on a substrate of semiconductor material and is surrounded by a peripheral polarization line 2.
- Line 2 is a line of electrically conductive material, for example a metal line running on the surface of the substrate.
- the line 2 is a doped area of the substrate, this area is more heavily doped than the rest of the substrate to reduce the potential drop along the line.
- the line 2 is a doped zone which is of the same type of conductivity as the substrate.
- the substrate is of a first type of conductivity, for example of the P type.
- the peripheral polarization line 2 is connected to a polarization voltage generator 3.
- the bias voltage V SUB or a voltage close to the latter is applied to the photodetectors 1 via the polarization line 2 and the substrate.
- the polarization voltage V SUB partly fixes the polarization conditions of the photodetectors 1 by applying a first potential on a first electrode of the photodetector 1.
- the biasing voltage V SUB or a voltage resulting therefrom is applied to the first electrode of the different photodetectors 1.
- a second voltage, a reference voltage is applied to a second electrode of the photodetectors in order to set the polarization conditions of the different photodetectors 1.
- the photodetectors are inversely polarized between the bias voltage V SUB and the reference voltage.
- each photodetector 1 is formed at least partially by a portion of the semiconductor substrate 1.
- the first electrode is formed by the substrate 1, which makes it easier to integrate the matrix into the substrate and to limit the polarization differences.
- the photodetectors are formed in the substrate.
- the photodetector is a PN or NP type photodiode whose first electrode is formed by the substrate 6, a first zone of the first conductivity type and the second electrode is a second zone of the second conductivity type formed in the substrate.
- each photodetector 1 is associated with a reading circuit which imposes the reference voltage on the second electrode of the photodetectors 1.
- the different reading circuits are grouped together to form reading means or a reading device 4 which comprises a reading circuit matrix.
- Each reading circuit is associated with one or more photodetectors 1 and retrieves the emitted electrical signal.
- the function of reading the electrical information emitted by the photodetectors 1 and the polarization function are dissociated and it is possible to associate a photodetector 1 with a reading circuit and with a polarization device.
- the substrate is not always able to transport the charge carriers emitted by the different photodetectors 1 to the polarization line 2 which results in an evolution of the polarization conditions of certain photodetectors 1 from the substrate.
- the device also comprises one or more electrically conductive point contacts 5 which are connected, on the one hand, to the substrate and, on the other hand, to the bias voltage generator 3.
- the electrically conductive contacts are formed in the photodetector array 1 in place of a photodetector 1.
- the contact 5 includes means for applying the bias voltage V SUB to the substrate.
- the contact 5 connects the bias voltage generator 3 with a zone of the first type of conductivity of the substrate.
- the contact 5 comprises an electrically conductive pad 8 which has an interface with a zone of first conductivity type of the substrate so as to directly apply the bias voltage V SUB in the photodetector matrix 1.
- the contacts 5 act as direct contacts between the substrate, an area of the first conductivity type, and the bias voltage generator 3.
- the contacts 5 are the relay of the polarization line 2 inside the photodetector matrix 1.
- the contacts 5 make it possible to reduce the distance that a charge emitted by the photodetectors 1 must travel to reach the voltage of bias V SUB and be ejected from the substrate.
- the contact 5 is substantially identical to a photodetector 1.
- the contact 5 and the photodetector 1 each comprise an electrically conductive pad 8.
- this pad 8 is deposited on the substrate as for the contact 5.
- one end of the pad 8 is connected to the read circuit.
- the other end of the pad 8 is deposited on an area of the second type of conductivity of the substrate which allows to polarize the photodetector 1, here the diode.
- one end of the pad 8 is connected to the polarization voltage generator 3.
- the other end of the stud 8 is deposited on the zone 6 of the first conductivity type of the substrate, which makes it possible to directly apply the bias voltage V SUB on the substrate and not on a diode.
- the contact 5 by protecting this part of the substrate during the formation of the second conductivity type zone.
- the substrate comprises several zones 7 of the second conductivity type which will serve to form the photodetectors 1 and a zone devoid of this doping which will serve to form the contact 5.
- This technological step makes it possible to form an array of zones 7 of the second conductivity type organized along a first alignment axis X and an area of the first conductivity type.
- the zone of the first conductivity type is aligned with the zones 7 of the second conductivity type.
- the distance between the zone of the first conductivity type and the two adjacent zones of the second conductivity type is equal to the repetition pitch between two zones of the second conductivity type. consecutive.
- the repetition step is that of the photodetectors in the matrix.
- the pads 8 have lateral dimensions (length and width ) and they can be formed by the same material.
- the pad 8 of electrically conductive material is formed on the zones of the second type of conductivity and the zone of the first type of conductivity.
- the contact 5 Since the electrically conductive contact is formed in place of a photodetector 1, the contact 5 is aligned along the first organization axis X with the other photodetectors 1 of the same column or row.
- a contact 5 has two photodetectors 1 as closest neighbors, on the first axis of organization X. The distance separating the contact 5 from these two closest neighboring photodetectors 1 is equal to the distance that separates two adjacent photodetectors 1 according to the first organization axis X.
- two contacts 5 are adjacent and consecutive in one of the organization directions. This example is less interesting than two contacts 5 separated by a few photodetectors.
- the contact 5 is perfectly integrated in the matrix of photodetectors, its size is identical to that of a photodetector.
- the contacts 5 are distributed at regular intervals along the first organization axis X.
- the distance separating two contacts 5 is an integer multiple of the repetition pitch P of the matrix along the first axis X, which can define a first specific repetition step at the contacts 5.
- the repetition distance is chosen so as to prevent the polarization conditions of the photodetectors 1 from being modified beyond a threshold value.
- the repetition distance of the contacts 5 can therefore be defined from the design phase of the device as a function of the polarization conditions applied, the maximum applicable illumination conditions and the electrical properties of the substrate.
- a contact 5 or of several electrically conductive contacts in the matrix of photodetectors 1 makes it possible to make the device more robust with respect to the risks of depolarization, for example when the device is subjected to a large luminous flux. .
- a photodetector 1 Since a photodetector 1 is replaced by an electrically conductive contact, there is a detection zone that does not deliver information on the observed scene. This area devoid of information corresponds to an isolated pixel. Thanks to processing means, it is possible to compensate for this lack of information by using the information given by its immediate neighbors. This type of correction is not possible or easily achievable when a bias sub-line is used and sacrifices a column or an entire row of photodetectors 1.
- the device comprises means for generating an illumination signal from the photodetectors 1 adjacent to the contact 5.
- an illumination signal from the photodetectors 1 adjacent to the contact 5.
- between four and eight adjacent photodetectors can be used to generate an artificially generated signal.
- the device transmits a signal (for example an image) representative of the observed scene by eliminating the shadow zones created by the contact (s) 5.
- the hole can be likened to a defective photodetector whose position is known in advance, which facilitates the management of the corrections to be made in order to obtain information associated with each coordinate of the matrix that this zone is occupied by a photodetector or a pad.
- the photodetectors 1 are connected to a first line of metallic material which retrieves the information provided by the matrix.
- the first line of metallic material connects the photodetector 1 to the reading circuit 4.
- the reading circuit 4 stores the information delivered by the photodetector and it can also intervene in the polarization of the photodetector 1.
- Each photodetector provides an electrical signal (a voltage or a current) that is representative of the observed scene. This signal is conveyed by a power line to information processing means via the read circuit 4.
- Different types of read circuit are possible, for example direct injection (DI) circuits, with direct injection against -Reaction (BDI) or capacitive transimpedance amplifier (CTIA).
- the electrically conductive contact is also connected to a second metal line and this second metal line is connected to the bias voltage generator 3.
- the second metal line is identical to the first metal line.
- the two metal lines are formed in the same material with possibly the same dimensions.
- the bias voltage V SUB is applied to the substrate inside the matrix of photodetectors 1 using the metal interconnection levels, that is to say without having to introduce new polarization lines between In this architecture, the polarization conditions applied on the metal line connected to the contact 5 have a reduced impact on the photodetectors.
- an electrically conductive contact connected to the bias voltage generator 3 is particularly advantageous when the substrate 6 has a high resistivity compared to the illumination conditions accepted by the photodetectors.
- This architecture makes it possible to form in the matrix or next to the array of avalanche photodiodes which is not possible by inverting the types of doping. These examples are particularly interesting in the case where the substrate is a CdHgTe-based material whose electrical characteristics may be insufficient to integrate matrices of large size.
- the use of an electrically conductive contact connected to the bias voltage generator 3 is particularly advantageous when the size of the photodetector array is large. In this way, the Generator 3 is able to apply the potential V SUB by means of the polarization line 2 surrounding the matrix and by means of the contacts 5 arranged inside the matrix.
- an electrically conductive contact 5 connected to the bias voltage generator is particularly advantageous when the photodetectors 1 are associated with the long wavelength domains of the infrared spectrum (8-15 ⁇ m) which results in the management of a large quantity of charge carriers in the substrate.
- the electrically conductive contact avoids losing a column and / or an entire line of photodetectors.
- the matrix obtained is more compact, that is to say that it comprises a greater number of photodetectors per unit area.
- the matrix of photodetectors 1 may comprise several rows of photodetectors and / or several columns of photodetectors.
- the electrically conductive contacts may be formed on a plurality of different rows or columns.
- the same line or the same column of photodetector may comprise several electrically conductive contacts.
- the same line or the same column does not have more than one contact 5 in order to reduce the impact of the contact on the information provided by the line and / or the column and therefore to reduce the impact on the data processing.
- the matrix of photodetectors 1 may comprise different organizations of photodetectors 1, for example there is an offset of the photodetectors present on two lines or two successive columns to gain compactness.
- the first and second organization directions are not necessarily perpendicular.
- This architecture is particularly interesting in the case of a bispectral matrix where two types of photodetectors are integrated.
- Each type of photodetector reacts with a particular wavelength.
- the substrate comprises several layers that react at different wavelengths, which makes it difficult to use the highly doped layer disclosed in the document. WO9815016A1 .
- the two types of photodiode may have different sizes and / or different influences on the electrical properties of the substrate.
- the photodetectors are PN or NP type diodes, there are two zones with opposite types of conductivity that have a common interface.
- the substrate 6 is of the first type of conductivity and zones 7 of a second type of conductivity are formed inside the substrate.
- the zones 7 of the second conductivity type are spaced apart from one another.
- each diode has a collection area of the generated carriers that is greater than the area occupied by the zone 7 of the second conductivity type.
- the carriers generated outside the diode can be attracted and collected by the diode.
- the carrier collection surface protrudes from the surface to the second type of conductivity.
- the photodetectors 1 have identical architectures and identical polarization conditions in order to facilitate the processing of the information emitted by each photodetector 1 in comparison with the other photodetectors 1 of the matrix.
- the photodetectors 1 are considered to be identical both in their architecture and in their operation.
- the photodetectors 1 have the same effective collection area.
- the contact 5 comprises a stud 8 deposited on an area of the first conductivity type and devoid of an area of the second conductivity type, there is no formation of a diode or a zone of collection.
- the photodetectors 1 adjacent to a contact 5 do not have an overlap zone with the contact 5 and they then have an effective collection area which is larger than the other photodetectors. There is an offset in the operation of these photodetectors 1 related to the collection area of the charge carriers which is greater than those of the other photodetectors of the matrix.
- the electrically conductive contact advantageously comprises a doped zone 9 of the second annular-shaped conductivity type with, at its center, the substrate and / or an area 10. doped first type of conductivity which is in electrical continuity with the substrate.
- the electrically conductive contact has a central zone of the first conductivity type and a peripheral zone of the second conductivity type.
- the zone 9 of the second type of conductivity does not completely surround the zone of the first conductivity type so that the bias voltage V SUB can be applied directly to the substrate and not via a diode.
- This doped zone 9 of the second conductivity type simulates the operation of a photodiode with a collection surface and creates an overlap zone between the contact 5 and each of the adjacent photodetectors 1. This area of overlap reduces the effective collection area of photodetectors 1.
- the pad 8 is in electrical contact with the zone 10 of the first type of conductivity and with the zone 9 of the second type of conductivity.
- the zone 10 may be a part of the substrate or part of the zone 9 which has been doped of a type which is subsequently opposed in order to change the conductivity.
- the distance separating the outer edge of the doped zone 9 from the second type of annular conductivity and the doped zone 7 of the second conductivity type of the photodetector 1 is identical to the distance separating two doped zones 7 from the second conductivity type of two. adjacent photodetectors according to the first axis of organization.
- the central zone and the peripheral zone of the contact 5 have opposite conductivity types and these two zones are short-circuited by means of an electrically conductive material, for example a metal, preferably by the pad 8 connected to the generator 3.
- This architecture makes it possible to avoid the formation of a diode between the central zone and the peripheral zone of the contact 5, which is detrimental to the proper functioning of the contact 5. This also makes it possible to use the peripheral zone 9 to reduce the collection area. adjacent photodetectors while carrying out the polarization of the substrate at the bias voltage V SUB by means of the central portion of the stud 5.
- the central portion of the contact 5, that is to say the zone 10, in the substrate has a higher dopant concentration than the rest of the substrate 6.
- This particular architecture can be achieved simply by forming the matrix of PN or NP diodes in the substrate.
- the zones 7 of the photodiodes and the zone 9 are formed during the same technological step, although it is also conceivable to form them separately.
- a doped zone of the first conductivity type is formed in the zone 9 of the second conductivity type so as to make a direct connection between the substrate 9 in the first conductivity type and the contact pad 8 of the contact 5. It is also possible to change the order of formation of the zones, for example by forming zone 10 first and then forming zones 7 and 9.
- the pads 8 are conventionally formed as the rest of the method of implementation of the device.
- the pads are for example metal balls which serve to interconnect with a second substrate which comprises the read module. Only the routing of the metal lines is slightly modified in order to connect the contact 5 to the polarization voltage generator 3.
- the pads are preferably arranged with a constant pitch of repetition, the step of repetition of the photodetectors.
- This additional step makes it possible in a simple and economical way to transform a PN or NP diode-type photodetector into a polarization contact integrated directly inside the matrix.
- the contact 5 comprises an area 10 of the first conductivity type and an area 9 of the second conductivity type. These two zones are adjacent and short-circuited in order to be polarized at the same potential, here the bias potential V SUB .
- the first zone 10 of the first conductivity type is in continuous doping with the rest of the substrate 6. In this way, the first zone 10 can not be formed and completely delimited in a box of the second conductivity.
- the conductivity type is constant from the first zone 10 to the substrate.
- the second zone 9 may partially or completely surround the first zone 10 from a lateral point of view in order to have an effect on one or more collection surfaces of the adjacent zones.
- zones 9, here zones 9a and 9b, which are distinct from one another, can be formed in front of one or more photodetectors to modify the zone of overlap.
- the detector comprises means for applying the bias voltage directly to an area of the first conductivity type which is in continuous doping with the substrate and on an area of the second type of conductivity. This makes it possible to form a diode whose lateral influence will reduce the collection area of at least one adjacent photodetector.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
L'invention est relative à un dispositif de détection de rayonnement électromagnétique comportant une matrice de photodétecteurs disposés sur un substrat et à son procédé de réalisation.The invention relates to an electromagnetic radiation detection device comprising a matrix of photodetectors arranged on a substrate and to its method of production.
Dans le domaine des dispositifs de détection, il y a communément un photodétecteur associé à un circuit de lecture. Le photodétecteur délivre un signal représentatif de la scène observée et ce signal est analysé par le circuit de lecture.In the field of detection devices, there is commonly a photodetector associated with a read circuit. The photodetector delivers a signal representative of the observed scene and this signal is analyzed by the read circuit.
La polarisation du photodétecteur est obtenue au moyen du potentiel de substrat imposé sur une première borne du photodétecteur et au moyen d'un potentiel de référence imposé sur la seconde borne du photodétecteur, par un dispositif de lecture de type amplificateur transimpédance capacitif.The polarization of the photodetector is obtained by means of the substrate potential imposed on a first terminal of the photodetector and by means of a reference potential imposed on the second terminal of the photodetector, by a capacitive transimpedance amplifier type reading device.
Afin d'obtenir toujours plus d'information sur la scène observée, le photodétecteur a fait place à une pluralité de photodétecteurs. Il y a, de plus, un accroissement constant du nombre de photodétecteurs intégrés dans un circuit de détection afin d'augmenter la définition du détecteur. Cependant, l'intégration d'un grand nombre de photodétecteurs entraîne des difficultés de réalisation et de fonctionnement.In order to obtain more and more information on the observed scene, the photodetector has given way to a plurality of photodetectors. There is, moreover, a constant increase in the number of photodetectors integrated in a detection circuit in order to increase the definition of the detector. However, the integration of a large number of photodetectors causes difficulties of implementation and operation.
De manière à conserver une surface de collection raisonnable et un faible encombrement du dispositif, la pluralité de photodétecteurs est intégrée sous la forme d'une matrice. Un anneau de polarisation électriquement conducteur entoure la matrice pour imposer le potentiel de substrat à la matrice. Il y a alors un grand nombre de photodétecteurs organisés en matrice et tous les photodétecteurs sont reliés, de manière plus ou moins directe, au potentiel de substrat.In order to maintain a reasonable collection area and a small size of the device, the plurality of photodetectors is integrated in the form of a matrix. An electrically conductive bias ring surrounds the array to impose the substrate potential on the array. There are then a large number of matrix-organized photodetectors and all the photodetectors are connected more or less directly to the substrate potential.
Cette organisation apporte un gain indéniable en ce qui concerne la densité d'intégration, mais elle engendre une difficulté dans la polarisation des différents photodétecteurs.This organization brings an undeniable gain with regard to the density of integration, but it generates a difficulty in the polarization of the different photodetectors.
Les photodiodes sont généraiement polarisées en inverse afin de délivrer un courant représentatif de la scène observée. La photodiode joue alors le rôle d'un générateur de courant. La polarisation de la photodiode est appliquée d'un côté par le substrat et de l'autre par le circuit de lecture. Dans ce régime de fonctionnement, la modélisation électrique d'une photodiode de la matrice peut être représentée par une résistance dynamique montée en parallèle du générateur de courant et une résistance série montée en série de l'ensemble.The photodiodes are generally reverse biased in order to deliver a current representative of the observed scene. The photodiode then plays the role of a current generator. The polarization of the photodiode is applied on one side by the substrate and on the other by the read circuit. In this operating regime, the electrical modeling of a photodiode of the matrix may be represented by a dynamic resistor connected in parallel with the current generator and a series-connected series resistor of the assembly.
On constate alors que la résistance série de la photodiode peut entraîner une modification de la polarisation à ses bornes. En effet, selon l'intensité du courant généré par la source de courant, le potentiel aux bornes de la photodiode peut évoluer. De plus, l'organisation en matrice des différentes photodiodes fait que ces évolutions de potentiels peuvent se cumuler et se traduire par la dépolarisation d'une ou plusieurs photodiodes situées dans la partie centrale de la matrice.It can be seen that the series resistance of the photodiode may cause a change in the polarization at its terminals. Indeed, depending on the intensity of the current generated by the current source, the potential at the terminals of the photodiode may change. In addition, the matrix organization of the different photodiodes makes these evolutions of potentials can accumulate and result in the depolarization of one or more photodiodes located in the central part of the matrix.
Comme la composante essentielle de la dépolarisation est résistive, ce risque de dépolarisation est d'autant plus marqué que le courant généré par le photodétecteur est important. On remarque également que ce phénomène est d'autant plus important que la matrice de photodétecteurs est importante et que la valeur de résistance est élevée.Since the essential component of depolarization is resistive, the risk of depolarization is even more marked than the current generated by the photodetector is important. It is also noted that this phenomenon is even more important that the matrix of photodetectors is important and that the resistance value is high.
Il existe alors un risque d'avoir au moins un photodétecteur qui ne travaille plus dans sa plage de fonctionnement optimum. Il en résulte alors des problèmes de linéarité entre le courant fourni par le photodétecteur et le flux incident. Ce genre de problème est difficile ou impossible à corriger par des dispositifs de correction d'image appliqués à l'ensemble de la matrice.There is then a risk of having at least one photodetector that no longer works in its optimum operating range. This then results in problems of linearity between the current supplied by the photodetector and the incident flux. This kind of problem is difficult or impossible to correct by image correction devices applied to the entire matrix.
Il existe donc un frein à l'intégration des matrices de grandes dimensions et/ou des matrices travaillant avec des courants élevés.There is therefore a brake on the integration of large matrices and / or matrices working with high currents.
Une solution a été apportée par le document
Le document
Le document
On constate qu'il existe un besoin de prévoir un dispositif de détection qui présente un fonctionnement plus robuste.It is noted that there is a need to provide a detection device that has a more robust operation.
On tend à combler ce besoin au moyen d'un dispositif selon la revendication 1.This need is filled by means of a device according to claim 1.
On constate qu'il existe un besoin de prévoir un procédé de fabrication d'un tel dispositif de manière simple.It is noted that there is a need to provide a method of manufacturing such a device in a simple manner.
On tend à combler ce besoin au moyen d'un procédé selon la revendication 6.This need is addressed by a method according to
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- les
figures 1 et 2 représentent, de manière schématique, des matrices de photodétecteurs d'un dispositif de détection, - la
figure 3 représente, de manière schématique, en coupe, plusieurs photodétecteurs et un contact selon l'un des axes d'organisation, - la
figure 4 représente, de manière schématique, en coupe, une variante de réalisation de plusieurs photodétecteurs et d'un contact selon l'un des axes d'organisation.
- the
Figures 1 and 2 represent, schematically, photodetector matrices of a detection device, - the
figure 3 represents schematically, in section, several photodetectors and a contact along one of the axes of organization, - the
figure 4 represents, schematically, in section, an alternative embodiment of several photodetectors and a contact along one of the axes of organization.
Comme cela est illustré aux
Dans un exemple illustré, la pluralité de photodétecteurs 1 est également organisée selon un deuxième axe d'organisation Y qui est sécant au premier axe d'organisation X. A titre d'exemple, le premier axe d'organisation X est perpendiculaire au deuxième axe d'organisation Y. De cette manière, les photodétecteurs 1 sont organisés les uns par rapport aux autres selon deux directions différentes représentées par le premier et le deuxième axe d'organisation.In an illustrated example, the plurality of photodetectors 1 is also organized along a second organization axis Y which is secant to the first organization axis X. For example, the first organization axis X is perpendicular to the second axis In this way, the photodetectors 1 are organized relative to one another according to two different directions represented by the first and the second axis of organization.
De cette manière, les photodétecteurs 1 sont alignés entre eux selon une ou plusieurs lignes parallèles à l'axe X et ils sont éventuellement alignés selon une ou plusieurs lignes parallèles à l'axe Y. Les photodétecteurs 1 sont alors organisés en rangées et en colonnes.In this way, the photodetectors 1 are aligned with each other along one or more lines parallel to the X axis and they are optionally aligned along one or more lines parallel to the Y axis. The photodetectors 1 are then organized in rows and columns. .
La matrice de photodétecteurs 1 est formée sur un substrat en matériau semi-conducteur et elle est entourée par une ligne 2 périphérique de polarisation. La ligne 2 est une ligne en matériau électriquement conducteur, par exemple une ligne métallique qui court à la surface du substrat. Dans d'autres exemples, la ligne 2 est une zone dopée du substrat, cette zone est plus fortement dopée que le reste du substrat afin de diminuer la chute de potentiel le long de la ligne. De manière préférentielle, la ligne 2 est une zone dopée qui est du même type de conductivité que le substrat. Le substrat est d'un premier type de conductivité, par exemple de type P.The matrix of photodetectors 1 is formed on a substrate of semiconductor material and is surrounded by a
La ligne 2 périphérique de polarisation est reliée à un générateur 3 de tension de polarisation. La tension de polarisation VSUB ou une tension proche de cette dernière est appliquée aux photodétecteurs 1 via la ligne 2 de polarisation et le substrat. La tension de polarisation VSUB fixe en partie les conditions de polarisation des photodétecteurs 1 en appliquant un premier potentiel sur une première électrode du photodétecteur 1. La tension de polarisation VSUB ou une tension qui en découle est appliquée sur la première électrode des différents photodétecteurs 1. Une seconde tension, une tension de référence, est appliquée sur une seconde électrode des photodétecteurs afin de fixer les conditions de polarisation des différents photodétecteurs 1. De manière avantageuse, les photodétecteurs sont polarisés en inverse entre la tension de polarisation VSUB et la tension de référence.The
Dans un exemple illustré à la
A titre d'exemple, chaque photodétecteur 1 est associé à un circuit de lecture qui impose la tension de référence sur la seconde électrode des photodétecteurs 1. Sur la
En fonctionnement, le substrat n'est pas toujours en mesure d'assurer le transport des porteurs de charges émis par les différents photodétecteurs 1 jusqu'à la ligne de polarisation 2 ce qui se traduit par une évolution des conditions de polarisation de certains photodétecteurs 1 depuis le substrat.In operation, the substrate is not always able to transport the charge carriers emitted by the different photodetectors 1 to the
Comme illustré à la
Le contact 5 relie le générateur 3 de tension de polarisation avec une zone en premier type de conductivité du substrat. Le contact 5 comporte un plot 8 électriquement conducteur qui a une interface avec une zone en premier type de conductivité du substrat de manière à appliquer directement la tension de polarisation VSUB dans la matrice de photodétecteurs 1. Les contacts 5 agissent comme des contacts directs entre le substrat, une zone du premier type de conductivité, et le générateur 3 de tension de polarisation.The
De cette manière, les contacts 5 sont le relais de la ligne 2 de polarisation à l'intérieur de la matrice de photodétecteurs 1. Les contacts 5 permettent de réduire la distance que doit parcourir une charge émise par les photodétecteurs 1 pour atteindre la tension de polarisation VSUB et être éjectée du substrat.In this way, the
Comme cela est illustré à la
Dans le cas du photodétecteur, une extrémité du plot 8 est reliée au circuit de lecture. L'autre extrémité du plot 8 est déposée sur une zone du second type de conductivité du substrat ce qui permet de polariser le photodétecteur 1, ici la diode.In the case of the photodetector, one end of the
Dans le cas du contact 5, une extrémité du plot 8 est reliée au générateur 3 de tension de polarisation. L'autre extrémité du plot 8 est déposée sur la zone 6 du premier type de conductivité du substrat ce qui permet d'appliquer directement la tension de polarisation VSUB sur le substrat et non sur une diode.In the case of the
Comme les architectures du contact 5 et du photodétecteur 1 sont similaires, des étapes communes de réalisation peuvent être utilisées afin de faciliter la mise en oeuvre et conserver une densité d'intégration importante.As the architectures of the
Dans un exemple particulier, il est possible de réaliser le contact 5 en protégeant cette partie du substrat lors de la formation de la zone en second type de conductivité. De cette manière, le substrat comporte plusieurs zones 7 du second type de conductivité qui vont servir à la formation des photodétecteurs 1 et une zone dépourvue de ce dopage qui va servir à la formation du contact 5.In a particular example, it is possible to make the
Cette étape technologique permet de former une matrice de zones 7 du second type de conductivité organisés selon un premier axe d'alignement X et une zone du premier type de conductivité. La zone du premier type de conductivité est aligné avec les zones 7 du second type de conductivité. La distance qui sépare la zone du premier type de conductivité des deux zones du second type de conductivité plus proches voisines est égale au pas de répétition qui existe entre deux zones du second type de conductivité consécutives. Le pas de répétition est celui des photodétecteurs dans la matrice.This technological step makes it possible to form an array of
Ensuite, une étape commune de formation des plots 8 est réalisée sans tenir compte du fait que le plot 8 peut être formé pour un contact ou pour un photodétecteur 1. A titre d'exemple, les plots 8 ont des dimensions latérales (longueur et largeur) identiques et ils peuvent être formés par le même matériau. Le plot 8 en matériau électriquement conducteur est formé sur les zones du second type de conductivité et la zone du premier type de conductivité.Then, a common step of formation of the
Comme le contact 5 électriquement conducteur est formé à la place d'un photodétecteur 1, le contact 5 est aligné suivant le premier axe d'organisation X avec les autres photodétecteurs 1 de la même colonne ou de la même rangée. Un contact 5 a deux photodétecteurs 1 comme plus proches voisins, sur le premier axe d'organisation X. La distance qui sépare le contact 5 de ces deux photodétecteurs 1 plus proches voisins est égale à la distance qui sépare deux photodétecteurs 1 adjacents selon le premier axe d'organisation X. Il y a un pas de répétition P qui est constant le long du premier axe d'organisation, ce pas de répétition P sépare deux éléments consécutifs, soit deux photodétecteurs 1, soit un photodétecteur 1 et un contact 5 électriquement conducteur.Since the electrically conductive contact is formed in place of a photodetector 1, the
Dans un mode exemple, deux contacts 5 sont adjacents et consécutifs dans une des directions d'organisation. Cet exemple est moins intéressant que deux contacts 5 séparés par quelques photodétecteurs.In an example mode, two
Le contact 5 est parfaitement intégré dans la matrice de photodétecteurs, son encombrement est identique à celui d'un photodétecteur.The
De manière préférentielle, si plusieurs contacts 5 sont formés dans la matrice de photodétecteurs 1, les contacts 5 sont répartis à intervalle régulier selon le premier axe d'organisation X. La distance séparant deux contacts 5 est un multiple entier du pas de répétition P de la matrice selon le premier axe X ce qui peut définir un premier pas de répétition spécifique aux contacts 5. La distance de répétition est choisie de manière à éviter que les conditions de polarisation des photodétecteurs 1 soient modifiées au-delà d'une valeur seuil.Preferably, if
La distance de répétition des contacts 5 peut donc être définie dès la phase de dimensionnement du dispositif en fonction des conditions de polarisation appliquées, des conditions d'illumination maximales applicables et des propriétés électriques du substrat.The repetition distance of the
Comme le contact 5 électriquement conducteur est formé à la place d'un photodétecteur 1, il n'y a pas intégration d'un élément supplémentaire dans la matrice. Cette solution peut donc être intégrée dans les matrices où le pas de répétition est petit, par exemple pour un pas de répétition P inférieur à 30µm de manière encore plus avantageuse pour un pas de répétition P inférieur ou égale à 15µm.Since the electrically conductive contact is formed in place of a photodetector 1, there is no integration of an additional element into the matrix. This solution can therefore be integrated in the matrices where the repetition pitch is small, for example for a repetition pitch P of less than 30 μm, even more advantageously for a repetition pitch P of less than or equal to 15 μm.
L'utilisation d'un contact 5 ou de plusieurs contacts 5 électriquement conducteurs dans la matrice de photodétecteurs 1 permet de rendre le dispositif plus robuste vis-à-vis des risques de dépolarisation, par exemple quand le dispositif est soumis à un flux lumineux important.The use of a
Comme un photodétecteur 1 est remplacé par un contact 5 électriquement conducteur, il existe une zone de détection ne délivrant pas d'information sur la scène observée. Cette zone dépourvue d'information correspond à un pixel isolé. Grâce à des moyens de traitement, il est possible de compenser cette absence d'information en utilisant les informations données par ses voisins immédiats. Ce type de correction n'est pas possible ou facilement réalisable quand une sous-ligne de polarisation est utilisée et sacrifie une colonne ou une rangée entière de photodétecteurs 1.Since a photodetector 1 is replaced by an electrically conductive contact, there is a detection zone that does not deliver information on the observed scene. This area devoid of information corresponds to an isolated pixel. Thanks to processing means, it is possible to compensate for this lack of information by using the information given by its immediate neighbors. This type of correction is not possible or easily achievable when a bias sub-line is used and sacrifices a column or an entire row of photodetectors 1.
Ainsi, dans un exemple, le dispositif comporte des moyens de génération d'un signal d'illumination à partir des photodétecteurs 1 adjacents au contact 5. Selon les exemples, entre quatre et huit photodétecteurs adjacents peuvent être utilisés pour générer un signal provenant artificiellement du contact 5. De cette manière, le dispositif transmet un signal (par exemple une image) représentatif de la scène observée en éliminant les zones d'ombre créées par le ou les contacts 5.Thus, in one example, the device comprises means for generating an illumination signal from the photodetectors 1 adjacent to the
Dans la matrice de détection, le trou peut être assimilé à un photodétecteur défectueux dont on connaît à l'avance la position ce qui facilite la gestion des corrections à apporter pour avoir une information associée à chaque coordonnée de la matrice que cette zone soit occupée par un photodétecteur ou par un plot.In the detection matrix, the hole can be likened to a defective photodetector whose position is known in advance, which facilitates the management of the corrections to be made in order to obtain information associated with each coordinate of the matrix that this zone is occupied by a photodetector or a pad.
Les photodétecteurs 1 sont connectés à une première ligne en matériau métallique qui récupère l'information fournie par la matrice. La première ligne en matériau métallique relie le photodétecteur 1 au circuit de lecture 4. Le circuit de lecture 4 stocke l'information délivrée par le photodétecteur et il peut également intervenir dans la polarisation du photodétecteur 1. Chaque photodétecteur fournit un signal électrique (une tension ou un courant) qui est représentatif de la scène observée. Ce signal est acheminé par une ligne électrique jusqu'à des moyens de traitement de l'information via le circuit de lecture 4. Différents types de circuit de lecture sont possibles, par exemple des circuits à injection directe (DI), à injection directe contre-réactionnée (BDI) ou à amplificateur transimpédance capacitif (CTIA).The photodetectors 1 are connected to a first line of metallic material which retrieves the information provided by the matrix. The first line of metallic material connects the photodetector 1 to the
Le contact 5 électriquement conducteur est également connecté à une seconde ligne métallique et cette seconde ligne métallique est reliée au générateur 3 de tension de polarisation. La seconde ligne métallique est identique à la première ligne métallique. Les deux lignes métalliques sont formées dans le même matériau avec éventuellement les mêmes dimensions.The electrically conductive contact is also connected to a second metal line and this second metal line is connected to the
Dans cet exemple, la tension de polarisation VSUB est appliquée au substrat à l'intérieur de la matrice de photodétecteurs 1 en utilisant les niveaux d'interconnexion métallique, c'est-à-dire sans avoir à apporter de nouvelles lignes de polarisation entre les photodétecteurs 1. Dans cette architecture, les conditions de polarisation appliquées sur la ligne métallique reliée au contact 5 ont un impact réduit sur les photodétecteurs.In this example, the bias voltage V SUB is applied to the substrate inside the matrix of photodetectors 1 using the metal interconnection levels, that is to say without having to introduce new polarization lines between In this architecture, the polarization conditions applied on the metal line connected to the
L'utilisation d'un contact 5 électriquement conducteur relié au générateur 3 de tension de polarisation est particulièrement intéressant lorsque le substrat 6 présente une résistivité importante comparée aux conditions d'illumination acceptées par les photodétecteurs. A titre d'exemple, il est avantageux d'utiliser un ou plusieurs contacts électriquement conducteurs quand le substrat est dopé de type P car la conduction des porteurs de charge est moins bonne que pour les substrats dopés de type N. Cette architecture permet de former dans la matrice ou à côté de la matrice des photodiodes à avalanches ce qui n'est pas possible en inversant les types de dopage. Ces exemples sont particulièrement intéressants dans le cas où le substrat est un matériau à base de CdHgTe dont les caractéristiques électriques peuvent être insuffisantes pour intégrer des matrices de taille importante.The use of an electrically conductive contact connected to the
L'utilisation d'un contact 5 électriquement conducteur relié au générateur 3 de tension de polarisation est particulièrement intéressant lorsque la taille de la matrice de photodétecteurs est importante. De cette manière, le générateur 3 est en mesure d'appliquer le potentiel VSUB au moyen de la ligne de polarisation 2 entourant la matrice et au moyen des contacts 5 disposés à l'intérieur de la matrice.The use of an electrically conductive contact connected to the
L'utilisation d'un contact 5 électriquement conducteur relié au générateur de tension de polarisation est particulièrement intéressant lorsque les photodétecteurs 1 sont associés aux domaines des grandes longueurs d'onde du spectre infra-rouge (8-15 µm) ce qui se traduit par la gestion d'une quantité importante de porteurs de charge dans le substrat.The use of an electrically
En comparaison d'un anneau de polarisation classique qui découperait la matrice en une pluralité de sous-matrices, le contact électriquement conducteur évite de perdre une colonne et ou une ligne entière de photodétecteurs. Dans ce cas, la matrice obtenue est plus compacte c'est-à-dire qu'elle comporte un plus grand nombre de photodétecteurs par unité de surface.In comparison with a conventional polarization ring which would cut the array into a plurality of submatrices, the electrically conductive contact avoids losing a column and / or an entire line of photodetectors. In this case, the matrix obtained is more compact, that is to say that it comprises a greater number of photodetectors per unit area.
La matrice de photodétecteurs 1 peut comporter plusieurs lignes de photodétecteurs et/ou plusieurs colonnes de photodétecteurs. Les contacts 5 électriquement conducteurs peuvent être formés sur une pluralité de lignes ou de colonnes différentes. Ainsi, une même ligne ou une même colonne de photodétecteur peut comporter plusieurs contacts 5 électriquement conducteurs. Dans un autre exemple, une même ligne ou une même colonne ne comporte pas plus d'un contact 5 afin de réduire l'impact du contact sur les informations fournies par la ligne et/ou la colonne et donc pour réduire l'impact sur le traitement de l'information.The matrix of photodetectors 1 may comprise several rows of photodetectors and / or several columns of photodetectors. The electrically conductive contacts may be formed on a plurality of different rows or columns. Thus, the same line or the same column of photodetector may comprise several electrically conductive contacts. In another example, the same line or the same column does not have more than one
Dans un exemple, la matrice de photodétecteurs 1 peut comporter des organisations différentes de photodétecteurs 1, par exemple il existe un décalage des photodétecteurs présents sur deux lignes ou deux colonnes successives afin de gagner en compacité. Les première et seconde directions d'organisation ne sont pas obligatoirement perpendiculaires. Cette architecture est particulièrement intéressante dans le cas d'une matrice bispectrale où deux types de photodétecteurs sont intégrés. Chaque type de photodétecteur réagit avec une longueur d'onde particulière. Pour ce type de dispositif, le substrat comporte plusieurs couches qui réagissent à des longueurs d'ondes différentes, ce qui rend difficilement utilisable la couche très dopée divulguée dans le document
Dans le cas où les photodétecteurs sont des diodes de type PN ou NP, il y a deux zones avec des types opposés de conductivité qui ont une interface commune.In the case where the photodetectors are PN or NP type diodes, there are two zones with opposite types of conductivity that have a common interface.
De manière avantageuse, le substrat 6 est du premier type de conductivité et des zones 7 d'un second type de conductivité sont formées à l'intérieur du substrat. Afin d'avoir une pluralité de diodes indépendantes, les zones 7 en second type de conductivité sont espacées les unes des autres.Advantageously, the
Cependant, chaque diode présente une surface de collection des porteurs générés qui est supérieure à la surface occupée par la zone 7 du seconde type de conductivité. En d'autres termes, les porteurs générés hors de la diode peuvent être attirés et collectés par la diode. En d'autres termes, en vue de dessus, la surface de collection en porteurs déborde de la surface en second type de conductivité.However, each diode has a collection area of the generated carriers that is greater than the area occupied by the
Dans un exemple, afin d'avoir une collection maximale de l'énergie lumineuse émise par la scène observée, il y a un chevauchement des zones de collection entre deux photodétecteurs 1 adjacents. Dans cette zone de chevauchement commune à deux photodétecteurs les porteurs de charge générés ont la possibilité d'être captés par l'un ou l'autre des photodétecteurs 1.In one example, in order to have a maximum collection of the light energy emitted by the observed scene, there is an overlap of the collection areas between two photodetectors 1 adjacent. In this region of overlap common to two photodetectors, the generated charge carriers have the possibility of being picked up by one or other of the photodetectors 1.
De manière avantageuse, les photodétecteurs 1 ont des architectures identiques et des conditions de polarisations identiques afin de faciliter le traitement de l'information émis par chaque photodétecteur 1 en comparaison des autres photodétecteurs 1 de la matrice. Dans ce cas de figure, les photodétecteurs 1 sont considérés comme identiques tant dans leur architecture que dans leur fonctionnement. Les photodétecteurs 1 ont la même surface de collection effective.Advantageously, the photodetectors 1 have identical architectures and identical polarization conditions in order to facilitate the processing of the information emitted by each photodetector 1 in comparison with the other photodetectors 1 of the matrix. In this case, the photodetectors 1 are considered to be identical both in their architecture and in their operation. The photodetectors 1 have the same effective collection area.
Dans le cas où le contact 5 comporte un plot 8 déposé sur une zone du premier type de conductivité et dépourvue d'une zone du second type de conductivité, il n'y a pas formation d'une diode, ni d'une zone de collection. Les photodétecteurs 1 adjacents à un contact 5 n'ont pas de zone de chevauchement avec le contact 5 et ils possèdent alors une surface de collection effective qui est supérieure aux autres photodétecteurs. Il existe un décalage dans le fonctionnement de ces photodétecteurs 1 lié à la zone de collection des porteurs de charge qui est supérieure à celles des autres photodétecteurs de la matrice.In the case where the
Cette singularité de fonctionnement rend plus difficile le traitement de l'information en créant artificiellement des zones plus lumineuses que dans la réalité. Cet effet est d'autant plus marqué que la zone de chevauchement est importante dans la surface de collection des porteurs de charge.This singularity of operation makes it more difficult to process information by artificially creating brighter areas than in reality. This effect is all the more marked as the area of overlap is important in the collection surface of the charge carriers.
Afin de rendre les photodétecteurs plus homogènes avec le reste de la population de la matrice, le contact 5 électriquement conducteur comporte avantageusement une zone 9 dopée du second type de conductivité de forme annulaire avec, en son centre, le substrat et/ou une zone 10 dopée du premier type de conductivité qui est en continuité électrique avec le substrat. De cette manière, le contact 5 électriquement conducteur comporte une zone centrale du premier type de conductivité et une zone périphérique du second type de conductivité. La zone 9 du second type de conductivité n'entoure pas complètement la zone du premier type de conductivité afin que la tension de polarisation VSUB puisse être appliquée directement au substrat et non par l'intermédiaire d'une diode.In order to make the photodetectors more homogeneous with the rest of the matrix population, the electrically conductive contact advantageously comprises a doped zone 9 of the second annular-shaped conductivity type with, at its center, the substrate and / or an
Cette zone 9 dopée du second type de conductivité vient simuler le fonctionnement d'une photodiode avec une surface de collection et créer une zone de chevauchement entre le contact 5 et chacun des photodétecteurs 1 adjacents. Cette zone de chevauchement réduit la surface de collection effective des photodétecteurs 1.This doped zone 9 of the second conductivity type simulates the operation of a photodiode with a collection surface and creates an overlap zone between the
Le plot 8 est en contact électrique avec la zone 10 du premier type de conductivité et avec la zone 9 du second type de conductivité. La zone 10 peut être une partie du substrat ou une partie de la zone 9 qui a été dopée d'un type opposé par la suite afin de changer de conductivité. La distance séparant le bord extérieur de la zone 9 dopée du second type de conductivité de forme annulaire et la zone 7 dopée du second type de conductivité du photodétecteur 1 est identique à la distance qui sépare deux zones 7 dopées du second type de conductivité de deux photodétecteurs adjacents selon le premier axe d'organisation. La zone centrale et la zone périphérique du contact 5 ont des types de conductivité opposés et ces deux zones sont court-circuitées au moyen d'un matériau électriquement conducteur, par exemple un métal, de manière préférentielle par le plot 8 relié au générateur 3.The
Cette architecture permet d'éviter la formation d'une diode entre la zone centrale et la zone périphérique du contact 5 ce qui est préjudiciable au bon fonctionnement du contact 5. Cela permet également d'utiliser la zone 9 périphérique pour réduire la surface de collection des photodétecteurs adjacents tout en réalisant la polarisation du substrat à la tension de polarisation VSUB au moyen de la partie centrale du plot 5.This architecture makes it possible to avoid the formation of a diode between the central zone and the peripheral zone of the
Dans un mode de réalisation particulier, la partie centrale du contact 5, c'est-à-dire la zone 10, dans le substrat présente une concentration en dopant supérieure à celle du reste du substrat 6.In a particular embodiment, the central portion of the
Cette architecture particulière peut être réalisée simplement en formant la matrice de diodes PN ou NP dans le substrat. Les zones 7 des photodiodes et la zone 9 sont formées durant la même étape technologique, bien qu'il soit également envisageable de les former séparément. Ensuite, une zone 10 dopée du premier type de conductivité est formée dans la zone 9 du second type de conductivité de manière à réaliser une connexion directe entre le substrat 9 en premier type de conductivité et le plot 8 du contact 5. Il est également possible de changer l'ordre de formation des zones, par exemple en former la zone 10 en premier puis en formant les zones 7 et 9.This particular architecture can be achieved simply by forming the matrix of PN or NP diodes in the substrate. The
Ensuite, les plots 8 sont formés de manière conventionnelle comme le reste du procédé de mise en oeuvre du dispositif. Les plots sont par exemple des billes métalliques qui servent à l'interconnexion avec un second substrat qui comporte le module de lecture. Seul le routage des lignes métalliques est légèrement modifié afin de connecter le contact 5 au générateur 3 de tension de polarisation. Les plots sont disposés préférentiellement avec un pas de répétition constant, le pas de répétition des photodétecteurs.Then, the
Cette étape supplémentaire permet de manière simple et économique de transformer un photodétecteur de type diode PN ou NP en un contact de polarisation intégré directement à l'intérieur de la matrice.This additional step makes it possible in a simple and economical way to transform a PN or NP diode-type photodetector into a polarization contact integrated directly inside the matrix.
De manière générale, le contact 5 comporte une zone 10 du premier type de conductivité et une zone 9 du second type de conductivité. Ces deux zones sont adjacentes et court-circuitées afin d'être polarisées au même potentiel, ici le potentiel de polarisation VSUB. La première zone 10 du premier type de conductivité est en continuité de dopage avec le reste du substrat 6. De cette manière, la première zone 10 ne peut pas être formée et complètement délimitée dans un caisson du second de conductivité. Le type de conductivité est constant depuis la première zone 10 jusqu'au substrat. La seconde zone 9 peut entourée partiellement ou complètement la première zone 10 d'un point de vue latérale afin d'avoir un effet, sur une ou plusieurs surfaces de collection des zones adjacentes. Plusieurs zones 9, ici des zones 9a et 9b, distinctes les unes des autres peuvent être formées en face d'un ou plusieurs photodétecteurs pour modifier la zone de chevauchement.In general, the
Le détecteur comporte des moyens d'application de la tension de polarisation directement sur une zone du premier type de conductivité qui est en continuité de dopage avec le substrat et sur une zone du second type de conductivité. Ceci permet de former une diode dont l'influence latérale va réduire la surface de collection d'au moins un photodétecteur adjacent.The detector comprises means for applying the bias voltage directly to an area of the first conductivity type which is in continuous doping with the substrate and on an area of the second type of conductivity. This makes it possible to form a diode whose lateral influence will reduce the collection area of at least one adjacent photodetector.
Claims (6)
- A detection device comprising:- a semiconductor substrate (6) of a first conductivity type,- a matrix of photodiodes (1) organized along a first organization axis (X) with a repetition pitch (P), each photodiodes (1) comprising a first electrode formed by an area of a second conductivity type (7) opposite to the first conductivity type and a second electrode formed by the substrate (6),- a peripheral biasing ring (2) formed in the substrate around the photodiode matrix (1), the biasing ring (2) being connected to a bias voltage generator (3) to apply a bias voltage (VSUB) to the substrate (6),- a contact (5) arranged between two photodiodes (1) in the alignment of the first organization axis (X), the contact (5) being separated from the two photodiodes (1) along the first organization axis (X) by the repetition pitch so that the contact (5) replaces a photodiode (1), the contact (5) comprising:- an electrically conducting bump (8) arranged on the substrate (6) and connected to the bias voltage generator (3) to apply the bias voltage (VSUB) to the substrate (6),- a first area (6, 10) of first conductivity type configured to perform passage of electric charges between the electrically conducting bump (8) and the substrate (6),a device characterized in that- a second area (9) of second conductivity type is arranged to be in contact with the electrically conducting bump (8), the electrically conducting bump (8) short-circuits the first area (10) and second area (9).
- The device according to claim 1, characterized in that the second area (9) forms a ring around the first area (10).
- The device according to one of claims 1 and 2, characterized in that it comprises a plurality of electrically conducting contacts (5) connected to the substrate (6) along the first organization axis (X), the contacts (5) being arranged between the photodiodes (1) at regular intervals with a first repetition pitch which is a multiple of the repetition pitch (P) of the photodiodes (1).
- The device according to claim 3, characterized in that the photodiodes matrix (1) is organized along a second organization axis (Y), the contacts (5) being arranged along the second organization axis (Y) with a second repetition pitch.
- The device according to any one of claims 1 to 4, characterized in that a first metal line couples a photodiode (1) to a readout circuit (4) and a second metal line connects the contact (5) to the bias voltage generator (3).
- A fabrication method of a detection device comprising the following steps:- providing a semiconductor substrate (6) of a first conductivity type,- forming a matrix of photodiodes (1) organized along a first organization axis (X) with a repetition pitch (P), each photodiodes (1) comprising a first electrode formed by an area of a second conductivity type (7) opposite to the first conductivity type and a second electrode formed by the substrate (6),- forming a contact (5) arranged between two photodiodes (1) in the alignment of the first organization axis (X), the contact (5) being separated from the two photodiodes (1) along the first organization axis (X) by the repetition pitch so that the contact (5) replaces a photodiode (1), the contact (5) comprising:characterized in that a second area (9) of second conductivity type is arranged to be in contact with the electrically conducting bump (8), the electrically conducting bump (8) short-circuiting the first area (10) and second area (9).- an electrically conducting bump (8) arranged on the substrate (6) and connected to the bias voltage generator (3) to apply the bias voltage (VSUB) to the substrate (6), the bias voltage generator (3) being connected to a peripheral ring (2) formed in the substrate (6) and arranged to surrender the photodiode matrix (1),- a first area (6, 10) of first conductivity type configured to perform passage of electric charges between the electrically conducting bump (8) and the substrate (6),
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1100661A FR2972295B1 (en) | 2011-03-04 | 2011-03-04 | DETECTION MATRIX WITH IMPROVED POLARIZATION CONDITIONS AND METHOD FOR MANUFACTURING THE SAME |
FR1100663A FR2972296B1 (en) | 2011-03-04 | 2011-03-04 | DETECTION MATRIX WITH IMPROVED POLARIZATION CONDITIONS AND METHOD FOR MANUFACTURING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2495764A1 EP2495764A1 (en) | 2012-09-05 |
EP2495764B1 true EP2495764B1 (en) | 2017-10-04 |
Family
ID=45811399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12354012.2A Active EP2495764B1 (en) | 2011-03-04 | 2012-03-02 | Detection matrix with improved polarisation conditions and manufacturing method |
Country Status (3)
Country | Link |
---|---|
US (1) | US8669630B2 (en) |
EP (1) | EP2495764B1 (en) |
JP (1) | JP5985211B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109613586B (en) * | 2018-12-27 | 2020-09-29 | 江苏赛诺格兰医疗科技有限公司 | Resistance network position reading circuit with compensation resistor and method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62232958A (en) * | 1986-04-03 | 1987-10-13 | Toshiba Corp | Semiconductor image pick-up element |
FR2754107B1 (en) | 1996-10-01 | 1998-10-30 | Commissariat Energie Atomique | LARGE DIMENSIONAL PHOTONIC RADIATION DETECTOR |
JPH10256592A (en) * | 1997-03-14 | 1998-09-25 | Fujitsu Ltd | Semiconductor photodetector and method of its manufacture |
JP3467013B2 (en) | 1999-12-06 | 2003-11-17 | キヤノン株式会社 | Solid-state imaging device |
WO2001075977A1 (en) * | 2000-04-04 | 2001-10-11 | Hamamatsu Photonics K.K. | Semiconductor energy detector |
JP3740390B2 (en) * | 2000-07-10 | 2006-02-01 | キヤノン株式会社 | Imaging apparatus, radiation imaging apparatus, and radiation imaging system using the same |
US7170143B2 (en) | 2003-10-20 | 2007-01-30 | Hamamatsu Photonics K.K. | Semiconductor photo-detection device and radiation apparatus |
JP4075773B2 (en) * | 2003-11-05 | 2008-04-16 | ソニー株式会社 | Solid-state imaging device |
FI20040966A (en) | 2004-07-09 | 2006-01-10 | Artto Aurola | Surface accumulation design for a radiation detector |
JP4720434B2 (en) * | 2005-10-31 | 2011-07-13 | 日本ビクター株式会社 | Solid-state imaging device |
US7755079B2 (en) | 2007-08-17 | 2010-07-13 | Sandia Corporation | Strained-layer superlattice focal plane array having a planar structure |
JP5150283B2 (en) | 2008-01-30 | 2013-02-20 | 浜松ホトニクス株式会社 | Solid-state imaging device |
-
2012
- 2012-03-02 US US13/410,937 patent/US8669630B2/en active Active
- 2012-03-02 EP EP12354012.2A patent/EP2495764B1/en active Active
- 2012-03-05 JP JP2012048245A patent/JP5985211B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP5985211B2 (en) | 2016-09-06 |
US20120223404A1 (en) | 2012-09-06 |
JP2012186476A (en) | 2012-09-27 |
EP2495764A1 (en) | 2012-09-05 |
US8669630B2 (en) | 2014-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2786411B1 (en) | Access-resistant diode array device having enhanced stability | |
EP1482559B1 (en) | Infrared detector with independent, conductive, tridimensional gate | |
EP2806457B1 (en) | Device comprising an array of diodes having an improved stability | |
EP2786413A1 (en) | Compact detection array having improved polarization conditions | |
EP2495764B1 (en) | Detection matrix with improved polarisation conditions and manufacturing method | |
WO2022043195A1 (en) | Method for treating an optoelectronic device | |
FR3001578A1 (en) | PHOTODIODE MATRIX WITH DOPED ZONE ABSORBING THE LOADS | |
FR2972295A1 (en) | Electromagnetic radiation detecting device, has electrically conducting contact comprising P-type area that allows passage of charges between conducting bump and P-type semiconductor substrate, and N-type area arranged in contact with bump | |
FR2503933A1 (en) | INTEGRATED CIRCUIT COMPRISING A NETWORK OF TRANSISTORS | |
FR2972296A1 (en) | Electromagnetic radiation detecting device, has electrically conducting contact comprising P-type area that allows passage of charges between conducting bump and P-type semiconductor substrate, and N-type area arranged in contact with bump | |
EP0958545B1 (en) | Circuit for integrating light-induced charges with improved linearity | |
EP3696865B1 (en) | Photodiode | |
EP1188187B1 (en) | Semiconductor detector for detecting ionizing radiation | |
EP2463632B1 (en) | Detection device comprising a robust test circuit | |
FR2855913A1 (en) | STORAGE CAPACITOR ARRAY FOR SOLID STATE IMAGING DEVICE | |
FR2994616A1 (en) | SEMICONDUCTOR COMPONENT AND METHOD FOR MANUFACTURING SEMICONDUCTOR COMPONENT | |
WO2013088005A1 (en) | Detection array with tracking of the behavior of the photodetectors | |
EP1061732A1 (en) | Method for biasing the photodiodes of a matrix sensor through their associated diodes/photodiodes | |
EP0737002A1 (en) | CCD readout register with multiple outputs | |
FR2503934A1 (en) | INTEGRATED CIRCUIT WITH POTENTIAL REDUCTION | |
EP4268281A1 (en) | Integration of a detection circuit based on optical resonators interconnected on a readout circuit of an imager | |
FR2963850A1 (en) | Detection device, has voltage mirrors that are connected between each other by resistor element arranged between terminals of voltage mirrors, and polarization conductor connected to terminal of photodetectors | |
FR3087290A1 (en) | MEMORY POINT | |
FR2934084A1 (en) | IMAGER PIXEL IN REAR-BACK TECHNOLOGY AND IMAGE SENSOR | |
FR3006105A1 (en) | PHOTODIODE MATRIX WITH ADJUSTABLE LOAD ABSORPTION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20130228 |
|
17Q | First examination report despatched |
Effective date: 20150701 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOCIETE FRANCAISE DE DETECTEURS INFRAROUGES - SOFR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170503 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 934766 Country of ref document: AT Kind code of ref document: T Effective date: 20171015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012038078 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 934766 Country of ref document: AT Kind code of ref document: T Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180104 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180104 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180105 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180204 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012038078 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
26N | No opposition filed |
Effective date: 20180705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120302 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240320 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240321 Year of fee payment: 13 Ref country code: GB Payment date: 20240322 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240220 Year of fee payment: 13 Ref country code: SE Payment date: 20240321 Year of fee payment: 13 Ref country code: FR Payment date: 20240320 Year of fee payment: 13 |